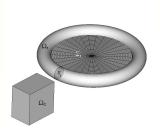
Mathematical models for eddy current problems in thin conductors

Rachid Touzani

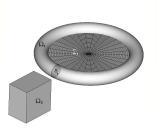
Université Blaise Pascal (Clermont-Ferrand II) Laboratoire de Mathématiques

Joint Work with Youcef Amirat

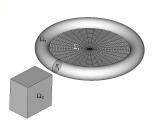
- Typical configuration of an eddy current setup: A set of conductors of different thicknesses.
- ullet Typically: An inductor (thin conductor: coil, wire, ...) that carries electric current + a "thick" conductor.
- This results in difficulties in numerical simulation (needs a fine mesh for the inductors, ill conditioning, . . .)
- Remedy: Asymptotic analysis to obtain models that couple field equations and circuit equations.



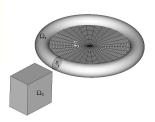
- Typical configuration of an eddy current setup: A set of conductors of different thicknesses.
- ullet Typically: An inductor (thin conductor: coil, wire, ...) that carries electric current + a "thick" conductor.
- This results in difficulties in numerical simulation (needs a fine mesh for the inductors, ill conditioning, . . .)
- Remedy: Asymptotic analysis to obtain models that couple field equations and circuit equations.



- Typical configuration of an eddy current setup:
 A set of conductors of different thicknesses.
- ullet Typically: An inductor (thin conductor: coil, wire, ...) that carries electric current + a "thick" conductor.
- This results in difficulties in numerical simulation (needs a fine mesh for the inductors, ill
 conditioning, . . .)
- Remedy: Asymptotic analysis to obtain models that couple field equations and circuit equations.



- Typical configuration of an eddy current setup:
 A set of conductors of different thicknesses.
- ullet Typically: An inductor (thin conductor: coil, wire, ...) that carries electric current + a "thick" conductor.
- This results in difficulties in numerical simulation (needs a fine mesh for the inductors, ill conditioning, . . .)
- Remedy: Asymptotic analysis to obtain models that couple field equations and circuit equations.



Eddy current equations in time harmonic regime:

$$\Omega$$
: union of conductors, $\Omega' = \mathbb{R}^3 \setminus \overline{\Omega}$.

$$\begin{cases} \operatorname{curl} \mathbf{H} = \mathbf{J} & \text{in } \mathbb{R}^3 \\ i\omega\mu\mathbf{H} + \operatorname{curl} \mathbf{E} = 0 & \text{in } \Omega \cup \Omega' \\ \mathbf{J} = \sigma\mathbf{E} & \text{in } \Omega \\ \mathbf{J} = 0 & \text{in } \Omega' \end{cases}$$

To simplify, we assume μ (magnetic permeability) and σ (electric conductivity) constant.

3-D Case

The problem is not completely solved.

We aim at computing the inductance coefficient of toroidal thin conductor.



Let Ω_{ϵ} denote a toroidal domain with inner radius $\epsilon > 0$, $\Omega'_{\epsilon} = \mathbb{R}^3 \setminus \overline{\Omega}_{\epsilon}$, Σ a cut in \mathbb{R}^3 ($\Omega'_{\epsilon} \setminus \Sigma$ is simply connected).

3-D Case

The problem is not completely solved.

We aim at computing the inductance coefficient of toroidal thin conductor.

Let Ω_ϵ denote a toroidal domain with inner radius $\epsilon>0$, $\Omega'_\epsilon=\mathbb{R}^3\setminus\overline{\Omega}_\epsilon$, Σ a cut in \mathbb{R}^3 ($\Omega'_\epsilon\setminus\Sigma$ is simply connected).

$$\operatorname{curl} \mathbf{H}^{\epsilon} = 0 \qquad \text{in } \Omega_{\epsilon}'.$$

Therefore

$$\mathbf{H}^{\epsilon} =
abla arphi^{\epsilon} + lpha
abla p^{\epsilon} \qquad ext{in } \Omega'_{\epsilon} \setminus \Sigma,$$

where $\alpha \in \mathbb{C}$ and

$$\begin{cases} \Delta p^{\epsilon} = 0 & \text{in } \Omega'_{\epsilon} \setminus \Sigma \\ [p^{\epsilon}]_{\Sigma} = 1, \ \left[\frac{\partial p^{\epsilon}}{\partial n} \right]_{\Sigma} = 0 \\ \\ \frac{\partial p^{\epsilon}}{\partial n} = 0 & \text{on } \partial \Omega_{\epsilon} \\ p^{\epsilon}(x) = O(|x|^{-1}) & |x| \to \infty \end{cases}$$

The inductance coefficient is defined by

$$L^\epsilon = \mu \int_{\Omega_\epsilon' \setminus \Sigma} |\nabla p^\epsilon|^2 \, dx = \mu \int_\Sigma \frac{\partial p^\epsilon}{\partial n} \, ds$$

$$\operatorname{curl} \mathbf{H}^{\epsilon} = 0 \qquad \text{in } \Omega'_{\epsilon}.$$

Therefore

$$\mathbf{H}^{\epsilon} = \nabla \varphi^{\epsilon} + \alpha \nabla p^{\epsilon} \quad \text{in } \Omega'_{\epsilon} \setminus \Sigma,$$

where $\alpha \in \mathbb{C}$ and

$$\begin{cases} \Delta \rho^{\epsilon} = 0 & \text{in } \Omega'_{\epsilon} \setminus \Sigma \\ [\rho^{\epsilon}]_{\Sigma} = 1, \ \left[\frac{\partial p^{\epsilon}}{\partial n}\right]_{\Sigma} = 0 \\ \\ \frac{\partial p^{\epsilon}}{\partial n} = 0 & \text{on } \partial \Omega_{\epsilon} \\ p^{\epsilon}(x) = O(|x|^{-1}) & |x| \to \infty \end{cases}$$

The inductance coefficient is defined by

$$L^\epsilon = \mu \int_{\Omega_\epsilon' \setminus \Sigma} |\nabla p^\epsilon|^2 \, \mathrm{d} x = \mu \int_\Sigma \frac{\partial p^\epsilon}{\partial n} \, \mathrm{d} x$$

$$\operatorname{curl} \mathbf{H}^{\epsilon} = 0 \qquad \text{in } \Omega'_{\epsilon}.$$

Therefore

$$\mathbf{H}^{\epsilon} = \nabla \varphi^{\epsilon} + \alpha \nabla p^{\epsilon}$$
 in $\Omega'_{\epsilon} \setminus \Sigma$,

where $\alpha \in \mathbb{C}$ and

$$\begin{cases} \Delta p^{\epsilon} = 0 & \text{in } \Omega'_{\epsilon} \setminus \Sigma \\ [p^{\epsilon}]_{\Sigma} = 1, \ \left[\frac{\partial p^{\epsilon}}{\partial n}\right]_{\Sigma} = 0 \\ \\ \frac{\partial p^{\epsilon}}{\partial n} = 0 & \text{on } \partial \Omega_{\epsilon} \\ p^{\epsilon}(x) = O(|x|^{-1}) & |x| \to \infty \end{cases}$$

The inductance coefficient is defined by

$$L^{\epsilon} = \mu \int_{\Omega_{\epsilon}' \setminus \Sigma} |\nabla p^{\epsilon}|^2 dx = \mu \int_{\Sigma} \frac{\partial p^{\epsilon}}{\partial n} ds$$

When $\epsilon \to 0$, we have $L^{\epsilon} \to +\infty$.

