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Chapter 1

Real numbers

Notation. â R is the setset† of real numbers.

â N is the set of integers that are non-negativenon-negative‡.

(The usual convention in English is that N is the set of positivepositive§ integers – we will not use it.)

â Z is the set of all integers; N ⊂ Z ⊂ R.

â Q is the set of rational numbers; Z ⊂ Q ⊂ R. It is the set of real numbers that can be written
p
q

where (p, q) ∈ Z2

and q 6= 0.

â D is the set of decimal numbers; Z ⊂ D ⊂ Q. It is the set of rational (or real) numbers that can be written
p

10n
where (p, n) ∈ Z×N.

â C is the set of complex numbers; R ⊂ C.

â For K one of the sets above, K∗ is the subset of non-zero elements.

I. Supremum, infimum

Definition 1. A set A of real numbers is bounded abovebounded abovea if there is a number x such that x > a for all a ∈ A.
Such a number x is called an upper boundupper boundb for A.

amajorémajoré
bmajorantmajorant

Example. The sets A = [5, 7] and B =]−∞, 10[ are bounded above 10, 13 and 3002 for instance are upper bounds for
both sets, while 7 and 9 are upper bounds for A but not for B.

The sets ]−3 ;+∞[ and N are not bounded above.

Definition 2. A number x is a supremumsupremuma or least upper boundleast upper bound of A if x is an upper bound for A and for any upper bound y
for A, we have x 6 y. We denote it by sup A or supa∈A{a} or sup{a; a ∈ A}

aborne supérieureborne supérieure

Example. The sets A = [5, 7] and B =]−∞, 10[ have supremums, and sup A = 7 and sup B = 10.

Lemma 3. A supremum, if it exists, is unique.

Proof. Let A be a set and let x and y be two supremums of A. They are in particular upper bounds for A so that

â since x is a supremum and y is an upper bound, we have x 6 y, and

â since y is a supremum and x is an upper bound, we have x > y

therefore x = y. X

†ensembleensemble
‡positif (ou nul)positif (ou nul)
§strictement positifstrictement positif
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Remark.
::::::::::::::
Characterisation

::
of
::::

the
::::::::::
supremum. Let α be an upper bound for A. Then α = sup A if and only if for any

t < α there exists a ∈ A such that t < a 6 α (or equivalently, if and only if for any ε > 0 there exists a ∈ A such that
α− ε < a 6 α).

With quantifiers, this becomes:

α = sup A ⇐⇒ ∀t < α, ∃a ∈ A such that t < a 6 α

⇐⇒ ∀ε > 0, ∃a ∈ A such that α− ε < a 6 α.

Indeed, if α = sup A, any t < α is not an upper bound for A so that there is an element a ∈ A with t < a (and of course,
a 6 α since α is an upper bound for A).

Conversely, if α > sup A take t = sup A. By assumption there exists a ∈ A such that sup A = t < a 6 α. This is a
contradiction since sup A is an upper bound for A.

Remark.
:::::::::
Sequential

::::::::::::::
characterisation

:::
of

:::
the

::::::::::
supremum. Let α be an upper bound for A. Then α = sup A if and only if

there exists a sequencesequence† (un) of elements of A that converges to α.
Indeed, if α = sup A then for any n ∈ N∗ there exists un ∈ A such that α − 1

n < un 6 α using the previous
characterisation. Then (un) converges to α by the Comparison Theorem.

Conversely, assume that there exists a sequence (un) of elements of A that converges to α. Note that since α is an upper
bound for A and un ∈ A, we have un 6 α for any n.

Fix ε > 0. Then there exists N ∈ N such that for all n ∈ N with n > N, we have |un − α| < ε. Since |un − α| = α− un,
this implies that α− ε < un 6 α. Therefore α = sup A using the previous characterisation.

Example. The set R itself is not bounded above, neither is N (subsetsubset‡ of R), therefore it cannot have a supremum.
The interval [0, 1] is bounded above (for instance, 2 and 35 are upper bounds of [0, 1]); it also has a supremum, which

is 1 (1 is an upper bound of [0, 1] and any other upper bound y satisfies 1 6 y).
Note that a supremum is not always an element of the set A. For instance, sup[0, 1[= 1. (Indeed, 1 is clearly an upper

bound of [0, 1[ and if there existed an upper bound y with y < 1, then y <
1+y

2 and 1+y
2 ∈ [0, 1[, which contradicts the

fact that y is an upper bound of [0, 1[).

Definition 4. A number x is a maximummaximuma of A if x is an upper bound of A and x ∈ A. It is denoted by x = max A or
x = maxa∈A{a}.

amaximum ou plus grand élémentmaximum ou plus grand élément

Remark. A maximum of A, if it exists, is necessarily the supremum of A.

Remark. Every non-empty finite set has a maximum.
The proof is by induction on the number of elements in the set.

Property 5. Any non-emptynon-empty subset A of R that is bounded above has a supremum.

Remark. Property 55 is not necessarily true in ordered sets other than R.
[Not done in class.] Let A =

{
x ∈ Q; x > 0 and x2 < 2

}
(subset of Q). Clearly, A is non-empty (it contains 0 and 1) and is

bounded above (by 2) in Q.
However, A does not have a supremum in Q. This is essentially due to the fact that

√
2 6∈ Q (in R,

√
2 would be the

supremum of A).

Proof. Assume for a contradiction that A has a supremum α in Q. We can write α =
p
q with q ∈ N∗ and p ∈ N∗ (since

α > 1).

â If α ∈ A then α2 < 2 so p2 − 2q2 < 0 and therefore p2 − 2q2 6 −1. Set β =
4p2+1

4pq ∈ Q. Then β > α and β2 < 2 so
β ∈ A: this contradicts the fact that α = sup A.

â Therefore α 6∈ A. In particular, α2 > 2. We know that 2 is not a square in Q so α2 > 2 and therefore p2 − 2q2 > 1.

Set γ =
2p2−1

2pq ∈ Q. Then 0 < γ < α and γ2 > 2 so γ is an upper bound for A that is smaller than α; this contradicts
the fact that α = sup A.

Therefore A does not have a supremum α in Q. X

†suitesuite
‡sous-ensemblesous-ensemble
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Definition 6. A set A of real numbers is bounded belowbounded belowa if there is a number y such that y 6 a for all a ∈ A.
Such a number y is called a lower boundlower boundb for A.
A number x is an infimuminfimumc or greatest lower boundgreatest lower bound of A if x is a lower bound of A and for any lower bound y of A, we have
x > y. If it exists, it is unique and we denote it by inf A or infa∈A{a}.
A number x is a minimumminimumd of A if x is a lower bound of A and x ∈ A. It is denoted by x = min A or x = mina∈A{a}. When
it exists, it is equal to the infimum of A.
The set A is boundedboundede if it is bounded above and below.

aminoréminoré
bminorantminorant
cborne inférieureborne inférieure
dminimum ou plus petit élémentminimum ou plus petit élément
ebornéborné

Remark.
:::::::::::::::
Characterisations

::
of

:::
the

::::::::
infimum. Let β be a lower bound for A. Then

β = inf A ⇐⇒ ∀t > β, ∃a ∈ A st β 6 a < t
⇐⇒ ∀ε > 0, ∃a ∈ A st β 6 a < β + ε.

Moreover, β = inf A if and only if there exists a sequence (un) of elements of A that converges to β.

Property 7. Any non-empty subset A of R that is bounded below has an infimum.

Proof. Take B = {−a; a ∈ A} ⊂ R. Since A has a lower bound y, B has an upper bound x = −y, hence B has a supremum
α. Then β = −α is clearly a lower bound for A. Let us check that β is an infimum for A.

If t > β, then −t < −α so that there exists b ∈ B such that −t < b 6 α. Therefore β = −α < −b < t with −b ∈ A.
Therefore A has an infimum, equal to β = −α. X

Remark. Recall from the first semester that a sequence was called bounded (resp. bounded above, resp. bounded below) if the
set {un; n ∈N} is bounded (resp. bounded above, resp. bounded below).

Similarly, a mapmap† f : I → R was called bounded (resp. bounded above, resp. bounded below) if the set f (I) = { f (x); x ∈ I}
is bounded (resp. bounded above, resp. bounded below). We will usually write supI f = supx∈I f (x) = supx∈I{ f (x)}
for sup{ f (x); x ∈ I} when it exists, or sup f when I is clear. Similarly, we will write infI f , maxI f and minI f when they
exist.

Exercise 1. Prove that if f : I → R and g : I → R are two maps such that f 6 g (that is, for all x ∈ I we have f (x) 6 g(x)),
then sup f 6 sup g and inf f > inf g.

Remark. Let A be a non-empty subset of Z that is bounded above in R. Then A has a maximum.

Idea/summary of proof. Essentially, this is a consequence of the fact that any convergent sequence in Z is stationarystationary‡.

Proof. Since A is non-empty and bounded above in R, it has a supremum α ∈ R. We know that there exists a sequence
(un) of elements of A (hence of Z) that converges to α. Therefore this sequence is stationary: there exists N ∈ N such
that for all n > N we have un = uN . In particular, α = uN ∈ A.

To prove that a convergent sequence of integers is stationary, use the definition of the limit with ε = 1
2 , so that there exists N ∈N

such that for any n > N we have |un − α| < 1
2 ; then for any n > N we have 0 6 |un − uN | 6 |un − α|+ |α− uN | < 1

2 + 1
2 = 1.

Since un and uN are integers, we must have un = uN for all n > N. X

Remark. Any non-empty subset of Z that is bounded below in R has a minimum. In particular, any non-empty subset
of N has a minimum.

II. Integral part of a real number, density of Q in R

Proposition 8. For any real number x, there exists a unique integer n such that n 6 x < n + 1. We denote n = E(x) or
n = [x] or n = bxc and call it the integral partintegral parta of x.

apartie entièrepartie entière

Proof. â We first prove uniqueness. Let n and n′ be two integers such that n 6 x < n + 1 and n′ 6 x < n′ + 1. Then
n 6 x < n′ + 1 so n < n′ + 1 and n 6 n′. Similarly, n′ 6 n so n = n′.

â We now prove existence. The set A := {k ∈ Z; k 6 x} is non-empty and bounded above in R, hence by a remark
on page 33, it has a maximum n ∈ A. Then we have n 6 x and n + 1 6∈ A so n + 1 > x. X

†applicationapplication
‡stationnairestationnaire
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Remark. bxc is also the smallest integer satisfying x < bxc+ 1 (the set A′ = {k ∈ Z; x < k + 1} has a minimum n that
satisfies n 6 x < n + 1; the uniqueness of such an integer proves that n = bxc).

Graph of E.

x

y

0 1
−1

Definition 9. Let x be a real number and take n ∈ N . A decimal number d is a decimal approximation by defaultdecimal approximation by defaulta (resp.
decimal approximation by excessdecimal approximation by excessb) accurate within 10−naccurate within 10−nc if d 6 x 6 d + 10−n (resp. if d− 10−n 6 x 6 d).

avaleur approchée par défautvaleur approchée par défaut
bvaleur approchée par excèsvaleur approchée par excès
cà 10−n prèsà 10−n près

Remark. Let x be a real number. Take n ∈ N and set qn = [10nx] ∈ Z. Then qn is the unique integer such that
qn

10n 6 x <
qn+1
10n =

qn
10n + 10−n. Therefore qn

10n is a decimal approximation of x by default accurate within 10−n. In fact, qn
10n

is the number x truncated to n decimal placesx truncated to n decimal places†.

Proposition 10. Any real number is the limit of a sequence of decimal numbers.
In particular, every real number is the limit of a sequence of rational numbers. We say that Q is densedensea in R.

adensedense

Proof. Use the notation in the previous remark. We have (∗) qn+1 6 x 10n+1 < qn+1 + 1 and 10qn 6 x 10n+1 < 10(qn + 1)
therefore 10qn 6 qn+1 6 x 10n+1 < qn+1 + 1 6 10(qn + 1) (the first inequality follows from the definition of [10n+1x] and
(∗) and the second follows from the remark above and (∗)) so

qn

10n 6
qn+1

10n+1 6 x <
qn+1 + 1

10n+1 6
qn + 1

10n .

Consequently, the sequences
( qn

10n

)
n∈N

and
(

qn+1
10n

)
are adjacent and their common limit is x. X

Corollary 11. Let x and y be two real numbers with x < y. Then there exists q ∈ Q such that x < q < y.

Proof. By the previous proposition, there exists a sequence (qn)n of rational numbers that converges to
x + y

2
. Therefore

there exists an integer N such that for all n > N we have
∣∣∣∣qn −

x + y
2

∣∣∣∣ < y− x
2

. In particular, − y−x
2 +

x+y
2 < qN <

y−x
2 +

x+y
2 so that x < qN < y. X

Proposition 12. The set R \Q is dense in R: for any x ∈ R there exists a sequence (tn) of non-rational real numbers
that converges to x.

Proof. We know that
√

2 ∈ R \Q.

Set y =
x√
2

. We know by Proposition 1010 that there exists a sequence (qn) of rational numbers that converges to y. Put

tn = qn
√

2 ∈ R \Q. Then (tn) converges to y
√

2 = x. X

Corollary 13. Let x and y be two real numbers with x < y. Then there exists t ∈ R \Q such that x < t < y.

Proof. Same proof as that of Corollary 1111, or use Corollary 1111 and the same trick as in the proof of Proposition 1212. X

†tronqué à n décimalestronqué à n décimales
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Chapter 2

Study of functions

We shall now consider functions, building on what you have done in the first semester. We shall start with properties of
continuous functions, then differentiable functions.

A. Intermediate Value Theorem

Theorem 1. Let f be a continuous function on [a, b]. If f (a) f (b) < 0 (ie. f (a) and f (b) have opposite signs), then there
is some x ∈]a, b[ such that f (x) = 0.

Idea/summary of proof. Assume that f (a) < 0 < f (b). We prove that there is an α ∈]a, b[ such that f is negative on ]a, α[
and such that f is not negative on any ]a, c[ with c > α. We then prove that f (α) = 0.

Proof. Assume that f (a) < 0 < f (b) (the other case is obtained from this one by considering − f ). Define the set
A = {x; a 6 x 6 b and f is negative on the interval [a, x]}. Clearly, A 6= ∅ since a ∈ A. Moreover, b is an upper bound
for A (since A ⊂ [a, b]), therefore A has a supremum. Set α = sup A. We shall prove that a < α < b and that f (α) = 0.

â We first prove that α > a. For this, we show that there is some δ > 0 such that [a, a + δ] ⊂ A.

Recall from the first semester Proposition 241: if limx→a f (x) < c, then f is bounded above by c in a neighbourhoodneighbourhood†

of a. We apply this here with c = 1
2 f (a). Indeed, since f is continuous at a, we have limx→a f (x) = f (a) and f (a) < c

because f (a) < 0. This means that there exists δ > 0 such that for all x ∈ [a, a+ δ] we have f (x) 6 c, and in particular
f (x) < 0. Finally we have [a; a + δ] ⊂ A.

In particular, α > a + δ > a.

â Let us now check that α < b. Assume for a contradiction that α = b. Since f (b) > 0, we can show as in the
previous step that there is a δ′ > 0 such that f is positive on [b− δ′; b]. We have assumed that b = α = sup A and
we have b− δ′ < b, therefore there exists y ∈ A with b− δ′ < y 6 b. Therefore f (y) > 0 (because y ∈ [b− δ′; b]) and
f (y) < 0 (because y ∈ A), a contradiction. Therefore α < b.

â We will now show that f (α) = 0. Assume for a contradiction that f (α) 6= 0. Then there are two cases:

• First case: f (α) < 0. Then there exists δ > 0 such that f is negative on the neighbourhood [α− δ, α + δ] of α.
Now there is some x0 ∈ A satisfying α− δ < x0 6 α (by definition of the supremum α) so f is negative on
[a, x0]. But if x1 ∈]α, α + δ] then f is negative on [x0, x1] so f is negative on [a, x1] and therefore x1 ∈ A. This
contradicts the fact that α is an upper bound for A.

• Second case: f (α) > 0. Then there exists δ > 0 such that f is positive on [α− δ, α+ δ]. Once again we know that
there is an x0 ∈ A satisfying α− δ < x0 < α. But this means that f is negative on [a, x0], which is impossible
since x0 ∈ [α− δ, α + δ]. We have a contradiction.

Therefore f (α) = 0. X

Corollary 2 (Intermediate Value TheoremIntermediate Value Theorema). Let f be a continuous function on [a, b]. If c is a real number that is strictly
between f (a) and f (b), then there is some x ∈]a, b[ such that c = f (x).

athéorème des valeurs intermédiaires (TVI)théorème des valeurs intermédiaires (TVI)

Proof. Define g : [a, b] → R by g(x) = f (x)− c. Then g is continuous. If f (a) < c < f (b) then g(a) < 0 and g(b) > 0. If
f (a) > c > f (b) then g(a) > 0 and g(b) < 0. In both cases, g(a)g(b) < 0 so there exists x ∈]a, b[ such that g(x) = 0, that
is, f (x) = c. X

Corollary 3. A polynomial of odd degree has at least one real rootroot.

†voisinagevoisinage
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Proof. cf. TD. X

Definition 4. An intervalintervala I is a subset of R satisfying the following property:

∀a ∈ I, ∀b ∈ I, a < b, [a, b] ⊂ I.

aintervalleintervalle

Remark. The intervals that we know, that is, of the form [a, b], ]a, b[, [a, b[ and ]a, b] (with a and b real numbers or possibly
±∞ in some cases) are precisely all the intervals in R. (Exercise.)

Corollary 5. Let I be an interval and f : I → R a function. If f is continuous then f (I) is an interval.

Proof. Let x and y be elements in f (I) such that x < y; we must prove that [x, y] ⊂ f (I). By definition of f (I), there exist
u and v in I such that x = f (u) and y = f (v). Let z be an element of ]x, y[. Then by the Intermediate Value Theorem,
there is an element w between u and v such that z = f (w). But I is an interval so w ∈ I. Therefore z ∈ f (I). Moreover, if
z = x or z = y then clearly z ∈ f (I). We have proved that [x, y] ⊂ f (I). Therefore f (I) is an interval. X

Examples. (1) The image of sin : R→ R is contained in [−1; 1], it is an interval since sin is continuous, and it contains
1 = sin π

2 and −1 = sin 3π
2 , therefore sin(R) = [−1; 1].

(2) Consider the function f : R→ R defined by f (x) = x2 + x + 1. We have f (x) =
(

x + 1
2

)2
+ 3

4 so that the image of

f is contained in [ 3
4 ;+∞[. Moreover, it is an interval since f is continuous, it contains f (− 1

2 ) =
3
4 , and it contains

arbitrarily large real numbers since limx→+∞ f (x) = +∞. Therefore f (R) = [ 3
4 ;+∞[.

(3) Consider the function f : I → R where
[
0, π

2
[

defined by f (x) = tan(x). We have f (x) > 0 for all x ∈ I so that
the image of f is contained in [0;+∞[. Moreover, it is an interval since f is continuous, it contains f (0) = 0, and it
contains arbitrarily large real numbers since limx→ π

2
f (x) = +∞. Therefore f (I) = [0;+∞[.

Note that f (I) is not bounded although I is bounded.

Remark. The image of an interval need not be an interval of the same type. See the previous examples.

Proposition 6. Let f : [a, b]→ R be a continuous function defined on a closed bounded interval. Then f is bounded.

Idea/summary of proof. We assume for a contradiction that f is not bounded above, so that the sets An := {x ∈ [a, b]; f (x) > n}
are non-empty. We prove that each of these sets has a maximum, sn, that the sequence (sn) converges to ` ∈ [a, b], and
we finally show that ( f (sn)) converges and diverges, a contradiction. Therefore f is bounded above.

To prove that f is bounded below, either adapt this proof or consider − f .

Proof. Assume for a contradiction that f is not bounded above. Then for any n ∈ N there exists xn ∈ [a, b] such that
f (xn) > n. Therefore the set An := {x ∈ [a, b]; f (x) > n} is non-empty.

â We prove that An has a maximum, sn.

Since An is a subset of [a, b], it is bounded above (by b) and therefore it has a supremum sn = sup An. Moreover,
a 6 sn 6 b. There exists a sequence (tk) of elements in An that converges to sn. For all k we have f (tk) > n.
Moreover, f is continuous at sn, so that ( f (tk)) converges to f (sn), and therefore f (sn) > n. We have shown that
sn ∈ An, hence sn = max An.

â Since f (sn) > n for all n, we have limn→+∞ f (sn) = +∞.

â All the sn are in [a, b], therefore the sequence (sn) is bounded below. Moreover, An+1 ⊂ An for all n : indeed,
if f (x) > n + 1 then f (x) > n. Therefore sn+1 6 sn and the sequence (sn)n is non-increasing. Consequently, the
sequence (sn) converges to some `; moreover, since a 6 sn 6 b for all n, we have ` ∈ [a, b]. Hence f is continuous at
` and therefore ( f (sn)) converges to f (`).

We have obtained a contradiction.

Applying this to − f (also continuous on [a, b]), we see that − f is bounded above so that f is bounded below and
therefore bounded. X

Theorem 7. Let f : [a, b] → R be a continuous function on a closed bounded interval. Then f is bounded and there
exist c and d in [a, b] such that infx∈[a,b] f (x) = f (c) and supx∈[a,b] f (x) = f (d). In other words, f ([a, b]) is a closed
bounded interval.
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Proof. (Not done in class.) We know that since f is continuous, f ([a, b]) is an interval. Moreover, f ([a, b]) is bounded by
the previous proposition. Let m be its infimum and M its supremum. We must show that they are both in f ([a, b]).

Assume for a contradiction that M is not in f ([a, b]). We then have f (t) < M for all t ∈ [a, b], so that M − f (t) 6= 0.
Let us consider g : [a, b] → R defined by g(t) = 1

M− f (t) . Since M− f is continuous and does not vanish, g is continuous.
Therefore by the previous proposition it is bounded and in particular there exists K ∈ R such that g(t) 6 K for all
t ∈ [a, b].

On the other hand, since M is the supremum of f , there exists a sequence (yn)n contained in f ([a, b]) and such that
limn→+∞ yn = M. For every n there exists xn ∈ [a, b] such that yn = f (xn). We then have g(xn) =

1
M− f (xn)

= 1
M−yn

and
since M− yn > 0 and has limit 0, we have limn→+∞ g(xn) = +∞, a contradiction.

Therefore M ∈ f ([a, b]). The proof that m ∈ f ([a, b]) is similar, so f ([a, b]) = [m, M]. X

Corollary 8. Let f : [a, b] → R be a continuous function on a closed bounded interval. If f (x) > 0 for all x ∈ [a, b], then
there exists m > 0 such that f (x) > m for all x ∈ [a, b].

Proof. m is the minimum of f , and m > 0 by assumption. X

Remark. The results above require the assumption that the interval is closed and bounded. For instance, tan is continuous
but not bounded on

]
− π

2 ; π
2
[

.

B. Monotonic functions

Proposition 9. Let I be an interval and let f : I → R be a continuous and injective function. Then f is strongly
monotonic.

Proof. (Not required.) Assume for a contradiction that f is not strongly monotonic. Then there exist elements a, b, c, d in I
such that

a < b and f (a) 6 f (b); c < d and f (c) > f (d).

Now consider the function g : [0, 1]→ R defined by g(t) = f ((1− t)b+ td)− f ((1− t)a+ tc). This function is continuous.
Moreover, g(0) = f (b) − f (a) > 0 and g(1) = f (d) − f (c) 6 0. Therefore, either g(0) = 0 or g(1) = 0, or by the
Intermediate Value Theorem, there exists t0 ∈]0, 1[ such that g(t0) = 0. In all cases, there exists t0 ∈ [0, 1] such that
g(t0) = 0, that is, f ((1− t0)b+ t0d) = f ((1− t0)a+ t0c). Since f is injective, we must have (1− t0)b+ t0d = (1− t0)a+ t0c
hence (1− t0)(b− a) = t0(c− d). However, (1− t0)(b− a) > 0 and t0(c− d) 6 0, and they are not simultaneously equal
to 0, a contradiction.

Therefore f is strongly monotonic. X

Lemma 10. Let I be an interval and let f : I → R be a strongly monotonic function. Then f is injective.

Proof. Let us prove the result when f is e.g. increasing. Let x and y be distinct elements in I. Then either x < y and then
f (x) < f (y), or x > y and then f (x) > f (y). In both cases we have f (x) 6= f (y). Therefore f is injective. X

Theorem 11. Let I be an interval and let f : I → R be a continuous and strongly monotonic function. Then:

(i) f (I) is an interval and f defines a bijection from I to f (I).

(ii) The inverse of f is a continuous function and it is strongly monotonic. Moreover, if f is increasing then so is f−1

and if f is decreasing then so is f−1.

Proof. (Proof of continuity not done in class.)

(i) This follows from the results above: f is continuous, so f (I) is an interval; f is increasing so f is injective hence
defines a bijection from I to f (I).

(ii) Let g = f−1 : f (I)→ I denote the inverse function. It is characterised by y = f (x)⇐⇒ g(y) = x.

We first show that g is increasing. Let y < y′ be elements in f (I). There exist x and x′ in I such that y = f (x) and
y′ = f (x′). Note that x = g(y) and x′ = g(y′). Since f is increasing, if x > x′ we would have y > y′, a contradiction.
Therefore x < x′, that is, g(y) < g(y′).

We must now prove that g is continuous at every y0 ∈ f (I). We shall do it when I = [a, b[, the other cases are
similar.

â First case: y0 = f (a). Fix ε > 0. We may assume (replacing ε by a smaller ε′ > 0 if necessary) that a < a+ ε < b.
Applying f to a < a + ε yields y0 = f (a) < f (a + ε). Therefore it is possible to choose η > 0 such that
y0 + η < f (a + ε). For any y with y0 < y < y0 + η we have f (a) < y < f (a + ε). Apply g to this (g is
increasing): a < g(y) < a + ε < a + ε. Finally, 0 < y− y0 < η ⇒ 0 < g(y)− g(y0) < ε, so that g is continuous
at y0 = f (a).
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â Second case: y0 > f (a). Set x0 = g(y0). Again, we may assume that a < x0 − ε < x0 + ε < b. Applying f to
x0 − ε < x0 < x0 + ε give f (x0 − ε) < y0 < f (x0 + ε). We can then choose η > 0 such that f (x0 − ε) < y0 − η
and y0 + η < f (x0 + ε). For any y with y0 − η < y < y0 + η we have f (x0 − ε) < y < f (x0 + ε). Appplying g
gives x0 − ε < g(y) < x0 + ε and hence x0 − ε < g(y) < x0 + ε. Therefore g is continuous at y0. X

Proposition 12. Let I be an interval and let f : I → R be a continuous and strongly monotonic function.
Then f (I) is an interval of the same type (closed on both sides, one side or none).
Moreover, if a and b are the endpoints of I with a and b either real numbers or ±∞, then the endpoints of f (I) are
limx→a f (x) and limx→b f (x).

Proof. (Not done in class.) We shall prove the result for f increasing (if f is decreasing, apply this to − f ).
If I = [a, b] then we have seen above that f defines a bijection from [a, b] to [ f (a), f (b)]. Since f is continuous,

f (a) = limx→a f (x) and f (b) = limx→b f (x) so we have the result in this case.
If I = [a, b[ where a is a real number and b is either a real number or +∞, then again we have f (a) = limx→a f (x).

ã First case: f is bounded above. Since f is increasing, the limit ` = limx→b f (x) exists and we know that ` =
sup f (I). For all x ∈ [a, b[ we have f (x) ∈ f (I) so f (a) 6 f (x) 6 `. We will show that f (I) = [ f (a), `[.

• We first prove that f (I) ⊂ [ f (a), `[, that is, for all x ∈ I we have f (x) < `.

Let us assume for a contradiction that there exists u ∈ [a, b[ such that f (u) = `. For every x ∈ [a, b[ we then
have f (x) 6 f (u) and hence x 6 u because f is increasing. Since u < b, there exist elements x ∈ [a, b[ such
that u < x < b. But then ` = f (u) < f (x) 6 `, a contradiction. Therefore f (x) < ` for all x ∈ [a, b[, so that
f (I) ⊂ [ f (a), `[.

• We now prove the other inclusion: take y ∈ [ f (a), `[. We must prove that y ∈ f (I).

We have y < ` and ` = sup f (I) so that there exists y′ ∈ f (I) such that y < y′ < `. Since y′ ∈ f (I), there exists
x′ ∈ I such that f (x′) = y′. Consider the interval [a, x′] ⊂ I. Since f is continuous and increasing, f defines
a bijection from [a, x′] to [ f (a), f (x′)] = [ f (a), y′]. But y ∈ [ f (a), y′] therefore there exists x ∈ [a, x′] such that
y = f (x). Since x ∈ I, we have y ∈ f (I). Therefore we have proved that [ f (a), `[⊂ f (I) and we finally have the
equality.

ã Second case: f is not bounded above. Since f is increasing, we know that limx→b f (x) = +∞. Moreover, for every
x ∈ I we have f (x) > f (a). Therefore f (I) ⊂ [ f (a),+∞[.

We now prove the other inclusion. Take y > f (a). Since limx→b f (x) = +∞, there exists x′ ∈ I such that f (x′) > y.
As before, f defines a bijection from [a, x′] to [ f (a), f (x′)] so that there exists x ∈ [a, x′] such that y = f (x). But x ∈ I
so y ∈ f (I). Therefore [ f (a),+∞[= f (I).

The case I =]a, b] is similar, and the final case can be deduced from these (]a, b[=]a, c] ∪ [c, b[ for any c ∈]a, b[ and
f (]a, b[) = f (]a, c]) ∪ f ([c, b[) =] limx→a f (x), f (c)] ∪ [ f (c), limx→b f (x)[=] limx→a f (x), limx→b f (x)[). X

Example. The function f : R → R defined by f (x) = 1
1+x2 is continuous therefore f (R) is an interval. The function

is even so f (R) = f ([0;+∞[). On the interval [0;+∞[, the function f is decreasing, therefore f (R) = f ([0;+∞[) =
] limx→+∞ f (x); f (0)] =]0; 1].

C. Graph of a function and of its inverse

Let I and J be intervals and f : I → J a function. Recall that the graphgraph† of f is the subset G of R2 defined by
G =

{
(x, f (x)) ∈ R2; x ∈ I

}
. If f is bijective, then the graph of f−1 is the set G′ =

{
(y, f−1(y)); y ∈ J

}
. Then clearly we

have
(x, y) ∈ G ⇐⇒ (y, x) ∈ G′.

Consequently, the graph of f−1 is obtained from the graph of f by applying the symmetry with respect tosymmetry with respect to the line with
equation y = x.

D. n-th root

Let n > 2 be an integer. The function x 7→ xn is continuous and increasing on [0,+∞[. Its value at 0 is 0 and we have
limx→+∞ xn = +∞. Therefore x 7→ xn defines a bijection from [0,+∞[ to [0,+∞[.

If n is odd, the function x 7→ xn is continuous and increasing on R and limx→−∞ xn = −∞. In this case, x 7→ xn is a
bijection from R to R.

In both cases, the inverse function is continuous and increasing.

Definition 13. The bijection inverse to x 7→ xn above is called the n-th rootn-th roota function and is denoted by x 7→ n
√

x. If n = 2 it
is simply the square rootsquare rootb denoted by x 7→

√
x.

aracine n-ièmeracine n-ième
bracine carréeracine carrée

†graphegraphe

8



Remark. The n-th root function is defined on [0,+∞[ if n is even and on R if n is odd. It is continuous and increasing.

â For x > 0, y > 0, we have (y = xn ⇐⇒ x = n
√

y).

â If x ∈ [0, 1] then xn 6 x so x 6 n
√

x.

â If x > 1 then x 6 xn so n
√

x 6 x.

â If n is odd then the function x 7→ xn is odd and so is x 7→ n
√

x.

E. Inverse of a differentiable function

Proposition 14 (Derivative of the inverse of a function). Let I be an open interval and let f : I → R be a function that
is differentiabledifferentiablea and strongly monotonous on I. Set J = f (I) and let f−1 : J → I the inverse of the bijection I → J
defined by f . If f ′(t) 6= 0 for all t ∈ I, then f−1 is differentiable on J and we have

( f−1)′(y) =
1

f ′ ◦ f−1(y)
for all y ∈ J.

adérivabledérivable

Proof. Set y0 = f (x0). Define g : I → R by g(x) = f (x)− f (x0)
x−x0

if x 6= x0 and g(x0) = f ′(x0), so that f (x) = f (x0) + (x −
x0)g(x) for all x ∈ I and limx→x0 g(x) = f ′(x0) 6= 0. Then for y ∈ J we have

y = f ( f−1(y)) = y0 +
(

f−1(y)− f−1(y0)
)

g( f−1(y)).

Since f−1 is continuous, we have limy→y0 g( f−1(y)) = f ′(x0) 6= 0, so there is an interval J′ contained in J and containing
y0 such that for all y ∈ J′ except y = y0 we have g( f−1(y)) 6= 0. For all y ∈ J′, y 6= y0, we have

f−1(y)− f−1(y0)

y− y0
=

1
g( f−1(y))

−→
y→y0

1
f ′(x0)

=
1

f ′( f−1(y0))
.

Therefore f−1 is differentiable at y0 and
(

f−1)′(y0) =
1

f ′( f−1(y0))
. X

Example. If f :]0,+∞[→]0;+∞[ is defined by f (x) = xn for some integer n > 2, then f is a bijection with inverse g = n
√

.
Moreover, f is differentiable and f ′(x) = nxn−1 6= 0 for all x ∈]0;+∞[. Therefore g = n

√
is differentiable and

g′(x) =
1

n
(

n
√

x
)n−1 =

1
n

x1/n−1.

I. Rolle’s Theorem and the Mean Value Theorem

Theorem 15 (Rolle’s TheoremRolle’s Theorema). Let a, b be real numbers with a < b, and let f : [a, b] → R be a function. Assume that
f is continuous on [a, b] and differentiable on ]a, b[ and that f (a) = f (b). Then there exists a real number c ∈]a, b[ such
that f ′(c) = 0.

athéorème de Rollethéorème de Rolle

Proof. Since f is continuous on the closed bounded interval [a, b], f has a maximum and a minimum (absolute) on [a, b].
If one of them occurs at a point c ∈]a, b[ then by Theorem 279 of the first semester, we have f ′(c) = 0. Otherwise, both
the maximum and the minimum occur at the endpoints. Since f (a) = f (b), the function is constant on [a, b] and we can
choose any c ∈]a, b[. X

Example. Let a0, a1, a2, a3 be real numbers such that 1
4 a3 +

1
3 a2 +

1
2 a1 + a0 = 0. We want to prove that the polynomial

function P : x 7→ a3x3 + a2x2 + a1x + a0 has at least one real root in ]0, 1[.
Consider the polynomial function Q : x 7→ 1

4 a3x4 + 1
3 a2x3 + 1

2 a1x2 + a0x. Then Q(0) = 0 and Q(1) = 0 by assumption.
Since Q is differentiable on R, it is continuous on [0, 1] and differentiable on ]0, 1[ so that Rolle’s Theorem applies: there
exists c ∈]0, 1[ such that Q′(c) = 0. We have P = Q′, therefore P has a real root in ]0, 1[.

Theorem 16 (Mean Value TheoremMean Value Theorema). Let a, b be real numbers with a < b, and let f : [a, b]→ R be a function. Assume
that f is continuous on [a, b] and differentiable on ]a, b[. Then there exists a real number c ∈]a, b[ such that f ′(c) =
f (b)− f (a)

b−a .

athéorème des accroissements finisthéorème des accroissements finis

9



Proof. Define h : [a, b] → R by h(x) = f (x)−
(

f (b)− f (a)
b−a

)
(x − a). Clearly, h is continuous on [a, b] and differentiable on

]a, b[, and h(a) = f (a) and h(b) = f (a) so that h(a) = h(b). We may therefore apply Rolle’s theorem to h: there exists
c ∈]a, b[ such that h′(c) = 0. But h′(x) = f ′(x)− f (b)− f (a)

b−a so f ′(c) = f (b)− f (a)
b−a as required. X

Remark. â Kinematic interpretation. If the variable x is time and if f (x) is the position of a particle in a

straight-line motionstraight-line motion†, you have seen in the first semester that
f (b)− f (a)

b− a
is the average velocity of the particle

between the instants a and b of time, and that f ′(c) is the velocity of the particle at the instant c of time.

The Mean Value Theorem states that there is an instant c of time at which the velocityvelocity‡of the particle is equal to its
averageaverage§ velocity between the instants a and b of time.

â Geometric interpretation. Let C f be the graph of f . The Mean Value Theorem states that there is a point c
between a and b at which the tangent line is parallel to the line through (a, f (a)) and (b, f (b)).

x

y

a bc

y = f (x)

If the chordchord¶ between (a, f (a)) and (b, f (b)) is horizontal, then Rolle’s theorem says that there is a point (c, f (c)) in
between at which the tangent is horizontal.

Corollary 17. If f is defined and differentiable on an interval I and f ′(x) = 0 for all x in I, then f is constant on I.

Proof. Let a, b be two elements of I with a 6= b; we may assume for instance that a < b. Since I is an interval, [a, b] ⊂ I.
Then there is some c ∈]a, b[ such that f ′(c) = f (b)− f (a)

b−a by the Mean Value Theorem. Moreover by assumption f ′(c) = 0,
therefore f (a) = f (b). This is true for any two elements of I, hence f is constant on I. X

Corollary 18. Let I be an interval and let f : I → R be a differentiable function. If f ′(x) > 0 (resp. f ′(x) > 0, resp.
f ′(x) < 0, resp. f ′(x) 6 0) for all x ∈ I then f is increasing (resp. non-decreasing, resp. decreasing, resp. non-increasing)
on I.

Proof. We will prove the case where f ′(x) > 0 for all x ∈ I. Let a, b be two elements of I with a < b. Since I is an interval,
[a, b] ⊂ I. Then there is some c ∈]a, b[ such that f ′(c) = f (b)− f (a)

b−a by the Mean Value Theorem. Moreover by assumption
f ′(c) > 0, therefore f (a) < f (b). This is true for any two elements of I, hence f is increasing on I. X

Definition 19. Let f : I → R be a function and let K be a non-negative real number. The function f is called
Lipschitz continuous with Lipschitz constant KLipschitz continuous with Lipschitz constant Ka if

∀x ∈ I, ∀y ∈ I, | f (x)− f (y)| 6 K|x− y|.

