header

Séminaire PAS


Organisateurs : Erwan Saint-Loubert Bié, Christoph Kriegler et Catherine Aaron
Les exposés ont lieu le jeudi à 13h00 en salle 218 du bâtiment de mathématiques (consulter le plan d'accès au laboratoire).
Agenda global au format ical





Mai 2026


  • Jeudi 21 mai 2026 - séminaire GT IA

    ical

Avril 2026


  • Jeudi 23 avril 2026 - Céline Duval

    tba

    ical

Mars 2026


  • Jeudi 19 mars 2026 - Vasiliki Evdoridou (Open University)

    TBA

    ical


  • Jeudi 12 mars 2026 - ELeanor Archer

    ical

Février 2026


  • Jeudi 26 février 2026 - Yiye Jiang

    ical


  • Jeudi 05 février 2026 - Rémi Boutin

    ical

Janvier 2026


  • Jeudi 29 janvier 2026 - Charlie Sire

    Spline Interpolation on Compact Riemannian Manifolds

    Spline interpolation is a widely used class of methods for solving interpolation problems by constructing smooth interpolants that minimize a regularized energy functional involving the Laplacian operator. While many existing approaches focus on Euclidean domains or the sphere, relying on the spectral properties of the Laplacian, this work introduces a method for spline interpolation on general manifolds by exploiting its equivalence with kriging. Specifically, the proposed approach uses finite element approximations of random fields defined over the manifold, based on Gaussian Markov Random Fields and a discretization of the Laplace-Beltrami operator on a triangulated mesh. This framework enables the modeling of spatial fields with local anisotropies through domain deformation. The method is first validated on the sphere using both analytical test cases and a pollution-related study, and is compared to the classical spherical harmonics-based method. Additional experiments on the surface of a cylinder further illustrate the generality of the approach.

    Afficher le contenu...

    ical


  • Jeudi 22 janvier 2026 - hugo henneuse

    TBA

    ical


  • Jeudi 22 janvier 2026 - Manon Michel + Philippe Gaussier

    GT IA 14h-16h

    ical


  • Jeudi 15 janvier 2026 - Emile Pierret

    ical


  • Jeudi 08 janvier 2026 - Alice Le Brigant

    TBA

    ical

Décembre 2025


  • Jeudi 18 décembre 2025 - Orlane Rossini

    TBA

    ical


  • Jeudi 11 décembre 2025 - Laure Coutin

    TBA

    ical


  • Jeudi 04 décembre 2025 - Susovan Pal

    Manifold learning with non-smooth boundaries, and asymptotics of the graph Laplacian

    Manifold learning algorithms often assume that data lie on or near a smooth lower-dimensional manifold M embedded in a higher dimensional Euclidean space, and that the Laplace–Beltrami operator of M can be approximated by graph Laplacian constructed from the data. However, analogous results for singular geometric spaces (for instance, spaces with boundaries or cusps) remain largely unexplored. In this talk, I will present recent work analyzing the asymptotic behavior of the unnormalized graph Laplacian on manifolds with non-smooth boundaries, which we refer to as manifolds with kinks, corners or cusps being special cases. In contrast with the smooth case—where convergence is to the Laplace–Beltrami operator—we show that the limiting behavior involves a first-order boundary operator, namely a generalized normal derivative, giving rise to generalized Neumann Laplacian. Numerical simulations support and illustrate the theoretical results. Aside from the usual motivation of nonlinear dimensionality reduction, we also show one application on edge detection in image processing.

    Afficher le contenu...

    ical

Novembre 2025


  • Jeudi 27 novembre 2025 - rémi Vaucher

    Infering hypergraphs on set of time series using the signature transform.

    Topological data analysis (TDA) has emerged in recent years as a rapidly developing area within statistics. Its central challenge lies in equipping a dataset with a suitable topological structure, typically via the construction of simplicial complexes, which can be viewed as a particular class of hypergraphs. For temporal data, however, the absence of an intrinsic metric constitutes a major obstacle to building such structures. To address this issue, we propose the use of rough path signatures.

    By design, signatures extract a temporal summary of the geometric features of a path. In this work, we introduce two approaches: the first constructs a hypergraph that captures explainability relationships, while the second relies on kernel-based methods.

    These contributions aim to bridge the gap between geometric representations of temporal processes and topological modelling, thereby enabling a richer structural understanding of time-dependent data.



    Afficher le contenu...

    ical


  • Jeudi 20 novembre 2025 - Alessandra Ocelli

    ical


  • Mardi 18 novembre 2025 - 18 novembre 2025 : Issam Falih + Julien Hautot

    GT IA 14h-16h

    ical


  • Jeudi 06 novembre 2025 - HCERES

    ne pas prévoir de séminaire ? HCERES

    Afficher le contenu...

    ical

Octobre 2025


  • Jeudi 23 octobre 2025 - Jonathan Husson

    Grandes deviations et spectres de matrices aléatoires

    ical


  • Jeudi 16 octobre 2025 - fete de la science

    fete de la science

    éviter de prévoir un séminaire : fête de la science

    Afficher le contenu...

    ical


  • Jeudi 02 octobre 2025 - Gauthier Thurin

    Quantiles multivariés, transport optimal et applications

    On introduira une définition de quantiles multivariés fondée sur le transport de mesures depuis une loi de référence fixée. Une application à la prédiction conforme sera détaillée, ce qui permettra de mettre en perspective ses principales propriétés par rapport à d’autres alternatives.

    Afficher le contenu...

    ical

Septembre 2025


  • Jeudi 25 septembre 2025 - réunion d'équipe

    réunion d'équipe et séminaire GT IA (par Julien et Boris)

    Pas de séminaire : réunion d'équipe
    Info : a 14h séminaire du GT IA

    Afficher le contenu...

    ical