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Motivation

o Typical configuration of an eddy current setup:
A set of conductors of different thicknesses.

e Typically: An inductor (thin conductor: coil, wire, ...) that carries electric current + a
“thick” conductor.

@ This results in difficulties in numerical simulation (needs a fine mesh for the inductors, ill
conditioning, ...)

o Remedy: Asymptotic analysis to obtain models that couple field equations and circuit
equations.

Seminar Eddy currents in thin conductors



Eddy current equations in time harmonic regime:

Q : union of conductors, Q' =R3\ Q.

curlH =J in R3
iwuH + curlE =0 inQuUQ’
J=0E in Q
J=0 in Q'

To simplify, we assume 1 (magnetic permeability) and o (electric conductivity) constant.
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The problem is not completely solved.
We aim at computing the inductance coefficient of toroidal thin conductor.

Let Q. denote a toroidal domain with inner radius € > 0, Q. = R3 \ﬁe, Y acutin R3
(2L \ X is simply connected).
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curlH =0 in QL.
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We have
curlH® =0 in QL.
Therefore
H¢ = Vp© + aVp© in QL \ I,

where a € C and

Ap =0 in Q. \ x
a- 1 [9P] _
[p]zil’[an]zio
(?p on 99,
on
pe(x) = O(Ix|™1) x| = oo
The is defined by

Ope
= /1,/ |Vpe|? dx = /1,/ ‘p ds
QT s On
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Remark

When ¢ — 0, we have L€ — +oo.

Theorem
We have the expansion
. wl 5_,
L :72—|og€+a+0(€3 ) n >0,

where a is a real number given explicitly and ¢ is the length of the curve that ‘generates” Q..

Remarks

@ This result is given in the book of LANDAU and LIFSHITZ (without proof) without expliciting
the term a.

@ In the RL circuit equation, we have
(iwl+R)I = V.

This suggests that /¢ = O(1/ loge).



A first

Consider the following configuration of conductors:

If J = (J1,J2,0), we prove that H = (0,0, u¢) where u€ is solution of the problem:

— o AUt 4 iwput =0 in Q€ := ﬁluﬁ'uﬂg
uc=0 on ¢
u® = Const. in Q




We define the space
V = {ve H}Q°); viqr = Const.}.

We have the variational formulation:

uc eV,

ot VU"-Vde+a*1/ Vi .de+iw/ uvdx = Vg
S JQg Qe

where f € C if the current voltage.
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We define the space
V = {ve H}Q°); viqr = Const.}.

We have the variational formulation:

uc eV,

ot Vu¢ - Vvdx+o ! /

Vu® - Vvdx + iwu/ uvdx = fv
Ja, Jags

Qe

where f € C if the current voltage.
Let us assume that o~ = ae (or =1 = O(¢)).

We then prove that (2 = Q; U Q')
u¢ —u in HY(Q) when ¢ — 0

where u is solution to the problem:



u€ X:={veH(Q), viaq = Const.},
ot / Vu-Vvdx +iwp / uv dx + (iwp|Q'| + al) ujsq V|o0
Ja Ja

:fv‘(f)Q VveX.

where £ is the length of ~p.



u€ X:={veH(Q), viaq = Const.},
071/ Vu-Vvdx+ iw,u/ uv dx + (iwp|Q'| + al) ujsq V|o0
Q Q

ZfVmQ VveX.

where £ is the length of ~p.

Remark

If Q1 = 0 and ¢ = ujgq, we obtain the algebraic equation
(iwp|Q |+ al)p = f.

If we set
L=p|Q, R=

then we can write
(iwL+R)p =f.




Consider the following setup of conductors:

-
Qo

o H H

e T_71 ~ -




Consider the following setup of conductors:

o
Qo
© ™ H H
Z3 ~ =
71

We define Q¢ = Qg U Qf U Q5. We then look for a solution that satisfies J = (0,0, J). From this,
we deduce H = (Hi, H», 0) with

curlH=J in R?
J=0 in Q/
iwpH + curl (67 1J) =0 in Q.
div(uH) =0 in R?
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The identity div(zH) = 0 implies

puH = curlu in R?.
We deduce curlcurlu = —Au = pJ in Q.
Moreover curl (iwu+o~1J) =0 in Q¢. This results in

iwou+ J=0Cy inQy, C eC.