The function f is called contractingcontractingb if there exists a constant K < 1 such that f is Lipschitz continuous with Lipschitz constant
K.

aK-lipschitzienneK-lipschitzienne
bcontractantecontractante

†trajectoire rectilignetrajectoire rectiligne
‡vitessevitesse
§moyennemoyenne
¶cordecorde
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Proposition 20 (Mean Value InequalityMean Value Inequalitya). Let I be an open interval and f : I → R a differentiable function. Assume
that there exists a real number K > 0 such that | f ′(t)| 6 K for all t ∈ I. Then f is Lipschitz continuous with Lipschitz
constant K, that is,

∀x ∈ I, ∀y ∈ I, | f (x)− f (y)| 6 K|x− y|.

ainégalité des accroissements finisinégalité des accroissements finis

Proof. If x = y the result is clear. Otherwise we may assume without loss of generality that x < y. Since f is differentiable
on I, f is continuous on I hence on [x, y] and differentiable on ]x, y[. Therefore there exists c ∈]x, y[ such that f ′(c) =
f (x)− f (y)

x−y . We get:

| f (x)− f (y)| =
∣∣ f ′(c)∣∣|x− y| 6 K|x− y|

as required. X

Theorem 21. Let f : I → R be function defined on an interval I and let x0 be an element of I. Suppose that f is
continuous on I and differentiable on I \ {x0}. Assume also that ` = limx→x0 f ′(x) exists.

Then
f (x)− f (x0)

x− x0
has limit ` when x goes to x0.

In particular, if ` ∈ R, then f is differentiable at x0 and f ′(x0) = limx→x0 f ′(x).

Proof. â First case: ` = +∞. Fix A ∈ R. There exists δ > 0 such that |x− x0| 6 δ ⇒ f ′(x) > A. We may choose δ
small enough that f is differentiable on ]x0 − δ, x0[∪]x0, x0 + δ[. Moreover, f is continuous on [x0 − δ, x0 + δ]. For
any x ∈]x0, x0 + δ[, by the Mean Value Theorem applied on the interval [x0, x], there exists cx ∈]x0, x[ such that
f ′(cx) =

f (x)− f (x0)
x−x0

and therefore f (x)− f (x0)
x−x0

= f ′(cx) > A. Finally we have proved:

∀x, 0 < x− x0 6 δ ⇒ f (x)− f (x0)

x− x0
> A.

Similarly,

∀x, 0 < x0 − x 6 δ ⇒ f (x)− f (x0)

x− x0
> A

so that

∀x, 0 < |x− x0| 6 δ ⇒ f (x)− f (x0)

x− x0
> A,

that is, limx→x0

f (x)− f (x0)

x− x0
= +∞.

â The proof when ` = −∞ is similar – or replace f with − f .

â Last case: ` ∈ R. Fix ε > 0. There exists δ > 0 such that |x− x0| 6 δ ⇒ | f ′(x)− `| 6 ε. We may choose δ
small enough so that ]x0 − δ; x0 + δ[⊂ I and therefore f is differentiable on ]x0 − δ, x0[∪]x0, x0 + δ[. Moreover,
f is continuous on [x0 − δ, x0 + δ]. For any x ∈]x0, x0 + δ[, by the Mean Value Theorem applied on the interval

[x0, x0 + δ], there exists cx ∈]x0, x[ such that f ′(cx) =
f (x)− f (x0)

x−x0
and therefore

∣∣∣ f (x)− f (x0)
x−x0

− `
∣∣∣ = | f ′(cx)− `| 6 ε.

Finally we have proved:

∀x, 0 < x− x0 6 δ ⇒
∣∣∣∣ f (x)− f (x0)

x− x0
− `

∣∣∣∣ 6 ε.

Similarly,

∀x, 0 < x0 − x 6 δ ⇒
∣∣∣∣ f (x)− f (x0)

x− x0
− `

∣∣∣∣ 6 ε

so that

∀x, 0 < |x− x0| 6 δ ⇒
∣∣∣∣ f (x)− f (x0)

x− x0
− `

∣∣∣∣ 6 ε,

that is, f is differentiable at x0 and f ′(x0) = `. X

Remark. Geometrically, the derivative f ′(x0) is the slopeslope† of the tangent line below. The first picture on the left shows
the limit of the chords through the point (x0, f (x0)). The second picture on the right shows the limit of the derivatives
(slopes of tangent lines) from below at (x0, f (x0)).

†coefficient directeur (pente)coefficient directeur (pente)
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y = f (x) y = f (x)

Remark. We can have a differentiable function f on ]a, b[, x0 ∈]a, b[ and limx→x0 f ′(x) 6= f ′(x0) (that is, f ′ need not be
continuous at x0).

Let f : R→ R be the function defined by

f (x) =

{
x2 sin

(
1
x

)
if x 6= 0

0 if x = 0.

â The function f is differentiable on ]−∞, 0[ and on ]0,+∞[, and for every x 6= 0 we have f ′(x) = 2x sin
(

1
x

)
+

x2
(
− 1

x2

)
cos
(

1
x

)
= 2x sin

(
1
x

)
− cos

(
1
x

)
.

â For every x 6= 0 we have
∣∣∣sin

(
1
x

)∣∣∣ 6 1 therefore | f (x)| 6 x2. Since limx→0 x2 = 0 we have limx→0 f (x) = 0 = f (0).
The function f is therefore continuous at 0.

â Similarly, if x 6= 0 we have f (x)− f (0)
x−0 =

f (x)
x = x sin

(
1
x

)
and

∣∣∣x sin
(

1
x

)∣∣∣ 6 |x| so that limx→0
f (x)− f (0)

x−0 = 0.

Therefore f is differentiable at 0 and f ′(0) = 0.

â However we have f ′
(

1
2nπ

)
= −1 and f ′

(
1

(2n+1)π

)
= 1 so by Proposition 234 in the first semester, f ′ does not

have a limit at 0.

Below is the graph of this function, enclosed between the graphs of x 7→ x2 and x 7→ −x2. Although the slopes of the
tangent lines will oscillate (faster and faster) between −1 and 1 as x goes to 0, the slopes of the chords between (0, 0) and
(x, f (x)) oscillate around 0 but within a range that reduces as x goes to 0.
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II. Higher-order derivatives

Let I be an interval and f : I → R a differentiable function. Therefore there is a function f ′ : I → R. If this func-
tion is in turn differentiable, we set f ′′ = ( f ′)′; it is called the second derivativesecond derivative†. More generally, we define the
higher-order derivativeshigher-order derivatives‡ recursivelyrecursively: f (0) = f , f (1) = f ′, f (p+1) = ( f (p))′ for any p ∈N.

Definition 22. Let f : I → R be a function defined on an interval I.
We say that f is of class Ckof class Cka if all the derivatives f ′, f ′′, . . . , f (k) exist and are continuous.
The function f is of class C∞ or smoothof class C∞ or smoothb if it has derivatives of all orders (in this case, all the derivatives are continuous).

ade classe Ckde classe Ck

bde classe C∞de classe C∞

Remark. Let f be a function which has derivatives up to order k such that f (k) is continuous. Then f is of class Ck.
Indeed, for 1 6 i < k, the function f (i) is differentiable (since f (i+1) exists by assumption) and therefore continuous.

Moreover, f (k) is continuous by assumption. Therefore all the derivatives up to order k are continuous and f is of class
Ck.

Remark. The functions of class C0 are precisely the continuous functions.

Proposition 23. Linear combinations, products, quotients and compositions (when defined) of functions of class Ck are
of class Ck.
If f : I → R is of class Ck and strongly monotonic, and if f ′ does not vanish on I, then f−1 is of class Ck on f (I).

Idea/summary of proof. All the proofs are by induction on k > 1, applying the induction hypothesis to the first derivative.

Proof. Let f and g be functions of class Ck on an interval I.

â If λand µ are real numbers, let h be the function h := λ f + µg. Then h is of class Ck: this is proved by induction
on k (exercise).

â We know that if f and g are differentiable on I, then f g is differentiable on I and that ( f g)′ = f ′g + f g′. We prove
by induction that is f and g are of class Ck then so is f g.

• For k = 1, we have just said that f g is differentiable. Moreover, the function ( f g)′ = f ′g + f g′ is continuous,
therefore f g is of class C1.

• Inductively, assume that if f and g are of class Ck with k > 1 then so is f g.

Let f and g be functions of class Ck+1. Then f g is of class C1 with ( f g)′ = f ′g + f g′. Moreover, f ′ and g are
both of class Ck therefore by induction hypothesis f ′g is of class Ck, and f g′ is of class Ck similarly. Since a
sum of functions of class Ck is also of class Ck, it follows that ( f g)′ is of class Ck and therefore f g is of class
Ck+1 as required.

â If g does not vanish on I, we know that f
g is differentiable on I and

(
f
g

)′
=

f ′g− f g′

g2 .

• For k = 1, the function
(

f
g

)′
above is continuous, therefore f

g is of class C1.

• Inductively, assume that if f and g are of class Ck with k > 1 then so is f
g .

Let f and g be functions of class Ck+1. Then f
g is of class C1 with

(
f
g

)′
=

f ′g− f g′

g2 . The latter is a quotient of

functions of class Ck, so that by the induction hypothesis, it is of class Ck. Therefore f
g is of class Ck+1.

â • For k = 1, we know that if f and g are of class C1 then g ◦ f is differentiable and (g ◦ f )′ = (g′ ◦ f ) f ′ is
continuous, hence g ◦ f is of class C1.

• Inductively, assume that if f and g are of class Ck then (g ◦ f ) is of class Ck.

Let f and g be functions of class Ck+1. Then g ◦ f is of class C1 and (g ◦ f )′ = (g′ ◦ f ) f ′. Moreover, g′ ◦ f ,
which is a composition of functions of class Ck, is of class Ck by the induction hypothesis, and f ′ is of class Ck,
therefore the product (g′ ◦ f ) f ′ is also of class Ck. Finally, (g ◦ f )′ is of class Ck and g ◦ f is of class Ck+1.

â • For k = 1, we know that since f is differentiable and strongly monotonic, then it defines a bijection from I
to J := f (I), and since moreover f ′ does not vanish on I the function g := f−1 : J → I is differentiable with
differential g′ = 1

f ′◦g . This function is continuous, therefore g is of class C1.

†dérivée secondedérivée seconde
‡dérivées d’ordres supérieursdérivées d’ordres supérieurs
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• Inductively, assume that if f is of class Ck, strongly monotonic and f ′ does not vanish on I, then g is of class
Ck.

Let f be of class Ck+1 and strongly monotonic and assume f ′ does not vanish on I. Then g := f−1 : J → I is
differentiable with differential g′ = 1

f ′◦g . This function is of class Ck (g is of class Ck by induction hypothesis,

and we have already seen that the composition and the quotient of functions of class Ck is of class Ck), therefore
g is of class Ck+1. X

Example. A polynomial is of class C∞.

Proposition 24 (Leibniz’s FormulaLeibniz’s Formulaa). If f and g are two functions that are n times differentiable at x0, then f g is also n
times differentiable at x0 and

( f g)(n)(x0) =
n

∑
p=0

(
n
p

)
f (p)(x0)g(n−p)(x0).

aformule de Leibnizformule de Leibniz

Proof. The proof is by inductioninduction on n > 1. For n = 1 the result is already known.
Now assume that the product of two functions which are n times differentiable is n times differentiable for some fixed

n > 1. Let f and g be two functions which are n + 1 times differentiable. They are in particular differentiable (once)
and ( f g)′ = f ′g + f g′ is a sum of products of functions which are (at least) n times differentiable, hence ( f g)′ is n times
differentiable and f g is n + 1 times differentiable. Moreover,

( f g)(n+1)(x0) =
n

∑
p=0

(
n
p

)
( f (p)g(n−p))′(x0)

=
n

∑
p=0

(
n
p

)
f (p+1)(x0)g(n−p)(x0) +

n

∑
p=0

(
n
p

)
f (p)(x0)g(n−p+1)(x0)

=
n+1

∑
p=1

(
n

p− 1

)
f (p)(x0)g(n−p+1)(x0) +

n

∑
p=0

(
n
p

)
f (p)(x0)g(n−p+1)(x0)

=

(
n
n

)
f (n+1)(x0)g(0)(x0) +

n

∑
p=1

[(
n

p− 1

)
+

(
n
p

)]
f (p)(x0)g(n−p+1)(x0)

+

(
n
0

)
f (0)(x0)g(n+1)(x0)

= f (n+1)(x0)g(x0) +
n

∑
p=1

(
n + 1

p

)
f (p)(x0)g(n+1−p)(x0) + f (x0)g(n+1)(x0)

=
n+1

∑
p=0

(
n + 1

p

)
f (p)(x0)g(n+1−p)(x0).

The formula is true at rank n + 1, therefore by induction it is true for all n > 1. X

Theorem 25. a Let f : I → R be a function defined on an interval I and let x0 be an element of I. Suppose that f is
continuous on I and of class Ck on I \ {x0}. Assume also that for all i with 1 6 i 6 k, the limit `i = limx→x0 f (i)(x)
exists and is finite.
Then f is of class Ck on I and f (i)(x0) = `i for all i with 1 6 i 6 k.

aThéorème de classe Ck par prolongement.

Proof. We prove it by induction on k.

â If k = 1, we know by Theorem 2121 that f is differentiable at x0 and that f ′(x0) = `1 = limx→x0 f ′(x) hence f ′ is
continuous. Therefore f is of class C1.

â Fix i with 1 6 i < k and assume that f is of class C i with f (j)(x0) = `j for all j with 1 6 j 6 i.

The function f (i) satisfies the assumptions of Theorem 2121, therefore it is differentiable at x0 and f (i+1)(x0) =(
f (i)
)′
(x0) = `i+1 = limx→x0 f (i+1)(x) so that f (i+1) is continuous on I. Finally, f is of class C i+1. X

Now for functions of class Ck, we have a generalisation of the Mean Value Inequality.
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Theorem 26 (Taylor’s inequalityTaylor’s inequality). Let f : I → R be a function of class Cn+1 on an interval I. Suppose that a and b are

elements in I. If
∣∣∣ f (n+1)(t)

∣∣∣ 6 M for all t between a and b, then

∣∣∣∣ f (b)−( f (a) +
b− a

1!
f ′(a) +

(b− a)2

2!
f ′′(a) + · · ·+ (b− a)n

n!
f (n)(a)

)∣∣∣∣ 6 M
|b− a|n+1

(n + 1)!
.

This inequality is called Taylor’s inequalityTaylor’s inequalitya at a of order n.

ainégalité de Taylor-Lagrangeinégalité de Taylor-Lagrange

Proof. See Chapter 99. X

III. Complex valued functions

Definition 27. Let f : I → C be a complex valued function. We can write f = f1 + i f2 where f1 and f2 are functions from I
to R. We say that f is continuouscontinuous (resp. differentiabledifferentiable, resp. of class Ckof class Ck) if f1 and f2 are both continuous (resp. differentiable,
resp. of class Ck).
If moreover f is of class Ck with k > 1, we define the k-th derivative of f to be f (k)1 + i f (k)2 .

A number of results we have seen still hold for complex valued functions, but not all.

â Linear combinations, products, quotients of functions of class Ck, k > 0, (resp. differentiable) are of class Ck (resp.
differentiable).

â If f is a real valued function of class Ck (resp. differentiable) and g a complex valued function of class Ck (resp.
differentiable), then g ◦ f is of class Ck (resp. differentiable).

Warning! We do not differentiate a function whose variable is complex (or an integer...).

â A differentiable function f is constant on an interval I if and only if f ′ = 0.

Warning! The derivative no longer has a “sign”, and it does not make sense to say that a complex valued function
is increasing...

â Rolle’s Theorem and the Mean Value Theorem do not hold for complex valued functions.

For instance, the function f : R → C defined by f (x) = eix satisfies f (0) = f (2π), but its derivative, which is
f ′(x) = ieix, never vanishes.

However, the Mean Value Inequality (using modulus instead of absolute value where appropriate) does still hold.

Theorem 28 (Mean Value InequalityMean Value Inequalitya). Let I be an open interval and f : I → C be a complex valued function of class
C1. Assume that there exists a real number K > 0 such that | f ′(t)| 6 K for all t ∈ I. Then f is Lipschitz continuous
with Lipschitz constant K, that is,

∀x ∈ I, ∀y ∈ I, | f (x)− f (y)| 6 K|x− y|.

ainégalité des accroissements finisinégalité des accroissements finis

Proof. This result will be proved in Chapter 88 (and also in Chapter 1111). X
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Chapter 3

Classical functions and their inverses

I. Logarithm, powers and exponential

A. Logarithm

Later on we shall be able to use integration theory to prove that there is a unique differentiable function ln : ]0 ;+∞[→ R

such that ln′(x) = 1
x and ln 1 = 0. This function is called the logarithmlogarithm†. Its main properties are as follows.

Properties 1. (i) ln(ab) = ln a + ln b for any positive real numbers a and b. Moreover, ln(an) = n ln a for any positive
real number a and any integer n ∈ Z.

(ii) The logarithm is an increasing continuous bijection from ]0 ;+∞[ to R; we have

lim
x→0

ln x = −∞ and lim
x→+∞

ln x = +∞.

(iii) lim
x→0

ln(1 + x)
x

= 1.

(iv) The function x 7→ ln(x + 1) has a Taylor expansionTaylor expansiona of order n ∈N at 0 given by

ln(x + 1) = x− x2

2
+

x3

3
+ · · ·+ (−1)n−1 xn

n
+ o(xn) =

n

∑
k=0

(−1)k−1 xk

k
+ o(xn).

adéveloppement limité (DL)développement limité (DL)

Proof. (i) Let a be a positive real number. Define f : ]0 ;+∞[ → R by f (x) = ln(ax). Then f ′(x) = a 1
ax = 1

x = ln′(x),
so that the derivative of f − ln vanishes on the interval ]0 ;+∞[ and therefore the function f − ln is constant, there
exists k ∈ R such that f (x) = k + ln x for all x > 0. We then have f (1) = ln a by definition and f (1) = k + ln 1 = k,

so that k = ln a. Therefore for any x > 0 we have ln(ax) = ln a + ln x. Note that in particular, ln a + ln
(

1
a

)
=

ln
(

a 1
a

)
= ln 1 = 0 so that ln

(
1
a

)
= − ln a.

The second formula is proved by induction on n for n ∈ N∗. For n = 0, the formula is simply ln 1 = 0. Finally, for
n < 0, since −n > 0 we have ln(an) = − ln(a−n) = −(−n) ln a = n ln a.

(ii) Since the logarithm is differentiable, it is continuous. Moreover, the derivative is positive so that ln is increasing.
In particular, ln 2 > ln 1 = 0 so that the sequence (n ln 2)n has limit +∞. Since n ln 2 = ln(2n), the function ln is

not bounded above and we then know that limx→+∞ ln x = +∞. We also have limx→0 ln x = limt→+∞ ln
(

1
t

)
=

limt→+∞ − ln t = −∞. Therefore ln is a bijection from ]0 ;+∞[ to R.

(iii) By definition, limx→0
ln(1+x)

x = limx→0
ln(1+x)−ln(1)

x−0 is the derivative of the function ln at 1, therefore it is equal to
1.

(iv) You have seen in the first semester that we can take the primitive of a Taylor expansion (Proposition 312). Let
f :]− 1,+∞[→ R be the function defined by f (x) = ln(x + 1). Then f is differentiable and f ′(x) = 1

1+x .

Moreover, you have seen in the first semester that 1
1+x = ∑n−1

k=0 (−1)kxk + o(xn−1). Since f (0) = 0, the result
follows. X

†logarithmelogarithme
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B. Exponential

We have just seen that the logarithm is a bijection from ]0 ;+∞[ to R, therefore it has an inverse, the exponentialexponential† function
exp : R→ ]0 ;+∞[. Therefore {

exp(ln x) = x for all x > 0
ln(exp x) = x for all x ∈ R.

The properties of the exponential can be deduced from those of the logarithm.

Properties 2. (i) exp(a + b) = (exp a)(exp b) for any real numbers a and b, and exp(na) = (exp a)n for any real
number a and any integer n ∈ Z.

(ii) The exponential defines an increasing and continuous bijection from R to ]0 ;+∞[; we have lim
x→−∞

exp x = 0 and

lim
x→+∞

exp x = +∞.

(iii) The exponential function is differentiable and exp′ = exp .

(iv) The function exp has a Taylor expansion of order n ∈N at 0 given by

exp x =
n

∑
k=0

xk

k!
+ o(xn).

Proof. (i) Set x = exp a and y = exp b. Then we know that ln(xy) = ln x + ln y hence ln((exp a)(exp b)) = ln(exp a) +
ln(exp b) = a + b and, applying exp, we get (exp a)(exp b) = exp(a + b).

(ii) By construction, exp is the inverse function of the continuous and increasing function ln : ]0;+∞] → R, which is
bijective by the properties of the logarithm. Therefore it is a continuous and increasing function from R to ]0;+∞].

(iii) Moreover, since the derivative of ln never vanishes, by Proposition 1414 in Chapter 22, the function exp is differentiable
and we have

exp′(x) =
1

ln′(exp x)
=

1
1

exp x
= exp x.

(iv) [cf. First semester.] It is easy to use Taylor-Young’s formula here, since exp(n) x = exp x for all n > 0 (by induction),
therefore exp(n)(0) = 1 for all n ∈N and finally

exp x =
n

∑
k=0

xk exp(k)(0)
k!

+ o(xn) =
n

∑
k=0

xk

k!
+ o(xn). X

Notation. The real number exp 1 is denoted by e; therefore we have ln e = 1. Note that since exp is strictly increasing,
e = exp 1 > exp 0 = 1.

Remark. For any integer n ∈ Z, we have exp(n ln a) = (exp(ln a))n = an.

Suppose that n > 2 is an integer and set y = exp
(

1
n ln a

)
. Then yn = a; since y > 0 we conclude that y = n

√
a by

definition of the n-th root. Therefore
n
√

a = exp
(

1
n

ln a
)

for all a > 0.

Definition 3. Let a be a positive real number and let b be a real number. We define the real number ab, called
a to the b or a to the power of ba to the b or a to the power of ba by

ab = exp(b ln a).

aa puissance ba puissance b

Remark. If b is a positive integer, then exp(b ln a) =
b terms︷ ︸︸ ︷
a · · · a which is the usual power a to the b. If n > 2 is an integer, we

also have a1/n = n
√

a. The definition above allows us to elevate any positive real number to the power of any real number.

Proposition 4. â For any real number b we have 1b = 1.

â For any real number b and any positive real number a, we have ln(ab) = b ln a.

â For any positive real number x and any real numbers b and c we have x(b+c) = xbxc and (xb)c = xbc.

â For any positive real numbers x and y and for any real number c we have (xy)c = xcyc.

†exponentielleexponentielle
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Proof. Let x be a positive real number. Then

â 1b = exp(b ln 1) = exp 0 = 1.

â ln(ab) = ln(exp(b ln a)) = b ln a.

â x(b+c) = exp((b + c) ln x) = exp(b ln x + c ln x) = (exp(b ln x))(exp(c ln x)) = xbxc.

â We have ln((xb)c) = c ln(xb) = cb ln x so (xb)c = exp(ln((xb)c)) = exp(bc ln x) = xbc.

â We have (xy)c = exp(c ln(xy)) = exp(c ln x + c ln y) = exp(c ln x) exp(c ln y) = xcyc. X

Proposition 5. Let a be any real number. Then

lim
x→+∞

(
1 +

a
x

)x
= exp a.

In particular, the sequence
((

1 + 1
n

)n)
n

converges to e.

Proof. â Using Taylor expansions.

Put t =
1
x

: when x approches +∞, t nears 0. We then have

(
1 +

a
x

)x
= exp

(
x ln
(

1 +
a
x

))
= exp

(
1
t

ln(1 + at)
)

.

We shall now write a Taylor expansion of order 1 at t = 0 of t 7→ exp
(

1
t ln(1 + at)

)
.

We have ln(1 + at) = at− (at)2

2
+ o(t2) (we need order 2 here since we divide by t afterwards).

Next,
1
t

ln(1 + at) = a− a2t
2

+ o(t). Therefore g(t) :=
1
t

ln(1 + at)− a = − a2t
2

+ o(t).

We will now compose with exp . We may do this because limt→0 g(t) = 0. Since exp u = 1 + u + o(u) we have
exp(g(t)) = 1− a2

2 t + o(t).

Finally, exp
(

1
t ln(1 + at)

)
= exp(a + g(t)) = (exp a)(exp g(t)) = (exp a)

(
1− a2

2 t + o(t)
)

, whose limit is exp a when
t→ 0.

â More elementary proof.

Put u(x) = 1 + a
x . If x > |a| then

∣∣ a
x
∣∣ < 1 so that a

x > −1 and u(x) > 0. Therefore we can consider u(x)x for x large
enough (and in particular the limit as x approaches +∞). If a = 0 then u(x)x = 1 = exp 0 for all x. Suppose that
a 6= 0. Then ln(u(x)x) = x ln(u(x)) and ln(u(x)) has limit 0 when x approaches +∞ so we have an indeterminate
form.

lim
x→+∞

x ln u(x) = lim
t→0+

1
t

ln
(

u
(

1
t

))
= lim

t→0+
ln(1 + at)

t
= a lim

t→0+
ln(1 + at)

at
.

Since limx→0
ln(1 + x)

x
= 1, we get limt→0+

ln(1 + at)
at

= 1 so that limx→+∞ x ln u(x) = a. It follows that

limx→+∞ u(x)x = exp a since u(x)x = exp(x ln u(x)).
The second statement follows from the first one (with a = 1). X

C. Power functions

Definition 6. Let b be a real number. The function u : ]0 ;+∞[ → R defined by u(x) = xb = exp(b ln x) is called
power functionpower functiona.

afonction puissancefonction puissance

Remark. For x > 0,

u′(x) = exp(b ln x)b
1
x
= b exp(b ln x) exp(ln

1
x
)

= b exp(b ln x) exp(− ln x) = b exp((b− 1) ln x) = bxb−1.

18



Properties 7. â For any x > 0 we have xb−1 > 0 so u′(x) > 0 if b > 0 and u′(x) < 0 if b < 0. Consequently, the
function u is increasing if b > 0 and decreasing if b < 0.

â Assume that b > 0. We have limx→+∞ b ln x = +∞ therefore limx→+∞ xb = limt→+∞ exp t = +∞. Since
limx→0 ln x = −∞ we have limx→0 b ln x = −∞ and therefore limx→0 xb = limt→−∞ exp t = 0. The function u
has a continuous extensionhas a continuous extensiona at 0 that is defined by u(0) = 0.

â If b > 1, then u(x)
x = xb−1 nears 0 as x approaches 0. Therefore the function u extended to [0 ;+∞[ has a

right-hand derivative at 0 equal to 0. In particular, there is a horizontal tangent line at 0.

â If 0 < b < 1, then u(x)
x goes to +∞ as x approaches 0, therefore there is a vertical tangent line at 0.

â If b < 0 we have limx→0 b ln x = +∞ so limx→0 xb = +∞. Moreover, limx→+∞ b ln x = −∞ so limx→+∞ xb =
limt→−∞ exp t = 0.

â If b = 0, the function u is constant equal to 1 on ]0 ;+∞[.

aadmet un prolongement par continuitéadmet un prolongement par continuité

We summarise some of these properties.

Proposition 8. If b > 0, the function x 7→ xb is a continuous and increasing bijection from [0 ;+∞[ to [0 ;+∞[. If b < 0,
the function x 7→ xb is a continuous and decreasing bijection from ]0 ;+∞[ to ]0 ;+∞[.

x

y

b = 1

b > 1

0 < b < 1

b < 0

1

1

D. The general exponential function

Definition 9. Let a be a positive real number. The function v : R → R defined by v(x) = ax is called the
general exponential functiongeneral exponential functiona with base a.

aexponentielle de base aexponentielle de base a

Remark. â v(x) = ax = exp(x ln a) so v′(x) = ln a exp(x ln a) = (ln a)ax for all x ∈ R.

â For a = e we have ex = exp x : the general exponential with base e is the usual exponential function.

Proposition 10. If a 6= 1, the function x 7→ ax is a continuous bijection from R to ]0 ;+∞[. If a > 1, this bijection is
increasing, if a < 1 this bijection is decreasing.

Proof. Exercise X

II. Indeterminate limits involving logarithms, exponentials and powers
†

Lemma 11. lim
x→+∞

ln x
x

= 0 and lim
x→+∞

ex

x
= +∞.

In other words, ln x = o(x) at +∞ and x = o(ex) at +∞.

†‘croissances comparées’
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Proof. The study of the function x 7→ ln(x)− x + 1 shows that for any positive x ∈ R we have ln x 6 x− 1 so that ln x < x.

In particular, for any x > 0 we have
ln
√

x√
x

6 1. If x > 1 we get

0 6
ln x

x
=

2 ln
√

x
x

= 2
ln
√

x√
x

1√
x
6

2√
x

.

Since limx→+∞
1√
x
= 0, we have limx→+∞

ln x
x

= 0.

We have in particular lim
x→+∞

x
ex = lim

x→+∞

ln(ex)

ex = lim
t→+∞

ln t
t

= 0, therefore lim
x→+∞

ex

x
= +∞. X

Proposition 12. â If b > 0 is a real number, then lim
x→+∞

ln x
xb = 0 and lim

x→0+
(xb ln x) = 0.

â If a > 1 and b > 0 are real numbers, then lim
x→+∞

ax

xb = +∞ and lim
x→−∞

(xnax) = 0 for any integer n ∈ Z.

In other words, we have ln x = o(xb) at +∞, ln x = o
(

1
xb

)
at 0, xb = o(ax) at +∞ and ax = o

(
1

xn

)
at −∞.

Proof. For any x > 0 we have the equality ln x =
1
b

ln(xb) therefore
ln x
xb =

1
b

ln(xb)

xb . Since b > 0 we know that xb goes to

+∞ as x goes to +∞. By the previous lemma, we get limx→+∞
ln(xb)

xb = 0 and therefore lim
x→+∞

ln x
xb = 0.

For any x > 0, we have xb ln x = −
ln(

1
x
)

(
1
x
)b

. We have limx→0+
1
x
= +∞ and limt→+∞

ln t
tb = 0 so limx→0 xb ln x = 0.

For any x 6= 0, we have
ax

x
=

ex ln a

x
= (ln a)

ex ln a

x ln a
. Since a > 1, ln a is positive and x ln a goes to +∞ as x goes to

+∞, therefore lim
x→+∞

ex ln a

x ln a
= lim

t→+∞

et

t
= +∞. Since b > 0, we know that x 7→ xb is a bijection from ]1,+∞[ to ]1,+∞[;

therefore there exists a real number α > 1 such that a = αb. For any x > 0 we then have ax = (αb)x = αbx = (αx)b and
ax

xb =
(αx)b

xb =

(
αx

x

)b
. Since lim

x→+∞

αx

x
= +∞ and b > 0 we get lim

x→+∞

ax

xb = lim
x→+∞

(
αx

x

)b
= +∞.

For any real number x, we have a−x =
1
ax . If n ∈ N, we have lim

x→−∞
|xnax| = lim

x→−∞

|−x|n

a−x = lim
x→+∞

xn

ax = 0 by the

previous result. If n ∈ Z, n < 0, xn and ax near 0 as x goes to −∞ and so does their product. X

III. Inverses of trigonometric functions

A. The inverse sine function

The sinesine function is continuous and differentiable, and if x ∈ ]−π
2 ; π

2 [ we have sin′(x) = cos x > 0. Therefore the sine
function is increasing on [−π

2 ; π
2 ]. Moreover, sin(−π

2 ) = −1 and sin(π
2 ) = 1. Therefore the sine function defines a

bijection from [−π
2 ; π

2 ] to [−1, 1].

Definition 13. The inverse of the sine function on [−π
2 ; π

2 ] is called arcsinearcsinea:

arcsin : [−1 ; 1]→
[
−π

2
;

π

2

]
.

aarcsinusarcsinus

x

y

y = sin x

y = arcsin x

1
−1

π
2

−π
2

1

−1

π
2

−π
2
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Remark. By definition we have: {
sin(arcsin x) = x for all x ∈ [−1, 1]
arcsin(sin x) = x for all x ∈ [−π

2 ; π
2 ].

Moreover, cos2(arcsin x) = 1− sin2(arcsin x) = 1− x2 and cos(arcsin x) > 0 (since arcsin x ∈ [−π
2 ; π

2 ]) so

cos(arcsin x) =
√

1− x2 for all x ∈ [−1, 1].

Properties 14. â arcsin is continuous and increasing (inverse of sin which is continuous and increasing).

â arcsin is differentiable on ]−1 ; 1[ since sin is differentiable with non-vanishing derivative on ]−π
2 ; π

2 [. Moreover,

arcsin′ x =
1√

1− x2
for all x ∈ ]−1 ; 1[.

â The graph of arcsin is symmetric to the graph of sin with respect to the line with equation y = x.

â arcsin is an oddodd function (as is sin).

â The Taylor expansion of arcsin at 0 can be obtained by taking a primitive of that of x 7→ 1√
1− x2

= (1− x2)−1/2.

We have

arcsin(x) = x +
x3

2 · 3 +
1 · 3

22 · 2!
x5

5
+ · · ·+ 1 · 3 · 5 · · · (2n− 1)

2nn!
x2n+1

2n + 1
+ o(x2n+1)

(you should not try to remember this formula, but you should know how to find it).

B. The inverse cosine function

The cosinecosine function is continuous and differentiable, and if x ∈]0; π[ we have cos′(x) = − sin x < 0. Therefore the cosine
function is decreasing on [0; π]. Moreover, cos(0) = 1 and cos(π) = −1. Therefore the cosine function defines a bijection
from [0; π] to [−1, 1].

Definition 15. The inverse of the cosine function on [0; π] is called arccosinearccosinea:

arccos : [−1, 1]→ [0; π].

aarccosinusarccosinus

x

y

y = cos x

y = arccos x

π0

1

1

π

−1

Remark. By definition we have: {
cos(arccos x) = x for all x ∈ [−1, 1]
arccos(cos x) = x for all x ∈ [0; π].

Moreover, cos(π
2 − arcsin x) = sin(arcsin x) = x for x ∈ [−1, 1] and 0 6 π

2 − arcsin x 6 π so arccos x =
arccos

(
cos(π

2 − arcsin x)
)
= π

2 − arcsin x so that

arccos x + arcsin x =
π

2
for x ∈ [−1, 1].
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Properties 16. â arccos is continuous and decreasing (inverse of cos which is continuous and decreasing).

â arccos is differentiable on ]−1 ; 1[ since cos is differentiable with non-vanishing derivative on ]0, π[. Moreover,

arccos′ x = − arcsin′ x = − 1√
1− x2

for all x ∈ ]−1 ; 1[.

â The graph of arccos is symmetric to the graph of cos with respect to the line with equation y = x.

â We have arccos = π
2 − arcsin. In particular, the Taylor expansion of arccos at 0 is given by

arccos(x) =
π

2
− x− x3

2 · 3 −
1 · 3

22 · 2!
x5

5
− · · · − 1 · 3 · 5 · · · (2n− 1)

2nn!
x2n+1

2n + 1
+ o(x2n+1).

C. The inverse tangent function

Recall that the tangenttangent function is defined by tan x =
sin x
cos x

for all x different from (2k + 1)π
2 , k ∈ Z. Recall also that

tan′ x =
1

cos2 x
= 1 + tan2 x.

The tangent function is continuous and increasing on ]−π
2 ; π

2 [. Moreover limx→ π
2

tan x = +∞ and limx→− π
2

tan x =

−∞ so that it defines a bijection from ]−π
2 ; π

2 [ to R.

Definition 17. The inverse of the tangent function on ]−π
2 ; π

2 [ is the arctangentarctangenta function:

arctan : R→
]
−π

2
;

π

2

[
aarctangentearctangente

x

y
y = tan x

y = arctan x

π
2

−π
2

π
2

−π
2

Remark. By definition we have: {
tan(arctan x) = x for all x ∈ R

arctan(tan x) = x for all x ∈ ]−π
2 ; π

2 [.

22



Properties 18. â arctan is continuous and increasing (inverse of tan which is continuous and increasing).

â arctan is differentiable on R since tan is differentiable with non-vanishing derivative on the interval ]−π
2 ; π

2 [.
Moreover,

arctan′ x =
1

1 + x2 for all x ∈ R.

â The graph of arccos is symmetric to the graph of cos with respect to the line with equation y = x.

â arctan is an odd function (as is tan).

â The Taylor expansion of arctan at 0 can be obtained by taking a primitive of that of x 7→ 1
1 + x2 = (1 + x2)−1.

We have

arctan(x) = x− x3

3
+ · · ·+ (−1)n x2n+1

2n + 1
+ o(x2n+1).

IV. The hyperbolic functions and their inverses

Definition 19. The hyperbolic cosinehyperbolic cosinea function, denoted by ch or cosh, and the hyperbolic sinehyperbolic sineb function, denoted by sh or
sinh, are defined for all x ∈ R by:

cosh x =
ex + e−x

2
and sinh x =

ex − e−x

2
.

acosinus hyperboliquecosinus hyperbolique
bsinus hyperboliquesinus hyperbolique

The following properties are easy to prove.

Properties 20. â The functions cosh and sinh are continuous functions.

â cosh is even and sinh is odd.

â cosh x + sinh x = ex and cosh x− sinh x = e−x for all x ∈ R. Therefore cosh2 x− sinh2 x = 1 for all x ∈ R.

â The functions cosh and sinh are differentiable functions. Moreover, cosh′ = sinh and sinh′ = cosh .

â cosh x− sinh x = e−x > 0 so cosh x > sinh x and limx→+∞(cosh x− sinh x) = 0.

â The Taylor expansions at 0 are given by

cosh(x) =
n

∑
k=0

x2k

(2k)!
+ o(x2n) and sinh(x) =

n

∑
k=0

x2k+1

(2k + 1)!
+ o(x2n+1).