Theorem

We have the expansion

$$L^{\epsilon} = -rac{\mu\ell}{2\pi}\,\log\epsilon + a + O(\epsilon^{rac{5}{3}-\eta}) \qquad \eta > 0$$

where a is a real number given explicitly and ℓ is the length of the curve that "generates" Ω_ϵ

Remarks

- This result is given in the book of LANDAU and LIFSHITZ (without proof) without expliciting
 the term a.
- In the RL circuit equation, we have

$$(i\omega L + R)I = V.$$

This suggests that $I^{\epsilon} = O(1/\log \epsilon)$

When $\epsilon \to 0$, we have $L^{\epsilon} \to +\infty$.

Theorem

We have the expansion

$$L^{\epsilon} = -\frac{\mu\ell}{2\pi} \log \epsilon + a + O(\epsilon^{\frac{5}{3}-\eta}) \qquad \eta > 0,$$

where a is a real number given explicitly and ℓ is the length of the curve that "generates" Ω_{ϵ} .

Remarks

- This result is given in the book of LANDAU and LIFSHITZ (without proof) without expliciting
 the term a.
- In the RL circuit equation, we have

$$(i\omega L + R) I = V.$$

This suggests that $I^{\epsilon} = O(1/\log \epsilon)$.

When $\epsilon \to 0$, we have $L^{\epsilon} \to +\infty$.

Theorem

We have the expansion

$$L^{\epsilon} = -\frac{\mu\ell}{2\pi} \log \epsilon + a + O(\epsilon^{\frac{5}{3}-\eta}) \qquad \eta > 0,$$

where a is a real number given explicitly and ℓ is the length of the curve that "generates" Ω_{ϵ} .

Remarks

- This result is given in the book of LANDAU and LIFSHITZ (without proof) without expliciting the term a.
- In the RL circuit equation, we have

$$(i\omega L + R)I = V.$$

This suggests that $I^{\epsilon} = O(1/\log \epsilon)$.

When $\epsilon \to 0$, we have $L^{\epsilon} \to +\infty$.

Theorem

We have the expansion

$$L^{\epsilon} = -\frac{\mu\ell}{2\pi} \log \epsilon + a + O(\epsilon^{\frac{5}{3}-\eta}) \qquad \eta > 0,$$

where a is a real number given explicitly and ℓ is the length of the curve that "generates" Ω_{ε} .

Remarks

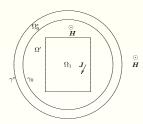
- This result is given in the book of LANDAU and LIFSHITZ (without proof) without expliciting the term a.
- In the RL circuit equation, we have

$$(i\omega L + R)I = V.$$

This suggests that $I^{\epsilon} = O(1/\log \epsilon)$.

A first 2-D model

Consider the following configuration of conductors:



If $\mathbf{J}=(J_1,J_2,0)$, we prove that $\mathbf{H}=(0,0,u^\epsilon)$ where u^ϵ is solution of the problem:

$$\begin{cases} -\,\sigma^{-1}\Delta u^\epsilon + i\omega\mu u^\epsilon = 0 & \qquad \text{in } \Omega^\epsilon := \overline{\Omega}_1 \cup \overline{\Omega}' \cup \Omega_0^\epsilon \\ u^\epsilon = 0 & \qquad \text{on } \gamma^\epsilon \\ u^\epsilon = \text{Const.} & \qquad \text{in } \Omega' \end{cases}$$

$$V=\{v\in H^1_0(\Omega^\epsilon);\ v_{|\Omega'}={\sf Const.}\}.$$

We have the variational formulation:

$$\left\{ \begin{aligned} &u^{\epsilon} \in V, \\ &\sigma^{-1} \int_{\Omega_{1}} \nabla u^{\epsilon} \cdot \nabla \overline{v} \, dx + \sigma^{-1} \int_{\Omega_{0}^{\epsilon}} \nabla u^{\epsilon} \cdot \nabla \overline{v} \, dx + i \omega \mu \int_{\Omega^{\epsilon}} u^{\epsilon} \overline{v} \, dx = f \, \overline{v}_{|\Omega'} \end{aligned} \right.$$

where $f \in \mathbb{C}$ if the current voltage.

Let us assume that $\sigma^{-1} = a\epsilon$ (or $\sigma^{-1} = O(\epsilon)$)

We then prove that $(\Omega = \overline{\Omega}_1 \cup \Omega')$

$$u^{\epsilon} \to u$$
 in $H^1(\Omega)$ when $\epsilon \to 0$

$$V=\{v\in H^1_0(\Omega^\epsilon);\ v_{|\Omega'}={\sf Const.}\}.$$

We have the variational formulation:

$$\left\{ \begin{array}{l} u^{\epsilon} \in V, \\ \sigma^{-1} \int_{\Omega_{1}} \nabla u^{\epsilon} \cdot \nabla \overline{v} \, dx + \sigma^{-1} \int_{\Omega_{0}^{\epsilon}} \nabla u^{\epsilon} \cdot \nabla \overline{v} \, dx + i \omega \mu \int_{\Omega^{\epsilon}} u^{\epsilon} \overline{v} \, dx = f \, \overline{v}_{|\Omega'|} \end{array} \right.$$

where $f \in \mathbb{C}$ if the current voltage.

Let us assume that $\sigma^{-1}=a\epsilon$ (or $\sigma^{-1}=O(\epsilon)$).

We then prove that $(\Omega = \overline{\Omega}_1 \cup \Omega')$

$$u^{\epsilon} \to u$$
 in $H^1(\Omega)$ when $\epsilon \to 0$

$$V=\{v\in H^1_0(\Omega^\epsilon);\ v_{|\Omega'}={\sf Const.}\}.$$

We have the variational formulation:

$$\left\{ \begin{array}{l} u^{\epsilon} \in V, \\ \sigma^{-1} \int_{\Omega_{1}} \nabla u^{\epsilon} \cdot \nabla \overline{v} \, dx + \sigma^{-1} \int_{\Omega_{0}^{\epsilon}} \nabla u^{\epsilon} \cdot \nabla \overline{v} \, dx + i \omega \mu \int_{\Omega^{\epsilon}} u^{\epsilon} \overline{v} \, dx = f \, \overline{v}_{\mid \Omega'} \end{array} \right.$$

where $f \in \mathbb{C}$ if the current voltage.

