header

Séminaire PAS


Organisateurs : Erwan Saint-Loubert Bié et Christoph Kriegler
Les exposés ont lieu le mardi à 14h45 en salle 218 du bâtiment de mathématiques (consulter le plan d'accès au laboratoire).
Agenda global au format ical





Mars 2023


  • Mardi 28 mars 2023 - Athanasios Kouroupis (NTNU Trondheim, Norvège)

    Beurling primes and Hardy spaces of Dirichlet series

    Given an arbitrary increasing sequence q = {qn},
    1 < qn → ∞, such that {log qn}
    is linearly independent over the rationals, we will denote by Nq = {νn} the set of numbers that
    can be written (uniquely) as finite products with factors from q, ordered in an increasing
    manner. The numbers qn are known as Beurling primes, and the numbers νn are Beurling
    integers. The corresponding generalized Dirichlet series are of the form
    f (s) = ∑ an vn^(-s).

    The talk comprises a first part on Bohr's theorem
    (joint work with Frederik Broucke and Karl–Mikael Perfekt)
    and a second part on composition operators on
    the Dirichlet Hardy space H2.

    Afficher le contenu...

    ical


  • Mardi 07 mars 2023 - Carlos Gomez Cabello, Universidad de Sevilla

    Semigroups of composition operators on Banach spaces of Dirichlet series

    In this talk, we shall consider continuous semigroups of analytic functions $\{\Phi_t\}_{t\geq0}$ in the so-called \emph{Gordon-Hedenmalm class} $\mathcal{G}$, that is, the family of analytic functions $\Phi:\mathbb{C}_+\to\mathbb{C}_+$ giving rise to bounded composition operators in the Hardy space of Dirichlet series $\mathcal{H}^2$. We will show the existence of a one-to-one correspondence between continuous semigroups $\{\Phi_{t}\}_{t\geq0}$ in the class $\mathcal G$ and strongly continuous semigroups of composition operators $\{T_t\}_{t\geq0}$, where $T_t(f)=f\circ\Phi_t$, $f\in\mathcal{H}^2$. Then, we will characterise the infinitesimal generators of continuous semigroups in the class $\mathcal G$ as the Dirichlet series sending $\mathbb C_{+}$ into its closure. We will extend these results to the range $p\in[1,\infty)$ and for the case $p=\infty$, we shall prove that there are no non-trivial strongly continuous semigroups of composition operators in $\mathcal{H}^\infty$. If time permits, a brief comment will be made regarding the symbols of the bounded composition operators in the algebra $\mathcal{A}(\mathbb C_+)$ of Dirichlet series as well as the interplay between the corresponding semigroups of these symbols and the associated semigroups of composition operators.

    Afficher le contenu...

    ical

Novembre 2022


  • Mardi 15 novembre 2022 - Rémi BOUTIN, Université Paris Cité

    Embedded Topics in the Stochastic Block Model

    Communication networks such as emails or social networks are now ubiquitous and their analysis has become a strategic field. In many applications, the goal is to automatically extract relevant information by looking at the nodes and their connections. Unfortunately, most of the existing methods focus on analysing the presence or absence of edges and textual data is often discarded. However, all communication networks actually come with textual data on the edges. In order to take into account this specificity, we consider in this paper networks for which two nodes are linked if and only if they share textual data. We introduce a deep latent variable model allowing embedded topics to be handled called ETSBM to simultaneously perform clustering on the nodes while modelling the topics used between the different clusters. ETSBM extends both the stochastic block model (SBM) and the embedded topic model (ETM) which are core models for studying networks and corpora, respectively. The inference is done using a variational-Bayes expectation-maximisation algorithm combined with a stochastic gradient descent. The methodology is evaluated on synthetic data and on a real world dataset.

    Afficher le contenu...

    ical


  • Mardi 08 novembre 2022 - Claire BRECHETEAU, Université de Rennes 2, 14h00

    Approcher des données par une union de boules ou d'ellipsoïdes et partitionnement

    Dans cet exposé, il sera question de construire un proxy de le fonction
    distance à un compact, à partir d'un nuage de points générés sur ce
    compact, avec du bruit.
    Ce proxy sera construit à partir d'un critère de type k-means, avec une
    divergence de Bregman. Ses sous-niveaux seront des unions de boules. Je
    présenterai l'utilisation de ce proxy à des fins de partitionnement de
    données.

    Il s'agit de travaux publiés dans :
    - Claire Brécheteau and Clément Levrard, A k-points-based distance for
    robust geometric inference. Bernoulli 2020, Vol. 26, No. 4, 3017-3050
    - Claire Brécheteau and Aurélie Fischer and Clément Levrard, Robust
    Bregman Clustering. Annals of Statistics 2021, Vol. 49, No. 3, 1679-1701

    Afficher le contenu...

    ical

Octobre 2022


  • Vendredi 14 octobre 2022 - GUNNAR TARALDSEN

    Mathematics of improper priors and posteriors

    Taraldsen et al (2022) have recently proved a generalization of Bayes theorem that includes both
    improper priors and improper posteriors. This theory links the Renyi (1955) conditional probability
    spaces with the theory of disintegration presented by Bourbaki (1959). In this talk, the Basu
    theorem, the factorization theorem, and optimal frequentist inference based on Bayesian or fiducial
    arguments are reconsidered in this more general context

    Afficher le contenu...

    ical