For any x > 0, we have x > −x so ex > e−x and therefore sinh x > 0. Since sinh is odd, sinh x < 0 for x < 0. Therefore
cosh is increasing on [0;+∞[ and decreasing on ]−∞ ; 0]. Moreover, cosh 0 = 1 so cosh x > 1 for any x 6= 0. In particular,
cosh is positive so sinh is increasing on R. Note also that sinh 0 = 0.

We also have limx→+∞ sinh x = +∞ = limx→+∞ cosh x, limx→−∞ sinh x = −∞ and limx→−∞ cosh x = +∞. Therefore

Lemma 21. sinh : R→ R is an increasing bijection and cosh defines an increasing bijection from [0;+∞[ to [1;+∞[.
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x

y
y = cosh x
y = sinh x

y = tanh x

Definition 22. The hyperbolic tangenthyperbolic tangenta function, denoted by th or tanh, is defined by tanh x =
sinh x
cosh x

for all x ∈ R.

atangente hyperboliquetangente hyperbolique

Properties 23. â tanh is continuous, differentiable and odd. For all x ∈ R we have tanh′ x = 1− tanh2 x = 1
cosh2 x

.

â tanh is increasing on R.

â tanh x =
ex − e−x

ex + e−x =
ex(1− e−2x)

ex(1 + e−2x)
=

1− e−2x

1 + e−2x . Therefore limx→+∞ tanh x = 1 and since tanh is odd we have

limx→−∞ tanh x = −1.

â It follows from the above that tanh defines an increasing bijection from R to ]−1 ; 1[.

â The beginning of the Taylor expansion of tanh at 0 is given by

tanh(x) = x− x3

3
+ 2

x5

15
+ o(x6).

We summarise and complete some of the properties above:

Definition-Proposition 24. (i) The function sinh : R → R is an increasing bijection. Its inverse Argsh : R → R is
continuous, differentiable, odd, and Argsh′ x = 1√

1+x2 for x ∈ R.

(ii) The function cosh defines an increasing bijection from [0 ;+∞[ to [1 ;+∞[ whose inverse Argch : [1 ;+∞[ → [0 ;+∞[ is
continuous, differentiable on ]1 ;+∞[, and Argch′ x = 1√

x2−1
for x > 1.

(iii) The function tanh defines an increasing bijection from R to ]−1 ; 1[ whose inverse Argth : ]−1 ; 1[ → R is continuous,
differentiable, odd, and Argth′ x = 1

1−x2 for x ∈ ]−1 ; 1[.

Proof. Exercise. X
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Chapter 4

Study of recursive sequences un+1 = f (un)

We shall not study these types of sequences extensively, as it is a difficult subject. But there are some useful tools that we
will see in this chapter.

Example. A trivial example: Given u0 ∈ R, we want to know whether there exists a sequence (un)n>0 such that un+1 =
aun for every n ∈N (where a ∈ R is fixed) and if so, whether it converges.

Clearly, the only sequence that satisfies un+1 = aun is the sequence defined by un = anu0 for all n > 0 (a simple
induction will prove this). Moreover, it always converges (to 0) if u0 = 0, and when u0 6= 0 it converges if and only if
a ∈]− 1, 1].

Example. A little less trivial. Fix u0, a, b in R and consider sequences (un)n>0 such that un+1 = aun + b for every n ∈N.
Assume that (un)n converges to `. Then ` = limn→+∞ un = limn→+∞ un+1 = limn→+∞(aun + b) = a` + b so that

` = a`+ b, ie. (1− a)` = b.

If a = 1, then un+1 = un + b so that un = u0 + nb. Therefore limn→+∞ un =


u0 if b = 0
+∞ if b > 0
−∞ if b < 0.

If a 6= 1 and if (un)n converges then the limit must be ` = b
1−a . Note also that{

un+1 = aun + b
` = a`+ b

and subtracting these equalities gives (un+1 − `) = a(un − `). If we define vn = un − `, then we are in the situation of the
previous example with vn+1 = avn (and a 6= 1).

Example. Even less trivial: u0, a, b, c, d ∈ R and un+1 = aun+b
cun+d (and c 6= 0 since we have already considered the case

c = 0). This expression is not very complicated but we already have a serious difficulty: if un = − c
d then un+1 is not

defined. How can we be sure that we will never have un = − d
c ? In practice, this kind of difficulty does arise – we shall

therefore exclude this case.

We shall now see some conditions to ensure that a sequence given by a recursion un+1 = f (un) is well defined and
then see how to study it.

In all this chapter, f will be a function defined on an interval I.

I. Existence of all terms in the sequence

A. Stable intervals

Definition 1. An interval J ⊂ I is said to be stablestablea under f if f (J) ⊂ J.

astablestable

Example. The study of the function f : R → R defined by f (x) = x − x2 shows that f ([0 ; 1]) = [0 ; 1
4 ] ⊂ [0 ; 1] so that

[0 ; 1] is stable under f .

B. Why do we need stable intervals?

As we have seen in the introduction, it can happen that un+1 is not defined. Therefore we introduce stable intervals in
order to avoid this problem.

Lemma 2. Assume that J ⊂ I is an interval stable under f and that u0 ∈ J. Then we can define recursively a sequence
(un) such that un+1 = f (un) for all n ∈N. Moreover, un ∈ J for all n ∈N.
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Proof. We prove by induction on n that un is defined and that un ∈ J for all n ∈N. Recall that f is defined on I and hence
on J.

F By assumption, u0 ∈ J.

F Now assume that un is defined and that un ∈ J for some n ∈ N. Then f (un) is defined because f is defined on J.
Therefore un+1 = f (un) is defined, and moreover un+1 ∈ f (J) ⊂ J because J is stable under f .

F Therefore, for all n ∈N, un is defined and un ∈ J. X

II. Potential limits

We assume that we have a well-defined sequence (un) with un+1 = f (un) for all n ∈N.

A. Fixed points

Definition 3. A real number a ∈ I is called a fixed pointfixed pointa of f if f (a) = a.

apoint fixepoint fixe

Remark. We have seen in the exercises that if f is a continuous function from [0, 1] to [0, 1], then f has a fixed point (apply
the Intermediate Value Theorem to the function g : [0, 1]→ R defined by g(x) = f (x)− x).

More generally, if an interval of the form [a, b] is stable under f and if f is continuous on [a, b], then f has a fixed point
in [a, b].

B. Limits

Recall from the first semester (Proposition 234) that if (vn) is a sequence that converges to a and if h is a function which
has limit b at a, with b ∈ R or b = ±∞, then the sequence (h(vn)) has limit b. In particular, if h is continuous at a, then
(h(vn)) converges to h(a).

Theorem 4. Assume that the sequence (un) converges to ` and that f is continuous at `. Then ` is a fixed point of f .

Proof. We have assumed that (un) converges and that limn→+∞ un = `. Then we also have limn→+∞ un+1 = `. Taking
limits when n goes to +∞ in the equality un+1 = f (un) gives ` = limn→+∞ f (un). Moreover, since f is continous at ` and
(un) converges to `, we have limn→+∞ f (un) = f (`) by the result recalled above. Therefore, f (`) = ` as required. X

Example. We fix u0 > 0 and set un+1 =
√

un + 2 for n ∈N.
The first step is to find f . We know that x 7→

√
x + 2 is defined for all x > −2 and that

√
x + 2 > 0. In order to make

sure that the sequence is well-defined, we must have a stable interval containing u0, we choose

f : [0;+∞[ −→ [0;+∞[

x 7→
√

x + 2.

(we could have chosen the interval ]−2 ;+∞[). We have un+1 = f (un), therefore the sequence (un) is well-defined.
The function f is clearly continuous. Consequently, if (un) converges to ` we must have ` =

√
`+ 2, that is, ` > 0 and

`2 − `− 2 = 0, ie. ` = 2.
But this is not enough to prove that (un) converges.
We shall continue this example later.

III. Graphical representation

We use the graph C of f to represent the terms un on the x-axis. The line D with equation y = x is used to transfer points
from the y-axis to the x-axis. Moreover, if f is continuous and if (un) converges, then the limit is a fixed point of f , that
is, either one of the coordinates of a point at the intersection of C and D.

Example. For the sequence (un) defined by u0 > 0 and un+1 =
√

un + 2 for n ∈ N, the graphical representation is as
follows when u0 < 2:
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x

y

D : y = x

C : y = f (x) =
√

x + 2

u0

u1

u2
u3

u1 u2

Example. We fix u0 ∈ R and set un+1 = cos un for n ∈N.
We first determine f . The function cos : R → R works well, but we will simplify the discussion by noting that

cos(R) = [−1, 1], so that for any u0 ∈ R we have u1 ∈ [−1, 1] ⊂]− π
2 ; π

2 [ and u2 = f (u1) ∈ [0, 1]; moreover, [0, 1] is stable
under cos, therefore the sequence (un)n>2 is well-defined and contained in [0, 1]. Therefore we may assume without loss
of generality that u0 ∈ [0, 1] (we need only forget the first two terms and shift the indices).

Therefore we define

f : [0, 1] → [0, 1]

x 7→ cos x

which is continuous.
If u0 is ”small enough”, the graphical representation is as follows:

x

y

D : y = x

C : y = f (x) = cos x

u0 1

1

IV. Monotony of the sequence

We still have to see whether the sequence converges or not and prove it. We shall often use the theorems on the
convergence of monotonic sequences seen in the first semester. Therefore we need some methods to prove that a sequence
is monotonic (or not).

We shall assume that f is continuous on the interval I, that I is stable under f , that u0 ∈ I and that un+1 = f (un).

A. Sign of f (x)− x

Lemma 5. Let f : I → I be a continuous function, take u0 ∈ I and set un+1 = f (un) for all n ∈N.
Assume that f (x)− x has constant sign on I.
Then the sequence (un) is monotonic.
More precisely, (un) is non-decreasing if f (x)− x > 0 for all x ∈ I and (un) is non-increasing if f (x)− x 6 0 for all
x ∈ I.

Proof. For any n ∈N, we have un+1 − un = f (un)− un. Therefore

F if f (x)− x > 0 for all x ∈ I, then un+1 − un > 0 for all n ∈ N (recall that un ∈ I for all n ∈ N), therefore the
sequence is non-decreasing;
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F if f (x)− x 6 0 for all x ∈ I, then un+1 − un 6 0 for all n ∈N, therefore the sequence is non-increasing. X

B. f is non-decreasing

Lemma 6. Let f : I → I be a continuous function, take u0 ∈ I and set un+1 = f (un) for all n ∈N.
Assume that the function f is non-decreasing.
Then the sequence (un) is monotonic.
More precisely, (un) is non-decreasing if u1 = f (u0) > u0 and (un) is non-increasing if u1 6 u0.

Proof. â First assume that u1 > u0. We shall prove by induction that for all n ∈N we have un+1 > un.

F The result is true for n = 0 by assumption.

F Assume that un+1 > un for some n > 0. Since the function f is non-decreasing, applying f gives f (un+1) >
f (un), that is, un+2 > un+1 using the definition of (un). Therefore the result is true for n + 1.

F By induction, we have un+1 > un for all n ∈N. Therefore the sequence (un) is non-decreasing.

â Now assume that u1 6 u0. We shall prove by induction that for all n ∈N we have un+1 6 un.

F The result is true for n = 0 by assumption.

F Assume that un+1 6 un for some n > 0. Since the function f is non-decreasing, applying f gives f (un+1) 6
f (un), that is, un+2 6 un+1 using the definition of (un). Therefore the result is true for n + 1.

F By induction, we have un+1 6 un for all n ∈N. Therefore the sequence (un) is non-increasing. X

Example. Let us come back to the example{
u0 > 0
un+1 =

√
un + 2 for all n ∈N.

We have seen that if this sequence converges, then its limit must be 2, the only non-negative fixed point of the function
f : [0 ;+∞[→ [0 ;+∞[ defined by f (x) =

√
x + 2.

The function f is increasing (as the composition of the increasing functions x 7→ x + 2 and x 7→
√

x). Therefore the
sequence (un) is monotonic; to prove convergence, if (un) is non-decreasing we must prove that it is bounded above, and if
it is non-increasing we must prove that it is bounded below. Therefore we want to know whether (un)n is non-decreasing
or non-increasing, and for this we need the sign of u1 − u0 = f (u0)− u0. Therefore we shall study g = f − id .

The function g is differentiable and we have g′(x) = 1
2
√

x+2
− 1 6 1

2
√

2
− 1 < 0 for all x > 0 so we get the following

table
x

f (x)

f (x)− x

0 +∞

√
2
√

2

+∞+∞

2

2

√
2
√

2

−∞−∞

2

0

We can now conclude:

â If u0 = 2 then un = 2 for all n ∈N (induction: if un = 2 then un+1 = f (un) = f (2) = 2).

â If 0 6 un < 2: since f ([0, 2[) ⊂ [0, 2[, we have un ∈ [0, 2[ for all n ∈ N. Since f (x)− x > 0 for all x ∈ [0, 2[, we
have u1 − u0 = f (u0)− u0 > 0 and un+1 − un = f (un)− un > 0 therefore (un)n is increasing. As (un)n is bounded
above (by 2), it converges. The only possible limit is 2 as we have seen before, so (un)n converges to 2.

â If u0 > 2: since f (]2,+∞[) ⊂]2,+∞[, we have un > 2 for all n ∈N. Since f (x)− x < 0 for all x > 2, we can show
as before that (un)n is decreasing. As (un)n is bounded below (by 2), it converges. The only possible limit is 2 as
we have seen before, so (un)n converges to 2.

Note that it appears from the graphical representation to converge quite fast. Let us look into this. Using the Mean
Value Theorem, we have

un+1 − 2 = f (un)− f (2) = (un − 2) f ′(θn)

for some θn between 2 and un. Moreover, f ′(x) = 1
2
√

x+2
6 1

2
√

2
and f ′(x) > 0 for all x > 0, so | f ′(θn)| 6 1

2
√

2
. We then

get |un+1 − 2| 6 1
2
√

2
|un − 2| for all n ∈N hence

|un − 2| 6
(

1
2
√

2

)n
|u0 − 2|.

Remark. We have used here the Mean Value Theorem to prove that f is contracting, and used this to see that (un)

converges to 2 at least as fast as the geometric sequence
((

1
2
√

2

)n)
converges to 0.
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C. f is non-increasing

Lemma 7. Let f : I → I be a continuous function, take u0 ∈ I and set un+1 = f (un) for all n ∈N.
Assume that the function f is non-increasing.
Then the sequence (un) is not monotonic (unless it is constant). However, the sequences (u2n)n and (u2n+1)n are
monotonic (one is non-decreasing and the other is non-increasing).

Proof. We have ( f ◦ f )(un) = f ( f (un)) = f (un+1) = un+2 therefore

F u2(n+1) = u2n+2 = f ◦ f (u2n) and

F u2(n+1)+1 = u2n+3 = f ◦ f (u2n+1).

Moreover, the function f ◦ f is non-decreasing. Therefore, using Lemma 66 with the function f ◦ f , we see that (u2n)n and
(u2n+1)n are both monotonic.

Moreover, assume that (u2n)n is non-decreasing. Then u2 > u0. Applying the non-increasing function f gives u3 =
f (u2) 6 f (u0) = u1 and therefore (u2n+1)n is non-increasing by Lemma 66. The other case is similar. X

Example. Let us return to the example with u0 ∈ [0, 1] and un+1 = cos un for n ∈N. We had defined

f : [0, 1] → [0, 1]

x 7→ cos x

which is continuous and differentiable. We now study f and g = f − id . We have g′(x) = − sin x − 1 < 0 so g is
decreasing. Since g(0) = 1 > 0 and g(1) = cos 1− 1 < 0, by the Intermediate Value Theorem there exists α ∈]0, 1[ such
that g(α) = 0 (ie. f (α) = α).

x

f (x)

f (x)− x

0 1

11

cos 1cos 1

α

α

11

cos 1− 1cos 1− 1

α

0

If u0 = α then un = α for all n.
We know that in our situation the sequences (u2n)n and (u2n+1)n are monotonic and since they are bounded (both are

contained in [0, 1]), they converge. Set `1 = limn→+∞ u2n and `2 = limn→+∞ u2n+1.
If `1 = `2 then (un)n converges to `1 = `2 so that, since f is continuous, `1 = `2 = α.
Can we have `1 6= `2?
If u0 > α then u1 = f (u0) < α so up to a shift in indices we can assume that u0 < α. The graphical representation we

had seen represented this situation.
It seems that there is a spiral converging to α, so that `1 = `2.
Since f is continuous, so is f ◦ f , therefore it seems natural to look for fixed points of f ◦ f , that is, to study h : x 7→

cos(cos(x))− x. The function h is differentiable and h′(x) = sin x sin(cos x)− 1 < 0 for x ∈ [0, 1]. Hence h is decreasing
from h(0) = cos 1 > 0 to h(1) = cos(cos 1) − 1 < 0 and there exists a unique β ∈]0, 1[ such that cos(cos β) = β. But
we know that cos α = α so cos(cos α) = cos α = α and therefore α = β (more generally, if f (α) = α then f ◦ f (α) = α).
Therefore the only possible value for `1 and for `2 is `1 = `2 = α and finally (un)n converges to α.

Remark. Note that any fixed point of f is a fixed point of f ◦ f , but f ◦ f could have more fixed points than f .

Application. We cannot give an exact value for α, but this sequence gives a way to approximate α.

Remark. In general, the computation of f ◦ f can be complicated. In order to prove that `1 = `2 we can, in some cases,
use another trick. In our example, we have u2n+1 = cos u2n and u2n+2 = cos u2n+1 so taking limits gives `2 = cos `1 and
`1 = cos `2 so that

`2 − `1 = cos `1 − cos `2 = (`1 − `2)(− sin θ)

for some θ between `1 and `2 by the Mean Value Theorem. We get (`2 − `1)(1− sin θ) = 0 and since sin θ 6= 1 we finally
have `2 = `1.
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V. Summary

We fix a function f : I → R where I is an interval of R and u0 ∈ I. If I is stable under f then the recursive formula
un+1 = f (un) for all n ∈N defines a sequence (un)n∈N whose terms are all in I.

â We study the continuity of f on I and solve the equation f (x)− x = 0. This may require the study of f − id on I if
we do not know how to solve this equation algebraically.

â The study of f − id gives other useful results: if it has constant sign on I then (un) is monotonic.

â If (un)n converges to ` with ` ∈ I and if f is continuous on I (or at `), then ` = f (`).

â If f is non-decreasing (on I) then (un)n is monotonic.

â If (un)n is monotonic and I is bounded, then (un)n converges.

â If f is non-increasing (on I) then the sequences (u2n)n and (u2n+1)n are monotonic (one is non-decreasing and the
other is non-increasing).

Note that even if I is stable under f , it could happen that none of these properties are true on I. It will then be necessary
to work on intervals J ⊂ I which are stable under f and on which f has some nice properties.
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Chapter 5

Study of equations f (x) = 0

I. Dichotomy

A. Principle

Consider a function f that is continuous on an interval [a, b]. Assume that f has a unique root α in ]a, b[ and that
f (a) f (b) < 0. Let c = a+b

2 be the middle of the interval.

(1) If f (c) = 0, then c is the root of f and the problem is solved.

(2) If f (c) 6= 0, one of the following holds.

(a) If f (a) f (c) < 0, then α ∈]a, c[.

(b) If f (c) f (b) < 0, then α ∈]c, b[.

We repeat the procedure with the interval [a, c] in the first case and the interval [c, b] in the second case. In this way we
construct inductively three sequences (an)n, (bn)n and (cn)n such that a0 = a, b0 = b, and for all n > 0:

(i) cn = an+bn
2

(ii) If f (cn) f (bn) < 0 then an+1 = cn and bn+1 = bn

(iii) If f (cn) f (an) < 0 then an+1 = an and bn+1 = cn.

Definition 1. The algorithm above is called the dichotomy algorithmdichotomy algorithma.

aalgorithme de dichotomiealgorithme de dichotomie

B. Study of convergence

Theorem 2. Let f be a continuous function on [a, b] satisfying f (a) f (b) < 0 and assume that the equation f (x) = 0 has
a unique solution α ∈ ]a, b[. If the dichotomy algorithm can be applied up to the n-th stage, then

|α− cn| 6
b− a
2n+1 .

Consequently, the sequence (cn)n converges to α.

Proof. Note that at each stage, the interval is halved, that is, |an+1 − bn+1| =
|an − bn|

2
. Therefore, by induction, we have

|an − bn| =
|a0 − b0|

2n . It follows that |α− cn| 6
|an − bn|

2
=
|a0 − b0|

2 · 2n =
|a− b|
2n+1 . X

Remark. In order that cn be an approximation of α with a precision of ε > 0, it is enough that n satisfies:

b− a
2n+1 6 ε.

Then we have

|α− cn| 6
b− a
2n+1 6 ε

so that we can compute beforehand the maximal number n0 ∈N of stages needed to have a precision of ε.

b− a
2n+1 6 ε⇐⇒ b− a

ε
6 2n+1 ⇐⇒ n >

ln b−a
ε

ln 2
− 1.
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Example. We can use the dichotomy algorithm on f : [1, 2]→ R defined by f (x) = x2 − 2 to approach α =
√

2. We have
a sequence (cn)n that satisfies |α− cn| 6 1

2n+1 . If we wanted
√

2 with a precision of 10−2, it would be enough to compute
6 terms, since

1
2n+1 6 10−2 ⇐⇒ 2n+1 > 100 ⇐⇒ (n + 1) ln 2 > ln(100) ⇐⇒ n >

ln 100
ln 2

− 1 ∼= 5, 6.

In detail, we have

n an bn cn f (an) f (bn) f (cn)

0 1 2 3
2 − + +

1 1 3
2

5
4 − + −

2 5
4

3
2

11
8 − + −

3 11
8

3
2

23
16 − + +

4 11
8

23
16

45
32 − + −

5 45
32

23
16

91
64 − + +

6 45
32

91
64

181
64

therefore c6 = 181
64
∼= 1.41 is an approximation of

√
2 with a precision of 10−2.

II. Newton’s method

A. Principle

Proposition 3 (Newton’s methodNewton’s methoda). Let f : [a, b] → R be a function of class C2 such that f (a) < 0, f (b) > 0, f ′(x) > 0
and f ′′(x) > 0 for all x ∈ [a, b].
Then there exists a unique α ∈]a, b[ such that f (α) = 0 and α is the limit of the sequence (un)n defined by u0 ∈ [α, b]
and un+1 = g(un) where g(x) = x− f (x)

f ′(x) for all x ∈ [a, b].

améthode de Newtonméthode de Newton

Proof. Since f is of class C2 and f ′ does not vanish on [a, b], the function g is of class C1 on [a, b] and g′(x) = 1 −
f ′(x)2− f (x) f ′′(x)

f ′(x)2 =
f (x) f ′′(x)

f ′(x)2 . Since f is continuous and increasing on [a, b], there exists a unique α ∈]a, b[ such that f (α) = 0

by the Intermediate Value Theorem. Moreover, f (x) < 0 for x ∈ [a, α[ and f (x) > 0 for x ∈]α, b]. Therefore g′(x) > 0 for
x ∈]α, b] so that g is increasing on this interval, from g(α) = α to g(b) = b− f (b)

f ′(b) ∈]α, b[. In particular, g([α, b]) ⊂ [α, b].
Set I = [α, b]. Then I is stable under g. It follows from Chapter 44 that we can define a sequence (un)n by u0 ∈ I and

un+1 = g(un). Moreover, we have seen in Chapter 44 that un ∈ I for all n, so that (un)n is bounded, and that (un) is
monotonic because g is increasing. Therefore (un)n converges to ` ∈ [α, b]. Since g is continuous at `, we have ` = g(`),
that is, f (`) = 0 hence ` = α. The sequence (un)n is therefore non-increasing and its limit is α. X

Corollary 4. Let f : [a, b] → R be a function of class C2 such that f (a) f (b) < 0, f ′(x) 6= 0 and f ′′(x) 6= 0 for all
x ∈ [a, b].
Then there exists a unique α ∈]a, b[ such that f (α) = 0 and α is the limit of the sequence (un)n defined by u0 ∈ [a, b]
such that (u0 − α) f (b) f ′′ > 0 and un+1 = g(un) where g(x) = x− f (x)

f ′(x) for all x ∈ [a, b].

Proof. Note that f ′ and f ′′ are continuous and do not vanish on [a, b], therefore they have constant sign by the Intermediate
Value Theorem. Moreover, the sign of f ′ is the same as the sign of f (b) (if f ′ > 0 then f is increasing so that the hypotheses
imply f (a) < 0 and f (b) > 0, and similarly when f ′ < 0). There are four cases:

â First case: f ′ > 0 and f ′′ > 0. This is the case in the proposition.

â Second case: f ′ < 0 and f ′′ < 0. This case is obtained from the previous one by replacing f with − f , which does
not change g. Moreover, in this case u0 is also chosen in ]α, b], and we have (u0 − α) f (b) f ′′ > 0.

â Third case: f ′ > 0 and f ′′ < 0. Here we follow the proof of the proposition, adapting it where necessary. In this
case, g′ > 0 on the interval [a, α[ and g([a, α]) ⊂ [a, α], and we change I to [a, α].

â Fourth case: f ′ < 0 and f ′′ > 0. This case is obtained from the previous one by replacing f with − f , which does
not change g. Moreover, in this case u0 is also chosen in [a, α[, and we have (u0 − α) f (b) f ′′ > 0. X

Remark. The final condition says only that u0 must be chosen in a sub-interval of [a, b] on which f and f ′′ have the same
sign (ie. f (u0) f ′′(u0) > 0).
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Example. We can use Newton’s method to compute
√

2.
Consider x 7→ x2 − 2. It is of class C2, with derivative x 7→ 2x and second derivative x 7→ 2 > 0. We restrict our study

to [1, 2] so as to satisfy the hypotheses in the proposition.

Therefore we define f : [1, 2] → R by f (x) = x2 − 2. We have g(x) = x − x2−2
2x = 1

2

(
x + 2

x

)
. We know that f has a

unique root α =
√

2 and that it is the limit of a sequence (un)n defined by u0 ∈ [
√

2, 2] and un+1 = g(un) =
1
2 (un + 2

un
).

(In this example, we can choose eg. u0 = 2 (or anything larger than
√

2).)

B. Study of convergence

The functions | f ′| and | f ′′| are continuous and positive on [a, b], hence

â there exists M = supx∈[a,b]| f ′′(x)| = maxx∈[a,b]| f ′′(x)| > 0;

â there exists m = infx∈[a,b]| f ′(x)| = minx∈[a,b]| f ′(x)| > 0.

By Taylor’s inequality (Corollary 99.2626), we have∣∣ f (α)− f (un)− (α− un) f ′(un)
∣∣ 6 1

2!
|α− un|2 M

and therefore, dividing by | f ′(un)| and using the fact that f (α) = 0 we get

|α− un+1| =
∣∣∣∣α− un +

f (un)

f ′(un)

∣∣∣∣ 6 M
2
|α− un|2

| f ′(un)|
6

M
2m
|α− un|2.

It then follows by induction that

|un − α| 6
(

1
2

M
m

)2n−1
(u0 − α)2n

for all n ∈N.
The convergence is said to be quadratic (the power of un − α is 2). The convergence is fast if |u0 − α| is chosen small

enough to compensate for 1
2

M
m if it is large.

Example. If f : [1, 2] → R is defined by f (x) = x2 − 2 and if we take u0 = 2, then the number of terms we would need
to compute to approach α with a precision of 10−2 is 3 since we have M = 2, m = 2, 0 < u0 − α < b− a = 1 so that

0 6 un − α 6
1

22n−1 (2− α)2n
<

1
22n−1 and

1
22n−1 6 10−2 ⇐⇒ n >

ln
(

2 ln 10 + ln 2
ln 2

)
ln 2

∼= 2, 9⇐⇒ n > 3.

We would then have u0 = 2, u1 =
3
2

, u2 =
17
12

and u3 =
577
408
∼= 1, 41.

Since f ′′ = 2 > 0, the remark above says that we must choose u0 such that f (u0) > 0. Note that this implies that u0 > α
since f is increasing.

For example, we could choose u0 =
3
2

. In this case, we would only need to compute 2 terms. Indeed, this time

0 < u0 − α < u0 − a =
1
2

so that 0 6 un − α 6
1

22n−1 (2− α)2n
<

1
22n−1

1
22n =

1
22n+1−1

and
1

22n+1−1
6 10−2 ⇐⇒ n + 1 >

ln
(

2 ln 10 + ln 2
ln 2

)
ln 2

∼= 2, 9⇐⇒ n > 2.

We would then have u0 =
3
2

, u1 =
17
12

, u2 =
577
408
∼= 1, 41.
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Chapter 6

Polynomials

In this chapter, K is equal to C or R or Q.
We shall study arithmetic properties of K[X], similar to those of Z, and then consider rational functions. These will be

useful for integration (as well as other things you shall see next year, eg. linear algebra).
Note that most of the results and definitions that follow are the same as those for integers, replacing polynomials by

integers and degrees of polynomials by absolute values of integers. See Appendix CC for more details.

I. Arithmetics in K[X]

A. Greatest common divisors

Notation. Let A be a polynomialpolynomial† in K[X]. We denote by D(A) the set of divisors of A in K[X]. Recall from the first
semester that

â D(0) = K[X];

â if A 6= 0 then any polynomial B in D(A) has degree at most deg A.

Recall that a polynomial is called monicmonic‡ if its leading coefficientleading coefficient§ is 1.

Recall that two non-zero polynomials A and B are said to be associateassociate¶ if there exists λ ∈ K∗ such that B = λA.
Given two non-zero polynomials A and B, the following properties are equivalent.

(i) A and B are associate.

(ii) A divides B and B divides A.

(iii) A divides B and deg A > deg B.

Proof. First assume that (i) is satisfied. Then there exists λ ∈ K∗ such that B = λA. In particular, A divides B. Moreover,
A = 1

λ B so that B divides A. Therefore (ii) is satisfied.
Next assume that (ii) is satisfied. Then obviously A divides B. In particular, deg A 6 deg B. Moreover, since B divides

A we also have deg B 6 deg A. Therefore deg A = deg B. Therefore (iii) is satisfied.
Finally, assume that (iii) is satisfied. Since A divides B there exists a non-zero polynomial C such that B = AC.

Moreover, deg B = deg(AC) = deg A + deg C and by assumption deg A > deg B therefore deg C 6 0; since C 6= 0 we
have deg C = 0 that is, C is a non-zero constant. Therefore A and B = AC are associate so that (i) is satisfied. X

If A is a non-zero polynomial, there is a unique monic polynomial which is associate to A. We shall denote it by A◦.

In the sequel, we shall consider two polynomials in K[X] with at least one of them non-zero.

Remark. Let A and B be two polynomials in K[X], at least one of which is non-zero. Then D(A) ∩ D(B) contains only
non-zero polynomials, and they all have degree at most min(deg A, deg B) if A and B are non-zero, or deg A if B = 0. In
particular, the set {deg C; C ∈ D(A) ∩D(B)} is a non-empty subset of N which is bounded above in R, therefore it has
a maximum, d > 0. This means that there exists a polynomial D ∈ D(A) ∩D(B) whose degree is equal to d.

Definition 1. Let A and B be two polynomials in K[X] with at least one of them non-zero.
Any polynomial D ∈ D(A) ∩D(B) with maximum degree d is called a greatest common divisorgreatest common divisora (or gcdgcdb) of A and B.

aplus grand commun diviseurplus grand commun diviseur
bpgcdpgcd

Two polynomials have many greatest common divisors.

†polynômepolynôme
‡unitaireunitaire
§coefficient dominantcoefficient dominant
¶associéassocié
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Lemma 2. Let A and B be two polynomials in K[X], at least one of which is non-zero. Let D be a gcd of A and B. Let
P be a polynomial in K[X].
If P and D are associates, then P is a gcd of A and B.
In particular, P and D have at least one monic gcd, D◦.

Proof. If P is an associate of D, then we have P = λD with λ ∈ K∗. By assumption, A = DA1, B = DB1 and deg D = d,
therefore A = P(λ−1 A1), B = P(λ−1B1) so that P ∈ D(A) ∩ D(B), and deg P = deg D = d is maximal therefore P is a
gcd of A and B. X

B. Euclidean algorithm

Recall that for any polynomial A and any polynomial B 6= 0, there exists a unique pair of polynomials (Q, R) such that{
A = QB + R and
deg R < deg B.

Proposition 3. Let A, B and Q be three polynomials. Then D(A) ∩D(B) = D(B) ∩D(A−QB).
In particular, if R is the remainderremaindera of the Euclidean divison of A by B, then D(A) ∩D(B) = D(B) ∩D(R).

arestereste

Proof. If P ∈ D(A) ∩D(B) then P divides A and P divides B, therefore P divides A−QB. Therefore P ∈ D(B) ∩D(A−
QB). We have proved that D(A) ∩D(B) ⊂ D(B) ∩D(A−QB).

If P ∈ D(B)∩D(A−QB) then P divides A and B divides A−QB, therefore P divides QB + (A−QB) = A. Therefore
P ∈ D(B) ∩D(A). We have proved that D(B) ∩D(A−QB) ⊂ D(A) ∩D(B).

Finally we have the required equality. X

Proposition 4 (Euclidean algorithmEuclidean algorithma). Let A and B be two non-zero polynomials.
Define the following sequence of polynomials, defined inductively by: R0 = A and R1 = B. For k > 1, assume that
Rk−1 and Rk are known; if Rk = 0, set Rk+1 = 0; if Rk 6= 0, let Rk+1 be the remainder of the Euclidean division of Rk−1
by Rk, so that Rk−1 = QkRk + Rk+1 and deg Rk+1 < deg Rk.
Then there exists n ∈N such that Rn 6= 0 and Rn+1 = 0. Moreover, Rn is a gcd for A and B.

aalgorithme d’Euclidealgorithme d’Euclide

Proof. (Not done in class.)
Assume for a contradiction the for all n ∈ N we have Rn 6= 0. We then have a decreasing sequence (deg Rn)n of

elements in N, which is impossible (every non-increasing sequence of elements in N converges – because it is bounded
below –, therefore it is stationary – since it consists of integers –). Therefore there is an integer n such that Rn+1 = 0, and
choosing n minimal we have Rn 6= 0 (by assumption, there are some non-zero Rn, namely R0 and R1).

We now prove that Rn is a gcd for R0 = A and R1 = B.

â We have Rn−1 = QRn so that Rn divides Rn−1. Therefore Rn divides Rk for all k > n− 1. Now take N 6 n− 1
and assume that Rn divides Rk for all k > N. We have RN−1 = QN RN + RN+1 and Rn divides RN and RN+1,
therefore Rn divides RN1 . Therefore, inductively, Rn divides all the Rk for k > 0.

In particular, Rn divides A and B.

â We must prove that deg Rn is maximal among the degrees of elements in D(A) ∩ D(B). Let P be an element in
D(A) ∩ D(B). Then P divides A = R0 and B = R1 therefore it divides R2 by the previous proposition. Now take
N > 1 and assume that P divides Rk for all k 6 N. Then RN+1 is the remainder of the Euclidean division of RN−1
by RN and P divides RN−1 and RN , so that P divides RN+1. By induction, P divides all the Rk and therefore P
divides Rn.

In particular, deg P 6 deg Rn. Therefore deg Rn is an upper bound for {deg P; P ∈ D(A) ∩D(B)} and since Rn ∈
D(A) ∩D(A), deg Rn is a maximum. X

Example. We want to find a gcd of A = X5 − 2X4 + X3 and B = X3 − X.
The Euclidean division of A by B gives A = BQ1 + R2 with Q1 = X2 − 2X + 2 and R2 = −2X2 + 2X.
The Euclidean division of B by R2 gives B = R2Q2 + R3 with Q2 = −1

2 X− 1
2 and R3 = 0.

Therefore R2 = −2X2 + 2X is a gcd for A and B (and X2 − X is a monic gcd for A and B).

Corollary 5. Let A and B be two polynomials in K[X] with at least one of them non-zero. Let D be a gcd of A and B.
Then D(D) = D(A) ∩D(B).
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Proof. (Not done in class.)
We already know that D(D) ⊂ D(A) ∩D(B).
Now let Rn be defined as in the previous proposition (Euclidean algorithm). We have seen in the proof that Rn is a gcd of

A and B, therefore D(Rn) ⊂ D(A)∩D(B), and also that any P ∈ D(A)∩D(B) divides Rn hence D(A)∩D(B) ⊂ D(Rn).
Therefore D(A) ∩D(B) = D(Rn).

In particular, D(D) ⊂ D(Rn) so that D divides Rn. Moreover, they both have the same degree, so that D and Rn are
associates. Hence D(D) = D(Rn) = D(A) ∩D(B). X

Remark. The previous result shows that a gcd D of A and B can be characterised by the two properties:

(i) D divides A and B, and

(ii) if P is any polynomial that divides A and B, then P divides D.

Proof. We must prove that D is a gcd of A and B if, and only if, it satisfies (i) and (ii).

â First assume that D is a gcd of A and B. Then (i) is satisfied by definition. Moreover, we have D(D) = D(A) ∩
D(B), therefore, if P is a common divisor of A and B, then P ∈ D(A)∩D(B) hence P ∈ D(D) and finally P divides
D and (ii) is satisfied.

â Conversely, assume that (i) and (ii) are satisfied. Then D divides A and B by assumption, and we must prove
that deg D is maximal among the degrees of divisors of A and B. But if P divides A and B, then P divides D by
assumption (ii), so that deg P 6 deg D, as required. X

Definition-Proposition 6. Let A and B be two polynomials in K[X], at least one of which is non-zero. Let D be a gcd of A and
B. Let P be a polynomial in K[X].
Then P is a gcd of A and B if, and only if, P and D are associates.
In particular, A and B have a unique monic gcd, D◦, denoted by A ∧ B.
By convention, we set 0∧ 0 = 0.

Proof. This follows from the proof of the previous result. X

Properties 7. (a) For any polynomials A and B we have A ∧ B = B ∧ A.

(b) For any non-zero polynomial A, we have A ∧ 0 = A◦.

(c) For any polynomial A, we have A ∧ 1 = 1.

(d) For any non-zero polynomial A, A ∧ B = A◦ if, and only if, A divides B.

(e) The polynomial A ∧ B and its divisors are divisors common to A and B.