Let us assume that $\sigma^{-1}=a\epsilon$ (or $\sigma^{-1}=O(\epsilon)$).

We then prove that ($\Omega = \overline{\Omega}_1 \cup \Omega'$)

$$u^{\epsilon} \to u$$
 in $H^1(\Omega)$ when $\epsilon \to 0$

$$V=\{v\in H^1_0(\Omega^\epsilon);\ v_{|\Omega'}={\sf Const.}\}.$$

We have the variational formulation:

$$\left\{ \begin{array}{l} u^{\epsilon} \in V, \\ \sigma^{-1} \int_{\Omega_{1}} \nabla u^{\epsilon} \cdot \nabla \overline{v} \, dx + \sigma^{-1} \int_{\Omega_{0}^{\epsilon}} \nabla u^{\epsilon} \cdot \nabla \overline{v} \, dx + i \omega \mu \int_{\Omega^{\epsilon}} u^{\epsilon} \overline{v} \, dx = f \, \overline{v}_{|\Omega'|} \end{array} \right.$$

where $f \in \mathbb{C}$ if the current voltage.

Let us assume that $\sigma^{-1} = a\epsilon$ (or $\sigma^{-1} = O(\epsilon)$).

We then prove that ($\Omega = \overline{\Omega}_1 \cup \Omega'$)

$$u^{\epsilon} \to u$$
 in $H^1(\Omega)$ when $\epsilon \to 0$

$$\begin{cases} u \in X := \{ v \in H^1(\Omega); , \ v_{|\partial\Omega} = \mathsf{Const.} \}, \\ \sigma^{-1} \int_{\Omega} \nabla u \cdot \nabla \overline{v} \ dx + i \omega \mu \int_{\Omega} u \overline{v} \ dx + (i \omega \mu |\Omega'| + \mathsf{a}\ell) \ u_{|\partial\Omega} \ \overline{v}_{|\partial\Omega} \\ = f \ \overline{v}_{|\partial\Omega} \qquad \forall \ v \in X. \end{cases}$$

where ℓ is the length of γ_0 .

Remark

If $\Omega_1=\emptyset$ and $\varphi=u_{|\partial\Omega}$, we obtain the algebraic equation

$$(i\omega\mu|\Omega'|+a\ell)\varphi=f.$$

If we set

$$L \equiv \mu |\Omega'|, \qquad R \equiv \frac{\ell \epsilon}{\sigma},$$

then we can write

$$(i\omega L + R)\varphi = f.$$

$$\begin{cases} u \in X := \{ v \in H^1(\Omega); , \ v_{|\partial\Omega} = \mathsf{Const.} \}, \\ \sigma^{-1} \int_{\Omega} \nabla u \cdot \nabla \overline{v} \ dx + i\omega\mu \int_{\Omega} u \overline{v} \ dx + (i\omega\mu |\Omega'| + a\ell) \ u_{|\partial\Omega} \ \overline{v}_{|\partial\Omega} \\ = f \ \overline{v}_{|\partial\Omega} \qquad \forall \ v \in X. \end{cases}$$

where ℓ is the length of γ_0 .

Remark

If $\Omega_1=\emptyset$ and $\varphi=u_{|\partial\Omega}$, we obtain the algebraic equation

$$(i\omega\mu|\Omega'|+a\ell)\varphi=f.$$

If we set

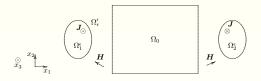
$$L \equiv \mu |\Omega'|, \qquad R \equiv \frac{\ell \epsilon}{\sigma},$$

then we can write

$$(i\omega L + R)\varphi = f.$$

A transversal 2-D model

Consider the following setup of conductors:

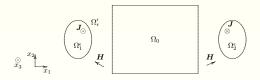


We define $\Omega^\epsilon = \Omega_0 \cup \Omega_1^\epsilon \cup \Omega_2^\epsilon$. We then look for a solution that satisfies $\mathbf{J} = (0,0,J)$. From this, we deduce $\mathbf{H} = (H_1,H_2,0)$ with

$$\begin{cases} \operatorname{curl} \mathbf{H} = J & \text{in } \mathbb{R}^2 \\ J = 0 & \text{in } \Omega'_\epsilon \\ i\omega\mu\mathbf{H} + \operatorname{curl} \left(\sigma^{-1}J\right) = 0 & \text{in } \Omega_\epsilon \\ \operatorname{div}(\mu\mathbf{H}) = 0 & \text{in } \mathbb{R}^2 \end{cases}$$

A transversal 2-D model

Consider the following setup of conductors:



We define $\Omega^{\epsilon}=\Omega_0\cup\Omega_1^{\epsilon}\cup\Omega_2^{\epsilon}$. We then look for a solution that satisfies $\mathbf{J}=(0,0,J)$. From this, we deduce $\mathbf{H}=(H_1,H_2,0)$ with

$$\begin{cases} \operatorname{curl} \mathbf{H} = J & \text{in } \mathbb{R}^2 \\ J = 0 & \text{in } \Omega_\epsilon' \\ i\omega\mu\mathbf{H} + \operatorname{curl} \left(\sigma^{-1}J\right) = 0 & \text{in } \Omega_\epsilon \\ \operatorname{div}(\mu\mathbf{H}) = 0 & \text{in } \mathbb{R}^2 \end{cases}$$

$$\mu \mathbf{H} = \mathbf{curl} \, u \quad \text{in } \mathbb{R}^2.$$

We deduce curl **curl** $u = -\Delta u = \mu J$ in Ω .

Moreover curl $(i\omega u + \sigma^{-1}J) = 0$ in Ω_k^{ϵ} . This results in

$$i\omega\sigma u + J = \sigma C_k$$
 in Ω_k^{ϵ} , $C_k \in \mathbb{C}$.

$$\begin{aligned} & (-\Delta u + i\omega\mu\sigma u = \mu\sigma C_k) & & & & & & & & & & & \\ & \Delta u = 0 & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

$$\mu \mathbf{H} = \mathbf{curl} \, u \quad \text{in } \mathbb{R}^2.$$

We deduce curl curl $u = -\Delta u = \mu J$ in Ω .

