Claudia García López
Lauréate de la sixième édition du prix de thèse du laboratoire de mathématiques Blaise Pascal
Le prix de thèse du laboratoire de mathématiques Blaise Pascal
À son décès, un mathématicien a légué un important capital au laboratoire de mathématiques Blaise Pascal (LMBP, CNRS et université Clermont Auvergne). Par testament, il demandait que le fond alloué soit utilisé pour encourager un jeune mathématicien.
Le laboratoire a décidé d'utiliser ce fond pour récompenser chaque année une thèse en mathématiques, alternativement en mathématiques fondamentales et en mathématiques appliquées.
Chaque année, un jury international a donc la tâche de sélectionner une thèse de mathématiques soutenue au cours des deux années précédentes dans un laboratoire français.
Le prix 2021
En 2021 Le jury était constitué de
- Didier Bresch (CNRS, université de Savoie Mont Blanc) ;
- Nicolas Fournier (Sorbonne Université) ;
- Elisabeth Gassiat (Université Paris-Saclay) ;
- Marco Picasso (EPFL Lausanne) ;
- le directeur du LMBP ;
- le directeur adjoint du LMBP ;
- le responsable de l'équipe Équations aux dérivées partielles et analyse numérique du LMBP ;
- le responsable de l'équipe Probabilités, analyse et statistiques du LMBP ;
La lauréate 2021
La lauréate est Claudia García López, actuellement post-doctorante à l'université de Barcelone. Elle a été distinguée pour une thèse intitulée "Patterns in partial differential equations arising in fluid mechanics". Une cérémonie de remise du prix sera organisée au laboratoire le 13 mai 2022, en présence de Christophe Besse, directeur de l'INSMI.
Claudia García López est une spécialiste d'équations aux dérivées partielles issues de la mécanique des fluides. Sa thèse, réalisée en co-tutelle dans les universités de Rennes 1 et de Grenade (Espagne), est consacrée à la construction de solutions non triviales, périodique en temps, pour des modèles hamiltoniens issus de la mécanique des fluides.
Dans une première partie dédiée au cas bi-dimensionnel, elle a exploré les solutions en mouvement rigide avec des distributions uniformes ou non pour les équations d’Euler incompressibles et l'équation de surface quasi–géostrophique généralisée. En s’appuyant sur des techniques de bifurcations a partir de solutions radiales stationnaires, Claudia García López a notamment montré l’existence de solutions non homogènes en rotation uniforme pour les équations d’Euler. Elle construit également analytiquement des solutions en translation pour l’équation de surface quasi-géostrophique; elle met ainsi en évidence l’existence d’allées de tourbillons de Karman validant des conjectures numériques faites dans les années 80.
Dans une deuxième partie, elle a mené une étude analogue pour le système quasi–géostrophique en dimension trois d’espace. L’analyse de ce modèle s’appuie sur le théorème de Crandall-Rabinowitz et des propriétés fines d'analyse complexe et met en évidence une remarquable richesse par rapport aux modèles 2D que ce soit par rapport à l’ensemble des solutions stationnaires ou à la diversité des problèmes spectraux associés.