Proof. (a) This is clear, since D(A) ∩D(B) = D(B) ∩D(A).

(b) We know that D(0) = K[X] so that D(A) ∩ D(0) = D(A), therefore A ∧ 0 is the monic polynomial that divides A
and whose degree is deg A, therefore it is A◦.

(c) We have D(1) = K hence D(A) ∩D(1) = K and therefore A ∧ 1 is the monic polynomial in K, that is, 1.

(d) Assume that A divides B. Then D(A) ⊂ D(B) so that D(A) ∩D(B) = D(A) and therefore A ∧ B = A◦.

Conversely, if A ∧ B = A◦ then A◦ divides B, and therefore A (which is an associate of A◦) divides B.

(e) Clear. X

Proposition 8. Let A and B be two polynomials in K[X]. For any non-zero polynomial P, we have (PA) ∧ (PB) =
P◦(A ∧ B).

Proof. Set D = A ∧ B and let ∆ be a gcd of PA and PB.
Since D divides A and B, PD divides PA and PB, therefore PD divides ∆. We must prove that deg(PD) = deg ∆.
Since PD divides ∆, in particular P divides ∆, so that we can write ∆ = PC for some polynomial C. Moreover,

PC = ∆ divides PA and PB, therefore C divides A and B and finally C divides D. In particular, deg C 6 deg D, so that
deg(PD) > deg PC = deg ∆, as required.

We have proved that PD is a gcd of PA and PB, so that (PA) ∧ (PB) = (PD)◦ = P◦D since D is already monic. X
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Example. Going back to the example following Proposition 44, we wanted to find a greatest common divisor for A = X5−
2X4 +X3 and B = X3−X. Note that we have A = X3(X2− 2X + 1) = X3(X− 1)2 and B = X(X2− 1) = X(X− 1)(X + 1).
Therefore, with P = X(X− 1) (monic), we have A ∧ B = X(X− 1) ·

(
X2(X− 1) ∧ (X + 1)

)
.

The Euclidean division of X2(X− 1) = X3−X2 by X+ 1 gives X3−X2 = (X+ 1)(X2− 2X+ 2)− 2. Since the remainder
is a constant, it must be a greatest common divisor for X2(X− 1) and X + 1, therefore X2(X− 1) ∧ (X + 1) = 1 (we shall
see later other ways of proving this).

Finally, A ∧ B = X(X− 1).

Proposition 9. Let A and B be two polynomials in K[X]. Then there exist polynomials U and V such that A ∧ B =
UA + VB.
This is called a Bézout relationBézout relationa between A and B and the polynomials U and V are called the Bézout coefficientsBézout coefficientsb

for A and B.

arelation de Bézoutrelation de Bézout
bcoefficients de Bézoutcoefficients de Bézout

Proof. (Not done in class.) We use the notation in the statement and proof of the Euclidean algorithm. We know that Rn is
a gcd for A and B. We prove by (descending) induction that for all k with 1 6 k 6 n− 1, we have Rn = UkRk + VkRk−1
for some polynomials Uk and Vk.

For k = n− 1, we have Rn = −Qn−1Rn−1 + Rn−2 as required.
Now assume that it is true for some k. We must prove it for k− 1.
We know that Rk = −Qk−1Rk−1 + Rk−2, therefore

Rn = UkRk + VkRk−1 = (Vk −UkQk−1)Rk−1 + UkRk−2

as required (put Uk−1 = Vk −UkQk−1 and Vk−1 = Uk.)
In particular, this is true for k = 1, that is, Rn = U1R1 + V1R0 = U1B + V1 A.
Finally, we divide by the leading coefficient of Rn, so that A ∧ B = V1

◦A + U1
◦B. X

Remark. It follows from the proof that, to find the Bézout coefficients for A and B, we can use the Euclidean algorithm
then work backwards, as we do for integers.

Example. We want tof find A ∧ B and the Bézout coefficients for A = X4 − 2X3 + X2 + 3X− 1 and B = X3 − 2X2 + 3.
We have

A = XB + (X2 − 1)

B = (X− 2)(X2 − 1) + (X + 1)

X2 − 1 = (X− 1)(X + 1) + 0

therefore A ∧ B = X + 1 (the last non-zero remainder, normalised). Moreover, working up the equalities above, we get:

X + 1 = B− (X− 2)(X2 − 1)

= B− (X− 2)(A− XB)

= −(X− 2)A + (X2 − 2X + 1)B.

C. Least common multiples

In the sequel, we shall consider non-zero polynomials A and B.

Notation. The setM(A) = AK[X] is the set of multiples of A.

Remark. Let A and B be two non-zero polynomials in K[X].
The setM(A) ∩M(B) is the set of common multiples of A and B. It contains 0 as well as some non-zero polynomials

(such as AB). The non-zero polynomials have degree at least max(deg A, deg B).
In particular, the set {deg C; C ∈ M(A) ∩M(B), C 6= 0} is a non-empty subset of N which is bounded below in R,

therefore it has a minimum, m > 0. This means that there exists a polynomial M ∈ M(A)∩M(B) whose degree is equal
to m.

Definition 10. Let A and B be two non-zero polynomials in K[X].
Any polynomial M ∈ M(A) ∩M(B) with minimum degree m is called a least common multipleleast common multiplea (or lcmlcmb) of A and B.

aplus petit commun multipleplus petit commun multiple
bppcmppcm

Two polynomials have many least common multiples.
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Definition-Proposition 11. Let A and B be two non-zero polynomials in K[X]. Let M be an lcm of A and B. Let P be a
polynomial in K[X].
Then P is an lcm of A and B if, and only if, P and M are associates.
In particular, A and B have a unique monic lcm, M◦, denoted by A ∨ B.

Proof. If P and M are associates, then P is clearly a common multiple of A and B with the same degree as M so that P is
an lcm of A and B.

Conversely, assume that P is an lcm of A and B. There exist polynomials Q and R such that P = QM + R with
deg R < deg M. Moreover, P and M are multiples of A and B, therefore R is a multiple of A and B. If R 6= 0, then by
minimality of degree of M we must have deg R > deg M, a contradiction. Therefore R = 0 so that P = QM, that is, M
divides P. Moreover, deg M = deg P therefore M and P are associates. X

Notation. By convention, we set A ∨ 0 = 0 for A 6= 0.

Properties 12. â For any polynomials A and B, one of which is non-zero, we have A ∨ B = B ∨ A.

â For any non-zero polynomial A, we have A ∨ 1 = A◦.

â For any non-zero polynomial A, A ∨ B = A◦ if, and only if, B divides A.

Proof. Exercise. X

Proposition 13. Let A and B be two non-zero polynomials in K[X], and let C be any polynomial.
Then C is an lcm for A and B if, and only if,M(C) =M(A) ∩M(B).

Proof. Let M be an lcm for A and B.

â Since M is a common multiple of A and B, it is clear that all its multiples are common multiples of A and B,
thereforeM(M) ⊂M(A) ∩M(B).

Conversely, take P ∈ M(A) ∩M(B). Then there exist polynomials Q and R such that P = QM + R with deg R <
deg M. The same argument as in the proof ot the previous proposition shows that M divides P, that is, P ∈ M(M).
We have proved thatM(A) ∩M(B) ⊂M(M).

â Now assume that C is a polynomial such that M(C) = M(A) ∩M(B). We have just shown that also have
M(M) =M(A) ∩M(B). Therefore C and M are multiples of each other. Consequently, they are associates. Since
M is an lcm for A and B, so is C.

X

Remark. Let A and B be two non-zero polynomials in K[X]. The polynomial A∨ B is the unique monic polynomial such
thatM(A ∨ B) =M(A) ∩M(B).

Remark. The previous result shows that an lcm M of A and B can be characterised by the two properties:

(i) A and B divide M, and

(ii) if P is any polynomial such that A and B divide P, then M divides P.

[Not done in class.]

Proof. We must prove that M is an lcm of A and B if, and only if, it satisfies (i) and (ii).

â First assume that M is an lcm of A and B. Then (i) is satisfied by definition. Moreover, we have M(M) =
M(A) ∩M(B), therefore, if P is a common multiple of A and B, then P ∈ M(A) ∩M(B) hence P ∈ M(M) and
finally M divides P and (ii) is satisfied.

â Conversely, assume that (i) and (ii) are satisfied. Then M is a multiple of A and B by assumption, and we must
prove that deg M is minimal among the degrees of non-zero multiples of A and B. But if P is a multiple of A and
B, then P is a multiple of M by assumption (ii), so that deg P > deg M, as required. X

Proposition 14. Let A and B be two non-zero polynomials in K[X]. For any non-zero polynomial P, we have (PA) ∨
(PB) = P◦(A ∨ B).
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Proof. [Not done in class.] Set M = A ∨ B and let N be an lcm of PA and PB.
Since M is a multiple of A and B, PM is a multiple of PA and PB. We must prove that its degree is minimal.
Let C be a common multiple of PA and PB. Then P divides C, wo that C = PC1 for some polynomial C1. Moreover,

A divides C1 and B divides C1, therefore C1 ∈ M(A) ∩M(B) = M(M). In particular, deg M 6 deg C1 so that
deg(PM) 6 deg(PC1) = deg C. This proves that deg(PM) is minimal among the degrees of the non-zero multiples of PA
and PB, therefore PM is an lcm for PA and PB.

Finally, (PA) ∨ (PB) = (PM)◦ = P◦M since M is already monic. X

Proposition 15. Let A and B be two non-zero polynomials in K[X]. Then

(A ∧ B) · (A ∨ B) = (AB)◦.

Proof. [Not done in class.] Set M = A ∨ B and D = A ∧ B. Since AB is a common multiple of A and B, it is a multiple of
M. We can write AB = MC. To prove the result, we need only prove that C and D are associates, that is, that C is a gcd
of A and B.

First, let us check that C is a common divisor of A and B. We can write M = AA1, therefore AB = MC = AA1C and
B = A1C so that C divides B; similarly, C divides A.

Now let P be a divisor of A and B. Then P also divides AB. We can write A = PA2, B = PB2 and AB = PQ.
We then have PQ = AB = PA2B = APB2, hence Q = A2B = AB2, so that A and B divide Q. Therefore M divides Q,

and we can write Q = MQ1.
We now have MC = AB = PQ = PMQ1, therefore C = PQ1, that is, P divides C.
We have proved that any common divisor of A and B divides C, therefore C is a gcd of A and B. X

D. Coprime polynomials

Definition 16. Let A and B be two polynomials. We say that A and B are coprimecoprimea if A ∧ B = 1.
In other words, the only common divisors of A and B are the non-zero constant polynomials.

apremiers entre euxpremiers entre eux

Theorem 17 (Bézout TheoremBézout Theorema). Let A and B be two polynomials. Then A and B are coprime if, and only if, there
exist two polynomials U and V such that AU + BV = 1.

athéorème de Bézoutthéorème de Bézout

Proof. If A and B are coprime, that is, 1 is a gcd of A and B, we have already seen that there exist U and V such that
1 = AU + BV.

Now assume that there exist U and V such that 1 = AU + BV. Let P be a common divisor of A and B. Then P divides
UA + BV and therefore P divides 1, so that P must be a constant. Therefore A ∧ B = 1. X

Proposition 18 (Gauss’ LemmaGauss’ Lemmaa). Let A, B and C be three polynomials.
If A divides BC and if A and B are coprime, then A divides C.

alemme de Gausslemme de Gauss

Proof. Since A and B are coprime, there exist U and V such that 1 = AU + BV. Multiplying by C gives C = AUC+ BVC =
A ·UC + BC ·V. Since A divides A and BC, it divides A ·UC + BC ·V, therefore A divides C. X

Proposition 19. Let A, B and C be three polynomials. The following are equivalent:

(i) A and B are coprime and A and C are coprime;

(ii) A and BC are coprime.

More generally, let A1, . . . , Ap and B1, . . . , Bn be p + n polynomials. The following are equivalent:

(i) Aj and Bk are coprime for all j, k with 1 6 j 6 p and 1 6 k 6 n;

(ii) A1 · · · Ap and B1 · · · Bn are coprime.

Proof. We first prove the case with three polynomials.

(i) Assume that (i) holds. Then there exist polynomials U, V, W, T such that AU + BV = 1 and AW + CT = 1.
Multiplying these two identities gives A(AUW + UCT + VWB) + (BC)(VT) = 1, so that A and BC are coprime.

(ii) Conversely, assume that (ii) holds. Let P be a common divisor of A and B. Then P divides A and BC so that by
assumption P must be a constant. Therefore A and B are coprime. Similarly, A and C are coprime.
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In the general case [not done in class], the fact that (ii)⇒(i) is similar to the one above.
Next, assume that p = 1 and n > 2 (or the opposite). The proof that (i)⇒(ii) can be done in a similar way to the first

case, or by induction on n > 2, the first case being the case n = 2.
Finally, when p > 2 and n > 2, the case p = 1 shows that each Aj is coprime to B1 · · · Bn, therefore, applying the case

n = 1, B1 · · · Bn and A1 · · · Ap are coprime. X

Definition 20. Let A1, . . . , An be a family of polynomials. We say that they are pairwise coprimepairwise coprimea if any two of them are
coprime, that is,

∀i, j, 1 6 i < j 6 n, Ai and Aj are coprime.

apremiers entre eux deux à deuxpremiers entre eux deux à deux

Proposition 21. Let A, B and C be three polynomials. Assume that A and B are coprime.
The polynomial C is a multiple of A and B if, and only if, it is a multiple of AB.
More generally, if A1, . . . , An is a family of pairwise coprime polynomials, then C is a multiple of each of the Ak if,
and only if, it is a multiple of their product A1 A2 · · · An.

Proof. If AB divides C then A divides C and B divides A (with no assumption on A ∧ B).
Conversely, assume that A and B are coprime and that A and B both divide C. Then A ∨ B divides C. But we know

that AB = (A ∧ B)(A ∨ B) = A ∨ B. Therefore AB divides C.
For the general case [not done in class], one implication is always true, we prove the other one by induction on n > 2.

We have already done the case n = 2.
Assume the result true at the stage n > 2. Let A1, . . . , An+1 be a family of pairwise coprime polynomials such that C

is a multiple of each of the Ak. We must prove that C is a multiple of their product A1 A2 · · · An+1.
Set B = A2 . . . An+1. The polynomials A2, . . . , An+1 are n pairwise coprime polynomials such that each Ak with k > 2

divides C. Therefore by induction hypothesis, B divides C. Moreover, A1 and B are coprime by Proposition 1919, both
divide C, therefore A1B divides C (case n = 2), that is, A1 A2 · · · An+1 divides C. X

Remark. Let A and B be two non-zero polynomials. There exist polynomials A1 and B1 such that A = (A ∧ B)A1 and
B = (A ∧ B)B1.

Then A1 and B1 are coprime.
Indeed, setting D = A ∧ B, if P divides A1 and B1, then DP divides DA1 = A and DB1 = B, therefore DP divides D

and finally P divides 1, that is, P is a constant. Therefore A1 ∧ B1 = 1.

Proposition 22. Let a and b be two distinct elements of K. Then (X− a) ∧ (X− b) = 1.
More generally, let a1, . . . , an, b1, . . . , bp be n + p pairwise distinct elements of K. Let α1, . . . , αn, β1, . . . , βp n + p be non-
negative integers. Then the polynomials A = (X− a1)

α1 (X− a2)
α2 · · · (X− an)αn and B = (X− b1)

β1 (X− b2)
β2 · · · (X−

bp)
βp are coprime.

Proof. If D = (X− a)∧ (X− b), then X− a = DA and X− b = DB, so that deg D 6 1. Moreover, if deg D = 1, then A and
B must be constants. The polynomials involved are all monic, therefore X − a = D = X − b and a = b, a contradiction.
Therefore D is a constant, that is, D = 1.

To prove the general case [not done in class], apply Proposition 1919 (each of the Aj is a polynomial of the form X− at and
each of the Bk is a polynomial of the form X− bs, with at 6= bs). X

Example. Consider A = X2(X − 1) and B = X(X + 1)3. Then A ∧ B = X · (X(X − 1)) ∧ ((X + 1)3). The proposition
above tells us that X(X− 1) and (X + 1)3 are coprime. Therefore A ∧ B = X.

E. Gcd and lcm of more than two polynomials

In order to avoid problems, in the sequel we assume that all polynomials are non-zero.

Proposition 23. For any three polynomials A, B and C, we have

A ∧ (B ∧ C) = (A ∧ B) ∧ C
A ∨ (B ∨ C) = (A ∨ B) ∨ C.

In other words, gcds and lcms are associative.

Proof. [Not done in class.] The intersection is associative (check this!). Therefore D(A ∧ (B ∧ C)) = D(A) ∩ D(B ∧ C) =
D(A) ∩ (D(B) ∩D(C)) = (D(A) ∩D(B)) ∩D(C) = D(A ∧ B) ∩D(C) = D((A ∧ B) ∧ C). The result for gcds follows.

Similarly, replacing D byM and ∧ by ∨, we get the result for lcms. X

Consequence 24. In particular, for any family of n polynomials A1, . . . , An, we may consider A1 ∧ A2 ∧ · · · ∧ An and
A1 ∨ A2 ∨ · · · ∨ An (without brackets).
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Definition 25. Let A1, . . . , An be a family of n polynomials, with n > 2.

â The polynomial A1 ∧ A2 ∧ · · · ∧ An is called the greatest common divisor (gcd) of the polynomials A1, . . . , An.

â The polynomial A1 ∨ A2 ∨ · · · ∨ An is called the least common multiple (lcm) of the polynomials A1, . . . , An.

Proposition 26. The gcd and lcm of a family of polynomials are characterised as follows.

â D = A1 ∧ A2 ∧ · · · ∧ An is the unique monic polynomial such that D(D) = D(A1) ∩ · · · ∩ D(An).

â M = A1 ∨ A2 ∨ · · · ∨ An is the unique monic polynomial such thatM(M) =M(A1) ∩ · · · ∩M(An).

Proof. [Not done in class.] We prove these characterisations by induction on n > 2. The initial cases, for n = 2, are known.
We shall do the induction step for gcds, the proof for lcms is similar.
Let n be an integer with n > 2 and assume that the result is true for n polynomials. Let A1, . . . , An+1 be n + 1

polynomials.
The polynomial A1 ∧ A2 ∧ · · · ∧ An is the unique monic polynomial such that D(D) = D(A1) ∩ · · · ∩ D(An) by induc-

tion hypothesis.
The polynomial A1 ∧ A2 ∧ · · · ∧ An+1 = (A1 ∧ A2 ∧ · · · ∧ An)∧ An+1 is the unique monic polynomial such that D(A1 ∧

A2 ∧ · · · ∧ An+1) = D(A1 ∧ A2 ∧ · · · ∧ An) ∩D(An+1) (case n = 2).
Therefore, combining both facts, A1 ∧ A2 ∧ · · · ∧ An+1 is the unique monic polynomial such that D(A1 ∧ A2 ∧ · · · ∧

An+1) = ∩n+1
j=1 D(Aj). X

We can extend some of the results for the gcd and lcm of two polynomials.

Proposition 27. Let A1, . . . , An be a family of n polynomials, with n > 2, and let P be a non-zero polynomial. Then

(PA1) ∧ (PA2) ∧ · · · ∧ (PAn) = P◦(A1 ∧ A2 ∧ · · · ∧ An)

(PA1) ∨ (PA2) ∨ · · · ∨ (PAn) = P◦(A1 ∨ A2 ∨ · · · ∨ An)

Proof. [Not done in class.] We prove these results by induction on n > 2. The initial cases, for n = 2, are known.
We shall do the induction step for lcms, the proof for gcds is similar.
Let n be an integer with n > 2 and assume that the result is true for n polynomials. Let A1, . . . , An+1 be n + 1

polynomials. Then

(PA1) ∨ (PA2) ∨ · · · ∨ (PAn+1) = (PA1) ∨ ((PA2) ∨ · · · ∨ (PAn+1))

= (PA1) ∨ (P◦((A2) ∨ · · · ∨ (An+1))) (induction hypothesis)

= (P◦A1) ∨ (P◦((A2) ∨ · · · ∨ (An+1))) (normalise first polynomial)

= P◦(A1 ∨ ((A2) ∨ · · · ∨ (An+1))) (case n = 2)

= P◦(A1 ∨ A2 ∨ · · · ∨ An+1) X

Proposition 28. Let A1, . . . , An be a family of n polynomials, with n > 2. Then there exist polynomials U1, . . . , Un such
that

A1 ∧ A2 ∧ · · · ∧ An = A1U1 + A2U2 + · · ·+ AnUn.

Proof. [Not done in class.] We prove this result by induction on n > 2. The initial case, for n = 2, is known.
Let n be an integer with n > 2 and assume that the result is true for n polynomials. Let A1, . . . , An+1 be n + 1

polynomials.
By induction hypothesis, there exist n polynomials V1, . . . , Vn such that A1 ∧ A2 ∧ · · · ∧ An = A1V1 + A2V2 + · · ·+ AnVn.

Using the case n = 2, there exist two polynomials U and Un+1 such that (A1 ∧ A2 ∧ · · · ∧ An) ∧ An+1 = (A1 ∧ A2 ∧ · · · ∧
An)U + An+1Un+1.

Taking Uj = VjU for 1 6 j 6 n gives the result. X

Definition 29. Let A1, . . . , An be a family of n polynomials, with n > 2. We say that they are relatively primerelatively primea if A1 ∧ A2 ∧
· · · ∧ An = 1.

apremiers entre eux dans leur ensemblepremiers entre eux dans leur ensemble

Proposition 30. Let A1, . . . , An be a family of n polynomials, with n > 2. The following are equivalent:

(i) the polynomials A1, . . . , An are relatively prime;

(ii) there exist n polynomials U1, . . . , Un such that A1U1 + A2U2 + · · ·+ AnUn = 1.
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Proof. [Not done in class.] The implication (i)⇒(ii) is true by the previous result.
For the converse, assume that P divides Ai for all i. Then P divides A1U1 + A2U2 + · · · + AnUn = 1 so that P is

invertible. Therefore A1 ∧ A2 ∧ · · · ∧ An = 1 as required. X

Example. Consider A = X2 + X, B = X2 − 1 and C = X2 − X. We have

A = B + (X + 1) and B = (X + 1)(X− 1) + 0

so that A ∧ B = X + 1 and X + 1 = A− B.
We have

C = (X− 2)(X + 1) + 2

so that 1 = (X + 1) ∧ C and 1 = 1
2 C− 1

2 (X− 2)(X + 1).
Finally, 1 = 1

2 C− 1
2 (X− 2)A + 1

2 (X− 2)B.

Remark. The equality (A ∧ B) · (A ∨ B) = (AB)◦ does not generalise to more than two polynomials.
Take for instance A = B = C = X. Then A ∧ B ∧ C = X and A ∨ B ∨ C = X so that (A ∧ B ∧ C) · (A ∨ B ∨ C) = X2, but

ABC = X3.
However, if the polynomials A1, . . . , An are pairwise coprime, then A1 ∨ A2 ∧ · · · ∧ An = A1 A2 · · · An. This follows from

Propositions 2121 and 2626.

II. Irreducible polynomials and factorisations

Definition 31. Let P be a polynomial in K[X]. We say that P is irreducibleirreduciblea if it is not constant and if its only divisors are

â the non-zero constant polynomials, and

â the polynomials which are associates of P, that is, the λP for λ ∈ K∗.

A polynomial is reduciblereducibleb if it is not irreducible.

airréductibleirréductible
bréductibleréductible

Remark. A polynomial P is reducible if, and only if, there exist Q and R such that deg Q < deg P, deg R < deg P and
P = QR.

Properties 32. â Any polynomial of degree 1 is irreducible.

â If P is a polynomial of degree 2 or 3, then it is irreducible if, and only if, it has no rootroota in K.

â If P is an irreducible polynomial and if P does not divide a polynomial A, then P and A are coprime.

â Let P be an irreducible polynomial. Let A1, . . . , An be a family of polynomials. Then P divides the product
A1 · · · An if, and only if, P divides one of the Ai.

â If a polynomial is irreducible, then so are its associates. Therefore if two irreducible polynomials are not
associates, then they are coprime. In particular, two distinct monic irreducible polynomials are coprime.

aracineracine

Proof. â Let P be a polynomial of degree 1. It is not a constant. Moreover, if Q divides P, then 0 6 deg Q 6 1.

If deg Q = 0, then Q is a constant. If deg Q = 1, then P and Q are associates (P = QR for some R with 1 = deg P =
deg Q + deg R = 1 + deg R so that R is a constant).

Therefore the only divisors of P are constants and associates of P.

â Let P be a polynomial of degree 2 or 3.

First assume that P is irreducible. Assume for a contradiction that P has a root a ∈ K. Then X − a is a non-
constant polynomial that divides P and which is not an associate of P (different degrees). Therefore P is reducible,
a contradiction. Therefore P does not have a root in K.

Now assume that P does not have a root in K. Assume for a contradiction that P is reducible in K[X]. Then there
exist Q and R such that P = QR, deg Q < deg P and deg R < deg P. Note that neither Q nor R are constants
(otherwise the other polynomial would have the same degree as P). Therefore we have

1 6 deg Q deg P ∈ {2, 3}
1 6 deg R deg P ∈ {2, 3}
deg Q + deg R = deg P ∈ {2, 3}
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and it follows that one of Q and R has degree 1, for instance deg Q = 1. Set Q = aX + b with a 6= 0. Then − b
a is a

root of P, a contradiction. Therefore P is irreducible.

â We assume that P is an irreducible polynomial that does not divide A. We must prove that P ∧ A = 1. Let Q be a
polynomial that divides both P and A. We must prove that Q is a constant.

Assume for a contradiction that Q is not a constant. Then, since Q divides P and P is irreducible, Q is an associate
of P. But Q divides A, therefore P divides A, a contradiction.

Therefore Q is a constant, as required.

â We prove it by induction on n > 2.

• First assume that n = 2. The polynomial P is irreducible and divides A1 A2. If P divides A1, there is nothing
to prove. If P does not divide A1, then the previous property shows that P and A1 are coprime. Therefore by
Gauss’ Lemma, P divides A2.1

• [Not done in class.] Now assume that the result is true for n polynomials. Let A1,. . . ,An+1 be n + 1 polynomials
such that P divides A1 · · · An An+1. If P divides one of the Ai for 1 6 i 6 n, there is nothing to prove. Assume
therefore that P does not divides any of the Ai for 1 6 i 6 n. Then by induction hypothesis (its contrapositive),
P does not divide A1 · · · An. Therefore P and A1 · · · An are coprime, and by Gauss’ Lemma, P divides An+1.

â The first assertion is clear. Now if P and Q are two irreducible polynomials that are not associates, in particular
P does not divide Q, therefore (since P is irreducible) P and Q are coprime.

Finally, two distinct monic polynomials cannot be associates. X

Example. The polynomial X2 + 1 is irreducible in R[X] since it has no root in R and has degree 2. (It is also irreducible
in Q[X] for the same reason).

However, it is reducible in C[X] since X2 + 1 = (X + i)(X − i) with deg(X + i) = 1 < 2 and deg(X − i) = 1 < 2 (or
because it has a root in C).

Therefore the irreducibility of a polynomial depends on K.

Example. We shall see later that there are no irreducible polynomials of degree greater than 2 in R[X] or in C[X].
However, there are in Q[X].

For instance, the polynomial X3 + 2 does not have a rational root, otherwise there would be coprime integers p and

q (with q > 0) such that
p3

q3 = −2, that is, p3 = −2q3. Therefore p3 would be even, hence p also, write p = 2r, then

8r3 = −2q3 hence 4r3 = −q3, therefore q would be even also, which contradicts the fact that p and q are coprime.
Consequently, since deg(X3 + 2) = 3, it must be irreducible in Q[X].

Example. The polynomial (X2 + 1)2 is reducible in R[X] but has no root in R: the property above does not hold for
polynomials of degree 4 or more.

Remark. Any non-constant polynomial has an irreducible divisor.
This can be proved by induction on the degree.

â Any polynomial of degree 1 is irreducible, hence has an irreducible divisor.

â Assume that any non-constant polynomial Q of degree deg Q 6 d for some d > 1 has an irreducible divisor. Let
P be a non-constant polynomial of degree d + 1.

If P is irreducible, there is nothing to prove.

If P is reducible, then P has a non-constant divisor Q with deg Q < deg P, that is, deg Q 6 d. By induction
hypothesis, Q has an irreducible divisor, hence so has P.

In particular, to prove that two polynomials A and B are coprime, it is enough to prove that they have no common
irreducible divisor.

Indeed, if P divides A and B and if P is not constant, then P has an irreducible divisor which is a common divisor of
A and B.

A. Irreducible polynomials in C[X]

Theorem 33 (Fundamental Theorem of AlgebraFundamental Theorem of Algebraa). Any non-constant polynomial in C[X] has at least one root in C.

athéorème de d’Alembert-Gaussthéorème de d’Alembert-Gauss

Proof. Admitted. X

Corollary 34. The irreducible polynomials in C[X] are the polynomials of degree 1.
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Proof. We already know that any polynomial of degree 1 is irreducible.
Conversely, let P be an irreducible polynomial in C[X]. We must have deg P > 1 (P is not constant). If deg P > 1 then

P has a root in C, therefore there exists Q with deg Q < deg P such that Q divides P. The polynomial Q is not constant
and not an associate of P. This contradicts the irreducibility of P. Therefore deg P = 1. X

The irreducible polynomials in C[X] are the ‘building blocks’ for polynomials in C[X] (just like prime numbers are for
integers).

Corollary 35. Let A be a non-constant polynomial in C[X]. Then A can be written uniquely (up to reordering of the
factors)

A = λ
p

∏
k=1

(X− ak)
nk = λ(X− a1)

n1 (X− a2)
n2 · · · (X− ap)

np

where λ is the leading coefficientleading coefficienta of A, the scalars a1, . . . , ap are the distincts roots of A in C and the positive integers
nk are their respective multiplicities.

acoefficient dominantcoefficient dominant

Proof. The existence is proved by induction on deg A > 1.
If deg A = 1, the result is clear.
Assume that deg A = d > 1 and assume that the result is true for polynomials of degree 6 d− 1. By the Fundamental

Theorem of Algebra (d’Alembert-Gauss), the polynomial A has a root α ∈ C. Then A = (X − α)B with deg B = d− 1.
By induction hypothesis, we can write B = λ ∏

p
k=1(X − ak)

nk = (X − a1)
n1 (X − a2)

n2 · · · (X − ap)
np where λ is the

leading coefficientleading coefficient† of B, the scalars a1, . . . , ap are the distincts roots of B in C and the positive integers mk are their
respective multiplicities. The result for A then follows.

[The remainder of the proof was not done in class.]
We now prove uniqueness. Assume that A = λ ∏

p
k=1(X − ak)

nk = µ ∏
q
`=1(X − b`)m` . It is clear that λ and µ are the

leading coefficient of A hence λ = µ.
For ` ∈ {1, . . . , q}, the polynomial X − b` is irreducible and divides the product ∏

p
k=1(X − ak)

nk hence X − b` divides
one of the factors X − ak. It follows that b` = ak. Therefore

{
b1, . . . , bq

}
⊂
{

a1, . . . , ap
}

. The other inclusion is proved in
the same way, hence we have equality and p = q. We now have A = λ ∏

p
k=1(X− ak)

nk = λ ∏
p
k=1(X− ak)

mk . Assume for a
contradiction that nk < mk for some k. To simplify notation, say k = 1. Then ∏

p
k=2(X − ak)

nk = (X − a1)
m1−n1 ∏

p
k=2(X −

ak)
mk so that X− a1 divides ∏

p
k=2(X− ak)

nk and therefore X− a1 (irreducible) divides one of the ak for k > 2 and a1 = ak
for some k > 2, a contradiction. This proves that nk = mk for all k so that the decomposition is unique.

It is clear that the ak are the roots of A. Moreover, the multiplicity of ak as a root of A is necessarily at least nk, and it
cannot be greater (same argument as above), hence it is the multiplicity of ak as a root of A. X

Definition 36. A non-constant polynomial A in K[X] is said to be splitsplita in K[X] if it is a product of polynomials of degree 1.
In other words, the number of roots of A in K is exactly deg A.

ascindéscindé

Remark. The existence part of the result above can be expressed as follows: any non-constant polynomial in C[X] is split.

Example. Roots of unity. Let n > 1 be an integer. The polynomial Xn − 1 has n roots in C. The elements ωk = e2ikπ/n

for 0 6 k 6 n − 1 are roots of this polynomial and are pairwise distinct. Indeed, if ωk = ω`, then 1 = ωkω−1
` =

exp
(

2ikπ
n −

2i`π
n

)
= exp

(
2i(k−`)π

n

)
, so that k−`

n must be an integer; however, −n− 1 6 k − ` 6 n− 1 so that we must

have k− ` = 0 as required. Therefore they are all the roots of Xn − 1. In particular, Xn − 1 = ∏n−1
k=0 (X−ωk).

Proposition 37. Let A and B be two polynomials in K[X] which are split. Set A = λ ∏
p
k=1(X − ak)

nk and B =

µ ∏
p
k=1(X− ak)

mk with nk and mk non-negative integers (ak need not be a root of A or B if nk = 0 or mk = 0).
Then A divides B if, and only if, nk 6 mk for all k.

Proof. If nk 6 mk for all k, then B = Aµλ−1 ∏
p
k=1(X− ak)

mk−nk hence A divides B.
Conversely, assume that A divides B. Since the polynomial (X− ak)

nk divides A, it divides B. If nk = 0 then necessarily
mk > 0 = nk. Otherwise, this means that ak is a root of B with multiplicity at least nk. But we know that the multiplicity
of ak as a root of B is mk and therefore mk > nk. X

Proposition 38. Let A and B be two polynomials in K[X] which are split. Set A = λ ∏
p
k=1(X − ak)

nk and B =

µ ∏
p
k=1(X− ak)

mk with nk and mk non-negative integers. For each k, set uk = min(nk, mk) and vk = max(nk, mk).
Then A ∧ B = ∏

p
k=1(X− ak)

uk and A ∨ B = ∏
p
k=1(X− ak)

vk .

†coefficient dominantcoefficient dominant
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Proof. [Not done in class.] Set D = ∏
p
k=1(X− ak)

uk and M = ∏
p
k=1(X− ak)

vk . The previous result shows that D divides A
and B and that M is a multiple of A and B.

We have A = DA1 and B = DB1 with A1 = λ ∏
p
k=1(X − ak)

nk−uk and B1 = µ ∏
p
k=1(X − ak)

mk−uk . Moreover, if P is
an irreducible polynomial that divides A1 and B1, it divides one of their factors, say X − ak. But X − ak is irreducible,
therefore P and X− ak are associates, so that X− ak divides both A1 and B1. This implies that nk− uk > 0 and mk− uk > 0
which is impossible. Therefore A1 and B1 have no non-constant divisor, hence they are coprime. Consequently, D is a
gcd of A and B and it is monic therefore D = A ∧ B.

Finally, MD = ∏
p
k=1(X − ak)

uk+vk = ∏
p
k=1(X − ak)

nk+mk = (AB)◦ (since for each k we have nk + mk = uk + vk),

therefore M =
(AB)◦

D
=

(AB)◦

A ∧ B
= A ∨ B. X

Example. Let us return to the example following Proposition 44, where we wanted to find a greatest common divisor for
A = X5 − 2X4 + X3 = X3(X − 1)2 and B = X3 − X = X(X − 1)(X + 1). We may now immediately say, using the result
above, that A ∧ B = X(X− 1). We also have A ∨ B = X3(X− 1)2(X + 1).

B. Irreducible polynomials in R[X]

Lemma 39. Let A be a polynomial in R[X]. Let z ∈ C be a root of A. Then the conjugate z̄ is also a root of A. Moreover,
the multiplicity of z̄ is equal to the multiplicity of z.
In other words, the non-real complex roots of A are pairwise conjugate.

Proof. Write A = ∑d
k=0 akXk with ak ∈ R. Then we have A(z̄) = ∑d

k=0 ak z̄k = ∑d
k=0 ak z̄k = ∑d

k=0 akzk = A(z) = 0̄ = 0 so
that z̄ is a root of A. Hence z is a root of A of and only if z̄ is a root of A.

Similarly, for any k > 1, z is a root of the derivative A(k) if, and only if, z̄ is a root of A(k)(z̄). Therefore the multiplicities
of z and z̄ as roots of A are the same (Corollary 159 in the first semester). X

Proposition 40. The irreducible polynomials in R[X] are exactly

â the polynomials of degree 1, and

â the polynomials of degree 2 with no roots in R.

Proof. We already know that polynomials of degree 1 and polynomials of degree 2 with no roots in R are irreducible.
Now let A be a polynomial in R[X].

â If deg A > 1 is odd, then by the Intermediate Value Theorem, A has a root in R. Therefore A is not irreducible.

â If deg A > 2 is even, we may assume that A has no real root (otherwise it is clearly not irreducible in R[X]). As a
polynomial in C[X], using the previous lemma, we have A = λ ∏

p
k=1(X − ak)

nk (X − ak)
nk where the ak, ak in C for

1 6 k 6 p are the pairwise distinct roots of A, λ ∈ R is the leading coefficient of A and nk is the multiplicity of ak.
Therefore A = λ ∏

p
k=1(X2 − 2<akX + |ak|2)nk in R[X]. Since deg A > 2, we must have either p > 2 or p = 1 and

n1 > 2. Therefore A is reducible in R[X].