Moreover curl $(i\omega u + \sigma^{-1}J) = 0$ in Ω_k^{ϵ} . This results in

$$i\omega\sigma u + J = \sigma C_k$$
 in Ω_k^{ϵ} , $C_k \in \mathbb{C}$.

$$\begin{aligned} & (-\Delta u + i\omega\mu\sigma u = \mu\sigma C_k) & & & & & & & & & & & \\ & \Delta u = 0 & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\$$

$$\mu \mathbf{H} = \mathbf{curl} \, u \quad \text{in } \mathbb{R}^2.$$

We deduce curl curl $u=-\Delta u=\mu J$ in $\Omega.$ Moreover curl $(i\omega u+\sigma^{-1}J)=0$ in $\Omega_k^\epsilon.$ This results in

$$i\omega\sigma u+J=\sigma\,\mathcal{C}_k\qquad \text{in }\Omega_k^\epsilon,\quad \mathcal{C}_k\in\mathbb{C}.$$

$$\begin{aligned} & -\Delta u + i\omega\mu\sigma u = \mu\sigma C_k & & & \text{in } \Omega_k^\epsilon, \ k = 0, 1, 2 \\ & \Delta u = 0 & & & \text{in } \Omega_\epsilon' \\ & & & & & \text{in } \Omega_\epsilon' \\ & & & & & \text{on } \Gamma_\epsilon \\ & & & & & & \text{u}(x) = \beta + O(|x|^{-1}) & & & & |x| \to \infty \end{aligned}$$

$$\mu \mathbf{H} = \mathbf{curl} \, u \quad \text{in } \mathbb{R}^2.$$

We deduce curl curl $u = -\Delta u = \mu J$ in Ω .

Moreover curl $(i\omega u + \sigma^{-1}J) = 0$ in Ω_k^{ϵ} . This results in

$$i\omega\sigma u+J=\sigma\,C_k\qquad \text{in }\Omega_k^\epsilon,\quad C_k\in\mathbb{C}.$$

$$\begin{cases} -\Delta u + i\omega\mu\sigma u = \mu\sigma C_k & \text{in } \Omega_k^\epsilon, \ k = 0, 1, 2 \\ \Delta u = 0 & \text{in } \Omega_\epsilon' \\ \\ [u] = \left[\frac{\partial u}{\partial n}\right] = 0 & \text{on } \Gamma_\epsilon \\ \\ u(x) = \beta + O(|x|^{-1}) & |x| \to \infty \end{cases}$$

Let I stand for the total current in the inductor and assume

$$I = \int_{\Omega_1^{\varepsilon}} J \, dx = - \int_{\Omega_2^{\varepsilon}} J \, dx, \qquad \int_{\Omega_0^{\varepsilon}} J \, dx = 0.$$

Let in addition $\theta = \omega \mu \sigma$ and

$$\chi_k^{\epsilon} = \mathbf{1}_{\Omega_k^{\epsilon}}, \quad \tilde{v}_k^{\epsilon} = \frac{1}{|\Omega_k^{\epsilon}|} \int_{\Omega_k^{\epsilon}} v \, dx, \quad k = 0, 1, 2.$$

We obtain after some calculations

$$\begin{cases} -\Delta u^{\epsilon} + i\theta \sum_{k=0}^{2} \chi_{k}^{\epsilon} \left(u^{\epsilon} - \tilde{u}_{k}^{\epsilon} \right) = \mu I \left(\frac{\chi_{1}^{\epsilon}}{|\Omega_{1}^{\epsilon}|} - \frac{\chi_{2}^{\epsilon}}{|\Omega_{2}^{\epsilon}|} \right) & \text{in } \mathbb{R}^{2} \\ \tilde{u}_{0}^{\epsilon} = 0 \\ u^{\epsilon}(x) = \beta + O(|x|^{-1}) & |x| \to 0 \end{cases}$$

The condition $\tilde{u}_0^{\epsilon} = 0$ ensures uniqueness of solutions.

Let I stand for the total current in the inductor and assume

$$I = \int_{\Omega_1^{\varepsilon}} J \, dx = - \int_{\Omega_2^{\varepsilon}} J \, dx, \qquad \int_{\Omega_0^{\varepsilon}} J \, dx = 0.$$

Let in addition $\theta = \omega \mu \sigma$ and

$$\chi_k^\epsilon = \mathbf{1}_{\Omega_k^\epsilon}, \quad \tilde{v}_k^\epsilon = \frac{1}{|\Omega_k^\epsilon|} \int_{\Omega_k^\epsilon} v \, dx, \quad k = 0, 1, 2.$$

We obtain after some calculations

$$\begin{cases} -\Delta u^{\epsilon} + i\theta \sum_{k=0}^{2} \chi_{k}^{\epsilon} \left(u^{\epsilon} - \tilde{u}_{k}^{\epsilon} \right) = \mu I \left(\frac{\chi_{1}^{\epsilon}}{|\Omega_{1}^{\epsilon}|} - \frac{\chi_{2}^{\epsilon}}{|\Omega_{2}^{\epsilon}|} \right) & \text{in } \mathbb{R}^{2} \\ \tilde{u}_{0}^{\epsilon} = 0 \\ u^{\epsilon}(x) = \beta + O(|x|^{-1}) & |x| \to 0 \end{cases}$$

The condition $\tilde{u}_0^{\epsilon} = 0$ ensures uniqueness of solutions.

Let / stand for the total current in the inductor and assume

$$I = \int_{\Omega_1^{\varepsilon}} J \, dx = - \int_{\Omega_2^{\varepsilon}} J \, dx, \qquad \int_{\Omega_0^{\varepsilon}} J \, dx = 0.$$

Let in addition $\theta = \omega \mu \sigma$ and

$$\chi_k^\epsilon = \mathbf{1}_{\Omega_k^\epsilon}, \quad \tilde{v}_k^\epsilon = \frac{1}{|\Omega_k^\epsilon|} \int_{\Omega_k^\epsilon} v \, dx, \quad k = 0, 1, 2.$$

We obtain after some calculations:

$$\begin{cases} -\Delta u^{\epsilon} + i\theta \sum_{k=0}^{2} \chi_{k}^{\epsilon} \left(u^{\epsilon} - \tilde{u}_{k}^{\epsilon} \right) = \mu I \left(\frac{\chi_{1}^{\epsilon}}{|\Omega_{1}^{\epsilon}|} - \frac{\chi_{2}^{\epsilon}}{|\Omega_{2}^{\epsilon}|} \right) & \text{in } \mathbb{R}^{2} \\ \tilde{u}_{0}^{\epsilon} = 0 & & |x| \to \infty \end{cases}$$

The condition $\tilde{u}_0^{\epsilon} = 0$ ensures uniqueness of solutions.

