Séminaire PAS
Organisateurs : Erwan Saint-Loubert Bié, Christoph Kriegler et Catherine Aaron
Les exposés ont lieu le jeudi à 13h00 en salle 218 du bâtiment de mathématiques (consulter le plan d'accès au laboratoire).
Agenda global au format
Mai 2026
Mars 2026
Février 2026
Janvier 2026
-
Jeudi 29 janvier 2026 -
Charlie Sire Spline Interpolation on Compact Riemannian Manifolds Spline interpolation is a widely used class of methods for solving interpolation problems by constructing smooth interpolants that minimize a regularized energy functional involving the Laplacian operator. While many existing approaches focus on Euclidean domains or the sphere, relying on the spectral properties of the Laplacian, this work introduces a method for spline interpolation on general manifolds by exploiting its equivalence with kriging. Specifically, the proposed approach uses finite element approximations of random fields defined over the manifold, based on Gaussian Markov Random Fields and a discretization of the Laplace-Beltrami operator on a triangulated mesh. This framework enables the modeling of spatial fields with local anisotropies through domain deformation. The method is first validated on the sphere using both analytical test cases and a pollution-related study, and is compared to the classical spherical harmonics-based method. Additional experiments on the surface of a cylinder further illustrate the generality of the approach.
Afficher le contenu...
Décembre 2025
-
Jeudi 18 décembre 2025 -
Orlane Rossini Apprentissage par renforcement model-based pour le contrôle de processus de décision semi-markoviens déterministes par morceaux partiellement observables. La prise de décision séquentielle dans des systèmes partiellement observables et à dynamique inconnue constitue un défi majeur, notamment lorsque les données disponibles sont limitées.
Ce type de situation est fréquent en médecine, où l’état du patient est observé de manière intermittente, et où la progression de la maladie varie fortement d’un individu à l’autre.
Dans ce contexte, les stratégies de traitement personnalisées visent à adapter le suivi à la dynamique propre de chaque patient, afin de réduire les traitements inutiles et de favoriser une détection précoce des rechutes. Pour cela, il est nécessaire de disposer de modèles capables de capturer une dynamique globale tout en s’adaptant aux spécificités individuelles.
Les Processus de Markov Déterministes par Morceaux (PDMPs) sont particulièrement adaptés pour modéliser des maladies comme le cancer, dont l’évolution est largement déterministe, ponctuée d’événements aléatoires. Cependant, le contrôle optimal de tels processus est difficile, notamment en cas d'observations partielles ou d’incertitude sur le modèle.
Dans ce travail, on propose une approche numérique permettant de calculer une stratégie $\epsilon$-optimale pour un PDMP complètement observé à dynamique connue. L’étude se poursuit dans le cadre partiellement observable en transformant le problème en un Processus de Décision Markovien Partiellement Observé (POMDP), résolu à l’aide d’algorithmes d’apprentissage par renforcement profond, capables de gérer l’espace d'état continu. Enfin, afin d’intégrer l’incertitude sur les dynamiques, nous reformulons le problème en un POMDP Bayésien Adaptatif (BAPOMDP), dans lequel la dynamique est modélisée de manière probabiliste. Cette dernière formulation permet d’apprendre des stratégies de contrôle robustes et personnalisées à partir de données limitées et incertaines.Afficher le contenu...
-
Jeudi 11 décembre 2025 -
Laure Coutin Théorèmes limites pour les processus de Hawkes. Les processus de Hawkes initialement introduit
en sismologie, sont très utilisé pour modéliser des réseaux de neurones,
en assurance en dynamique de population.
L'objet de cet exposé est de proposer
un tour d'horizon des résultats de quantification de certains théorèmes limites des processus de HawkesAfficher le contenu...
-
Jeudi 04 décembre 2025 -
Susovan Pal Manifold learning with non-smooth boundaries, and asymptotics of the graph Laplacian Manifold learning algorithms often assume that data lie on or near a smooth lower-dimensional manifold M embedded in a higher dimensional Euclidean space, and that the Laplace–Beltrami operator of M can be approximated by graph Laplacian constructed from the data. However, analogous results for singular geometric spaces (for instance, spaces with boundaries or cusps) remain largely unexplored. In this talk, I will present recent work analyzing the asymptotic behavior of the unnormalized graph Laplacian on manifolds with non-smooth boundaries, which we refer to as manifolds with kinks, corners or cusps being special cases. In contrast with the smooth case—where convergence is to the Laplace–Beltrami operator—we show that the limiting behavior involves a first-order boundary operator, namely a generalized normal derivative, giving rise to generalized Neumann Laplacian. Numerical simulations support and illustrate the theoretical results. Aside from the usual motivation of nonlinear dimensionality reduction, we also show one application on edge detection in image processing.
Afficher le contenu...
Novembre 2025
-
Jeudi 27 novembre 2025 -
rémi Vaucher Infering hypergraphs on set of time series using the signature transform. Topological data analysis (TDA) has emerged in recent years as a rapidly developing area within statistics. Its central challenge lies in equipping a dataset with a suitable topological structure, typically via the construction of simplicial complexes, which can be viewed as a particular class of hypergraphs. For temporal data, however, the absence of an intrinsic metric constitutes a major obstacle to building such structures. To address this issue, we propose the use of rough path signatures.
By design, signatures extract a temporal summary of the geometric features of a path. In this work, we introduce two approaches: the first constructs a hypergraph that captures explainability relationships, while the second relies on kernel-based methods.
These contributions aim to bridge the gap between geometric representations of temporal processes and topological modelling, thereby enabling a richer structural understanding of time-dependent data.
Afficher le contenu...
Octobre 2025
-
Jeudi 16 octobre 2025 -
fete de la science fete de la science éviter de prévoir un séminaire : fête de la science
Afficher le contenu...
-
Jeudi 02 octobre 2025 -
Gauthier Thurin Quantiles multivariés, transport optimal et applications On introduira une définition de quantiles multivariés fondée sur le transport de mesures depuis une loi de référence fixée. Une application à la prédiction conforme sera détaillée, ce qui permettra de mettre en perspective ses principales propriétés par rapport à d’autres alternatives.
Afficher le contenu...