The result then follows. X

Theorem 41. Let A be a non-constant polynomial in R[X]. Then A can be written uniquely (up to reordering of the
factors)

A = λ
p

∏
k=1

(X− ak)
nk

s

∏
`=1

(X2 + b`X + c`)
m`

= (X− a1)
n1 (X− a2)

n2 · · · (X− ap)
np (X2 + b1X + c1)

m1 (X2 + b2X + c2)
m2 · · · (X2 + bsX + cs)

m`

where λ is the leading coefficientleading coefficienta of A, the scalars a1, . . . , ap are the distincts roots of A in R and the positive integers
nk are their respective multiplicities, the polynomials X2 + b`X + c` are pairwise distinct with negative discriminant
and the m` are positive integers.
Each polynomial X2 + b`X + c` can be written X2 + b`X + c` = (X− β`)(X− β`) where β` is a non-real complex root
of A; the integer m` it then the multiplicity of β` as a root of A.

acoefficient dominantcoefficient dominant

Proof. [Not done in class.] Let a1,. . . ,ap be the distinct roots of A, with multiplicities n1,. . . , np respectively. Then each
polynomial (X − ak)

nk divides A. Moreover, the polynomials (X − a1)
n1 ,. . . ,(X − ap)

np are pairwise coprime (indeed, if
P is an irreducible polynomial that divides (X− aj)

nj and (X− ak)
nk (k 6= j), then P divides X− aj and X− ak, therefore,

since all three polynomials are irreducible, we have X − aj = P = X − ak, a contradiction). Therefore A is a multiple of

∏
p
k=1(X − ak)

nk , that is, we have A = λ ∏
p
k=1(X − ak)

nk Q where λ is the leading coefficient of A and Q is a polynomial
in R[X] with no real roots.
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The same argument as in the proof of the previous proposition shows that we can write Q = ∏s
`=1(X − β`)

m` (X −
β`)

m` = ∏s
`=1(X2 + b`X + c`)m` with the notation of the statement. This proves existence.

Uniqueness follows from the uniqueness of the decomposition of A in C[X]. X

III. Lagrange interpolation

In this section we fix an integer n > 1 and n distinct elements x1, . . . , xn in K.
Given any n elements y1, . . . , yn, the aim is to find and characterise polynomials A such that for all i we have A(xi) = yi.

Definition 42. For any k ∈ {1, . . . , n}, define the polynomial

Lk(X) = ∏
j=1
j 6=k

X− xj

xk − xj
.

It is the kth Lagrange interpolation polynomialLagrange interpolation polynomiala

apolynôme d’interpolation de Lagrangepolynôme d’interpolation de Lagrange

Lemma 43. We have deg Lk = n− 1, Lk(xk) = 1 and Lk(xj) = 0 if j 6= k.

Proof. Clear. X

Proposition 44. Let x1, . . . , xn be a family of pairwise distinct elements in K and let y1, . . . , yn be a family of elements
in K.
There exists a unique polynomial A with deg A 6 n− 1 and, for all k ∈ {1, . . . , n}, A(xk) = yk.
This polynomial is given by A = ∑n

k=1 yk Lk.

Proof. Put A = ∑n
k=1 yk Lk. Then deg A 6 n− 1 and A(xj) = ∑n

k=1 yk Lk(xj) = yjLj(xj) = yj for all j as required. Therefore
the polynomial exists.

We now prove uniqueness. Assume that A and B are two polynomials of degree at most n− 1 such that A(xi) = yi =
B(xi) for all i ∈ {1, . . . , n}. Then xi is a root of A− B for all i, so that A− B has at least n distinct roots. But we know
that the number of roots of A− B is at most deg(A− B) if A− B 6= 0, and deg(A− B) 6 n− 1 by assumption, therefore
A = B. The polynomial A is therefore unique. X

Proposition 45. Let x1, . . . , xn be a family of pairwise distinct elements in K and let y1, . . . , yn be a family of elements
in K.
Let P be a polynomial such that for all k ∈ {1, . . . , n} we have P(xk) = yk.
Then P(X) = A(X) + Q(X)∏n

k=1(X− xk) where A is the polynomial in Proposition 4444 and Q is any polynomial.

Proof. The Euclidean division of P by (X− x1) · · · (X− xn) gives P = Q ∏n
k=1(X− xk) + A with deg A 6 n− 1. Moreover,

A(xk) = P(xk) = yk for all k, therefore by the previous proposition, A = ∑n
k=1 yk Lk.

We could also say that xj is a root of P− A, with A = ∑n
k=1 yk Lk, for all j, therefore since the polynomials X − x1, . . . , X − xn

are pairwise coprime (the xj are pairwise distinct), the polynomial (X− x1) · · · (X− xn) divides P− A, as required. X
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Chapter 7

Rational fractions and partial fraction decomposition

I. Rational fractions

We consider the set K(X) of fractions of the form F =
A
B

where A and B are polynomials in K[X] with B 6= 0. Such a

fraction is called a rational fractionrational fraction†, the polynomial A is the numeratornumerator‡ of
A
B

and the polynomial B is the denominatordenominator§

of
A
B

.

Definition 1. Two such fractions
A1
B1

and
A2
B2

are said to be equal if, and only if, A1B2 = A2B1. In particular, for any non-zero

polynomial C, we have
A
B

=
AC
BC

.

Remark. Note that any polynomial may be viewed as a rational fraction: if A is a polynomial in K[X] then
A
1

is a rational

fraction in K(X).

Definition-Proposition 2. We define two operations on K(X),

â additionadditiona, defined by
A
B
+

C
D

=
AD + BC

BD

â multiplicationmultiplicationb, defined by
A
B
· C

D
=

AC
BD

.

aadditionaddition
bmultiplicationmultiplication

Proof. We must check that these operations are well defined, that is, different expressions of the rational fractions
A
B

and
C
D

gives the same final result.

Assume that
A
B

=
A1
B1

and
C
D

=
C1
D1

. This means that AB1 = A1B and CD1 = C1D.

Then

(A1D1 + B1C1)BD− (AD + BC)B1D1 = A1BD1D + B1BC1D− AB1D1D− B1BCD1

= (A1B− AB1)D1D + B1B(C1D− CD1) = 0

so that
AD + BC

BD
=

A1D1 + B1C1
B1D1

, and

A1C1BD− ACB1D1 = A1C1BD− AC1B1D + AC1B1D− ACB1D1

= (A1B− AB1)C1D + AB1(C1D− CD1) = 0

so that
A1C1
B1D1

=
AC
BD

. X

†fraction rationnellefraction rationnelle
‡numérateurnumérateur
§dénominateurdénominateur
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Definition-Proposition 3. The set K(X) is a commutative fieldcommutative fielda, that is, the operations above satisfy, for all F, G and H in
K(X):

(i) F + G = G + F and FG = GF (the operations are commutativecommutativeb);

(ii) (F + G) + H = F + (G + H) and (FG)H = F(GH) (the operations are associativeassociativec);

(iii) 0 + F = F and 1F = F (addition and multiplication have an indentity elementindentity elementd);

(iv) F + (−1)F = 0 and, if F 6= 0, F
1
F
= 1 (elements in K(X) are invertibleinvertiblee for addition and non-zero elements in K(X) are

invertibleinvertiblef for multiplication);

(v) F(G + H) = FG + FH (multiplication is distributivedistributiveg with respect to addition).

acorps commutatifcorps commutatif
bcommutativecommutative
cassociativeassociative
délément neutreélément neutre
einversibleinversible
finversibleinversible
gdistributivedistributive

Proof. Exercise. X

Definition-Proposition 4. For any F ∈ K(X), there exist coprime polynomials A and B such that F =
A
B

.
This expression for F is called the irreducible formirreducible forma of F.

aforme irréductibleforme irréductible

Proof. Set F =
C
D

. Then C = (C ∧ D)A and D = (C ∧ D)B with A and B coprime. Moreover, F =
(C ∧ D)A
(C ∧ D)B

=
A
B

. X

Definition 5. Let F =
A
B

be a rational fraction in irreducible form. We associate to F a function defined on a subset of K with

values in K, again denoted by F, which sends x to F(x) :=
A(x)
B(x)

(where A and B are viewed as polynomial functionspolynomial functionsa). This

function is called rational functionrational functionb associated to F. It is defined on K \ {roots of B}.

afonctions polynomialesfonctions polynomiales
bfonction rationnellefonction rationnelle

Definition-Proposition 6. Let F =
A
B

be a rational fraction. The degreedegreea of F is the integer deg F = deg A− deg B ∈ Z.

This definition does not depend on the choice of A and B such that
A
B

= F.

We put deg 0 = −∞, as for polynomials.

adegrédegré

Proof. We must check that the degree does not depend on the choice of expression for F.

If F =
A
B

=
C
D

, then AD = BC therefore deg A + deg D = deg B + deg C and finally deg A− deg B = deg C− deg D
as required. X

Properties 7. â If F is a polynomial, then deg F is the degree of F viewed as a polynomial.

â For any rational fractions F and G we have{
deg(F + G) 6 max(deg F, deg G)

deg(FG) = deg F + deg G.
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Proof. The first part is clear since deg 1 = 0.

Set F =
A
B

and G =
C
D

.

We have F + G =
AD + BC

BD
so that deg(F + G) = deg(AD + BC)− deg(BD) 6 max(deg(AD); deg(BC))− deg B−

deg D.
Assume that deg F > deg G. Then deg A− deg B > deg C− deg D so that deg(AD) > deg(BC). We then have deg(F +

G) 6 deg(AD) − deg B − deg D = deg A − deg B = deg F. Similarly, if deg F 6 deg G, we get deg(F + G) 6 deg G.
Therefore deg(F + G) 6 max(deg F, deg G).

Finally, deg(FG) = deg AC
BD = deg(AC)− deg(BD) = deg A + deg C− deg B− deg D = deg F + deg G. X

Proposition 8. Let F be a rational fraction in K(X). Then F can be written uniquely as F = EF + G where EF is a
polynomial in K[X] and G is a rational fraction in K(X) with deg G < 0.

Proof. Set F =
A
B

with A, B in K[X], B 6= 0. We can do the Euclidean division of A by B, si that A = QB + R with

deg R < deg B. Therefore we get F = Q +
R
B

. Taking EF := Q and G :=
R
B

gives the existence.
Now assume we can write F = P + H where P is a polynomial and H is a rational fraction with deg H < 0. Then we

have G−H = P− EF. The previous result gives deg(G−H) 6 max(deg G, deg H) < 0. However, P− EF is a polynomial,
hence has non-negative degree or is zero. Therefore we get P− EF = 0 and G − H = 0. Finally, the expression in the
statement is unique. X

Definition 9. The polynomial EF in the Proposition above is called the integral partintegral parta of the rational fraction F.

apartie entièrepartie entière

Remark. Put F =
A
B

. We have EF = 0 if, and only if, deg F < 0. Otherwise, deg EF = deg A− deg B.
If deg A = deg B then EF is the quotient of the leading coefficients of A and B.

Proof. Exercise. X

Example. The rational fraction F =
X3 + 3X + 2

X2 − 1
has degree 1. Therefore deg EF = 1. The Euclidean division of X3 +

3X + 2 by X2 − 1 gives X3 + 3X + 2 = X(X2 − 1) + 4X + 2 so that F =
X(X2 − 1) + 4X + 2

X2 − 1
= X +

4X + 2
X2 − 1

. On a EF = X

qui est bien un polynôme de degré 1 et G =
4X + 2
X2 − 1

qui est bien une fraction rationnelle de degré −1 < 0.

Definition 10. Let F =
A
B

be a rational fraction in irreducible form. In particular, the polynomials A and B have no common
root.
An element α ∈ K is a rootroota of F, with multiplicitymultiplicityb m ∈N∗, if α is a root of the polynomial A with multiplicity m.
An element α ∈ K is a polepolec of F, with multiplicity m ∈ N∗, if α is a root of the polynomial B with multiplicity m. The pole is
called simplesimpled (resp. doubledoublee) if m = 1 (resp. m = 2).

aracineracine
bmultiplicitémultiplicité
cpôlepôle
dsimplesimple
edoubledouble

II. Partial fraction decomposition

A. Partial fraction decomposition in C(X)

Theorem 11. Let F =
A
B

be a rational fraction in C(X), in irreducible form. Let a1, . . . , ap be the distinct poles of F,
with respective multiplicities n1, . . . , np.
Then F can be written uniquely in the form

F = EF +
p

∑
k=1

(
nk

∑
`=1

λk,`

(X− ak)`

)

where EF is the integral part of F and the λk,` are complex numbers.
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Proof. Admitted. X

Definition 12. The expression of F given in the theorem is called partial fraction decompositionpartial fraction decompositiona of F in C(X).

adécomposition en éléments simplesdécomposition en éléments simples

Example. We may consider F =
X13 + 1

X3(X− i)2(X + j)5 . The roots of the denominator are 0, i and −j, which are not roots

of the numerator X13 + 1. Therefore F is in irreducible form and 0, i and −j are the poles of F.
We know that deg EF = deg F = 13− 10 = 3. Moreover, the pole 0 has multiplicity 3, the pole i has multiplicity 2 and

the pole j has multiplicity 5. Therefore the partial fraction decomposition of F is of the following form:

F = aX3 + bX2 + cX + d

+
λ1,3

X3 +
λ1,2

X2 +
λ1,1

X

+
λ2,2

(X− i)2 +
λ2,1

X− i

+
λ3,5

(X + j)5 +
λ3,4

(X + j)4 +
λ3,3

(X + j)3 +
λ3,2

(X + j)2 +
λ3,1

X + j
.

To find the coefficients, we can then reduce to the same denominator and identify, but that is usually long and technical.
We shall see later a few methods to find the coefficients, although they will not necessarily yield all the coefficients.

B. Partial fraction decomposition in R(X)

Proposition 13. Let F =
A
B

be a rational fraction in R(X), in irreducible form. Assume that B is split in R[X]. Let
a1, . . . , ap be the distinct poles of F, with respective multiplicities n1, . . . , np.
Then F can be written uniquely in the form

F = EF +
p

∑
k=1

(
nk

∑
`=1

λk,`

(X− ak)`

)

where EF is the integral part of F and the λk,` are real numbers.

More generally,

Theorem 14. Let F =
A
B

be a rational fraction in R(X), in irreducible form.

Let B = λ ∏
p
k=1(X − ak)

nk ∏s
t=1(X2 + btX + ct)

mt be the factorisation of B as a product of irreducible polynomials in
R[X].
Then F can be written uniquely in the form

F = EF +
p

∑
k=1

(
nk

∑
`=1

λk,`

(X− ak)`

)
+

s

∑
t=1

 mt

∑
j=1

βt,jX + γt,j

(X2 + btX + ct)j


where EF is the integral part of F and the λk,`, βt,j and γt,j are real numbers.

Proof. Admitted. X

Definition 15. The expression of F given in the theorem is called partial fraction decompositionpartial fraction decompositiona of F in R(X).

adécomposition en éléments simplesdécomposition en éléments simples

Remark. The terms in the partial fraction decomposition of F =
A
B

that are not polynomials are all of the form
P

Qn where

Q is an irreductible factor in B, P is a polynomial with deg P 6 deg Q− 1 and n is a positive integer which is between 1
and the power at which Q appears in the factorisation of B (in other words, the multiplicity of the complex roots of Q in
B).
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Example. Consider F =
X12 + 1

X2(X− 1)(X2 + 1)5(X2 + X + 1)2 ; it is in irreducible form (the irreducible divisors of the de-

nominator are X, X− 1, X2 + 1 and X2 + X + 1, which do not divide the numerator).
We know that deg F = 12 − 17 = −5 < 0 hence EF = 0. Moreover, the pole 0 has multiplicity 2, the pole 1 has

multiplicity 1, the irreducible factor X2 + 1 appears to the power 5 and the irreducible factor X2 + X + 1 appears to the

power 2 (in other words, the poles ±i in C have multiplicity 5 and the poles −1±i
√

3
2 have multiplicity 2). Therefore the

partial fraction decomposition of F is of the following form:

F = aX2 + bX + c

+
λ1,2

X2 +
λ1,1

X

+
λ2,1

X− 1

+
β1,5X + γ1,5

(X2 + 1)5 +
β1,4X + γ1,4

(X2 + 1)4 +
β1,3X + γ1,3

(X2 + 1)3 +
β1,2X + γ1,2

(X2 + 1)2 +
β1,1X + γ1,1

X2 + 1

+
β2,2X + γ2,2

(X2 + X + 1)2 +
β2,1X + γ2,1

X2 + X + 1
.

(7.1)

C. Simple poles

Proposition 16. Let F =
A
B

be a rational function in K(X) in irreducible form, and let a be a simple pole of F. Then

the coefficient of
1

X− a
in the partial fraction decomposition of F is

A(a)
B′(a)

.

Proof. Since a is a simple pole of F, we have F =
λ

X− a
+ G where G is a rational fraction such that a is not a pole of G.

Moreover, we have B = (X− a)C where C is a polynomial such that a is not a root of C.

Multiplying F =
A

(X− a)C
=

λ

X− a
+ G by X − a gives

A
C

= λ + (X − a)G and evaluating at a gives λ =
A(a)
C(a)

.

Moreover, B′ = C + (X− a)C′ so that B′(a) = C(a). Finally, λ =
A(a)
B′(a)

. X

Example. Let us return to the previous example F =
X12 + 1

X2(X− 1)(X2 + 1)5(X2 + X + 1)2 . The only simple pole of F is

1. The method in the proof will enable us to find the corresponding coefficient λ2,1. Set G = F − λ2,1

X− 1
. Multiplying

equation (7.17.1) by X− 1 gives

X12 + 1
X2(X2 + 1)5(X2 + X + 1)2 = (X− 1)F

= λ2,1

+ (X− 1)
[

aX2 + bX + c

+
λ1,2

X2 +
λ1,1

X

+
β1,5X + γ1,5

(X2 + 1)5 +
β1,4X + γ1,4

(X2 + 1)4 +
β1,3X + γ1,3

(X2 + 1)3 +
β1,2X + γ1,2

(X2 + 1)2 +
β1,1X + γ1,1

X2 + 1

+
β2,2X + γ2,2

(X2 + X + 1)2 +
β2,1X + γ2,1

X2 + X + 1

]

then we evaluate at 1 to get
2

2532 = λ2,1 and finally λ2,1 =
1

144
.

Example. Consider F = 1
X3−1 in C(X). It is in irreducible form. Its poles are the third roots of unity, 1, j = e2iπ/3 and j2.

They are all simple. Moreover, deg F < 0. Therefore the partial fraction decomposition of F has the form

F =
a

X− 1
+

b
X− j

+
c

X− j2
.

To find the coefficients, since F is in irreducible form, we may apply the proposition. We have B = X3− 1 and B′ = 3X2

so that B′(1) = 3, B′(j) = 3j2 and B′(j2) = 3j. Moreover, A = 1. Therefore a = 1
3 , b = 1

3j2 = 1
3 j and c = 1

3j =
1
3 j2 (we use

the fact that j3 = 1 so that j2 = j−1).

Finally, F =
1
3

(
1

X− 1
+

j
X− j

+
j2

X− j2

)
.
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Note that F is in R(X) so that we may consider its partial fraction decomposition in R(X), which is F =
1
3

(
1

X− 1
+
−X− 2

X2 + X + 1

)
(adding the last two terms in the complex decomposition, using the relation 1 + j + j2 = 0).

To find the coefficients a, b and c, we could also have used the method outline in the proof of the proposition. Note

that F =
1

(X− 1)(X− j)(X− j2)
=

a
X− 1

+
b

X− j
+

c
X− j2

.

â Multiplying by X − 1 gives
1

(X− j)(X− j2)
= a + (X − 1)

(
b

X− j
+

c
X− j2

)
, then evaluating at 1 gives

1
(1− j)(1− j2)

= a; we have (1− j)(1− j2) = 1− j− j2 + j3 = 1 + 1 + 1 = 3 so that a = 1
3 .

â Multiplying by X − j gives
1

(X− 1)(X− j2)
= b + (X − j)

(
a

X− 1
+

c
X− j2

)
, then evaluating at j gives

1
(j− 1)(j− j2)

= b; we have (j− 1)(j− j2) = j2 − j− j3 + j2 = 2j2 − j− 1 = 3j2 = 3j−1 so that b = 1
3 j.

â Multiplying by X − j2 gives
1

(X− 1)(X− j)
= c + (X − j2)

(
a

X− 1
+

b
X− j

)
, then evaluating at j2 gives

1
(j2 − 1)(j2 − j)

= c; we have (j2 − 1)(j2 − j) = j4 − j3 − j2 + j = j− 1− j2 + j = 3j = 3j−2 so that a = 1
3 j2.

Example. Consider F = X+1
X(X−1)(X−2)(X−3)(X−4) in R(X). It is in irreducible form, its roots are 0, 1, 2, 3 and 4, all simple,

and deg F < 0. Therefore

F =
a
X

+
b

X− 1
+

c
X− 2

+
d

X− 3
+

e
X− 4

(7.2)

for some real numbers a, b, c, d, e.

Now multiply (7.27.2) by X, which gives
X + 1

(X− 1)(X− 2)(X− 3)(X− 4)
= a +

bX
X− 1

+
cX

X− 2
+

dX
X− 3

+
eX

X− 4
, then

evaluate at 0, which gives 1
24 = a.

Similarly, multiply (7.27.2) by X− 1 then evaluate at 1, which gives b = − 1
3 .

Similarly, multiply (7.27.2) by X− 2 then evaluate at 2, which gives c = 3
4 .

Similarly, multiply (7.27.2) by X− 3 then evaluate at 3, which gives d = − 2
3 .

Similarly, multiply (7.27.2) by X− 4 then evaluate at 4, which gives e = 5
24 .

Finally, F =
1
24

1
X
− 1

3
1

X− 1
+

3
4

1
X− 2

− 2
3

1
X− 3

+
5

24
1

X− 4
.

D. Partial fraction decomposition of
P′

P

Proposition 17. Let P be a split polynomial in K[X]. Let a1, . . . , ap be its distinct roots, with multiplicities n1, . . . , np
respectively.

Then the partial fraction decomposition of
P′

P
in K(X) is

P′

P
=

p

∑
k=1

nk
X− ak

.

Proof. We prove the result by induction on the number p of distinct roots of P.

If p = 1, then P = (X− a)n so that P′ = n(X− a)n−1 and
P′

P
=

n
X− a

as required.

If p > 1, then we can write P = (X − a1)
n1 Q1 where Q1 is a polynomial such that a1 is not a root of Q1. Then

P′ = n1(X − a1)
n1−1Q1 + (X − a1)

n1 Q′1 so that
P′

P
=

n1
X− a1

+
Q′1
Q1

. We may apply the induction hypothesis to
Q′1
Q1

(the

polynomial Q1 has p− 1 distinct roots, a2, . . . , ap) to get the result. X

Example. Take P = X(X− 1)2(X + 2)5(X− 13)3 in R[X]. Then
P′

P
=

1
X

+
2

X− 1
+

5
X + 2

+
3

X− 13
.

If P = (X− i)2X7(X + j)3 then
P′

P
=

2
X− i

+
7
X

+
3

X + j
.

E. Tricks

1. Partial fraction decomposition in C(X) of a rational fraction in R(X)

If F ∈ R(X), it can be viewed in C(X) and therefore we can write its partial fraction decomposition in C(X). The
coefficients in elements of the same degree corresponding to conjugate poles must be conjugate. This halves the number
of complex unknowns. (See example below.)
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2. Use of limx→a(x− a)nF(x)

Let F =
A
B

be in irreducible form, with deg F < 0 (we can always reduce to this case). Let a be a pole of F of order n.

Then we have F =
A

(X− a)nC
where a is not a root of C. We then have

F =
n

∑
k=1

λk
(X− a)k + G

where G is a rational fraction such that a is not a pole of G (we have isolated the part of the partial fraction decomposition
of F corresponding to the pole a).

Then, in order to find λn, we can multiply the equation above by (X− a)n then evaluate at a.

Example. Consider F = X+1
X2(X−1)2 in R(X). It is in irreducible form, it has two double poles, 0 and 1 in R, therefore we

know that F = a
X2 +

b
X + c

(X−1)2 +
d

X−1 . The method above enables us to find a and c.

Multiply by X2 then evaluate at 0. This gives a = 1.
Multiply by (X− 1)2 then evaluate at 1. This gives c = 2.
We get F = 1

X2 +
b
X + 2

(X−1)2 +
d

X−1 .
We shall continue this example later.

3. Use of parity

If F is even or odd, this gives extra equations on the coefficients of the partial fraction decomposition.

Example. Consider F = 1
(X2+1)2 in R(X). It is even.

In C(X), the poles of F are i and −i of multiplicity 2. Therefore, in C(X) we have

F =
a

(X− i)2 +
b

X− i
+

c
(X + i)2 +

d
X + i

(7.3)

with a, b, c, d in C.

Conjugating (7.37.3) gives F =
ā

(X + i)2 +
b̄

X + i
+

c̄
(X− i)2 +

d̄
X− i

so that a = c̄ and b = d̄.

Moreover, since F is even, we have F(X) = F(−X) = − a
(X + i)2 −

b
X + i

− c
(X− i)2 −

d
X− i

so that a = c and −b = d.

Therefore a is a real number and b is an imaginary number.
Multiplying (7.37.3) by (X− i)2 then evaluating at i gives 1

−4 = a. Evaluating at 0 gives 1 = −2a + i(b− b̄) so that b = − i
4 .

Finally, we get F = −1
4

1
(X− i)2 −

i
4

1
X− i

+
i
4

1
X + i

− 1
4

1
(X + i)2 .

Note that F is its own partial fraction decomposition in R(X).

4. Evaluating at elements in K

When there are few coefficients remaining to be found, it can be helfpul to evaluate at an element α ∈ K which is not a
pole of F. Note that evaluating the expression of F ∈ R(X) at an element α ∈ C gives two equations.

Example. Consider F = 1
X2(X+1) in R(X). The poles are −1 (simple) and 0 (double). Therefore F = a

X+1 + b
X2 +

c
X .

Multiplying by X + 1 then evaluating at −1 gives a = 1. Evaluating at i gives − 1
2 (1− i) = a(1−i)

2 − b− ci which gives
two equations, a

2 − b = − 1
2 and − a

2 − c = 1
2 . Therefore a = 1, b = 1 and c = −1.

Finally, F = 1
X+1 + 1

X2 − 1
X .

5. Use of limx→+∞ xF(x)

We assume here that deg F < 0 (the integral part is 0). Then multiplying the expression of F by x then taking the limit
when x goes to +∞ gives an equation between some of the coefficients.

Example. Consider F = X+1
X2(X−1)2 in R(X). Recall that we had found F = 1

X2 +
b
X + 2

(X−1)2 +
d

X−1 .

Now multiply by X; this gives
X + 1

X(X− 1)2 =
1
X

+ b +
2X

(X− 1)2 +
dX

X− 1
. Taking the limit when X goes to +∞ gives

0 = b + d. Therefore b = −d.
To complete the decomposition, we can evaluate for instance at −1. This gives 0 = 1− b + 1

2 −
d
2 = 3

2 −
b
2 so that b = 3.

Finally, F =
1

X2 +
3
X

+
2

(X− 1)2 −
3

X− 1
.
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Chapter 8

Integration

Given a function f : I → R, we would like to find a differentiable function F such that F′ = f . This will not always
be possible of course, since a derivative function is not just any function. For instance if f : [0, 2] → R is defined by

f (x) =


0 if 0 6 x < 1
1 if x = 1
0 if 1 < x 6 2

then if F exists we must have F(x) = a for x ∈ [0, 1[ and F(x) = b for x ∈]1, 2] for some

constants a and b. Since F is differentiable, it is in particular continuous, so that limx→1− F(x) = limx→1+ F(x) = F(1)
and therefore a = b = F(1), so that F is constant on [a, b] and F′ = 0 6= f .

Now assume that f is continuous. Provided we can give a precise meaning to the area between the x axis, the graph of
f and the vertical lines at a and at x, the shaded area F(x) is a good candidate.

x

y

y = f (x)

x x + h

F (x)

a0

Fix real numbers a and b with a < b. We shall consider functions defined on [a, b].

I. Integration of step functions

Definition 1. A partitionpartitiona of [a, b] is a finite collection S of points in [a, b], one of which is a and the other is b. We shall write
S = {s0, . . . , sn} where a = s0 < s1 < . . . < sn−1 < sn = b. The meshmeshb of the partition S is max

06i<n
(si+1 − si).

asubdivisionsubdivision
bpaspas

Definition 2. A function ϕ : [a, b]→ R is called a step functionstep functiona if there exists a partition S = {s0, . . . , sn} of [a, b] such that
for each i with 0 6 i 6 n− 1, the function ϕ is constant on ]si, si+1[.
Such a partition is said to be adaptedadaptedb to ϕ.

afonction en escalier ou étagéefonction en escalier ou étagée
badaptéeadaptée

Lemma 3. Let ϕ : [a, b] → R be a step function. If S = {s0, . . . , sn} is a partition adapted to ϕ and if ϕ(x) = mi on the
interval ]si, si+1[ for all i with 0 6 i 6 n− 1, then the number ∑n−1

i=0 mi(si+1 − si) does not depend on the choice of S
(adapted to ϕ).

Proof. â Special case: S ⊂ T. To simplify notation, we shall assume that T = S ∪ {u} with si < u < si+1. Since ϕ is
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constant on ]si, si+1[ we have ϕ(x) = mi on ]si, u[ and on ]u, si+1[. Then

n−1

∑
j=0

mj(sj+1 − sj) =
i−1

∑
j=0

mj(sj+1 − sj) + mi(u− si) + mi(si+1 − u) +
n−1

∑
j=i+1

mj(sj+1 − sj)

=
n

∑
k=0

pk(tk+1 − tk)

where T = {t0, . . . , tn+1} and pk is the value of ϕ on ]tk, tk+1[, as required.

When S ⊂ T in general, since both sets are finite, we can write T = S ∪ {u1, . . . , ur} and do an induction on r (the
case r = 1 is done).

â General case: S and T are not necessarily contained in each other. Set U = S ∪ T. Then U is a partition of [a, b]
adapted to ϕ, S ⊂ U and T ⊂ U. If we set U = {u0, . . . , ur}, mi the value of ϕ on ]si, si+1[, pk the value of ϕ on
]tk, tk+1[, and qj the value of ϕ on ]uj, uj+1[, then the special case shows that

n−1

∑
i=0

(si+1 − si)mi =
r−1

∑
j=0

(uj+1 − uj)qj =
m−1

∑
k=0

(tk+1 − tk)pk. X

Definition 4. Let ϕ be a step function. Then, with the notations of the previous definition and lemma, we define the integralintegrala of
ϕ on [a, b] by: ∫ b

a
ϕ =

∫ b

a
ϕ(x)dx :=

n−1

∑
i=0

mi(si+1 − si).

aintégraleintégrale

Remark. This definition is independant of the choice of partition of [a, b] adapted to ϕ by the previous lemma.

Remark. This is the (signed) area under the graph of ϕ as we know it.

Notation. Given any map h : X → Y between two sets X and Y and any subset A of X, the restriction of h to A is the
map h|A : A→ Y defined by h|A(a) = h(a) for all a ∈ A.

If ϕ is a step function on [a, b] and if c ∈]a, b[, then ϕ|[a,c] is a step function on [a, c] and we define
∫ c

a
ϕ =

∫ c

a
ϕ|[a,c].

Proposition 5. Let ϕ and ψ be two step functions on [a, b].

(1) If ϕ 6 ψ we have
∫ b

a
ϕ(x)dx 6

∫ b

a
ψ(x)dx,

(2) The function ϕ + ψ is a step function and
∫ b

a
(ϕ(x) + ψ(x))dx =

∫ b

a
ϕ(x)dx +

∫ b

a
ψ(x)dx

(3) For any real number λ, the function λϕ is a step function and
∫ b

a
(λϕ(x))dx = λ

∫ b

a
ϕ(x)dx,

(4) Two step functions that are equal except at a finite number of points have the same integral.

(5) For any c ∈]a, b[, we have
∫ b

a
ϕ(x)dx =

∫ c

a
ϕ(x)dx +

∫ b

c
ϕ(x)dx (Chasles relation).

Proof. Let S (resp. T) be a partition of [a, b] adapted to ϕ (resp. ψ). Replacing S and T by S∪ T if necessary (which does not
change the integrals), we may assume that S = T = {s0, . . . , sn}. Let mi (resp. pi) be the value of ϕ (resp. ψ) on ]si, si+1[
for all i.

(1) Since ϕ 6 ψ we have mi 6 pi for all i. Then
∫ b

a
ϕ(x)dx =

n−1

∑
i=0

(si+1 − si)mi 6
n−1

∑
i=0

(si+1 − si)pi =
∫ b

a
ψ(x)dx.

(2) The function ϕ + ψ is constant, equal to mi + pi, on ]si, si+1[, therefore it is a step function. Moreover,

∫ b

a
(ϕ(x) + ψ(x))dx =

n−1

∑
i=0

(mi + pi)(si+1 − si)

=
n−1

∑
i=0

mi(si+1 − si) +
n−1

∑
i=0

pi(si+1 − si)

=
∫ b

a
ϕ(x)dx +

∫ b

a
ψ(x)dx.
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(3) [Not done in class] The function λϕ is constant, equal to λmi, on ]si, si+1[, therefore it is a step function. Moreover,

∫ b

a
(λϕ(x))dx =

n−1

∑
i=0

(λmi)(si+1 − si) = λ
n−1

∑
i=0

mi(si+1 − si) = λ
∫ b

a
ϕ(x)dx.

(4) If ϕ and ψ are equal except at a finite number of points, then ϕ− ψ is a step function which is zero except at a finite
number of points. Let T =

{
t0, t1, . . . , tp

}
be the set of points at which ϕ− ψ is non-zero to which we have added a

and b if necessary. Then T is a partition of [a, b] that is adapted to ϕ− ψ. Therefore

∫ b

a
(ϕ− ψ)(x)dx =

p−1

∑
j=0

0(tj+1 − tj) = 0.

Using (2) and (3) we get
∫ b

a
ϕ(x)dx =

∫ b

a
ψ(x)dx

(5) [Not done in class] By Lemma 33 we may assume that c ∈ S (adding it to the partition will not change the integrals).
Say c = sr. Then {s0, . . . , sr} is a partition of [a, c] adapted to ϕ|[a,c] and {sr, . . . , sn} is a partition of [c, b] adapted to
ϕ|[c,b]. We then have

∫ c

a
(ϕ(x))dx +

∫ b

c
(ϕ(x))dx =

r−1

∑
i=0

mi(si+1 − si) +
n−1

∑
i=r

mi(si+1 − si)

=
n−1

∑
i=0

mi(si+1 − si) =
∫ b

a
(ϕ(x))dx. X

II. Integrable functions

Definition-Proposition 6. A function f on [a, b] is integrableintegrablea if it is bounded and

sup
{∫ b

a
ϕ(x)dx; ϕ step function and ϕ 6 f

}
= inf

{∫ b

a
ψ(x)dx; ψ step function and ψ > f

}
.

aintégrableintégrable

Proof. We must verify that this definition makes sense. Set A f :=
{∫ b

a
ϕ; ϕ step function and ϕ 6 f

}
and B f ={∫ b

a
ψ; ψ step function and ψ > f

}
. We must prove that A f has a supremum and that B f has an infimum.

First note that both sets are non-empty: since f is bounded, the constant functions ϕ0 = inf f and ψ0 = sup f satisfy

ϕ0 6 f 6 ψ0 so that
∫ b

a
ϕ0 is in A f and

∫ b

a
ψ0 is in B f .

Moreover, A f is bounded above by
∫ b

a
ψ0 therefore it has a supremum, and B f is bounded below by

∫ b

a
ϕ0 therefore it

has an infimum. X

Remark. Note that we always have sup A f 6 inf B f . Indeed, for any step functions ϕ and ψ with ϕ 6 g 6 ϕ, we have∫ b

a
ϕ 6

∫ b

a
ψ so that

∫ b

a
ψ is an upper bound for A f and therefore sup A f 6

∫ b

a
ψ. Therefore sup A f is a lower bound for

B f and we have sup A f 6 inf B f .

Proposition 7. A step function is integrable.

Proof. If ϕ is a step function, then it is bounded because it only takes a finite number of values, and clearly sup Aϕ >∫ b

a
ϕ > inf Bϕ > sup Aϕ so that sup Aϕ = inf Bϕ =

∫ b

a
ϕ. X

Proposition 8. Let f : [a, b] → R be a function. Then f is integrable if and only if for any ε > 0 there exist step

functions ϕ and ψ such that ϕ 6 f 6 ψ and
∫ b

a
(ψ− ϕ) 6 ε.

56



Proof. â First assume that f is integrable so that sup A f = inf B f . Fix ε > 0.

By definition of the supremum and the infimum, there exist step functions ϕ and ψ such that ϕ 6 f 6 ψ and

sup A f − ε
2 6

∫ b

a
ϕ 6 sup A f and inf B f 6

∫ b

a
ψ 6 inf B f +

ε

2
. Therefore we have

∫ b

a
(ψ− ϕ) =

∫ b

a
ψ −

∫ b

a
ϕ 6

(inf B f +
ε

2
)− (sup A f −

ε

2
) = ε.

â Now assume that for any ε > 0 there exist step functions ϕ and ψ such that ϕ 6 f 6 ψ and
∫ b

a
(ψ− ϕ) 6 ε.

In particular, f is bounded (since any step function is bounded). Fix ε > 0 and let ϕ and ψ be as above. Clearly

sup A f >
∫ b

a
ϕ and inf B f 6

∫ b

a
ψ so that 0 6 inf B f − sup A f 6

∫ b

a
ψ −

∫ b

a
ϕ =

∫ b

a
(ψ− ϕ) and therefore 0 6

inf B f − sup A f 6 ε. This is true for any ε > 0, therefore sup A f = inf B f and f is integrable. X

Definition 9. If f is an integrable function on [a, b], the integralintegrala of f on [a, b] is∫ b

a
f =

∫ b

a
f (t)dt := sup

{∫ b

a
ϕ; ϕ step function, ϕ 6 f

}
= inf

{∫ b

a
ψ; ψ step function, ψ > f

}
.

aintégraleintégrale

Remark. Note that the integral just defined for an integrable function generalises the integral of a step function.

Example. There exist functions that are not integrable. For instance, let f : [0, 1]→ R be the function defined by

f (x) =

{
1 if x ∈ Q

0 if x 6∈ Q.

Let ϕ be a step function such that ϕ 6 f . Let S = {s0, s1, . . . , sn} be a partition adapted to ϕ. For each i with 0 6 i 6 n− 1,
there exists ri ∈ ]si, si+1[ such that ri 6∈ Q (because R \Q is dense in R). In particular, ϕ(ri) 6 f (ri) = 0. But ϕ is constant
on ]si, si+1[ , therefore ϕ| ]si ,si+1[ 6 0. Finally ϕ 6 0.

Similarly, using the fact that Q is dense in R, any step function ψ with ψ > f must satisfy ψ > 1.