Let I stand for the total current in the inductor and assume

$$I = \int_{\Omega_1^{\varepsilon}} J \, dx = - \int_{\Omega_2^{\varepsilon}} J \, dx, \qquad \int_{\Omega_0^{\varepsilon}} J \, dx = 0.$$

Let in addition $\theta = \omega \mu \sigma$ and

$$\chi_k^{\epsilon} = \mathbf{1}_{\Omega_k^{\epsilon}}, \quad \tilde{v}_k^{\epsilon} = \frac{1}{|\Omega_k^{\epsilon}|} \int_{\Omega_k^{\epsilon}} v \, dx, \quad k = 0, 1, 2.$$

We obtain after some calculations:

$$\begin{cases} -\Delta u^{\epsilon} + i\theta \sum_{k=0}^{2} \chi_{k}^{\epsilon} \left(u^{\epsilon} - \tilde{u}_{k}^{\epsilon} \right) = \mu I \left(\frac{\chi_{1}^{\epsilon}}{|\Omega_{1}^{\epsilon}|} - \frac{\chi_{2}^{\epsilon}}{|\Omega_{2}^{\epsilon}|} \right) & \text{in } \mathbb{R}^{2} \\ \tilde{u}_{0}^{\epsilon} = 0 & & |x| \to \infty \end{cases}$$

The condition $\tilde{u}_0^{\epsilon} = 0$ ensures uniqueness of solutions.

Seminar

$$W^{1}(\mathbb{R}^{2}) = \{ v; \ \rho v \in L^{2}(\mathbb{R}^{2}), \ \nabla v \in L^{2}(\mathbb{R}^{2})^{2} \}$$
$$V = \{ v \in W^{1}(\mathbb{R}^{2}); \ \tilde{v}_{0} = 0 \}$$

where
$$\rho(x) = \frac{1}{(1+|x|)\log(2+|x|)}$$

We have the variational formulation (note the dependency on ϵ):

$$\begin{cases} u^{\epsilon} \in V, \\ \int_{\mathbb{R}^2} \nabla u^{\epsilon} \cdot \nabla \overline{v} \, dx + i\theta \sum_{k=0}^2 \int_{\Omega_k^{\epsilon}} (u^{\epsilon} - \widetilde{u}_k^{\epsilon}) \, \overline{v} \, dx = \mu I(\overline{\widetilde{v}}_1^{\epsilon} - \overline{\widetilde{v}}_2^{\epsilon}) \qquad \forall \ v \in V. \end{cases}$$

$$W^{1}(\mathbb{R}^{2}) = \{ v; \ \rho v \in L^{2}(\mathbb{R}^{2}), \ \nabla v \in L^{2}(\mathbb{R}^{2})^{2} \}$$
$$V = \{ v \in W^{1}(\mathbb{R}^{2}); \ \tilde{v}_{0} = 0 \}$$

where
$$\rho(x) = \frac{1}{(1+|x|)\log(2+|x|)}$$

We have the variational formulation (note the dependency on ϵ):

$$\begin{cases} u^{\epsilon} \in V, \\ \int_{\mathbb{R}^{2}} \nabla u^{\epsilon} \cdot \nabla \overline{v} \, dx + i\theta \sum_{k=0}^{2} \int_{\Omega_{k}^{\epsilon}} (u^{\epsilon} - \widetilde{u}_{k}^{\epsilon}) \, \overline{v} \, dx = \mu I(\overline{\widetilde{v}}_{1}^{\epsilon} - \overline{\widetilde{v}}_{2}^{\epsilon}) \qquad \forall \ v \in V. \end{cases}$$

The limit problem

We define $\Omega_k^\epsilon=z_k+\epsilon\,\widehat\Omega_k$, k=1,2 where $\epsilon\ll 1$, $z_k\in\mathbb{R}^2$, $\widehat\Omega_k\subset\mathbb{R}^2$.

Limit problem (?)

$$\begin{cases} -\Delta u + i\theta \chi_0 \ u = \mu I \left(\delta_{z_1} - \delta_{z_2} \right) & \text{in } \mathbb{R}^2 \\ u(x) = \beta + O(|x|^{-1}) & |x| \to \infty \end{cases}$$

Remarks

- We cannot have convergence in V because of Dirac masses
- The "limit" problem has at most one solution in

$$L^2_{\rho}(\mathbb{R}^2) := \{ v : \mathbb{R}^2 \to \mathbb{C}; \ \rho v \in L^2(\mathbb{R}^2) \}$$

The limit problem

We define $\Omega_k^\epsilon=z_k+\epsilon\,\widehat\Omega_k$, k=1,2 where $\epsilon\ll 1$, $z_k\in\mathbb{R}^2$, $\widehat\Omega_k\subset\mathbb{R}^2$.

Limit problem (?)

$$\begin{cases} -\Delta u + i\theta \chi_0 u = \mu I \left(\delta_{z_1} - \delta_{z_2} \right) & \text{in } \mathbb{R}^2 \\ u(x) = \beta + O(|x|^{-1}) & |x| \to \infty \end{cases}$$

Remarks

- We cannot have convergence in V because of Dirac masses
- The "limit" problem has at most one solution in

$$L^2_{\rho}(\mathbb{R}^2) := \{ v : \mathbb{R}^2 \to \mathbb{C}; \ \rho v \in L^2(\mathbb{R}^2) \}$$

The limit problem

We define $\Omega_k^\epsilon=z_k+\epsilon\,\widehat\Omega_k$, k=1,2 where $\epsilon\ll 1$, $z_k\in\mathbb{R}^2$, $\widehat\Omega_k\subset\mathbb{R}^2$.

Limit problem (?)

$$\begin{cases} -\Delta u + i\theta\chi_0 \ u = \mu I \left(\delta_{z_1} - \delta_{z_2}\right) & \text{in } \mathbb{R}^2 \\ u(x) = \beta + O(|x|^{-1}) & |x| \to \infty \end{cases}$$

Remarks

- \bullet We cannot have convergence in V because of Dirac masses.
- The "limit" problem has at most one solution in

$$L^2_{\rho}(\mathbb{R}^2) := \{ v : \mathbb{R}^2 \to \mathbb{C}; \ \rho v \in L^2(\mathbb{R}^2) \}$$

The limit problem

We define $\Omega_k^\epsilon=z_k+\epsilon\,\widehat\Omega_k$, k=1,2 where $\epsilon\ll 1$, $z_k\in\mathbb{R}^2$, $\widehat\Omega_k\subset\mathbb{R}^2$.