We hence obtain the problem:

— Au+ iwpou = poCy inQf, k=0,1,2
Au=0 in Q/
ou
[u] = [a] =0 on e
u(x) = B+ O(]x|71) |x| — oo
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X5 = lqe, V,f:—(/ vdx, k=0,1,2.
k |Qk‘ e



How to determine C, ?
Let / stand for the total current in the inductor and assume

I:/ de:7/ J dx, /de:O.
Q Q. Q,

1 5 0
Let in addition 6 = wpo and

. 1
Xi=lag, W=igq [ v k=012
k

We obtain after some calculations:

2

€ €
‘*Af*49§:Xﬂquﬁ):u/(Xl X2) in R2

— jQs] 1]
5 =0

u(x) =B+ O(Ix|™1)




How to determine C, ?
Let / stand for the total current in the inductor and assume

I:/ de:7/ J dx, /de:O.
Q Q. Q,

i 5 0
Let in addition 6 = wpo and

We obtain after some calculations:

2

N Clyf ) = (X1 _ X2
w030 X () = gt (2L - X2
= 171 9]

5 =0
u(x) =B+ O(Ix|™1)

The condition &5 = 0 ensures uniqueness of solutions.



We define the spaces
WYH(R?) = {v; pv € L2(R?), Vv € [}(R?)?}
V = {ve WYR?); % =0}

1
where p(x) = T RyiogERN



We define the spaces
WYH(R?) = {v; pv € L2(R?), Vv € [}(R?)?}
V = {ve WYR?); % =0}
_ 1
where p(x) = (Y og@ D)

We have the variational formulation (note the dependency on ¢):

ucev,

/ Vu¢ Vvdx+/92/ u¢ — G)vdx = pl(Vy — v5) VveV.




We define Qf = z, +eﬁk, k =1,2 where € < 1, z, € R?, ﬁk C R2,
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We define Q = z, + €Qy, k = 1,2 where ¢ < 1, z € R?, Q, C R

Limit problem (?)

{ — Au+i0xou = pl (6 — 6,) in R?
u(x) =B+ 0(Ix|™) x| — oo

Remarks

@ We cannot have convergence in V' because of Dirac masses.

@ The "limit" problem has at most one solution in

L%(R2) ={v:R% = C; pv € L*(R?)}




Conver

We use duality techniques (Lions, Stampacchia, ... ).
By choosing v =p € VN HI%C(R2) we find
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Conver

We use duality techniques (Lions, Stampacchia, ... ).
By choosing v =p € VN HI%C(R2) we find

2
7/2 uEAde+iGZ/ (uefﬁZ)EdeL/ U Bdx = pul(35 — B5)
R pamgiiel; Qe

k
Therefore
2
/RZ v (= B +i0 ) X5 — Bi) + i0x07°) dx = ul (35 — B2)
k=1
This can be written in the equivalent form:

/ pPu pdx = pl(@; — 35)
R2
where ¢ is the solution, in V N H2 _(R?), of
2
—ApS 40> X5 — $R) + ifxopS = p°Y  inR?
k=1

Note that the right-hand side does not depend on e.
We consider the “limit” problem:

—Ap + i0xop = R0 in R2.






We prove the estimates:

2
c - -1 e _ 3 /
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k=1

L2(R2)

lle N H2(g) < Cllotll2me2) for all compact sets B of R?



We prove the estimates:

2
€ =il € ~
Nl 2 € > et - Sillizag) < Cllpvllizge)
k=1

||VL,OE HLZ(R2)2 +

lle N H2(g) < Cllotll2me2) for all compact sets B of R?

Theorem

The sequence (p°) converges in W (R?) to .




We prove the estimates:

2
€ =il € ~
Nl 2 € > et - Sillizag) < Cllpvllizge)
k=1

||VL,OE HLZ(R2)2 +

lle N H2(g) < Cllotll2me2) for all compact sets B of R?

Theorem

The sequence (p°) converges in W (R?) to .

We want now to take the limit in the equation
' DI —€ —€
/Wp uSpdx = pl (1 — &)

to obtain
/R Puidc = ul ((z1) - 2(22)).



Conver

Theorem J

We have llo(u— u)l[2r2) < Ce® 0<ac< %
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We want to prove the convergence in WP for 1 < p < 2.
For this, we use truncation or renormalization techniques (Lions, Murat, Boccardo-Gallout,. . .)
We first prove the estimates

2
1 -
lpucll 2(m2y + €2 Z llu€ = Tlli2gag) < €
k=1

N

_3
2

2 € € ~€
ol 1 (roy + € llu® = Uellrgag) < €

k=1

Theorem

The sequence u® converges weakly toward u in W'-P(B) for 1 < p < 2 on all compact sets B
containing Q€.




Rem

In the case where Q¢ = (), we have the limit problem:

{ — Aug = pl (65, — 82,) in R?
w(x) = B+ O(Ix| ™) x| — oo.




Rema

In the case where Q¢ = (), we have the limit problem:

{ — Aup = pul (62 — 82,) in R?
u(x) = B+ O(Ix| ™) x| — oco.

The solution is given by

x € R?\ {z1,}.



In the general case, we obtain the solution by superposition:
u w + ug
where w € W1(R?) and

— Aw + iOxow = —ifxoup in R?
w(x) = B+ O(Ix|™1)

x| — oo