In particular, for any step functions ϕ and ψ such that ϕ 6 f 6 ψ, we have
∫ 1

0
(ψ− ϕ) > 1. By Proposition 88, f is not

integrable.
We could also note that sup A f 6 0 < 1 6 inf B f and use the definition to prove that f is not integrable.

Proposition 10. Any monotonic function on [a, b] is integrable.

Proof. [Not done in class] We prove it for a non-decreasing function (the case of a non-increasing function is obtained in
a similar way or by changing f to − f ). Note that f is bounded below by f (a) and bounded above by f (b) hence f
is bounded. A constant function is integrable (step function), so we may assume that f is not constant and therefore
f (a) < f (b).

If S is any partition of [a, b], define step functions ϕ f ,S and ψ f ,S by

ϕ f ,S(t) = inf
[si ,si+1[

f if t ∈ [si, si+1[ for 0 6 i < n

ψ f ,S(t) = sup
[si ,si+1[

f if t ∈ [si, si+1[ for 0 6 i < n

ϕ f ,S(b) = f (b) = ψ f ,S(b).

For x < y in [a, b] and any t ∈ [x, y[, we have f (x) = inf[x,y[ f 6 f (t) 6 sup[x,y[ f 6 f (y) hence ϕ f ,S 6 f 6 ψ f ,S. Moreover,
if t ∈ [si, si+1[ we have ϕ f ,S(t) = f (si) and ψ f ,S(t) 6 f (si+1).

For any ε > 0, choose an integer n >
(b− a)( f (b)− f (a))

ε
. Consider the partition of [a, b] defined by si = a + i b−a

n for

i = 0, . . . , n (any partition S with η = mesh(S) 6 ε
f (b)− f (a) works) and the corresponding step functions ϕ f ,S and ψ f ,S.

Then we have

0 6
∫ b

a
ψ f ,S −

∫ b

a
ϕ f ,S 6

n−1

∑
i=0

(si+1 − si)( f (si+1)− f (si)) 6 η
n−1

∑
i=0

( f (si+1)− f (si)) = η( f (b)− f (a)) 6 ε.

Therefore, for any ε > 0, we have 0 6
∫ b

a
ψ f ,S −

∫ b

a
ϕ f ,S 6 ε. Hence f is integrable by Proposition 88. X

Theorem 11. If f is continuous on [a, b] then f is integrable on [a, b].

Proof. We will accept this result without proof. X
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III. Properties of the integral

Theorem 12. Let f and g be integrable functions on [a, b] and let λ be a real number. Then:

(1) f + g and λ f are integrable on [a, b] and we have∫ b

a
( f (x) + g(x)dx) =

∫ b

a
f (x)dx +

∫ b

a
g(x)dx and

∫ b

a
(λ f (x))dx = λ

∫ b

a
f (x)dx.

(2) if for all x ∈ [a, b] we have f (x) > 0, then
∫ b

a
f (x)dx > 0. In particular, if f 6 g on [a, b] we have

∫ b

a
f (x)dx 6∫ b

a
g(x)dx.

(3) If h is a function on [a, b] that is equal to f except at a finite number of points, then h is integrable and
∫ b

a
h =

∫ b

a
f .

(4) (Chasles relation) For any c ∈]a, b[, the function f is integrable on [a, b] if and only if it is integrable on [a, c] and

on [c, b], and when f is integrable on [a, b] we have
∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx.

Proof. (1) â [Not done in class.] We first prove that f + g is integrable and that
∫ b

a
( f + g) =

∫ b

a
f +

∫ b

a
g. Fix ε > 0.

Since f and g are integrable, there exist step functions ϕ1, ψ1, ϕ2 and ψ2 such that

ϕ1 6 f 6 ψ1, ϕ2 6 g 6 ψ2,
∫ b

a
(ψ1 − ϕ1) 6

ε

2
and

∫ b

a
(ψ2 − ϕ2) 6

ε

2
.

Set ϕ3 = ϕ1 + ϕ2 and ψ3 = ψ1 + ψ2. Then ϕ3 and ψ3 are step functions, ϕ3 6 f + g 6 ψ3 and
∫ b

a
(ψ3 − ϕ3) =∫ b

a
(ψ1 − ϕ1) +

∫ b

a
(ψ2 − ϕ2) 6 ε. Therefore f + g is integrable.

Since ϕ3 6 f + g 6 ψ3 we have∫ b

a
ϕ1 +

∫ b

a
ϕ2 =

∫ b

a
ϕ3 6

∫ b

a
( f + g) 6

∫ b

a
ψ3 =

∫ b

a
ψ1 +

∫ b

a
ψ2.

Moreover, we also have ∫ b

a
ϕ1 +

∫ b

a
ϕ2 6

∫ b

a
f +

∫ b

a
g 6

∫ b

a
ψ1 +

∫ b

a
ψ2.

Subtracting these inequalities gives∫ b

a
ϕ1 +

∫ b

a
ϕ2 −

∫ b

a
ψ1 −

∫ b

a
ψ2 6

∫ b

a
( f + g)−

∫ b

a
f −

∫ b

a
g 6

∫ b

a
ψ1 +

∫ b

a
ψ2 −

∫ b

a
ϕ1 −

∫ b

a
ϕ2.

The term on the right is equal to
∫ b

a
(ψ1 − ϕ1) +

∫ b

a
(ψ2 − ϕ2) 6

ε

2
+

ε

2
= ε and similarly the term on the left is

> −ε. Therefore

−ε 6
∫ b

a
( f + g)−

∫ b

a
f −

∫ b

a
g 6 ε.

Since this is true for any ε > 0 we get
∫ b

a
( f + g) =

∫ b

a
f +

∫ b

a
g.

â We now prove that λ f is integrable and that
∫ b

a
λ f = λ

∫ b

a
f .

• If λ = 0 the result is clear so we assume that λ 6= 0.

• We prove that − f is integrable and that
∫ b

a
− f = −

∫ b

a
f . Fix ε > 0. Since f is integrable, there exist step

functions ϕ and ψ such that

ϕ 6 f 6 ψ and
∫ b

a
(ψ− ϕ) 6 ε.

Then −ϕ and −ψ are step functions and

−ψ 6 − f 6 −ϕ and
∫ b

a
((−ϕ)− (−ψ) =

∫ b

a
ψ− ϕ 6 ε

therefore − f is integrable. Moreover,

−
∫ b

a
(ψ− ϕ) =

∫ b

a
(−ψ) +

∫ b

a
ϕ 6

∫ b

a
(− f ) +

∫ b

a
f 6

∫ b

a
(−ϕ) +

∫ b

a
ψ =

∫ b

a
ψ− ϕ

so that −ε 6
∫ b

a
(− f ) +

∫ b

a
f 6 ε for all ε > 0 and finally

∫ b

a
(− f ) = −

∫ b

a
f .

Consequently, it is enough to prove the required result for λ > 0.
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• Now assume that λ > 0. Fix ε > 0. Since f is integrable, there exist step functions ϕ and ψ such that

ϕ 6 f 6 ψ and
∫ b

a
(ψ− ϕ) 6

ε

λ
.

Then λϕ and λψ are step functions and

λϕ 6 λ f 6 λψ and
∫ b

a
((λψ)− (λϕ) = λ

∫ b

a
(ψ− ϕ) 6 ε

therefore λ f is integrable. Moreover,

−λ
∫ b

a
(ψ− ϕ) =

∫ b

a
(λϕ)− λ

∫ b

a
ψ 6

∫ b

a
(λ f )− λ

∫ b

a
f 6

∫ b

a
(λψ)− λ

∫ b

a
ϕ = λ

∫ b

a
(ψ− ϕ)

so that −ε 6
∫ b

a
(λ f )− λ

∫ b

a
f 6 ε for all ε > 0 and finally

∫ b

a
(λ f ) = λ

∫ b

a
f .

(2) Assume that f is integrable and f > 0. The zero function is a step function that is less than f , therefore 0 =
∫ b

a
0 6∫ b

a
f .

If f and g are integrable with f > g then f − g is integrable (by the previous two points) and f − g > 0 therefore∫ b

a
( f − g) > 0 and (again by the previous two points)

∫ b

a
f −

∫ b

a
g > 0.

(3) Assume that f and h are equal except at a finite number of points. Define ϕ = h− f ; it is equal to zero except at
a finite number of points hence it is a step function. Then h = f + ϕ is integrable as the sum of two integrable

functions. Moreover, ϕ is a step function that is 0 except at a finite number of points, therefore
∫ b

a
h =

∫ b

a
( f + ϕ) =∫ b

a
f +

∫ b

a
ϕ =

∫ b

a
f .

(4) [Not done in class.]

â First assume that f is integrable on [a, b]. We must prove that f is integrable on [a, c] and on [c, b], that is, that
f|[a,c] and f|[c,b] are integrable.

Fix ε > 0. There exist step functions ϕ and ψ such that ϕ 6 f 6 ψ and
∫ b

a
(ψ− ϕ) 6 ε.

We then have ϕ|[a,c] 6 f|[a,c] 6 ψ|[a,c] and ϕ|[c,b] 6 f|[c,b] 6 ψ|[c,b]. We also have

∫ c

a
(ψ|[a,c] − ϕ|[a,c]) +

∫ b

c
(ψ|[c,b] − ϕ|[c,b]) =

∫ c

a
(ψ− ϕ) +

∫ b

c
(ψ− ϕ) =

∫ b

a
(ψ− ϕ) 6 ε

using the Chasles relation for step functions. Since both terms on the left are non-negative, we have∫ c

a
(ψ|[a,c] − ϕ|[a,c]) 6 ε and

∫ b

c
(ψ|[c,b] − ϕ|[c,b]) 6 ε. Therefore f|[a,c] and f|[c,b] are integrable.

Moreover,
∫ b

a
ϕ 6

∫ b

a
f 6

∫ b

a
ψ and

∫ b

a
ϕ =

∫ c

a
ϕ +

∫ b

c
ϕ =

∫ c

a
ϕ|[a,c] +

∫ b

c
ϕ|[c,b] 6

∫ c

a
f|[a,c] +

∫ b

c
f|[c,b] =

∫ c

a
f +

∫ b

c
f

6
∫ c

a
ψ|[a,c] +

∫ b

c
ψ|[c,b] =

∫ c

a
ψ +

∫ b

c
ψ =

∫ b

a
ψ

so that ∫ b

a
(ϕ− ψ) 6

∫ b

a
f −

(∫ c

a
f +

∫ b

c
f
)
6
∫ b

a
(ψ− ϕ)

hence

−ε 6
∫ b

a
f −

(∫ c

a
f +

∫ b

c
f
)
6 ε

and since this is true for all ε > 0 we get
∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

â Now assume that f is integrable on [a, c] and on [c, b]. We must prove that f is integrable on [a, b]. Fix ε > 0.
Then there are step functions ϕ1 and ψ1 on [a, c] and ϕ2 and ψ2 on [c, b] such that

ϕ1 6 f|[a,c] 6 ψ1 and
∫ b

a
(ψ1 − ϕ1) 6

ε

2

ϕ2 6 f|[c,b] 6 ψ2 and
∫ b

a
(ψ2 − ϕ2) 6

ε

2
.
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Define step functions on [a, b] by ϕ = ϕ1 + ϕ2 and ψ = ψ1 + ψ2 (that is, ϕ(x) = ϕ1(x) for x ∈ [a, c[, ϕ(x) =
ϕ2(x) for x ∈]c, b] and ϕ(c) = ϕ1(c) + ϕ2(c)). Let χ be the step function which is equal to 0 everywhere except
at c where χ(c) = f (c). Then

ϕ 6 f + χ 6 ψ and
∫ b

a
(ψ− ϕ)+ 6

ε

2
+

ε

2
= ε.

Therefore f + χ is integrable on [a, b] and so is f . X

Notation. We have defined
∫ b

a
f when a < b. We set

∫ a

a
f = 0 and

∫ a

b
f = −

∫ b

a
f when a < b

so that the Chasles relation is always true (not only if a < c < b).

Theorem 13. Let f : [a, b]→ R be a continuous function that does not change sign. If
∫ b

a
f = 0 then f = 0.

Proof. We prove the result when f (x) > 0 for all x ∈ [a, b] (the case f 6 0 can be deduced from it by considering − f ).
Assume for a contradiction that f 6= 0. Then there exists α ∈ [a, b] such that f (α) > 0. Since f is continuous, there is an

interval [c, d] ⊂ [a, b] containing α and such that f (x) >
f (α)

2
for all x ∈ [c, d]. Note that

∫ c

a
f > 0 and

∫ b

d
f > 0 since f is

non-negative. We then have ∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ d

c
f (x)dx +

∫ b

d
f (x)dx

>
∫ d

c
f (x)dx >

∫ d

c

f (α)
2

dx

= (d− c)
f (α)

2
> 0,

a contradiction. Therefore f = 0. X

Proposition 14 (Mean Value Theorem for integralsMean Value Theorem for integralsa). Let f : [a, b] → R be an integrable function. If m and M are real
numbers such that m 6 f (x) 6 M for all x ∈ [a, b], then

m 6
1

b− a

∫ b

a
f (x)dx 6 M.

aformule de la moyenneformule de la moyenne

Proof. We have m(b− a) =
∫ b

a
m dt 6

∫ b

a
f (t)dt 6

∫ b

a
M dt = M(b− a). Since b− a > 0 we get the result. X

Proposition 15. Let f : [a, b] → R be a continuous function. Then there exists c ∈ [a, b] such that
∫ b

a
f (x)dx =

(b− a) f (c).

Proof. Since f is continuous on a closed bounded interval, it has a maximum M and a minimum m and f ([a, b]) = [m, M].

The previous proposition shows that 1
b−a

∫ b

a
f (x)dx is in [m, M], therefore there exists c ∈ [a, b] such that 1

b−a

∫ b

a
f (x)dx =

f (c). X

More generally, we have

Proposition 16. Let f be a continuous function on [a, b] and g a non-negative continuous function on [a, b]. Then there

exists θ ∈ [a, b] such that
∫ b

a
( f g) = f (θ)

∫ b

a
g.

Proof. Since f is continuous on a closed bounded interval, it is bounded: f ([a, b]) = [m, M]. Since g is non-negative, we

have mg 6 f g 6 Mg so that m
∫ b

a
g 6

∫ b

a
( f g) 6 M

∫ b

a
g. If g = 0 the result is clear. If g is non-zero, then

∫ b

a
g > 0 (g is

continuous and non-negative) so that m 6

∫ b

a
( f g)∫ b

a
g

6 M. Therefore there exists θ ∈ [a, b] such that

∫ b

a
( f g)∫ b

a
g

= f (θ). X
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Proposition 17. Let f : [a, b]→ R be an integrable function. Then | f | is integrable and∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣ 6 ∫ b

a
| f (t)|dt.

Proof. For any function h on [a, b], define h+ and h− on [a, b] by

h+(x) =

{
h(x) if h(x) > 0
0 if h(x) < 0

and h−(x) =

{
0 if h(x) > 0
−h(x) if h(x) 6 0.

Then we have
h = h+ − h− and |h| = h+ + h−.

Moreover, if h is a step function, then so are h+ and h−.

Fix ε > 0. Since f is integrable, there exist step functions ϕ and ψ such that ϕ 6 f 6 ψ and
∫ b

a
(ψ− ϕ) 6 ε. Then we

have

ϕ+ 6 f+ 6 ψ+

ϕ− > f− > ψ−.

Therefore ϕ+ + ψ− and ϕ− + ψ+ are step functions such that

ϕ+ + ψ− 6 f+ + f− = | f | 6 ϕ− + ψ+

and
∫ b

a

(
(ϕ− + ψ+)− (ϕ+ + ψ−)

)
=
∫ b

a

(
(ψ+ − ψ−)− (ϕ+ − ϕ−)

)
=
∫ b

a
(ψ− ϕ) 6 ε

therefore | f | integrable.

Moreover, −| f | 6 f 6 | f | so −
∫ b

a
| f | 6

∫ b

a
f 6

∫ b

a
| f |. Since | f | > 0 and therefore

∫ b

a
| f | > 0, we have

∣∣∣∣∫ b

a
f
∣∣∣∣ 6 ∫ b

a
| f |. X

Corollary 18. For any x, y in [a, b], we have ∣∣∣∣∫ y

x
f
∣∣∣∣ 6 ∣∣∣∣∫ y

x
| f |
∣∣∣∣.

Proof. If x < y the inequality is true by the previous result. If x = y we have 0 on both sides so the inequality is true. If

x > y, then
∣∣∣∣∫ x

y
f
∣∣∣∣ 6 ∫ x

y
| f | ∣∣∣∣∫ y

x
f
∣∣∣∣ = ∣∣∣∣− ∫ x

y
f
∣∣∣∣ = ∣∣∣∣∫ x

y
f
∣∣∣∣ 6 ∫ x

y
| f | =

∣∣∣∣∫ y

x
| f |
∣∣∣∣. X

IV. Some generalisations

A. Complex valued functions

Definition 19. Let f : [a, b] → C be a complex valued function. We can write f = f1 + i f2 where f1 and f2 are functions from
[a, b] to R. We say that f is integrableintegrablea if f1 and f2 are both integrable, and we define the integralintegralb of f to be∫ b

a
f (x)dx =

∫ b

a
f1(x)dx + i

∫ b

a
f2(x)dx.

aintégrableintégrable
bintégraleintégrale

Remark. Note that
∫ b

a
f1(x)dx = <

(∫ b

a
f (x)dx

)
and

∫ b

a
f2(x)dx = =

(∫ b

a
f (x)dx

)
. This means that

∫ b

a
<( f ) = <

(∫ b

a
f
)

and
∫ b

a
=( f ) = =

(∫ b

a
f
)

Proposition 20. Linearity and the Chasles relation remain true for integrable complex valued functions.
Moreover, if f : [a, b]→ C is an integrable function, then so is | f | and we have∣∣∣∣∫ b

a
f
∣∣∣∣ 6 ∫ b

a
| f |.
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Proof. The first part is easy to check.

We shall accept without proof that if f = f1 + i f2 is integrable then | f | =
√

f 2
1 + f 2

2 is integrable. Note that if f is
continuous, then so is | f | and therefore | f | is integrable in this case (the main one we shall consider).

When f is integrable, z :=
∫ b

a
f is a complex number:

∫ b

a
f = |z|eiθ . We then have∣∣∣∣∫ b

a
f
∣∣∣∣ = e−iθz = <

(
e−iθz

)
= <

(
e−iθ

∫ b

a
f
)
= <

(∫ b

a
e−iθ f

)
=
∫ b

a
<
(

e−iθ f
)

6
∫ b

a

∣∣∣e−iθ f
∣∣∣ = ∫ b

a
| f |. X

B. Piecewise continuous functions

Definition 21. A function f : [a, b] → R is piecewise continuouspiecewise continuousa if it is continuous on [a, b] except at a finite number of
points where it has finite limits from above and from below.

acontinue par morceauxcontinue par morceaux

Example. Continuous functions and step functions are piecewise continuous.

Remark. A function f is piecewise continuous if, and only if, there exists a partition S = {s0, . . . , sn} of [a, b] such that
f is continuous on each ]si, si+1[ and has limits from above and from below at each si (from above only at s0 and from
below only at sn). Moreover, if f is piecewise continuous, then for each i there is a continuous extension gi of f|]si ,s( i+1)[

to [si, si+1].

Proposition 22. A piecewise continuous function is integrable and (with the notations in the remark above)

∫ b

a
f =

n−1

∑
i=0

∫ si+1

si

f .

Proof. Define functions fi for 0 6 i < n by fi = gi on [si, si+1] and 0 elsewhere. Set f̃ = f0 + f1 + · · ·+ fn−1. Then f̃ is
equal to f except perhaps at each si. Moreover, the fi are integrable ( fi is equal to the sum of a continuous function an a

step function on [a, b]). Therefore f̃ integrable and so is f . Moreover,
∫ b

a
f =

∫ b

a
f̃ =

n−1

∑
i=0

∫ b

a
fi =

n−1

∑
i=0

∫ si+1

si

f . X

V. Riemann sums

Definition 23. If f is a function on [a, b], a Riemann sumRiemann suma of f is a sum of the form Rn( f ) = b−a
n ∑n−1

k=0 f (sk) where n is an
integer and, for each k, sk = a + k b−a

n .

asomme de Riemannsomme de Riemann

Remark. The figure below shows the geometric interpretation of a Riemann sum; it is the total area of n rectangles that
lie partly below the graph of f and partly above it. Because of the arbitrary way in which the heights of the rectangles

have been picked, we cannot say whether a particular Riemann sum is less than or greater than the integral
∫ b

a
f . But the

theorem below shows that this does not matter; provided the mesh of the partition n is large enough (that is, the bases of
the rectangles are small enough), the Riemann sum is close to the integral.
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x

y

s1 s2 s3 s4 s5 ba0

y = f (x)

Theorem 24. Let f : [a, b]→ R be a continuous function. Then the sequence (Rn( f ))n converges to
∫ b

a
f .

In particular, if f : [0, 1] → R is a continuous function, then the sequence (Rn( f ))n defined by Rn( f ) = 1
n ∑n−1

k=0 f
(

k
n

)
converges to

∫ 1

0
f .

Proof. [Admitted.]
Set sk = a + k b−a

n . Then for a fixed integer n, Sn = {s0, s1, . . . , sn} is a partition of [a, b]. Set mk = inf[sk ,sk+1] f and
Mk = sup[sk ,sk+1]

f . For any partition T =
{

t0, . . . , tp
}

of [a, b], define ϕ f ,T and ψ f ,T as in Proposition 1010. Clearly, for any

integer n we have
∫ b

a
ϕ f ,Sn 6 Rn( f ) 6

∫ b

a
ψ f ,Sn .

Fix ε > 0. We know that there exist step functions ϕ and ψ such that ϕ 6 f 6 ψ and
∫ b

a
(ψ− ϕ) 6

ε

2
. If T is any

partition adapted to ϕ and to ψ, we have ϕ 6 ϕ f ,T 6 f 6 ψ f ,T 6 ψ and therefore
∫ b

a
(ψ f ,T − ϕ f ,T) 6

ε

2
.

Set M = sup[a,b] f − inf[a,b] f > 0 and η = ε
2p(M+1) > 0. Fix N ∈ N such that b−a

N < η. Then for any n > N we also

have b−a
n < η. There are at most p intervals [sj, sj+1[ that contain a ti. For these intervals, we have

(sj+1 − sj)

 sup
[sj ,sj+1[

f − inf
[sj ,sj+1[

f

 6 ηM.

All the other intervals [sj, sj+1[ are contained in an [ti, ti+1[ so that (sj+1 − sj)
(

sup[sj ,sj+1[
f − inf[sj ,sj+1[ f

)
6 (ti+1 −

ti)
(

sup[ti ,ti+1[
f − inf[ti ,ti+1[ f

)
and summing over j gives

∫ b

a
(ψ f ,Sn − ψ f ,Sn ) 6

∫ b

a
(ψ f ,T − ψ f ,T) + pηM <

ε

2
+

ε

2
= ε.

We have
∫ b

a
ϕ f ,Sn 6

∫ b

a
f 6

∫ b

a
ψ f ,Sn and

∫ b

a
ϕ f ,Sn 6 Rn( f ) 6

∫ b

a
ψ f ,Sn so that

−ε <
∫ b

a
(ψ f ,Sn − ψ f ,Sn ) 6 Rn( f )−

∫ b

a
f 6

∫ b

a
(ψ f ,Sn − ψ f ,Sn ) < ε

as required. X

Remark. The figure below shows a geometric interpretation of
∫ b

a
ϕ f ,S6 (the lightly shaded area) and

∫ b

a
ψ f ,S6 (the whole

shaded area (light and dark)).

x

y

s1 s2 s3 s4 s5 ba0

y = f (x)
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Application. We want to find the limit (if there is one!) of the sequence u defined by un =
n−1

∑
k=0

1
2n + 3k

.

We have un =
1
n

n−1

∑
k=0

1
2 + 3 k

n
=

1
n

n−1

∑
k=0

f
(

k
n

)
where f : [0, 1] → R is defined by f (x) =

1
2 + 3x

and is continuous. The

proposition above shows that (un)n converges to
∫ 1

0
f =

∫ 1

0

1
2 + 3x

dx =
1
3

ln
5
2

.

Remark. Assume that f : [a ; b]→ R is continous. For n ∈N∗, define Sn( f ) = b−a
n ∑n

k=1 f (sk) with sk = a + k b−a
n for each

k. Then the sequence (Sn( f ))n converges to
∫ b

a
f .

Indeed, we have Sn( f )− Rn( f ) = b−a
n ( f (1)− f (0)) which has limit 0 when n goes to +∞.
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Chapter 9

Primitives. Integration techniques.

I. Primitive of a function

Definition 1. Let I be an interval and f : I → R be a function.

â If I is an open interval, an antiderivative or primitiveantiderivative or primitivea of f is a differentiable function F : I → R such that F′(x) =
f (x) for all x ∈ I.

â If I = [a, b[ or ]a, b] or [a, b], an antiderivative or primitiveantiderivative or primitiveb of f is a continuous function F : I → R that is
differentiable on ]a, b[ and such that F′(x) = f (x) for all x ∈]a, b[.

aprimitiveprimitive
bprimitiveprimitive

Proposition 2. Let I be an interval. If F and G are two primitives of a function f : I → R, the function F−G is constant
on I.

Proof. If I is an open interval, then F − G is differentiable on I and we have (F − G)′ = F′ − G′ = f − f = 0, therefore
F− G is constant on I.

If I is not an open interval, then F− G is differentiable on ]a, b[ and (F− G)′ = F′ − G′ = f − f = 0 on ]a, b[, therefore
F− G is constant on ]a, b[. Since F− G is continuous on I, we finally have F− G constant on I. X

Remark. Primitives do not always exist. If we consider the function f in the introduction of the previous chapter, there
does not exist a differentiable function F such that F′ = f (the function f is integrable). However, for continuous functions
they do, as the next theorem shows.

Theorem 3. Let I be an interval and let f : I → R be a continuous function. For any a ∈ I, the function F : I → R

defined by

F(x) =
∫ x

a
f =

∫ x

a
f (t)dt for any x ∈ I

is a primitive for f .

Proof. If a and x are in I, the closed bounded interval J with endpoints a and x is contained in I; since f is continuous
on I, it is continuous and hence integrable on J and therefore the integral F(x) =

∫ x
a f is well defined for all x ∈ I. Fix

x0 ∈ I. We have, for any x ∈ I,

F(x)− F(x0) =
∫ x

a
f −

∫ x0

a
f =

∫ x

x0

f

and (x− x0) f (x0) =
∫ x

x0

f (x0)dt

(integral of the constant function equal to f (x0)) so that

F(x)− F(x0)− (x− x0) f (x0) =
∫ x

x0

f (t)dt−
∫ x

x0

f (x0)dt =
∫ x

x0

( f (t)− f (x0))dt.

Taking absolute values gives

|F(x)− F(x0)− (x− x0) f (x0)| =
∣∣∣∣∫ x

x0

( f (t)− f (x0))dt
∣∣∣∣ 6 ∣∣∣∣∫ x

x0

| f (t)− f (x0)|dt
∣∣∣∣.
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Fix ε > 0. Since f is continuous at x0, there exists η > 0 such that | f (x)− f (x0)| < ε whenever x ∈ I and |x− x0| < η. Let
x ∈ I be such that |x− x0| < η. If t is between x0 and x then t ∈ I so that |t− x0| < η and therefore | f (t)− f (x0)| < ε. If
x > x0 then we have

0 6
∫ x

x0

| f (t)− f (x0)|dt 6
∫ x

x0

ε dt = ε(x− x0)

and if x 6 x0 we have

0 6
∫ x0

x
| f (t)− f (x0)|dt 6

∫ x0

x
ε dt = ε(x0 − x)

so that
0 >

∫ x

x0

| f (t)− f (x0)|dt = −
∫ x0

x
| f (t)− f (x0)|dt > −ε(x0 − x).

In all cases we have ∣∣∣∣∫ x

x0

| f (t)− f (x0)|dt
∣∣∣∣ 6 ε|x− x0|

for any x ∈ I such that |x− x0| < η.
Therefore, for any ε there exists η > 0 such that for any x ∈ I with |x− x0| < η we have

|F(x)− F(x0)− (x− x0) f (x0)| 6 ε|x− x0|. (9.1)

In particular, it follows that F(x) has limit F(x0) when x goes to x0, so that F is continuous at x0 and hence on I.
Now assume that x0 is not an endpoint of I. Dividing (9.19.1) by |x− x0| gives∣∣∣∣ F(x)− F(x0)

x− x0
− f (x0)

∣∣∣∣ 6 ε

whenever x 6= x0 and |x− x0| < η. Therefore we have limx→x0
F(x)−F(x0)

x−x0
= f (x0) so that F is differentiable at x0 and

F′(x0) = f (x0). X

Corollary 4. Let I be an interval and f : I → R be a continuous function.

â There exist primitives for f .

â If a ∈ I, the function x 7→
∫ x

a f is the unique primitive for f that vanishes at a.

â (Fundamental Theorem of CalculusFundamental Theorem of Calculusa) If F is a primitive for f , then for any a and x in I we have∫ x

a
f =

∫ x

a
f (t)dt = F(x)− F(a)

aThéorème fondamental de l’analyseThéorème fondamental de l’analyse

Proof. Fix a ∈ I. Then the theorem above shows that G : x 7→
∫ x

a f is a primitive for f . Moreover, G(a) =
∫ a

a f = 0.
If F is another primitive for f , then we know that F− G = c is constant. Moreover c = F(a)− G(a) = F(a). Therefore

F(x) = G(x) + F(a) =
∫ x

a f + F(a). In particular, if F vanishes at a, then F = G so that G is the unique primitive for f
that vanishes at a. X

Notation. If f is continuous, a primitive for f will be denoted by
∫

f or
∫

f (t)dt. In this notation, t and dt are symbols.

This notation is only defined up to a constant.
Warning: this notation is dangerous, you must be aware of its meaning, but it is very convenient.

We shall also write F(t) =
∫

f =
∫

f (t)dt for a primitive for f . It is an abuse of notation, since F(t) is a real number,

not a function.

We can now prove the Mean Value Inequality for complex valued functions. Let us recall the statement.

Theorem (Mean Value InequalityMean Value Inequalitya – Theorem 22.2828). Let I be an open interval and f : I → C be a complex valued
function of class C1. Assume that there exists a real number K > 0 such that | f ′(t)| 6 K for all t ∈ I. Then f is Lipschitz
continuous with Lipschitz constant K, that is,

∀x ∈ I, ∀y ∈ I, | f (x)− f (y)| 6 K|x− y|.

ainégalité des accroissements finisinégalité des accroissements finis

Proof. Take x ∈ I and y ∈ I with x > y. The function f ′ is continuous and f is a primitive of f ′, therefore f (x)− f (y) =∫ x

y
f ′ and it follows that

| f (x)− f (y)| 6
∫ x

y

∣∣ f ′∣∣ 6 ∫ x

y
K = K(x− y) = K|x− y|.

Now if y > x, exchanging x and y in the line above yields | f (y)− f (x)| 6 K|y− x| and therefore | f (x)− f (y)| 6
K|x− y|. X
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Remark. If n ∈ N, then a primitive of x 7→ xn is x 7→ xn+1

n + 1
. Therefore any primitive of a polynomial function is a

polynomial function.
However this is not true in general of rational functions, for instance the primitives of x → 1

x are not rational functions.
This leads to the following definition.

Definition 5. The logarithmlogarithma function, denoted by ln, is the primitive of x → 1
x defined on ]0;+∞[ that vanishes at 1:

ln x =
∫ x

1

1
t

dt for all x ∈]0;+∞[.

alogarithmelogarithme

Examples. â The function x → − cos x is a primitive of the sine function. The function x → 1− cos x is the primitive

of sin that vanishes at 0 and x → 2− cos x is a positive primitive of sin . We can then write
∫

sint dt = − cos t or∫
sint dt = 2− cos t.

â The function x → 1 + cos x is periodic, but none of its primitives are periodic.

II. Classical primitives

The following primitives must be known.

∫
(t + a)b dt =


(t + a)b+1

b + 1
if b 6= −1

ln|t + a| if b = −1

b can be any real number if t + a > 0 on the domain

∫
cos(at)dt =

sin(at)
a

∫
sin(at) = − cos(at)

a
if a 6= 0

∫
cosh(at)dt =

sinh(at)
a

∫
sinh(at) =

cosh(at)
a

if a 6= 0

∫
eat dt =

eat

a
if a 6= 0

∫
at dt =

at

ln a
if a > 0 and a 6= 1

∫ dt
cos2 t

= tan t
∫ dt

cosh2 t
= tanh t

∫ dt
1 + t2 = arctan t

Remark. Note that these formulas are only true on some intervals that should be specified.

Remark. Sometimes we want to find a primitive of a function of the form u(x)bu′(x) where b ∈ R. This is given by
1

b+1 (u(x))b+1 if b 6= −1 and ln|u(x)| if b = −1.

III. Integration by parts

When u and v are differentiable functions, then uv is differentiable and (uv)′ = u′v + uv′. If u and v are of class C1, then

u′, v′, u′v, uv′ and (uv)′ are continuous and therefore have primitives. We then have uv =
∫

u′v +
∫

uv′. The principle of

integration by parts is to use this formula to find
∫

u′v.

Theorem 6 (Integration by partsIntegration by partsa). If u and v are of class C1, then∫
u′v = uv−

∫
uv′∫ b

a
u′(t)v(t)dt = [u(x)v(x)]ba −

∫ b

a
u(t)v′(t)dt.

aintégration par parties (IPP)intégration par parties (IPP)

67



Example. We want I =
∫ π

0
t sin t dt. Set u′(t) = sin t and v(t) = t. Then u(t) = − cos t and v′(t) = 1. Therefore

I = [−t cos t]π0 −
∫ π

0
− cos t dt = [−t cos t]π0 − [− sin t]π0 = π − 0 + 0− 0 = π.

Example. This method enables us to find primitives for ln . Set u′ = 1 and v = ln . Then u(t) = t and v′(t) = 1
t . Therefore∫

lnt dt = t ln t−
∫

t
1
t

dt = t ln t−
∫

1 dt = t ln t− t + C.

Example. We want a primitive of arctan, that is
∫

arctan. We do an integration by parts, setting u′ = 1 and v = arctan so

that u(t) = t and v′(t) = 1
1+t2 . This gives

∫
arctant dt = t arctan t−

∫ t dt
1 + t2

= t arctan t− 1
2

∫ 2t dt
1 + t2

= t arctan t− 1
2

ln
∣∣∣1 + t2

∣∣∣+ C

= t arctan t− 1
2

ln(1 + t2) + C

since
2t

1 + t2 is of the form
w′(t)
w(t)

.

IV. Integration by substitution

We now introduce a new technique to find integrals or primitives, that arises from the chain rule, called
integration by substitutionintegration by substitution†.

Theorem 7. Let f : [a, b] → R be a continuous function and let ϕ : [α, β] → R be a function of class C1 such that
ϕ([α, β]) ⊂ [a, b]. Then ∫ ϕ(β)

ϕ(α)
f (t)dt =

∫ β

α
f (ϕ(x))ϕ′(x)dx.

Proof. Note that ( f ◦ ϕ)ϕ′ is continuous and therefore integrable on [α, β]. Set F(x) =
∫ x

ϕ(α)
f (t)dt so that F′ = f . Now

consider u := F ◦ ϕ. Then by the chain rule we have

u′(x) = (F ◦ ϕ)′(x) = F′(ϕ(x))ϕ′(x) = f (ϕ(x))ϕ′(x) for x ∈ [α, β].

Therefore u is a primitive of ( f ◦ ϕ)ϕ′ so that∫ β

α
f (ϕ(x))ϕ′(x)dx = u(β)− u(α) = F(ϕ(β))− F(ϕ(α)) =

∫ ϕ(β)

ϕ(α)
f (t)dt. X

Remark. This formula can be used in two ways.

â From right to left. We want to compute
∫ b

a
g(x)dx and we notice that g(x) can be written in the form g(x) =

f (ϕ(x))ϕ′(x). We then set t = ϕ(x) and write dt = ϕ′(x)dx.

This essentially means that we recognise that g is the derivative of the composition F ◦ ϕ where F is a primitive of
f , but the change of variable can still be useful to simplify or clarify our computations.

Example. Say we want to compute
∫ 2

1

ln x
x

dx. We see that
ln x

x
is of the form f (ϕ(x))ϕ′(x) with f = id and

ϕ(x) = ln x. Therefore ∫ 2

1

ln x
x

dx =
∫ ln 2

ln 1
t dt =

[
t2

2

]ln 2

0
=

1
2
(ln 2)2.

â From left to right. In this case, we should check that ϕ is bijective from [α, β] to ϕ([α, β]) so as to recover the

boundaries α and β from ϕ(α) and ϕ(β). This is used in practise to make sure that
∫ b

a
f (t)dt has a more tractable

form. In this case, it is more difficult to find ϕ, but practising helps...

†changement de variablechangement de variable
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Example. We want to compute
∫ 1

0

√
1− t2 dt. We set ϕ(x) = cos x. The function ϕ is of class C1 and is bijective

from [0, π
2 ] to [0, 1]. We have ϕ′(x) = − sin x. Using the theorem, and the fact that sin > 0 on [0, π

2 ], we get∫ 1

0

√
1− t2 dt =

∫ 0

π/2

√
1− cos2 x(− sin x)dx =

∫ π/2

0

√
sin2 x sin x dx =

∫ π/2

0
sin2 x dx

=
∫ π/2

0

1
2
(1− cos(2x))dx =

[
1
2

(
x− 1

2
sin 2x

)]π/2

0
=

π

4
.

Example. We want to compute
∫ √

3/2

1/
√

2

1

t2
√

1− t2
dt. Define ϕ : [π

4 ; π
3 ] → R by ϕ(x) = sin x so that ϕ′(x) = cos x > 0. We

then have ∫ √
3/2

1/
√

2

1

t2
√

1− t2
dt =

∫ π/3

π/4

cos x
sin2 x cos x

dx =
∫ π/3

π/4

1
sin2 x

dx =

[
− 1

tan x

]π/3

π/4

= 1− 1√
3

.