Limit problem (?)

$$\begin{cases} -\Delta u + i\theta \chi_0 \ u = \mu I \left(\delta_{z_1} - \delta_{z_2} \right) & \quad \text{in } \mathbb{R}^2 \\ u(x) = \beta + O(|x|^{-1}) & \quad |x| \to \infty \end{cases}$$

Remarks

- \bullet We cannot have convergence in V because of Dirac masses.
- The "limit" problem has at most one solution in

$$L^2_{\rho}(\mathbb{R}^2) := \{ v : \mathbb{R}^2 \to \mathbb{C}; \ \rho v \in L^2(\mathbb{R}^2) \}$$

We use duality techniques (Lions, Stampacchia, ...). By choosing $v=\varphi\in V\cap H^2_{\mathrm{loc}}(\mathbb{R}^2)$ we find

$$-\int_{\mathbb{R}^2} u^\epsilon \, \Delta \overline{\varphi} \, dx + i\theta \sum_{k=1}^2 \int_{\Omega_k^\epsilon} (u^\epsilon - \widetilde{u}_k^\epsilon) \, \overline{\varphi} \, dx + \int_{\Omega_k^\epsilon} u^\epsilon \, \overline{\varphi} \, dx = \mu I(\overline{\widetilde{\varphi}}_1^\epsilon - \overline{\widetilde{\varphi}}_2^\epsilon)$$

Therefore

$$\int_{\mathbb{R}^2} u^{\epsilon} \left(-\Delta \overline{\varphi} + i\theta \sum_{k=1}^2 \chi_k^{\epsilon} (\overline{\varphi} - \overline{\widetilde{\varphi}}_k^{\epsilon}) + i\theta \chi_0 \overline{\varphi}^{\epsilon} \right) dx = \mu I \left(\overline{\widetilde{\varphi}}_1^{\epsilon} - \overline{\widetilde{\varphi}}_2^{\epsilon} \right)$$

This can be written in the equivalent form

$$\int_{\mathbb{R}^2} \rho^2 u^{\epsilon} \, \overline{\psi} \, dx = \mu I(\overline{\widetilde{\varphi}}_1^{\epsilon} - \overline{\widetilde{\varphi}}_2^{\epsilon})$$

where φ^{ϵ} is the solution, in $V \cap H^2_{loc}(\mathbb{R}^2)$, of

$$-\Delta \varphi^{\epsilon} + i\theta \sum_{k=1}^{2} \chi_{k}^{\epsilon} (\varphi^{\epsilon} - \tilde{\varphi}_{k}^{\epsilon}) + i\theta \chi_{0} \varphi^{\epsilon} = \rho^{2} \psi \qquad \text{in } \mathbb{R}^{2}$$

Note that the right-hand side does not depend on ϵ .

We consider the "limit" problem

$$-\Delta \varphi + i\theta \chi_0 \varphi = \rho^2 \psi \qquad \text{in } \mathbb{R}^2$$

We use duality techniques (Lions, Stampacchia, ...). By choosing $v=\varphi\in V\cap H^2_{loc}(\mathbb{R}^2)$ we find

$$-\int_{\mathbb{R}^2} u^\epsilon \, \Delta \overline{\varphi} \, dx + i\theta \sum_{k=1}^2 \int_{\Omega_k^\epsilon} (u^\epsilon - \widetilde{u}_k^\epsilon) \, \overline{\varphi} \, dx + \int_{\Omega_k^\epsilon} u^\epsilon \, \overline{\varphi} \, dx = \mu I(\overline{\widetilde{\varphi}}_1^\epsilon - \overline{\widetilde{\varphi}}_2^\epsilon)$$

Therefore

$$\int_{\mathbb{R}^2} u^{\epsilon} \left(-\Delta \overline{\varphi} + i\theta \sum_{k=1}^2 \chi_k^{\epsilon} (\overline{\varphi} - \overline{\widetilde{\varphi}}_k^{\epsilon}) + i\theta \chi_0 \overline{\varphi}^{\epsilon} \right) dx = \mu I \left(\overline{\widetilde{\varphi}}_1^{\epsilon} - \overline{\widetilde{\varphi}}_2^{\epsilon} \right)$$

This can be written in the equivalent form:

$$\int_{\mathbb{R}^2} \rho^2 u^{\epsilon} \, \overline{\psi} \, dx = \mu I(\overline{\tilde{\varphi}}_1^{\epsilon} - \overline{\tilde{\varphi}}_2^{\epsilon})$$

where φ^{ϵ} is the solution, in $V \cap H^2_{loc}(\mathbb{R}^2)$, of

$$-\Delta \varphi^{\epsilon} + i\theta \sum_{k=1}^{2} \chi_{k}^{\epsilon} (\varphi^{\epsilon} - \tilde{\varphi}_{k}^{\epsilon}) + i\theta \chi_{0} \varphi^{\epsilon} = \rho^{2} \psi \qquad \text{in } \mathbb{R}^{2}$$

Note that the right-hand side does not depend on ϵ .

We consider the "limit" problem

$$-\Delta \varphi + i\theta \chi_0 \varphi = \rho^2 \psi \qquad \text{in } \mathbb{R}^2$$

We use duality techniques (Lions, Stampacchia, ...). By choosing $v = \varphi \in V \cap H^2_{loc}(\mathbb{R}^2)$ we find

$$-\int_{\mathbb{R}^2} u^\epsilon \, \Delta \overline{\varphi} \, dx + i\theta \sum_{k=1}^2 \int_{\Omega_k^\epsilon} (u^\epsilon - \widetilde{u}_k^\epsilon) \, \overline{\varphi} \, dx + \int_{\Omega_k^\epsilon} u^\epsilon \, \overline{\varphi} \, dx = \mu I(\overline{\widetilde{\varphi}}_1^\epsilon - \overline{\widetilde{\varphi}}_2^\epsilon)$$

Therefore

$$\int_{\mathbb{R}^2} u^{\epsilon} \left(-\Delta \overline{\varphi} + i\theta \sum_{k=1}^2 \chi_k^{\epsilon} (\overline{\varphi} - \overline{\widetilde{\varphi}}_k^{\epsilon}) + i\theta \chi_0 \overline{\varphi}^{\epsilon} \right) dx = \mu I \left(\overline{\widetilde{\varphi}}_1^{\epsilon} - \overline{\widetilde{\varphi}}_2^{\epsilon} \right)$$

This can be written in the equivalent form:

$$\int_{\mathbb{R}^2} \rho^2 u^{\epsilon} \, \overline{\psi} \, dx = \mu I(\overline{\widetilde{\varphi}}_1^{\epsilon} - \overline{\widetilde{\varphi}}_2^{\epsilon})$$

where φ^{ϵ} is the solution, in $V \cap H^2_{loc}(\mathbb{R}^2)$, of

$$-\Delta \varphi^{\epsilon} + i\theta \sum_{k=1}^{2} \chi_{k}^{\epsilon} (\varphi^{\epsilon} - \tilde{\varphi}_{k}^{\epsilon}) + i\theta \chi_{0} \varphi^{\epsilon} = \rho^{2} \psi \qquad \text{in } \mathbb{R}^{2}$$

Note that the right-hand side does not depend on ϵ .

