Spiegelungssatz: a combinatorial proof for the 4-rank

01 janv. 2011·
Laurent Habsieger
Emmanuel Royer
Emmanuel Royer
· 0 min. de lecture
Résumé
The Spiegelungssatz is an inequality between the $4$-ranks of the narrow ideal class groups of the quadratic fields $\mathbb{Q}(\sqrt{D})$ and $\mathbb{Q}(\sqrt{-D})$. We provide a combinatorial proof of this inequality. Our interpretation gives an affine system of equations that allows to describe precisely some equality cases.
Type
Publication
International Journal of Number Theory 7, No. 8, 2157-2170