We could also have made the change of variable ϕ(x) = cos x.

Remark. In practise, in the example above, we set u = sin x, so that du = cos x dx and we adjust the bounds of the
integral.

More generally, to use the substitution formula
∫ ϕ(β)

ϕ(α)
f (t)dt =

∫ β

α
f (ϕ(x))ϕ′(x)dx, we set

t = ϕ(x), dt = ϕ′(x)dx and change the bounds of the integral.

Examples. (1) To compute
∫ 1

0

1
1 + x2 dx, we substitute x = tan t so that dx = (1 + tan2 t)dt hence dt = 1

1+x2 dx and

therefore

∫ 1

0

1
1 + x2 dx =

∫ π/4

0
dt =

π

4
.

Note that we could have computed this integral directly using a primitive of 1
1+x2 :

∫ 1

0

1
1 + x2 dx = [arctan x]10 =

π

4
.

(2) Substitution can also be used (if we are careful!) to compute primitives. In particular, it requires ϕ to be bijective.

Let us compute
∫ 1√

3 + 4t− 4t2
dt.

Note that this only makes sense if 3 + 4t− 4t2 > 0. We have 3 + 4t− 4t2 = −4(t2 − t− 3
4 ) = −4((t− 1

2 )
2 − 1). Let

us put x = t− 1
2 . Then 3 + 4t− 4t2 = −4(x2 − 1) = 4(1− x2) and dx = dt. We work only when − 1

2 6 t 6 3
2 or

equivalently −1 6 x 6 1. We then have∫ 1√
3 + 4t− 4t2

dt =
1
2

∫ 1√
1− x2

dx =
1
2

arcsin x + C =
1
2

arcsin(t− 1
2
) + C.

(We must not forget to go back to the original variable in order to really have a primitive of the original function.)

V. Primitive of a rational function

Let F =
P
Q

be a rational fraction in R(X). Then we know that F decomposes into a partial fraction decomposition, that

is, F is the sum

â of a polynomial,

â of fractions
a

(x− α)n where a and α are real numbers and n ∈N∗,

â of fractions
ax + b

(x2 + px + q)n where a, b, p and q are real numbers such that p2 − 4q < 0 and n ∈N∗.

Since we already know the primitives of polynomial functions, we need to know how to find primitives of x → a
(x− α)n

and x → ax + b
(x2 + px + q)n .
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A. Computation of
∫ dx
(x− α)n

The function x → 1
(x− α)n is of the form

u′(x)
u(x)n so that

∫ 1
(x− α)n dx =

−
1

(n− 1)(x− α)n−1 if n 6= 1

ln|x− α| if n = 1

(up to a constant).

B. Computation of
∫ ax + b
(x2 + px + q)n dx

Set u(x) = x2 + px + q.

â First note that u′(x) = 2x + p so that ax + b = a
2 u′(x)− ap

2 + b = cu′(x) + d. Therefore,

ax + b
(x2 + px + q)n = c

u′(x)
u(x)n + d

1
u(x)n .

Moreover, we know the primitives of
u′

un .

â We now consider
1
u

(case n = 1). Write x2 + px + q =
(

x +
p
2
)2

+
4q−p2

4 and put and α2 =
4q−p2

4 (this is possible

since 4q− p2 > 0). Then u(x) = α2
((

1
α (x +

p
2 )
)2

+ 1
)

.

We shall now use substitution. Set t = 1
α (x +

p
2 ) (that is, ϕ(x) = 1

α (x +
p
2 )). Then dt = 1

α dx (since ϕ′(x) = 1
α ),

therefore ∫ dx
u(x)

=
∫

α dt
α2(t2 + 1)

=
1
α

∫ dt
t2 + 1

=
1
α

arctan(t) =
1
α

arctan
(

1
α

(
x +

p
2

))
.

â It is possible to do find the primitives of
1

un for n > 2 inductively, but we shall not do it in this course.

Example. We want to find
∫ dt

t2 − 1
.

First step: partial fraction decomposition of
1

t2 − 1
. We get

1
t2 − 1

=
1
2

(
1

t− 1
− 1

t + 1
.
)

Therefore ∫ dt
t2 − 1

=
1
2
(ln|t− 1| − ln|t + 1|) + C =

1
2

ln
∣∣∣∣ t− 1
t + 1

∣∣∣∣+ C.

Example. We want to find
∫ t− 2

t2 − t + 1
dt. This rational fraction is in irreducible form, its degree is negative and the

denominator is irreducible.
We must now apply the method described above.
The derivative of t 7→ t2 − t + 1 sends t to 2t− 1 and we have t− 2 = 1

2 (2t− 1)− 3
2 so that

t− 2
t2 − t + 1

=
1
2

2t− 1
t2 − t + 1

− 3
2

1
t2 − t + 1

and therefore ∫ t− 2
t2 − t + 1

dt =
1
2

ln
∣∣∣t2 − t + 1

∣∣∣− 3
2

∫ dt
t2 − t + 1

.

Next, to compute
∫ dt

t2 − t + 1
we write t2 − t + 1 =

(
t− 1

2

)2
+

3
4
=

3
4

((
2t− 1√

3

)2
+ 1

)
and put u =

2t− 1√
3

. We then

have du = 2√
3

dt so that

∫ dt
t2 − t + 1

=
∫ √

3
2 du

3
4 (u

2 + 1)
=

2√
3

∫ du
u2 + 1

=
2√
3

arctan u =
2√
3

arctan
(

2t− 1√
3

)
.

Finally, we have
∫ t− 2

t2 − t + 1
dt =

1
2

ln
∣∣∣t2 − t + 1

∣∣∣−√3 arctan
(

2t− 1√
3

)
+ C.
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Example. We want to find
∫ dt

t3 + 1
.

First step: partial fraction decomposition of
1

t3 + 1
. We get

1
t3 + 1

=
1
3

1
t + 1

− 1
3

t− 2
t2 − t + 1

so that
∫ dt

t3 + 1
=

1
3

ln|t + 1| − 1
3

∫ t− 2
t2 − t + 1

dt.

Using the previous example, we have
∫ dt

t3 + 1
=

1
3

ln|t + 1| − 1
6

ln
∣∣∣t2 − t + 1

∣∣∣+ 1√
3

arctan
(

2t− 1√
3

)
+ C.

VI. Primitive of a rational function in sin, cos and tan

This is usually done by substitution, then integration of an ordinary rational function as in the previous section.

If f (x) is a rational function in sin x, cos x and tan x, the substitution t = tan x
2 always changes

∫
f into the primitive of

a rational functiun in t, but different (and more efficient) substitutions can sometimes be found.
It is important to know the trigonometry formulas.

Example. To compute F =
∫ 1

sin x + cos x
dx, we set t = tan x

2 . Then dx = 2
1+t2 dt so that F = 2

∫ 1
2t

1+t2 +
1−t2

1+t2

1
1 + t2 dt =

2
∫ 1
−t2 + 2t + 1

dt. The partial fraction decomposition of 1
−t2+2t+1 is 1

−t2+2t+1 = 1
2
√

2

(
1

t−α −
1

t−β

)
where α = 1 +

√
2

and β = 1−
√

2. Therefore
∫ 1
−t2 + 2t + 1

dt =
1

2
√

2
ln
∣∣∣∣ t− α

t− β

∣∣∣∣ so that F(x) = 1√
2

ln

∣∣∣∣∣∣
tan
( x

2

)
−1−

√
2

tan
( x

2

)
−1+

√
2

∣∣∣∣∣∣. This formula is valid

on the interval ]0, π[ or in fact in any interval that does not contain kπ, k ∈ Z.

VII. Taylor’s formula with integral remainder

Theorem 8 (Taylor’s formula with integral remainderTaylor’s formula with integral remainder). Let f : I → R be a function of class Cn+1 on an open interval I
for some n ∈N. For any elements a and b of I, we have

f (b) = f (a) +
b− a

1!
f ′(a) + · · ·+ (b− a)n

n!
f (n)(a) +

∫ b

a

(b− t)n

n!
f (n+1)(t)dt.

This is the formula of order n at a. The term
∫ b

a
(b−t)n

n! f (n+1)(t)dt is called the remainderremaindera.

arestereste

Proof. We shall prove it by induction on n.
For n = 0, this is the Fundamental Theorem of Calculus.
Now assume that the result is true at order n− 1 for functions of class Cn on I for some n > 1, and let f be a function

of class Cn+1. Then, since f is also of class Cn we have

f (b) = f (a) +
b− a

1!
f ′(a) + · · ·+ (b− a)n−1

(n− 1)!
f (n−1)(a) +

∫ b

a

(b− t)n−1

(n− 1)!
f (n)(t)dt.

For any t ∈ I, set

u(t) = − (b− t)n

n!
, v(t) = f (n)(t) and R =

∫ b

a

(b− s)n−1

(n− 1)!
f (n)(s)ds.

We have u′(t) =
n(b− t)n−1

n!
=

(b− t)n−1

(n− 1)!
so R =

∫ b

a
u′(t)v(t)dt. The function u is of class C∞ (it is a polynomial

function) and the function v is of class C1 since v′ = f (n+1) is continuous by assumption. We can therefore do an
integration by parts

R = [u(t)v(t)]ba −
∫ b

a
u′(t)v(t)dt

= u(b)v(b)− u(a)v(a)−
∫ b

a
− (b− t)n

n!
f (n+1)(t)dt

= −u(a)v(a) +
∫ b

a

(b− t)n

n!
f (n+1)(t)dt

=
(b− a)n

n
f (n)(a) +

∫ b

a

(b− t)n

n
f (n+1)(t)dt
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Finally, we have

f (b) = f (a) +
b− a

1!
f ′(a) + · · ·+ (b− a)n−1

(n− 1)!
f (n−1)(a) + R

= f (a) +
b− a

1!
f ′(a) + · · ·+ (b− a)n−1

(n− 1)!
f (n−1)(a) +

(b− a)n

n
f (n)(a) +

∫ b

a

(b− t)n

n
f (n+1)(t)dt

which is the formula of order n. X

As a corollary, we get Taylor’s inequality.

Theorem (Taylor’s inequalityTaylor’s inequality – Theorem 22.2626). Let f : I → R be a function of class Cn+1 on an interval I. Suppose that

a and b are elements in I. If
∣∣∣ f (n+1)(t)

∣∣∣ 6 M for all t between a and b, then

∣∣∣∣ f (b)−( f (a) +
b− a

1!
f ′(a) +

(b− a)2

2!
f ′′(a) + · · ·+ (b− a)n

n!
f (n)(a)

)∣∣∣∣ 6 M
|b− a|n+1

(n + 1)!
.

This equality is called Taylor’s inequalityTaylor’s inequalitya at a of order n.

ainégalité de Taylor-Lagrangeinégalité de Taylor-Lagrange

Proof. By the Taylor formula with integral remainder, we have∣∣∣∣ f (b)−( f (a) +
b− a

1!
f ′(a) +

(b− a)2

2!
f ′′(a) + · · ·+ (b− a)n

n!
f (n)(a)

)∣∣∣∣ = ∣∣∣∣∫ b

a

(b− t)n

n!
f (n+1)(t)dt

∣∣∣∣
6

∣∣∣∣∫ b

a

∣∣∣∣ (b− t)n

n!
f (n+1)(t)

∣∣∣∣dt
∣∣∣∣

6

∣∣∣∣∫ b

a

(b− t)n

n!
M dt

∣∣∣∣
=

M
(n + 1)!

|b− a|n+1. X

Remark. You have already seen a Taylor formula: Taylor-Young’s formula (first semester, Théorème 156). That formula
was of a local nature: it gives an approximation of f by a polynomial (the larger the n, the better the approximation), but
only in an immediate neighbourhood of a point in I.

The results we have just seen (Taylor’s formula with integral remainder and Taylor’s inequality) are of a global nature.
They require assumptions on [a, b], and the results are valid on [a, b].

VIII. Approximations

A. Trapezium rule

The idea is to approximate the graph of f by a broken line.

x

y

s1 s2 s3 s4 ba0

y = f (x)

Consider the partition S of [a, b] given by sk = a + k b−a
n (divide [a, b] into n intervals of equal length b−a

n ).
Let f be a function on [a, b]. Define

Tn =
b− a

n

n−1

∑
k=0

1
2
( f (sk) + f (sk+1)) =

b− a
n

(
n

∑
k=0

f (sk)−
1
2
( f (a) + f (b))

)

(this is the shaded area above).
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Theorem 9. If f is of class C2 on [a, b], then∣∣∣∣Tn −
∫ b

a
f
∣∣∣∣ 6 (b− a)3

12n2 sup
[a,b]

∣∣ f ′′∣∣.
Proof. [Not done in class.]

â We first prove that if a 6 α < β 6 b, there exists γ ∈]α, β[ such that∫ β

α
f =

β− α

2
( f (α) + f (β))︸ ︷︷ ︸

area of the trapezium

− 1
12

(β− α)3 f ′′(γ)︸ ︷︷ ︸
error

.

Define F(x) =
∫ x

α
f (t)dt − (x− α)

2
( f (α) + f (x)) + (x − α)3K where K is chosen so that F(β) = 0. We then have

F(α) = F(β) = 0 and F is twice differentiable. By Rolle’s theorem there exists δ ∈]α, β[ such that F′(δ) = 0. We
have F′(x) = f (x)− 1

2 ( f (α) + f (x))− 1
2 (x − α) f ′(x) + 3(x − α)2K so that F′(α) = F′(δ) = 0. Therefore by Rolle’s

theorem again, there exists γ ∈]α, δ[ such that F′′(γ) = 0. We have F′′(x) = − 1
2 (x − α) f ′′(x) + 6(x − α)K hence

K =
f ′′(γ)

12 . Finally, F(β) = 0 becomes
∫ β

α f =
β−α

2 ( f (α) + f (β))− 1
12 (β− α)3 f ′′(γ).

â We then have γk ∈ ]sk, sk+1[ for all k such that∣∣∣∣Tn −
∫ b

a
f
∣∣∣∣ 6 n−1

∑
k=0

∣∣∣∣ b− a
2n

( f (sk) + f (sk+1))−
∫ sk+1

sk

f
∣∣∣∣

=
(b− a)3

12n3

n−1

∑
k=0

∣∣ f ′′(γk)
∣∣ by the first part of the proof

6
(b− a)3

12n3

n−1

∑
k=0

sup
[a,b]

∣∣ f ′′∣∣ = (b− a)3

12n2 sup
[a,b]

∣∣ f ′′∣∣. X

Example. We know that
∫ 1

0

1
1 + x2 dx = arctan 1− arctan 0 =

π

4
≈ 0.785.

We want to apply the result above to get approximations of
∫ 1

0

1
1 + x2 dx. We have f ′(x) = − 2x

(x2+1)2 , f ′′(x) = 2 3x2−1
(x2+1)3

and f ′′′(x) = 24x(1−x)(1+x)
(x2+1)4 > 0 so that f ′′ is non-decreasing.

If we apply the result above with n = 1 we have f ′′(0) = −2, f ′′(1) = 1
2 and f ′′ is non-decreasing so that | f ′′| 6 2;

we then get
∫ 1

0

1
1 + x2 dxT1 − R1 ==

1
2
( f (0) + f (1)) − R1 =

1
2

3
4
− R1 = 0.75− R1 with |R1| 6 1

6 so that the error in∫ 1

0

1
1 + x2 dx = 0.75 is less than 1

6 .

If we apply the result above with n = 2 we still have | f ′′| 6 2; we then get
∫ 1

0

1
1 + x2 dx = T2−R2 =

1
4

(
f (0) + f (

1
2
)

)
+

1
4

(
f (

1
2
) + f (1)

)
− R2 =

1
4

(
3
2
+

8
5

)
− R2 = 0.775− R2 with |R2| 6 2

12·4 ≈ 0.04 so that the error in
∫ 1

0

1
1 + x2 dx = 0.775

is less than 0.04.

B. Simpson’s rule

The idea here is to approach the graph of f by a (broken) quadric.

Note that if g is a polynomial of degree 2 then
∫ b

a
g(t)dt =

b− a
6

(
g(a) + 4g

(
a + b

2

)
+ g(b)

)
. Moreover, given three

distinct real numbers α, β and γ in [a, b] (such as a, b and a+b
2 ), there is a unique polynomial g of degree 2 such that

g(α) = f (α), g(β) = f (β) and g(γ) = f (γ) (use Lagrange interpolation).

Theorem 10. Let f be a function of class C4 on [a, b]. Then∣∣∣∣∫ b

a
f − b− a

6

(
f (a) + 4 f

(
a + b

2

)
+ f (b)

)∣∣∣∣ 6 (b− a)5

2880
sup
[a,b]

∣∣∣ f (4)∣∣∣.
Proof. (Admitted – not difficult but technical.)

To simplify notation, set c =
a + b

2
and h =

b− a
2

. Note that b− c = h = c− a.
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We use integration by parts in each of the following equalities:

A : =
∫ b

c

(
(b− x)4

24
− h

(b− x)3

18

)
f (4)(x)dx

= −
(

h4

24
− h4

18

)
f (3)(c) +

∫ b

c

(
(b− x)3

6
− h

(b− x)2

6

)
f (3)(x)dx

=
h4

72
f (3)(c)−

(
h3

6
− h3

6

)
f (2)(c) +

∫ b

c

(
(b− x)2

2
− h

b− x
3

)
f ′′(x)dx

=
h4

72
f (3)(c)−

(
h2

2
− h2

3

)
f ′(c) +

∫ b

c

(
b− x− h

3

)
f ′(x)dx

=
h4

72
f (3)(c)− h2

6
f ′(c)− h

3
f (b)− 2h

3
f (c) +

∫ b

c
f

=
h4

72
f (3)(c)− h2

6
f ′(c)− h

3
( f (b) + 2 f (c)) +

∫ b

c
f .

Similarly,

B :=
∫ c

a

(
(a− x)4

24
− h

(a− x)3

18

)
f (4)(x)dx = − 1

72
h4 f (3)(c) +

1
6

h2 f (c)− 1
3

h( f (a) + 2 f (c)) +
∫ c

a
f .

Adding these equalities gives ∫ b

a
f − h

3
( f (a) + 4 f (c) + f (b)) = A + B.

We must now find an upper bound for A + B.
We use Proposition 88.1616: there exists θ ∈ [c, b] such that

|A| 6
∫ b

c

∣∣∣∣∣
(
(b− x)4

24
− h

(b− x)3

18

)
f (4)(x)

∣∣∣∣∣dx =
∫ b

c

(
− (b− x)4

24
+ h

(b− x)3

18

)∣∣∣ f (4)(x)
∣∣∣dx

=
∣∣∣ f (4)(θ)∣∣∣ ∫ b

c

(
− (b− x)4

24
+ h

(b− x)3

18

)
dx

=
∣∣∣ f (4)(θ)∣∣∣[ (b− x)5

120
− h

(b− x)4

72

]b

c

=
∣∣∣ f (4)(θ)∣∣∣ h5

180
6 sup

[a,b]

∣∣∣ f (4)∣∣∣ h5

180
.

Similarly, |B| 6 h5

180
sup[a,b]

∣∣∣ f (4)∣∣∣. The result then follows. X

Remark. In practise, we divide [a, b] into smaller intervals and apply Simpson’s rule to each, thus obtaining a better
approximation.

Example. We use Simpson’s rule with three intervals to compute
∫ 4

1

√
1 + x3 dx. Set f (x) =

√
1 + x3. We have f (4)(x) =

9x2(56x3 + x6 − 80)
16(1 + x3)7/2

.

∫ 4

1

√
1 + x3 dx =

1
6

(
f (1) + 4 f

(
3
2

)
+ 2 f (2) + 4 f

(
5
2

)
+ 2 f (3) + 4 f

(
7
2

)
+ f (4)

)
+ R

=
1
6

(
√

2 + 4

√
70
4

+ 2 · 3 + 4

√
266
4

+ 2
√

28 + 4
3
√

78
4

+
√

65

)
+ R ≈ 12.871 + R

with R 6
1

2880
9

16

(
22(56 · 23 + 26 − 80)

27/2
+

32(56 · 33 + 36 − 80)
37 +

42(56 · 43 + 46 − 80)
287/2

)
6 0.032.
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Chapter 10

Improper integrals

We have defined the integral
∫ b

a
f of an integrable function on an interval [a, b]. Recall that it represents the area under the

graph of f between a and b. We shall now study conditions under which we shall be able to define
∫ b

a
f when f defined

on [a, b[ or ]a, b].
More precisely, we want to generalise (when it is possible) in two ways:

â define the area under the graph between a real number a and +∞ or between −∞ and a (the interval is no longer
bounded).

x

y

a0
x

y

a 0

â define the area under the graph between two real numbers when the function is unbounded near a or b.

x

y

ba0
x

y

a b 0

Definition 1. Let f : I → R be a function where I is an interval that is not necessarily closed or bounded.

â We say that f is piecewise continuouspiecewise continuousa on I if f is piecewise continuous on any closed bounded interval [a, b] ⊂ I.

â More generally, we say that f is locally integrablelocally integrableb on I if it is integrable on any closed bounded interval [a, b] ⊂ I.

acontinue par morceauxcontinue par morceaux
blocalement intégrablelocalement intégrable

Definition 2. Let f : [a, b[→ R be a locally integrable function with b ∈ R or b = +∞.

If the function x →
∫ x

a
f has a finite limit when x goes to b, we say that the improper integralimproper integrala

∫ b

a
f is convergentconvergentb. This limit

is also denoted by
∫ b

a
f .

If the limit does not exist or is infinite, we say that the improper integral
∫ b

a
f is divergentdivergentc.

Similarly, let g :]a, b] → R be a locally integrable function with a ∈ R or a = −∞. If the function x →
∫ b

x
g has a finite limit

when x goes to a, this limit is denoted by
∫ b

a
g and we use the same terminology as for f .

aintégrale impropreintégrale impropre
bconvergenteconvergente
cdivergentedivergente
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Warning! The notation
∫ b

a
f stands for the improper integral and, when it converges, for its value. Use of the notation∫ b

a
f does not imply that the limit exists. Writing

∫ b

a
f = · · · has no meaning until the existence of the limit has been

proved.

Example. Is the improper integral
∫ 1

0

ln t
t

dt convergent?

The function g : ]0, 1]→ R defined by g(t) =
ln t

t
is continuous and of the form uu′ so that it is easy to find a primitive:

G(t) = 1
2 (ln t)2.

We then have, for x ∈]0, 1],
∫ 1

x

ln t
t

dt = −1
2
(ln x)2 whose limit when x approaches 0 is +∞.

Therefore the improper integral
∫ 1

0

ln t
t

dt is divergent.

Remark. Let f be a function defined on [a, b[ and take c ∈]a, b[. Then
∫ x

a
f =

∫ c

a
f +

∫ x

c
f and

∫ c

a
f is an ordinary

integral. Clearly,
∫ x

a
f is convergent if and only if

∫ x

c
f is convergent. Therefore the fact that an improper integral is

convergent or divergent only depends on the bound where the function is not defined.

Definition 3. Let f : ]a, b[→ R be a locally integrable function. Fix any c ∈]a, b[. We say that the improper integral
∫ b

a
f is

convergent if the improper integrals
∫ c

a
f and

∫ b

c
f are both convergent. It does not depend on the choice of c. We then define

∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Examples. â

∫ +∞

0

1
1 + t2 dt converges. Indeed,

∫ x

0

1
1 + t2 dt = arctan(x) −−−−→

x→+∞

π

2
.

Similarly,
∫ 0

−∞

1
1 + t2 dt converges and

∫ 0

−∞

1
1 + t2 dt =

π

2
.

Therefore
∫ +∞

−∞

1
1 + t2 dt converges and

∫ +∞

−∞

1
1 + t2 dt = π.

â

∫ +∞

0
sin t dt diverges. Indeed,

∫ x

0
sin t dt = 1− cos x has no limit when x goes to +∞.

Note that for any n ∈N, we have
∫ 2nπ

0
sin t dt = 0.

Remark. ‘Falsely improper integrals’.
If f is continuous on [a, b[ and has a finite limit ` when x nears b, then f can be extended to a continuous function

f̃ on [a, b]. Therefore the function f̃ is integrable on [a, b]. Moreover, by the Fundamental Theorem of Calculus we have∫ x

a
f = F(x)− F(a) −−→

x→b
F(b)− F(a) for a primitive F of f̃ .

Therefore the improper integral
∫ b

a
f is convergent.

Example. Consider f : ]0 ; π]→ R defined by f (t) =
sin t

t
. This function is not defined at 0 but limt→0

sin t
t

= 1, therefore∫ π

0
f (t)dt is falsely improper and hence converges.

I. Fundamental examples

Proposition 4. (1) Let a be a positive real number. Then

(a) the improper integral
∫ +∞

a

1
tα

dt converges if α > 1 and diverges if α 6 1,

(b) the improper integral
∫ a

0

1
tα

dt converges if α < 1 and diverges if α > 1.

(2) Let a < b be real numbers. Then the improper integral
∫ b

a

1
(t− a)α

dt converges if α < 1 and diverges if α > 1.
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Proof. If α 6= 1,
∫ 1

tα
dt =

1
1− α

t1−α so that

Ix =
∫ x

a

1
tα

dt =
1

1− α
(x1−α − a1−α) and Jx =

∫ a

x

1
tα

dt =
1

1− α
(a1−α − x1−α)

and limx→+∞ Ix =

{
+∞ if 1− α > 0
a1−α

α−1 if 1− α < 0
and limx→0 Jx =

{
+∞ if 1− α < 0
a1−α

α−1 if 1− α > 0
.

Now if α = 1, then
∫ x

a

1
t

dt = ln x − ln a which goes to +∞ as x goes to +∞, and
∫ a

x

1
t

dt = ln a− ln x which goes to

+∞ as x goes to 0, therefore the improper integrals are both divergent.
The proof of the last statement is similar. X

Remark. These examples will be very important once we have developed some tools to study the convergence of im-
proper integrals.

Proposition 5. Let f , g : [a, b[→ R be locally integrable functions. We assume that the improper integrals
∫ b

a
f and∫ b

a
g are convergent. Then for any λ ∈ R, the improper integrals

∫ b

a
( f + g) and

∫ b

a
(λ f ) are convergent. Moreover,∫ b

a
( f + g) =

∫ b

a
f +

∫ b

a
g and

∫ b

a
(λ f ) = λ

∫ b

a
f .

Proof. We have
∫ x

a
( f + g) =

∫ x

a
f +

∫ x

a
g and

∫ x

a
(λ f ) = λ

∫ x

a
f . We then take limits when x → b. X

Remark. There is a similar statement for locally integrable functions on ]a, b].

We shall need more tools to study convergence of improper integrals, as this example shows.

Example. What is the nature of
∫ +∞

0
tα−1e−t dt? This integral is an improper integral at +∞ but also at 0 if α < 1.

Therefore we study separately the improper integrals
∫ 1

0
tα−1e−t dt and

∫ +∞

1
tα−1e−t dt.

â Study of
∫ 1

0
tα−1e−t dt.

If α > 1, then t→ tα−1e−t is continuous on [0, 1] so that it is a falsely improper integral.

If 0 < α < 1, then
∫ 1

x
tα−1e−t dt 6

∫ 1

x
tα−1 dt 6

∫ 1

0
tα−1 dt the last integral being an convergent integral. Moreover,

the function y →
∫ 1

1/y
tα−1e−t dt is increasing (the integrand is positive), and since it is bounded above it has a finite

limit when y→ +∞, that is, when x → 0. Therefore
∫ 1

0
tα−1e−t dt converges.

If α 6 0 then
∫ 1

x
tα−1e−t dt >

∫ 1

x
t−1e−1 dt =

1
e

ln
1
x
−−→
x→0

+∞, therefore
∫ 1

0
tα−1e−t dt diverges.

â Study of
∫ +∞

1
tα−1e−t dt.

For any α we have limt→+∞ t2tα−1e−t = 0. Therefore the function t → t2tα−1e−t is bounded on [1,+∞[, so that

there exists M ∈ R such that for all t > 1 we have tα−1e−t 6
M
t2 .

Therefore, for any x > 1 we have
∫ x

1
tα−1e−t dt 6

∫ x

1

M
t2 dt = M

(
1− 1

x

)
6 M. The function x →

∫ x

1
tα−1e−t dt

is therefore increasing and bounded above, so that it has a finite limit when x goes to +∞. Finally the improper

integral
∫ +∞

1
tα−1e−t dt converges.

Therefore the improper integral
∫ +∞

0
tα−1e−t dt converges if and only if α > 0.

II. Convergence theorems

We shall state all results for locally integrable functions defined on an interval [a, b[, but the corresponding results for
locally integrable functions defined on an interval ]a, b] are true.
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A. The comparison theorems

Proposition 6. Let f be a locally integrable non-negative function defined on [a, b[. The improper integral
∫ b

a
f converges

if and only if x →
∫ x

a
f is bounded above on [a, b[.

Proof. Consider the function F : x →
∫ x

a
f . Then for x < y we have F(y) = F(x) +

∫ y

x
f . Since f is non-negative,

∫ y

x
f > 0

and therefore F is non-decreasing. Therefore F has a limit when x nears b if and only if it is bounded above. X

Proposition 6 bis. Let f be a locally integrable non-negative function defined on ]a, b]. The improper integral
∫ b

a
f

converges if and only if x →
∫ b

x
f is bounded above on ]a, b].

Proof. Consider the function F :
]

1
b−a ,+∞

[
→ R defined by y →

∫ b

a+1/y
f . Then for y < y′, that is, 1

y′ < 1
y , we have

F(y′) = F(y) +
∫ a+1/y

a+1/y′
f . Since f is non-negative,

∫ a+1/y

a+1/y′
f > 0 and therefore F is non-decreasing. Therefore F has a limit

when y nears +∞ if and only if it is bounded above. X

Theorem 7. Let f and g be locally integrable functions defined on [a, b[ (or ]a, b]) such that 0 6 f 6 g.

â If the improper integral
∫ b

a
g is convergent, then so is

∫ b

a
f and we have

∫ b

a
f 6

∫ b

a
g.

â If the improper integral
∫ b

a
f is divergent, then so is

∫ b

a
g.

Proof. For x ∈ [a, b[, define F(x) =
∫ x

a
f and G(x) =

∫ x

a
g. Since f 6 g we have F(x) 6 G(x) for any x ∈ [a, b[. If the

improper integral
∫ b

a
g is convergent, since g is non-negative this means by the previous proposition that G is bounded

above, so that F is bounded above, and since f is non-negative the previous proposition shows that
∫ b

a
f is convergent.

Moreover if this is the case, since F(x) 6 G(x) for all x, we have
∫ b

a
f = lim

x→b
F(x) 6 lim

x→b
G(x) =

∫ b

a
g.

The second statement is the contrapositive of the first. The proof in the case of ]a, b] is similar, using
∫ b

a+1/y
f and∫ b

a+1/y
g. X

We know that the convergence of an integral only depends on the local behaviour of f as x approaches b. Therefore we
have a more general version of the previous theorem.

Theorem 8. Let f and g be locally integrable functions defined on [a, b[ (resp. ]a, b]). Assume that there exists c ∈]a, b[
such that for all x ∈ [c, b[ (resp. for all x ∈]a, c]) we have 0 6 f (x) 6 g(x).

â If the improper integral
∫ b

a
g is convergent, then so is

∫ b

a
f .

â If the improper integral
∫ b

a
f is divergent, then so is

∫ b

a
g.

Remark. If f is non-positive, we can apply the previous results to − f .

Example. Let us prove that
∫ +∞

−∞
e−t2

dt converges. We study separately
∫ +∞

0
e−t2

dt and
∫ 0

−∞
e−t2

dt.

â For any t > 1, we have 0 6 e−t2
6 e−t since t2 > t, and

∫ x

1
e−t dt =

1
e
− 1

ex −−−−→x→+∞

1
e

. Therefore
∫ +∞

1
e−t2

dt

converges, and
∫ +∞

0
e−t2

dt also (t→ e−t2
is continuous on [0, 1]).

â For any t 6 −1, we have 0 6 e−t2
6 et since −t2 6 t, and

∫ 1

x
et dt = e − ex −−−−→

x→−∞
e. Therefore

∫ −1

−∞
e−t2

dt

converges, and
∫ 0

+∞
e−t2

dt also (t→ e−t2
is continuous on [−1, 0]).
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Therefore
∫ +∞

−∞
e−t2

dt converges.

x

y

0

The total area under the graph is finite.

Example. Let us prove that
∫ +∞

0

1− cos t
t2 dt converges.

We have, for any t > 1, 0 6 1−cos t
t2 6 2

t2 and
∫ +∞

1

1
t2 dt converges therefore

∫ +∞

1

1− cos t
t2 dt converges. Moreover,

limt→0
1−cos t

t2 = 1
2 , so that

∫ 1

0

1− cos t
t2 dt is a falsely improper integral. Therefore,

∫ +∞

0

1− cos t
t2 dt converges.

B. Consequences of the comparison theorems

Proposition 9. Let f and g be locally integrable functions on [a, b[ (resp. on ]a, b]) that are positive. If f∼g at b (resp. at

a), then the improper integrals
∫ b

a
f and

∫ b

a
g have the same behaviour (both convergent or both divergent).

Proof. By assumption, limx→b
f (x)
g(x) = 1 so there exists A ∈ [a, b[ such that 1

2 6 f (x)
g(x) 6 3

2 for x > A. Since g(x) > 0 for all

x, we get 1
2 g(x) 6 f (x) 6 3

2 g(x) if A 6 x < b. Therefore, since both functions are non-negative:

â the first inequality shows that if if
∫ b

a
g is divergent, so is

∫ b

a
f and if

∫ b

a
f is convergent so is

∫ b

a
g;

â the second inequality shows that if if
∫ b

a
g is convergent, so is

∫ b

a
f and if

∫ b

a
f is divergent so is

∫ b

a
g. X

Example.
∫ +∞

0

x− 1
1 + x3 dx converges. Indeed, it converges if and only if

∫ +∞

2

x− 1
1 + x3 dx converges; we have

x− 1
1 + x3 ∼

1
x2

at +∞ with both functions positive on [2,+∞[, and
∫ +∞

2

1
x2 dx converges, therefore

∫ +∞

2

x− 1
1 + x3 dx converges.

Proposition 10. Let f and g be locally integrable functions on [a, b[ (resp. on ]a, b]) such that f is non-negative and g

is positive. If f = o(g) at b (resp. at a), then if the improper integral
∫ b

a
g converges, so does

∫ b

a
f and if the improper

integral
∫ b

a
f diverges, so does

∫ b

a
g.

Proof. By assumption, limx→b
f (x)
g(x) = 0 so there exists A ∈ [a, b[ such that 0 6 f (x)

g(x) 6 1 for x > A. Since g(x) > 0 for all x,
we get 0 6 f (x) 6 g(x) if A 6 x < b. Therefore, since both functions are non-negative, Theorem 88 gives the result. X

Examples. â

∫ +∞

0
t10e−

√
t dt converges, since t10e−

√
t = o

(
1
t2

)
at +∞ and

∫ +∞

1

1
t2 dt converges.

â

∫ 1

0
|ln t|dt converges, since |ln t| = o

(
1

t1/2

)
at 0 and

∫ 1

0

1
t1/2

dt converges.

More generally, we can obtain the following criterion for ‘Bertrand integrals’.

Proposition 11. The improper integral
∫ +∞

2

1
tα(ln t)β

dt converges if and only if α > 1 or α = 1 and β > 1.

Proof. Note that the function t→ 1
tα(ln t)β

is positive for t > 2.

â First case: α > 1. Fix α′ with 1 < α′ < α. Then
tα′

tα(ln t)β
= 1

tα−α′ (ln t)β −−−−→t→+∞
0 so that 1

tα(ln t)β = o
(

1
tα′

)
. Moreover,

we know that
∫ +∞

2

1
tα′

dt is convergent, therefore
∫ +∞

2

1
tα(ln t)β

dt converges.
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â Second case: α = 1. Then, if β 6= 1, we have
∫ x

2

1
t(ln t)β

dt =
1

1− β

(
1

(ln x)β−1 −
1

(ln 2)β−1

)
and this has a finite

limit when x goes to +∞ if and only if β > 1; if β = 1, we have
∫ x

2

1
t ln t

dt = ln(ln x) − ln(ln 2) −−−−→
x→+∞

+∞.

Therefore the improper integral
∫ +∞

2

1
t(ln t)β

dt converges if and only if β > 1.

â Third case: α < 1. Fix α′ with 1 > α′ > α. Then 1
tα′ = o

(
1

tα(ln t)β

)
at +∞ and the improper integral

∫ +∞

2

1
tα′

dt is

divergent, therefore
∫ +∞

2

1
tα(ln t)β

dt diverges. X

C. Absolute convergence

We now consider the case where f does not have constant sign.

Theorem 12. Let f be a locally integrable function defined on [a, b[ (or ]a, b]). If the improper integral
∫ b

a
| f | is conver-

gent, then so is
∫ b

a
f and we have

∣∣∣∣∫ b

a
f
∣∣∣∣ 6 ∫ b

a
| f |.

Proof. For any real number r we have 0 6 |r| − r 6 2|r| so that for any t ∈ [a, b[ we have 0 6 | f (t)| − f (t) 6 2| f (t)|. Set
g = | f | − f . We have 0 6 g 6 2| f |.

By assumption,
∫ b

a
| f | is convergent, therefore so is

∫ b

a
2| f |, and since g is non-negative and g 6 2| f |, the improper

integral
∫ b

a
g is convergent. We have f = | f | − g, so

∫ b

a
f is convergent. Moreover,∣∣∣∣∫ b

a
f
∣∣∣∣ = lim

x→+∞

∣∣∣∣∫ x

a
f
∣∣∣∣ 6 lim

x→+∞

∫ x

a
| f | =

∫ b

a
| f |. X

Definition 13. If the improper integral
∫ b

a
| f | is convergent, we say that the improper integral

∫ b

a
f is absolutely convergentabsolutely convergenta.

The theorem above then states that an absolutely convergent improper integral is convergent.

aabsolument convergenteabsolument convergente

Remark. When trying to prove absolute convergence, we can use the results of the previous section since | f | is non-
negative.