We consider the "limit" problem

$$-\Delta \varphi + i\theta \chi_0 \varphi = \rho^2 \psi \qquad \text{in } \mathbb{R}^2.$$

We use duality techniques (Lions, Stampacchia, ...). By choosing $v = \varphi \in V \cap H^2_{loc}(\mathbb{R}^2)$ we find

$$-\int_{\mathbb{R}^2} u^\epsilon \, \Delta \overline{\varphi} \, dx + i\theta \sum_{k=1}^2 \int_{\Omega_k^\epsilon} (u^\epsilon - \widetilde{u}_k^\epsilon) \, \overline{\varphi} \, dx + \int_{\Omega_k^\epsilon} u^\epsilon \, \overline{\varphi} \, dx = \mu I(\overline{\widetilde{\varphi}}_1^\epsilon - \overline{\widetilde{\varphi}}_2^\epsilon)$$

Therefore

$$\int_{\mathbb{R}^2} u^{\epsilon} \left(-\Delta \overline{\varphi} + i\theta \sum_{k=1}^2 \chi_k^{\epsilon} (\overline{\varphi} - \overline{\widetilde{\varphi}}_k^{\epsilon}) + i\theta \chi_0 \overline{\varphi}^{\epsilon} \right) dx = \mu I \left(\overline{\widetilde{\varphi}}_1^{\epsilon} - \overline{\widetilde{\varphi}}_2^{\epsilon} \right)$$

This can be written in the equivalent form:

$$\int_{\mathbb{R}^2} \rho^2 u^{\epsilon} \, \overline{\psi} \, dx = \mu I(\overline{\tilde{\varphi}}_1^{\epsilon} - \overline{\tilde{\varphi}}_2^{\epsilon})$$

where φ^{ϵ} is the solution, in $V \cap H^2_{loc}(\mathbb{R}^2)$, of

$$-\Delta \varphi^{\epsilon} + i\theta \sum_{k=1}^{2} \chi_{k}^{\epsilon} (\varphi^{\epsilon} - \tilde{\varphi}_{k}^{\epsilon}) + i\theta \chi_{0} \varphi^{\epsilon} = \rho^{2} \psi \qquad \text{in } \mathbb{R}^{2}$$

Note that the right-hand side does not depend on ϵ .

We consider the "limit" problem:

$$-\Delta\varphi+i\theta\chi_0\varphi=\rho^2\psi\qquad\text{in }\mathbb{R}^2.$$

We prove the estimates

$$\begin{split} \|\nabla\varphi^{\epsilon}\|_{L^{2}(\mathbb{R}^{2})^{2}} + \|\varphi^{\epsilon}\|_{L^{2}(\Omega_{0})} + \epsilon^{-1} \sum_{k=1}^{2} \|\varphi^{\epsilon} - \tilde{\varphi}_{k}^{\epsilon}\|_{L^{2}(\Omega_{k}^{\epsilon})} \leq C \, \|\rho\psi\|_{L^{2}(\mathbb{R}^{2})} \\ \|\varphi^{\epsilon}\|_{H^{2}(B)} \leq C \, \|\rho\psi\|_{L^{2}(\mathbb{R}^{2})} \qquad \text{for all compact sets B of \mathbb{R}^{2}} \end{split}$$

Theorem

The sequence (φ^{ϵ}) converges in $W^1(\mathbb{R}^2)$ to φ

We want now to take the limit in the equation

$$\int_{\mathbb{R}^2} \rho^2 u^{\epsilon} \, \overline{\psi} \, dx = \mu I \, (\overline{\tilde{\varphi}}_1^{\epsilon} - \overline{\tilde{\varphi}}_2^{\epsilon})$$

$$\int_{\mathbb{R}^2} \rho^2 u \, \overline{\psi} \, dx = \mu I \left(\overline{\varphi}(z_1) - \overline{\varphi}(z_2) \right).$$

We prove the estimates:

$$\begin{split} \|\nabla\varphi^{\epsilon}\|_{L^{2}(\mathbb{R}^{2})^{2}} + \|\varphi^{\epsilon}\|_{L^{2}(\Omega_{0})} + \epsilon^{-1} \sum_{k=1}^{2} \|\varphi^{\epsilon} - \tilde{\varphi}_{k}^{\epsilon}\|_{L^{2}(\Omega_{k}^{\epsilon})} \leq C \, \|\rho\psi\|_{L^{2}(\mathbb{R}^{2})} \\ \|\varphi^{\epsilon}\|_{H^{2}(B)} \leq C \, \|\rho\psi\|_{L^{2}(\mathbb{R}^{2})} \quad \text{ for all compact sets } B \text{ of } \mathbb{R}^{2} \end{split}$$

Theorem

The sequence (φ^{ϵ}) converges in $W^1(\mathbb{R}^2)$ to φ

We want now to take the limit in the equation

$$\int_{\mathbb{R}^2} \rho^2 u^{\epsilon} \, \overline{\psi} \, dx = \mu I \left(\overline{\tilde{\varphi}}_1^{\epsilon} - \overline{\tilde{\varphi}}_2^{\epsilon} \right)$$

$$\int_{\mathbb{R}^2} \rho^2 u \, \overline{\psi} \, dx = \mu I \left(\overline{\varphi}(z_1) - \overline{\varphi}(z_2) \right).$$

We prove the estimates:

$$\begin{split} \|\nabla\varphi^{\epsilon}\|_{L^{2}(\mathbb{R}^{2})^{2}} + \|\varphi^{\epsilon}\|_{L^{2}(\Omega_{0})} + \epsilon^{-1} \sum_{k=1}^{2} \|\varphi^{\epsilon} - \tilde{\varphi}_{k}^{\epsilon}\|_{L^{2}(\Omega_{k}^{\epsilon})} \leq C \, \|\rho\psi\|_{L^{2}(\mathbb{R}^{2})} \\ \|\varphi^{\epsilon}\|_{H^{2}(B)} \leq C \, \|\rho\psi\|_{L^{2}(\mathbb{R}^{2})} \qquad \text{for all compact sets } B \text{ of } \mathbb{R}^{2} \end{split}$$

Theorem

The sequence (φ^{ϵ}) converges in $W^1(\mathbb{R}^2)$ to φ .

We want now to take the limit in the equation

$$\int_{\mathbb{R}^2} \rho^2 u^{\epsilon} \, \overline{\psi} \, dx = \mu I \left(\overline{\tilde{\varphi}}_1^{\epsilon} - \overline{\tilde{\varphi}}_2^{\epsilon} \right)$$

$$\int_{\mathbb{R}^2} \rho^2 u \, \overline{\psi} \, dx = \mu I \left(\overline{\varphi}(z_1) - \overline{\varphi}(z_2) \right).$$

We prove the estimates:

$$\begin{split} \|\nabla\varphi^{\epsilon}\|_{L^{2}(\mathbb{R}^{2})^{2}} + \|\varphi^{\epsilon}\|_{L^{2}(\Omega_{0})} + \epsilon^{-1} \sum_{k=1}^{2} \|\varphi^{\epsilon} - \tilde{\varphi}_{k}^{\epsilon}\|_{L^{2}(\Omega_{k}^{\epsilon})} \leq C \, \|\rho\psi\|_{L^{2}(\mathbb{R}^{2})} \\ \|\varphi^{\epsilon}\|_{H^{2}(B)} \leq C \, \|\rho\psi\|_{L^{2}(\mathbb{R}^{2})} \quad \text{for all compact sets } B \text{ of } \mathbb{R}^{2} \end{split}$$

Theorem

The sequence (φ^{ϵ}) converges in $W^1(\mathbb{R}^2)$ to φ .

We want now to take the limit in the equation

$$\int_{\mathbb{R}^2} \rho^2 u^{\epsilon} \, \overline{\psi} \, dx = \mu I \left(\overline{\tilde{\varphi}}_1^{\epsilon} - \overline{\tilde{\varphi}}_2^{\epsilon} \right)$$

$$\int_{\mathbb{R}^2} \rho^2 u \, \overline{\psi} \, dx = \mu I \left(\overline{\varphi}(z_1) - \overline{\varphi}(z_2) \right).$$

Convergence and error estimate

Theorem

We have
$$\|\rho\left(u-u^{\epsilon}\right)\|_{L^{2}(\mathbb{R}^{2})}\leq C\epsilon^{\alpha}$$
 $0\leq \alpha<rac{1}{2}$

We want to prove the convergence in $W^{1,p}$ for $1 \le p < 2$.

For this, we use truncation or renormalization techniques (Lions, Murat, Boccardo-Gallout,...) We first prove the estimates

$$\|\rho u^{\epsilon}\|_{L^{2}(\mathbb{R}^{2})} + \epsilon^{-\frac{1}{2}} \sum_{k=1}^{2} \|u^{\epsilon} - \tilde{u}_{k}^{\epsilon}\|_{L^{2}(\Omega_{k}^{\epsilon})} \le C$$

$$\|\rho^{2} u^{\epsilon}\|_{L^{1}(\mathbb{R}^{2})} + \epsilon^{-\frac{3}{2}} \sum_{k=1}^{2} \|u^{\epsilon} - \tilde{u}_{k}^{\epsilon}\|_{L^{1}(\Omega_{k}^{\epsilon})} \le C$$

Theorem

The sequence u^{ϵ} converges weakly toward u in $W^{1,p}(B)$ for $1 \leq p < 2$ on all compact sets B containing Ω^{ϵ} .

We want to prove the convergence in $W^{1,p}$ for $1 \le p < 2$.

For this, we use truncation or renormalization techniques (Lions, Murat, Boccardo-Gallout, \dots)

We first prove the estimates

$$\|\rho u^{\epsilon}\|_{L^{2}(\mathbb{R}^{2})} + \epsilon^{-\frac{1}{2}} \sum_{k=1}^{2} \|u^{\epsilon} - \tilde{u}_{k}^{\epsilon}\|_{L^{2}(\Omega_{k}^{\epsilon})} \leq C$$

$$\|\rho^{2} u^{\epsilon}\|_{L^{1}(\mathbb{R}^{2})} + \epsilon^{-\frac{3}{2}} \sum_{k=1}^{2} \|u^{\epsilon} - \tilde{u}_{k}^{\epsilon}\|_{L^{1}(\Omega_{k}^{\epsilon})} \leq C$$

Theorem

The sequence u^{ϵ} converges weakly toward u in $W^{1,p}(B)$ for $1 \le p < 2$ on all compact sets B containing Ω^{ϵ} .

We want to prove the convergence in $W^{1,p}$ for $1 \le p < 2$. For this, we use truncation or renormalization techniques (Lions, Murat, Boccardo-Gallout,...) We first prove the estimates

$$\|\rho u^{\epsilon}\|_{L^{2}(\mathbb{R}^{2})} + \epsilon^{-\frac{1}{2}} \sum_{k=1}^{2} \|u^{\epsilon} - \tilde{u}_{k}^{\epsilon}\|_{L^{2}(\Omega_{k}^{\epsilon})} \leq C$$
$$\|\rho^{2} u^{\epsilon}\|_{L^{1}(\mathbb{R}^{2})} + \epsilon^{-\frac{3}{2}} \sum_{k=1}^{2} \|u^{\epsilon} - \tilde{u}_{k}^{\epsilon}\|_{L^{1}(\Omega_{k}^{\epsilon})} \leq C$$

Theorem

The sequence u^{ϵ} converges weakly toward u in $W^{1,p}(B)$ for $1 \le p < 2$ on all compact sets B containing Ω^{ϵ} .

We want to prove the convergence in $W^{1,p}$ for $1 \le p < 2$. For this, we use truncation or renormalization techniques (Lions, Murat, Boccardo-Gallout,...)

We first prove the estimates

$$\|\rho u^{\epsilon}\|_{L^{2}(\mathbb{R}^{2})} + \epsilon^{-\frac{1}{2}} \sum_{k=1}^{2} \|u^{\epsilon} - \tilde{u}_{k}^{\epsilon}\|_{L^{2}(\Omega_{k}^{\epsilon})} \leq C$$

$$\|\rho^{2} u^{\epsilon}\|_{L^{1}(\mathbb{R}^{2})} + \epsilon^{-\frac{3}{2}} \sum_{k=1}^{2} \|u^{\epsilon} - \tilde{u}_{k}^{\epsilon}\|_{L^{1}(\Omega_{k}^{\epsilon})} \leq C$$

Theorem

The sequence u^{ϵ} converges weakly toward u in $W^{1,p}(B)$ for $1 \leq p < 2$ on all compact sets B containing Ω^{ϵ} .

Remark

In the case where $\Omega_0 = \emptyset$, we have the limit problem:

$$\left\{ \begin{aligned} &-\Delta u_0 = \mu I\left(\delta_{z_1} - \delta_{z_2}\right) &&\quad \text{in } \mathbb{R}^2 \\ &u_0(x) = \beta + O(|x|^{-1}) &&\quad |x| \to \infty. \end{aligned} \right.$$

The solution is given by

$$u_0(x) = \frac{\mu I}{2\pi} \log \frac{|x - z_2|}{|x - z_1|} \qquad x \in \mathbb{R}^2 \setminus \{z_1, z_2\}.$$

Remark

In the case where $\Omega_0 = \emptyset$, we have the limit problem:

$$\begin{cases} -\Delta u_0 = \mu I \left(\delta_{z_1} - \delta_{z_2} \right) & \text{in } \mathbb{R}^2 \\ u_0(x) = \beta + O(|x|^{-1}) & |x| \to \infty. \end{cases}$$

The solution is given by

$$u_0(x) = \frac{\mu I}{2\pi} \log \frac{|x - z_2|}{|x - z_1|} \qquad x \in \mathbb{R}^2 \setminus \{z_1, z_2\}.$$

In the general case, we obtain the solution by superposition:

$$u = w + u_0$$

where $w \in W^1(\mathbb{R}^2)$ and

$$\begin{cases} -\Delta w + i\theta\chi_0 w = -i\theta\chi_0 u_0 & \text{in } \mathbb{R}^2 \\ w(x) = \beta + O(|x|^{-1}) & |x| \to \infty \end{cases}$$