Example. Consider the improper integral
∫ +∞

0

sin t
1 + t2 dt. The integrand does not have constant sign. However,

∣∣∣∣ sin t
1 + t2

∣∣∣∣ 6
1

1 + t2 . Moreover, for any x > 0 we have
∫ x

0

1
1 + t2 dt = arctan x −−−−→

x→+∞

π

2
so that the improper integral

∫ +∞

0

1
1 + t2 dt is

convergent and
∫ +∞

0

sin t
1 + t2 dt is therefore absolutely convergent hence convergent.

We could have used the fact that 1
1+t2 ∼ 1

t2 at +∞ to prove convergence of
∫ +∞

0

1
1 + t2 dt (both functions are positive

on [1,+∞[).

III. Semi-convergence

There exist improper integrals that are convergent but not absolutely convergent.

Definition 14. An improper integral that is convergent but not absolutely convergent is called semi-convergentsemi-convergenta.

asemi-convergentesemi-convergente

Example. Consider
∫ +∞

0

sin t
t

dt.

This improper integral is convergent:

â At 0, since limt→0
sin t

t
= 1, it is a falsely improper integral.
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â At +∞, integration by parts gives
∫ x

1

sin t
t

dt =
[
− cos t

t

]x

1
−
∫ x

1

cos t
t2 dt. The first term has a finite limit when x

goes to +∞, the second term is an absolutely convergent improper integral.

However, the integral is not absolutely convergent. We have
∣∣∣∣ sin t

t

∣∣∣∣ > sin2 t
t

so it is enough to prove that
∫ +∞

1

sin2 t
t

dt

diverges. We have, using integration by parts,∫ x

1

sin2 t
t

dt =
∫ x

1

1− cos 2t
2t

dt

=
1
2

[
1
t

(
t− 1

2
sin(2t)

)]x

1
+

1
2

∫ x

1

1
t2

(
t− 1

2
sin 2t

)
dt

= − sin 2x
4x

+
sin 2

4
+

1
2

ln x− 1
4

∫ x

1

sin 2t
t2 dt.

The first two terms have finite limits when x → +∞ and so does the last one (absolutely convergent improper integral),

and limx→+∞
1
2 ln x = +∞ therefore limx→+∞

∫ x

1

sin2 t
t

dt = +∞.

x

y

0

The areas compensate.
This example shows that semi-convergent improper integrals exist.

Example. Note that as in the previous example, we can prove that
∫ +∞

2

sin t√
t

dt converges. Moreover,
sin t√

t
∼ sin t√

t + sin t

at +∞. However, we shall now prove that
∫ +∞

2

sin t√
t + sin t

dt diverges.

We have
sin t√

t + sin t
=

sin t√
t

1
1+ sin t√

t
and limt→+∞

sin t√
t
= 0. Set u = sin t√

t
, then

sin t√
t + sin t

= u 1
1+u = u(1− u + o(u)) =

u− u2 + o(u2) =
sin t√

t
+ g(t). Note that as t approaches +∞, we have g(t) < 0 so that we can use equivalent functions

to determine convergence. We have g(t) ∼ − sin2 t
t

at +∞, and we have seen that
∫ +∞

2
− sin2 t

t
dt diverges so that∫ +∞

2

sin t√
t + sin t

dt diverges.

This example shows that equivalent functions cannot be used to determine convergence when the functions do not
have constant sign.

Remark. We have seen that integration by parts and Taylor expansions at infinity are useful tools when determining the
nature of an improper integral (especially if the function does not have constant sign).

Example. We wish to determine the nature of
∫ +∞

2
ln
(

1 +
sin t

t

)
dt. We have

ln
(

1 +
sin t

t

)
=

sin t
t
− sin2 t

2t2 + o
(

1
t2

)
.

We have seen that
∫ +∞

2

sin t
t

dt converges, and the function − sin2 t
2t2 + o

(
1
t2

)
is negative and equivalent to − sin2 t

2t2 at +∞;

moreover,
∫ +∞

2

sin2 t
2t2 dt is (absolutely) convergent.

Therefore
∫ +∞

2
ln
(

1 +
sin t

t

)
dt is convergent.

We shall now see one more tool to determine the nature of an improper integral.
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IV. Substitution

Theorem 15. Let f be a continuous function on [a, b[ (resp. ]a, b]) Let ϕ be an increasing function of class C1 on [α, β[
such that a = ϕ(α) and b = limx→β ϕ(x) (resp. such that a = limx→α ϕ(x) and b = ϕ(β)). Then the improper integrals∫ b

a
f (x)dx and

∫ β

α
f (ϕ(t))ϕ′(t)dt have the same nature and if they converge we have

∫ b

a
f (x)dx =

∫ β

α
f (ϕ(t))ϕ′(t)dt.

Remark. There is a similar statement with ϕ decreasing, in which the roles of α and β are reversed.

Proof. If α 6 v < β then
∫ ϕ(v)

ϕ(α)
f (x)dx =

∫ v

α
f (ϕ(t))ϕ′(t)dt. Define F(u) =

∫ u

ϕ(α)
f (x)dx for u ∈ [a, b[ and G(v) =∫ v

α
f (ϕ(t))ϕ′(t)dt for v ∈ [α, β[. We then have F ◦ ϕ(v) = G(v).

If
∫ b

a
f (x)dx converges then the limit of F(u) as u nears b exists, therefore so does the limit of G(v) = F(ϕ(v)) as v

nears β and we have limv→β G(v) = limv→β F(ϕ(v)) = limu→b F(u) as required.
The converse is proved similarly, using the relation F = G ◦ ϕ−1 (ϕ is continuous and strongly monotonic on an interval

therefore it defines a bijection on its image). X

Example. Fix α > 2. We want the nature of
∫ +∞

1
t sin(tα)dt.

Set u = tα, that is, ϕ(t) = tα. The function ϕ is of class C1 and defines an increasing bijection from [1 ;+∞[ to [1 ;+∞[.
We have t = u1/α, therefore dt = 1

α u1/α−1 du = 1
αu1− 1

α
du. Moreover, t sin(tα) = u1/α sin u. It then follows from the theorem

that the improper integrals
∫ +∞

1
t sin(tα)dt and

∫ +∞

1

sin u

αu1− 2
α

du have the same nature. Moreover, the improper integral∫ +∞

1

sin u

αu1− 2
α

du is convergent (similar to a previous example, use integration by parts – or take α = 4 to get exactly the

previous example). Therefore
∫ +∞

1
t sin(tα)dt is convergent.

This is the end of the lectures given in the University year 2014-2015. The sequel is contained in the syllabus of the second semester
of the second year and was intended as an introduction.
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Chapter 11

Derivation and integration of functions defined on an interval
of R with values in R2

In this chapter, all maps are defined on an interval I in R and take values in R2; such a map is called a vector functionvector function†.
We shall extend what we have done for functions from a subset of R to R to this situation.

x

y

f (t)

f1(t)

f2(t)

f ′(t)

A vector function not only gives a curve, it also gives the way it is drawn. For instance, the curve described by the
function f : R → R defined by f (t) = (cos t, sin t) is a circle around which we go an infinite number of times, and the
curve described by the function g : [0; 2π]→ R defined by g(t) = (cos t, sin t) is the same circle around which we go once.

We first need the notion of norm.

I. Norms in R2

Definition 1. A normnorma on R2 is a map N : R2 → R such that:

â ∀v ∈ R2, N(v) > 0,

â ∀v ∈ R2, N(v) = 0⇒ v = 0,

â ∀λ ∈ R and v ∈ R2, N(λv) = |λ|N(v),

â ∀(u, v) ∈ R2 ×R2, N(u + v) 6 N(u) + N(v) (triangle inequalitytriangle inequalityb).

anormenorme
binégalité du triangleinégalité du triangle

Remark. The triangle inequality can also be written (as is the case for the absolute value): |N(u)− N(v)| 6 N(u− v).

Example. The Euclidean normEuclidean norm‡ on R2 is defined by N(x, y) = ‖(x, y)‖2 =
√

x2 + y2. The fact that it is indeed a norm is
left as an exercise.

Example. The supremum normsupremum norm§ on R2 is defined by N(x, y) = ‖(x, y)‖∞ = sup{|x|, |y|} = max{|x|, |y|}.
The first three properties of a norm are easy to check (exercise). For the last one, let (x, y) and (x′, y′) be two vec-

tors in R2. Then |x + x′| 6 |x| + |x′| 6 ‖(x, y)‖∞ + ‖(x′, y′)‖∞ and similarly |y + y′| 6 ‖(x, y)‖∞ + ‖(x′, y′)‖∞ so that
‖(x, y) + (x′, y′)‖∞ = ‖(x + x′, y + y′)‖∞ 6 ‖(x, y)‖∞ + ‖(x′, y′)‖∞ as required.

Remark. We can define many norms on R2. However we shall only consider the supremum norm and the Euclidean
norm in the sequel. The notation ‖·‖ will stand for one of those two norms.

†fonction à valeurs vectoriellesfonction à valeurs vectorielles
‡norme euclidiennenorme euclidienne
§norme supnorme sup
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In this chapter, we aim to extend the definitions of limit, continuity, differentiability, etc. to functions that takes values
in R2. We shall replace the absolute value wherever necessary by a norm. It is therefore very useful to know that we can
use whichever norm we prefer.

Proposition 2. The norms ‖·‖2 and ‖·‖∞ are equivalent, that is, there exist real numbers α > 0 and β > 0 such that for
every v ∈ R2 we have

‖v‖2 6 α‖v‖∞ and ‖v‖∞ 6 β‖v‖2.

Proof. We can take α =
√

2 and β = 1. X

Remark. The figure below represents this equivalence:

A :=
{
(x, y) ∈ R2; ‖(x, y)‖∞ 6

1√
2

}
⊂ B :=

{
(x, y) ∈ R2; ‖(x, y)‖2 6 1

}
⊂ C :=

{
(x, y) ∈ R2; ‖(x, y)‖∞ 6 1

}
.

x

y

0 1

1
B

A

C

Remark. We can identify C with R2. The modulus on C corresponds via this identification to the Euclidean norm ‖·‖2.
Everything that follows can therefore be applied to complex-valued functions. In fact, we have already seen some of the
results in this case.

To simplify notation, we only consider functions with values in R2, but everything can be immediately generalised to
functions with values in Rn, as you will see next year.

II. Limits, continuity and differentiability of a vector function

Definition-Proposition 3. Let f : I → R2 be a vector function and let ` be an element of R2. Let t0 be an element of I or an
endpoint of I. Let ‖·‖ be one of the norms ‖·‖∞ or ‖·‖2.

â We say that f has limitlimita ` when t nears t0 if the function t→ ‖ f (t)− `‖ has limit 0 when t nears t0. In other words,

∀ε > 0, ∃η > 0, 0 < |t− t0| < η ⇒ ‖ f (t)− `‖ < ε.

We write limt→t0 f (t) = `.

â We say that f is continuouscontinuousb at t0 ∈ I if f (t) has limit f (t0) when t nears t0.

â We say that f is differentiabledifferentiablec at t0 ∈ I if
f (t)− f (t0)

t− t0
has a finite limit when t nears t0; this limit is denoted by f ′(t0)

and is called the derived vectorderived vectord of f at t0.

alimitelimite
bcontinuecontinue
cdérivabledérivable
dvecteur dérivévecteur dérivé

Proof. We must check that the definition makes sense, that is, that it does not depend on the norm we have chosen.

â Assume that f has limit ` when t nears t0 for the norm ‖·‖∞. This means that limt→t0‖ f (t)− `‖∞ = 0. We have
0 6 ‖ f (t)− `‖2 6

√
2‖ f (t)− `‖∞ so that limt→t0‖ f (t)− `‖2 = 0. Therefore f has limit ` when t nears t0 for the

norm ‖·‖2.

â Assume that f has limit ` when t nears t0 for the norm ‖·‖2. This means that limt→t0‖ f (t)− `‖2 = 0. We have
0 6 ‖ f (t)− `‖∞ 6 ‖ f (t)− `‖2 so that limt→t0‖ f (t)− `‖∞ = 0. Therefore f has limit ` when t nears t0 for the norm
‖·‖∞. X
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Example. Consider the function f : R→ R2 defined by f (t) = (t2 − et, cos t). Then limt→0 f (t) = (−1, 1).
Indeed, we have ‖ f (t)− (−1, 1)‖∞ = max

(∣∣t2 − et + 1
∣∣, |cos t− 1|

)
,
∣∣t2 − et + 1

∣∣ −−→
t→0

0 and |cos t− 1| −−→
t→0

0 so that

‖ f (t)− (−1, 1)‖∞ −−→t→0
0. Note that f (0) = (−1, 1) so that f is in fact continuous at 0.

Remark. If we view f : I → R2 as a complex-valued function, the definitions above differ from those we gave earlier.
However, they are equivalent, as we shall now see.

Definition 4. Let f : I → R2 be a function. Define the linear projections πi : R2 → R for i = 1, 2 by π1(x, y) = x and
π2(x, y) = y. The coordinate functionscoordinate functionsa of f are the functions fi = πi ◦ f : I → R for i = 1, 2.

afonctions coordonnéesfonctions coordonnées

Proposition 5. Let f : I → R2 be a vector function, defined by f (t) = ( f1(t), f2(t)) for t ∈ I, where fi = πi ◦ f . Let
` = (`1, `2) be in R2 and let t0 be an element of I or an endpoint of I.
Then f has limit ` as t nears t0 if and only if for i = 1, 2 the function fi = πi ◦ f has limit `i as t nears t0.

Proof. By definition of ‖·‖∞ we have 0 6 | fi(t)− `i| 6 ‖ f (t)− `‖∞. Therefore it is clear that if f has limit ` as t nears t0
then fi has limit `i as t nears t0 for i = 1, 2.

Conversely, since ‖ f (t)− `‖∞ = max(| f1(t)− `1|, | f2(t)− `2|), if both | f1(t)− `1| and | f2(t)− `2| near 0 as t goes to t0,
then ‖ f (t)− `‖∞ nears 0 as t goes to t0. X

Corollary 6. Let f : I → R2 be a vector function, defined by f (t) = ( f1(t), f2(t)) for t ∈ I, where fi = πi ◦ f . Then f is
continuous (resp. differentiable) at t0 ∈ I if and only if f1 and f2 are continuous (resp. differentiable) at t0. Moreover, if
f is differentiable at t0, we have f ′(t0) = ( f ′1(t0), f ′2(t0)).

Proof. Exercise. X

Definition 7. Let f : I → R2 be a vector function, defined by f (t) = ( f1(t), f2(t)) for t ∈ I. If t0 ∈ I we say that f is of class
Ck at t0 if the functions f1 and f2 are of class Ck at t0. The set of all functions of class Ck is denoted by Ck(I, R2).

Definition 8. Let u = (x, y) and u′ = (x′, y′) be two vectors in R2. We denote by 〈u, u′〉 the scalar productscalar producta of u and v, that
is, 〈u, v〉 = xx′ + yy′.

aproduit scalaireproduit scalaire

Remark. Note that 〈u, u〉 = ‖u‖2.

Corollary 9. Let f and g be functions from I to R2 and α a function from I to R. Let t0 be a point in I.

â If limt→t0 f (t) = ` and limt→t0 g(t) = `′ then limt→t0 ( f (t) + g(t)) = `+ `′.

â If limt→t0 f (t) = ` and limt→t0 α(t) = a, then limt→t0 (α(t) f (t)) = a`.

â If limt→t0 f (t) = ` and limt→t0 g(t) = `′ then limt→t0 〈 f (t), g(t)〉 = 〈`, `′〉.

â If f , g and α are continuous (resp. differentiable, resp. of class Ck), then so are f + g, α f and 〈 f , g〉. Moreover,
when they are differentiable, we have

( f + g)′ = f ′ + g′, (α f )′ = α′ f + α f ′ and 〈 f , g〉′ = 〈 f ′, g〉+ 〈 f , g′〉.

Proof. Exercise. X
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III. Mean Value Inequality

Theorem 10. Let a < b be two real numbers and let f : [a, b] → R2 be a continuous function that is differentiable on
]a, b[. Assume that there is a real number M such that, for all t ∈]a, b[, we have ‖ f ′(t)‖ 6 M. Then

‖ f (b)− f (a)‖ 6 M(b− a).

Proof. Fix ε > 0 and consider the function ϕε : [a, b] → R defined by ϕε(t) = ‖ f (t)− f (a)‖ − (M + ε)t. This function is
continuous, therefore it has a minimum at c ∈ [a, b].

We shall now prove that c = b. Assume for a contradiction that c ∈ [a, b[; this means that there exist real numbers
t ∈ [a, b] with t > c.

There exists η > 0 such that for t ∈ [a, b] with 0 < |t− c| < η we have
∥∥∥ f (t)− f (c)

t−c − f ′(c)
∥∥∥ < ε. Now let t ∈ [a, b] be

such that c < t < c + η. Using the triangle inequality ‖u‖ − ‖v‖ 6 ‖u− v‖ and multiplying by t− c > 0 we get

‖ f (t)− f (c)‖ <
∥∥ f ′(c)

∥∥(t− c) + ε(t− c) 6 M(t− c) + ε(t− c) = (M + ε)(t− c).

We then have

ϕε(t)− ϕε(c) = ‖ f (t)− f (a)‖ − ‖ f (c)− f (a)‖ − (M + ε)t + (M + ε)c
6 ‖ f (t)− f (c)‖ − g(t)− (M + ε)(t− c) < 0,

which is a contradiction since ϕε(c) is a minimum value of ϕε on [a, b].
Therefore ϕε(b) is a minimum value of ϕε on [a, b]. In particular, ϕε(b) 6 ϕε(a), that is, ‖ f (b)− f (a)‖ 6 (M+ ε+(b− a).

This is true for any ε > 0, so that the result follows. X

Remark. There is no equivalent of Rolle’s Theorem for functions with values in R2. For instance, if f : [0, 2π] → R2 is
defined by f (t) = (cos t, sin t) then we have f (0) = f (2π) but f ′(t) = (− sin t, cos t) never vanishes.

Corollary 11. Let f : I → R2 be a differentiable function whose derived vector function is 0 on I. Then f is a constant
function.

Proof. We can take M = 0 in the previous theorem. X

IV. Taylor expansions of vector functions

Assume that the coordinate functions of a function f : I → R2 have a Taylor expansion of order p at t0 :

fk(t) = ak,0 + ak,1(t− t0) + . . . + ak,p(t− t0)
p + o((t− t0)

p).

For each j with 0 6 j 6 p let Aj denote the vector (a1,j; a2,j). Then

f (t) = A0 + A1(t− t0) + · · ·+ Ap(t− t0)
p + o((t− t0)

p) (11.1)

where o((t− t0)
p) is a function h such that limt→t0

h(t)
(t−t0)p = 0. The expression (11.111.1) is called a Taylor expansionTaylor expansion† of f of

order p at t0.

Example. Let f : R→ R2 be defined by f (t) = (2t3 − t sin t, t3 + cos t). Then we have the Taylor expansions of order 4 at
0 :

2t3 − t sin t = −t2 + 2t3 +
1
6

t4 + o(t4)

t3 + cos t = 1− 1
2

t2 + t3 +
1

24
t4 + o(t4)

f (t) = (0, 1) + t2
(
−1,−1

2

)
+ t3(2, 1) + t4

(
1
6

,
1
24

)
+ o(t4).

In the same way as for functions with values in R, if f is sufficiently regular, Taylor expansions for f exist.

Theorem 12. (Taylor-Young formulaTaylor-Young formulaa) Let f : I → R2 be a function of class C p and let t0 be an element of I. Then

∀x ∈ I, f (x) = f (t0) + (t− t0) f ′(t0) + · · ·+ (t− t0)
p f (p)(t0)

p!
+ o((t− t0)

p).

aformule de Taylor-Youngformule de Taylor-Young

†développement limitédéveloppement limité
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Proof. The result is true for each of the coordinate functions hence it is true for f . X

Remark. A continuous function from I to R2 are also called a parametric curveparametric curve†. Taylor expansions are used for the
local study of these curves.

V. Integration of vector functions

Definition 13. Let f : [a, b] → R2 be a piecewise continuous function (that is, each coordinate function fk is piecewise continu-
ous). The integralintegrala of f on [a, b] is ∫ b

a
f (t)dt =

(∫ b

a
f1(t)dt,

∫ b

a
f2(t)dt

)
.

aintégraleintégrale

Remark. This definition makes sense since each of the fk is integrable.

Properties 14. Let f , g : [a, b]→ R2 be piecewise continuous functions. Then

â for any constant λ we have
∫ b

a
( f (t) + λg(t))dt =

∫ b

a
f (t)dt + λ

∫ b

a
g(t)dt;

â for any c ∈ [a, b] we have
∫ b

a
f (t)dt =

∫ c

a
f (t)dt +

∫ b

c
f (t)dt;

Theorem 15. Let f : [a, b]→ R2 be a piecewise continuous function. Then∥∥∥∥∫ b

a
f (t)dt

∥∥∥∥ 6 ∫ b

a
‖ f (t)‖dt.

Proof. Admitted. X

We clearly have the following result (since x → ‖ f (x)‖ is a function from [a, b] to R).

Proposition 16. Let f : [a, b] → R2 be a piecewise continuous function. If M is a real number such that ‖ f (x)‖ 6 M
for all x ∈ [a, b], then

1
b− a

∫ b

a
‖ f (x)‖dx 6 M.

The next results are consequences of the corresponding results for functions I → R applied to the coordinate functions.

Theorem 17. Let f : I → R2 be a continuous function and let ϕ : [α, β]→ I be a function of class C1. Then∫ β

α
f (ϕ(u))ϕ′(u)du =

∫ ϕ(β)

ϕ(α)
f (t)dt.

Theorem 18. (Taylor formula with integral remainderTaylor formula with integral remaindera) Let f : I → R2 be a function of class C p+1 and a an element of
I. Then for all t ∈ I we have

f (t) = f (a) + (t− a) f ′(a) + · · ·+ (t− a)p f (p)(a)
p!

+
∫ t

a

(t− u)p

p!
f (p+1)(u)du.

This is called the Taylor formula of order p at a with integral remainder.

aformule de Taylor avec reste intégralformule de Taylor avec reste intégral

†courbe paramétréecourbe paramétrée
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Chapter 12

Functions of two variables with values in R or R2

We shall now consider functions of two variables. We need to replace the intervals of R by a new object that we shall
define now.

I. Open subsets of R2

Definition 1. Fix a norm ‖·‖ on R2.
The open diskopen diska centered at v0 ∈ R2 of radiusradiusb r ∈ R+ is the set B(v0, r) :=

{
v ∈ R2; ‖v− v0‖ < r

}
.

The closed diskclosed diskc centered at v0 ∈ R2 of radius r ∈ R+ is the set B̄(v0, r) :=
{

v ∈ R2; ‖v− v0‖ 6 r
}

.
The spheresphered centered at v0 ∈ R2 of radius r ∈ R+ is the set S(v0, r) :=

{
v ∈ R2; ‖v− v0‖ = r

}
= B̄(vo, r) \ B(v0, r).

A unit diskunit diske is a disk of radius 1.

adisque (ou boule) ouvertdisque (ou boule) ouvert
brayonrayon
cdisque (ou boule) fermédisque (ou boule) fermé
dsphèresphère
edisque (ou boule) unitédisque (ou boule) unité

Remark. We shall write B2 or B∞ to specify which of the norms we are using.

We represent below some spheres for our two norms.

x

y

0 1

1

S2(0, 1)
S∞(0, 1/

√
2)

S∞(0, 1)

We now define the parts of R2 that will replace open intervals in R.

Definition 2. A subset of R2 is called an open subsetopen subseta if it is empty or a union of open disks.

aouvert (ou partie ouverte)ouvert (ou partie ouverte)

Proposition 3. Let Ω be a non-empty subset of R2. The following statements are equivalent:

(i) Ω is open

(ii) for every v ∈ Ω there exists an open disk B such that v ∈ B ⊂ Ω

(iii) for every v ∈ Ω there exists r > 0 such that B(v, r) ⊂ Ω.

Proof. â (i)⇒(ii) By assumption we have Ω = ∪i∈I Bi for some set I and some open disks Bi. Therefore if v ∈ Ω,
there exists i ∈ I such that v ∈ Bi ⊂ Ω as required.

88



â (ii)⇒(iii) Take v ∈ Ω. By assumption, there exist u ∈ R2 and ρ ∈ R∗+ such that v ∈ B(u, ρ) ⊂ Ω. If v = u the
result is proved. Otherwise, set r = min(‖v− u‖, ρ− ‖v− u‖) > 0. We need only prove that B(v, r) ⊂ B(v, ρ) to
conclude. Therefore let w be a point in B(v, r). Then ‖w− u‖ 6 ‖w− v‖+ ‖v− u‖ < ρ− ‖v− u‖+ ‖v− u‖ = ρ so
that w ∈ B(u, ρ).

â (iii)⇒(i) Our assumption is that for every v ∈ Ω, there exists rv > 0 such that B(v, rv) ⊂ Ω. We then have
∪v∈ΩB(v, rv) ⊂ Ω. But the other inclusion is clearly true, therefore Ω = ∪v∈ΩB(v, rv) so that Ω is open. X

Remark. Although the definition of an open subset of R2 seems to depend on the norm we choose, this is in fact not the
case.

Indeed, suppose that Ω is an open set for ‖·‖∞. Let v be a point in Ω. Then we know that there is an open disk
B∞(v, r) ⊂ Ω. We also know that B2(v, r√

2
) ⊂ B∞(v, r) ⊂ Ω and this proves that Ω is open for ‖·‖2. The converse is

similar.

Examples. â The open disks are obviously open sets by definition.

â A rectangle Ω = ]a, b[×]c, d[ is an open subset of R2. Indeed, if v0 = (x0, y0) ∈ Ω, set r =
min(x0 − a, b− x0, y0 − c, d− y0); then B∞(v0, r) ⊂ Ω.

v0

a b

c d

â Fix v0 ∈ R2 and r ∈ R+. Then the set Ω = R2 \ B̄2(v0, r) =
{

v ∈ R2; ‖v− v0‖2 > r
}

is open. Indeed, let
v1 be a point in Ω and set ρ = ‖v1 − v0‖2 − r > 0. We prove that B2(v1, ρ) ⊂ Ω: if v ∈ B2(v1, ρ) we have
‖v− v0‖2 > ‖v0 − v1‖2 − ‖v1 − v‖2 > ‖v0 − v1‖2 − ρ = r.

v0 v1

Ω

r
ρ
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II. Limits and continuity

In this section, Ω is a non-empty open subset of R2.

Definition 4. Let f : Ω→ R be a function and let v0 be a point in Ω. Fix one of the norms ‖·‖. We say that:

â f has limit ` ∈ R at v0 if f (v) has limit ` when ‖v− v0‖ nears 0, that is,

∀ε > 0, ∃η > 0, ‖v− v0‖ < η ⇒ | f (v)− `| < ε.

â f is continuous at v0 if f has limit f (v0) at v0.

â f is continuous on Ω if f is continous at every point in Ω. The set of all functions from Ω to R that are continuous is
denoted by C0(Ω, R).

Let g : Ω → R2 be a function and let v0 be a point in Ω. Fix a norm ‖·‖ on R2 at the origin and a norm ‖·‖′ at the target (they
may be different). We say that:

â g has limit w ∈ R2 at v0 if ‖g(v)− w‖′ has limit 0 when ‖v− v0‖ nears 0, that is,

∀ε > 0, ∃η > 0, ‖v− v0‖ < η ⇒ ‖g(v)− w‖′ < ε.

â g is continuous at v0 if g has limit g(v0) at v0.

â g is continuous on Ω if g is continous at every point in Ω. The set of all functions from Ω to R2 that are continuous is
denoted by C0(Ω, R2).

Proposition 5. Let f be a function defined on Ω with values in R (resp. R2), let v0 be a point in Ω and let ` be an
element of R (resp. R2). Then the fact that f has limit ` as v nears v0 does not depend on the choice of norms.

Proof. We do the proof when f takes values in R2, the other case is left as an exercise. Assume that we have two norms
‖·‖a and ‖·‖b at the origin and two norms ‖·‖′a and ‖·‖′b at the target, and that f (v) has limit ` when v nears v0 for the
norms ‖·‖a and ‖·‖′a. We know that there exist real numbers α > 0 and β > 0 such that ‖·‖a 6 α‖·‖b and ‖·‖′b 6 β‖·‖′a.

Fix ε > 0. Then there exists η > 0 such that ‖v− v0‖a < η ⇒ ‖ f (v)− `‖′a < ε
β . Therefore

‖v− v0‖b <
η

α
⇒ ‖v− v0‖a < η ⇒ ‖ f (v)− `‖′a <

ε

β
⇒ ‖ f (v)− `‖′b < ε

as required. X

Remark. The properties of limits and of continuous functions (uniqueness of the limit, linear combinations, products,
compositions) are still true and the proofs are similar.

Definition 6. Let f : Ω → R2 be a function. Define the linear projections πi : R2 → R for i = 1, 2 by π1(x, y) = x and
π2(x, y) = y. The coordinate functions of f are the functions fi = πi ◦ f : Ω→ R for i = 1, 2.

Proposition 7. Let f : Ω → R2 be a function, let ` = (`1, `2) be in R2 and let vo be a point in Ω. Then f has limit ` as
v nears v0 if and only if for i = 1, 2 its coordinate function fi has limit `i as v nears v0. In particular, f is continuous at
v0 if and only if its coordinate functions f1 and f2 are continous at v0.

Proof. We work with ‖·‖∞. For i = 1, 2, for any v ∈ Ω, we have | fi(v)− `i| 6 ‖ f (v)− `‖∞.

â First assume that f has limit ` at v0. Then ‖ f (v)− `‖∞ goes to 0 as v nears v0 so for i = 1, 2, | fi(v)− `i| goes to 0
as v nears v0 as required.

â Now assume that f1 has limit `1 and f2 has limit `2 at v0. Fix ε > 0. Then there exist η1 > 0 and η2 > 0 such
that ‖v− v0‖∞ < ηi ⇒ | fi(v)− `i| < ε. Set η = min(η1, η2) so that ‖v− v0‖∞ < η ⇒ | fi(v)− `i| < ε. Then we have
immediately that ‖v− v0‖∞ < η ⇒ ‖ f (v)− `‖∞ < ε.

Therefore f has limit ` at v0. X

Remark. Assume that f has a limit ` (in R or R2) as v nears v0 = (x0, y0). Then in particular f has limit ` as (x0, y) nears
(x0, y0); since |y− y0| = ‖(x0, y)− (x0, y0)‖, this means that f (x0, y) has limit ` as y nears y0. This means that if f has a
limit as v nears v0, then f has the same limit as v nears v0 along the vertical line with equation x = x0.

There are similar statements as v approaches v0 along any line through v0. They are mostly useful to prove that f does
not have a limit as v nears v0, using their contrapositives.
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Examples. â The norm is a continuous function. Indeed, it follows from the triangle inequality |‖v‖ − ‖v0‖| 6
‖v− v0‖.

â lim(x,y)→(3,1)

(
3xy2

7+y + 1
2 xy

)
= 3(3)(1)

7+1 + 1
2 (3)(1) =

21
8 .

â We want to prove that lim(x,y)→(0,0)
3xy2

x2 + y2 = 0. We have∣∣∣∣ 3xy2

x2 + y2 − 0
∣∣∣∣ = ∣∣∣∣ 3xy2

x2 + y2

∣∣∣∣ = 3|x|
∣∣∣∣ y2

x2 + y2

∣∣∣∣ 6 3|x| 6 3‖(x, y)‖

where the final norm is either of our two norms. Therefore, when ‖(x, y)‖ = ‖(x, y)− (0, 0)‖ goes to 0, so does∣∣∣∣ 3xy2

x2 + y2 − 0
∣∣∣∣.

â Let us show that f (x, y) =
x2 − y2

x2 + y2 does not have a limit as (x, y) nears (0, 0).

We have seen that if such a limit ` exists, then there are limits as (x, y) nears (0, 0) along the x-axis and along the
y-axis, and they are both equal to `.

Along the x-axis, we have f (x, 0) = 1 so that ` = 1.

Along the y-axis, we have f (0, y) = −1 so that ` = −1.

We have a contradiction, therefore the limit does not exist.

â Let us show that f (x, y) =
(

x2 − y2

x2 + y2

)2

does not have a limit as (x, y) nears (0, 0).

Assume that this limit exists and is equal to `.

Along the x-axis and the y-axis, the limit is equal to 1.

Now consider the line with equation y = x that goes through (0, 0). Along this line, we have f (x, x) = 0 so that
` = 0.

We have a contradiction, therefore the limit does not exist.

Proposition 8. Let ϕ : Rp → Rq with p, q ∈ {1, 2} be a linear function. Then ϕ is continuous.

Proof. If q = 2, we need only prove that the coordinate functions, each of which is linear (since πi is linear), is continuous.
Therefore we may assume that q = 1.

If p = 1, then ϕ(x) = ax for some a ∈ R so that ϕ is clearly continuous.
Now assume that p = 2. Let {e1, e2} be the canonical basis of R2. Set M = max(|ϕ(e1)|, |ϕ(e2)|). Then for any vector

u = (x, y) = xe1 + ye2 we have

|ϕ(u)| = |xϕ(e1) + yϕ(e2)| 6 |x||ϕ(e1)|+ |y||ϕ(e2)| 6 2‖u‖M.

Let v0 be a point in R2. Then |ϕ(v)− ϕ(v0)| = |ϕ(v− v0)| 6 2‖v− v0‖M. Therefore when v nears v0, that is, when
‖v− v0‖ nears 0, then |ϕ(v)− ϕ(v0)| nears 0 so that ϕ(v) has limit ϕ(v0). Therefore ϕ is continuous at v0. X

III. Partial derivatives

In this section, Ω is a non-empty open subset of R2.
Let v0 = (x0, y0) ∈ Ω be a point, we know that there exists r > 0 such that B(v0, r) ⊂ Ω. For any x ∈]x0 − r; x0 + r[

we have ‖(x, y0)− (x0, y0)‖ = ‖(x− x0, 0)‖ = |x− x0| (for both our norms) so that (x, y0) ∈ B(v0, r) ⊂ Ω. We may
therefore consider the function p1 : ]x0− r; x0 + r[→ Ω defined by p1(x) = (x, y0). Similarly, we can consider the function
p2 : ]y0 − r; y0 + r[→ Ω defined by p2(y) = (x0, y).

Now if f : Ω→ R is a function, then f ◦ p1 : ]x0 − r; x0 + r[→ R is the map obtained by fixing y = y0 in the expression
of f and f ◦ p2 : ]y0 − r; y0 + r[→ R is the map obtained by fixing x = x0 in the expression of f .

Definition 9. Let f : Ω→ R be a function and v0 a point in Ω.
If f ◦ p1 : ]x0 − r; x0 + r[→ R is differentiable at x0, the number ( f ◦ p1)

′(x0) is called the partial derivativepartial derivativea of f with

respect to x at x0 and is denoted by
∂ f
∂x

(v0).

If f ◦ p2 : ]y0− r; y0 + r[→ R is differentiable at y0, the number ( f ◦ p2)
′(y0) is called the partial derivative of f with respect

to y at y0 and is denoted by
∂ f
∂y

(v0).

If for every v ∈ Ω the function f has a partial derivative with respect to x (resp. y) at v, then the function Ω → R defined by

v→ ∂ f
∂x

(v) (resp.
∂ f
∂y

(v)) is the partial derivative function with respect to x (resp. y) and is denoted by
∂ f
∂x

(resp.
∂ f
∂y

).

adérivée partielledérivée partielle
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Remark. If we write (x1, x2) instead of (x, y) for a point in Ω, then
∂ f
∂x

becomes
∂ f
∂x1

and
∂ f
∂y

becomes
∂ f
∂x2

.

Remark. Note that if v = (x, y), we may write
∂ f
∂x

(x, y). The two letters x do not have the same meaning. The x in

∂ f
∂x

means that we differentiate with respect to the first variable, whereas the other letter x is a real number, the first

component of the point (x, y).

Example. â Consider f : R2 → R defined by f (x, y) = y2 sin(x). Then
∂ f
∂x

(x, y) = y2 cos(x) and
∂ f
∂y

(x, y) =

2y sin(x)

â Now consider f : R2 → R defined by f (x, y) = y2 sin(xy). Then
∂ f
∂x

(x, y) = y3 cos(xy) and
∂ f
∂y

(x, y) =

2y sin(xy) + y2x cos(xy).

Definition 10. A function f : Ω→ R is of class C1 if its partial derivatives
∂ f
∂x

and
∂ f
∂y

are defined and continuous on Ω.

A function f : Ω→ R2 is of class C1 if its two coordinate functions are of class C1.

Theorem 11. Let f : Ω → R a function of class C1 and let v0 be a point in Ω. Then there exists a real number r > 0
and a function ε : B(0, r) → R, continuous at 0 and such that ε(0) = 0 and satisfying the following property: for any
h = (h1, h2) ∈ B(0, r) we have

f (v0 + h) = f (v0) + h1
∂ f
∂x

(v0) + h2
∂ f
∂y

(v0) + ‖h‖ε(h).

Proof. Admitted. X

Remark. If f : I → R is a function defined on an interval I ⊂ R, then f is differentiable at a ∈ I if and only if
f (a + h) = f (a) + h f ′(a) + hε(h) with ε continuous and ε(0) = 0. The theorem above is a generalisation of this.

Corollary 12. Let f : Ω→ R or f : Ω→ R2 be a function of class C1. Then f is continuous.

Proof. We need only consider the case f : Ω→ R (the other follows from this one for the coordinate functions).
Let v0 be a point in Ω. By the theorem there exist r > 0 and ε : B(0, r)→ R continuous at 0 with ε(0) = 0 such that for

all h ∈ B(0, r) we have

f (v0 + h) = f (v0) + h1
∂ f
∂x

(v0) + h2
∂ f
∂y

(v0) + ‖h‖ε(h).

The map ϕ : R2 → R defined by ϕ(h) = h1
∂ f
∂x

(v0) + h2
∂ f
∂y

(v0) is linear hence continuous. The norm is continuous

therefore h → ϕ(h) + ‖h‖ε(h) is continuous at 0. The constant functions are clearly continuous, therefore h → f (v0 + h)
is continous at 0, and finally f is continuous at v0. X

IV. Computation of partial derivatives

Proposition 13. If f and g are functions from Ω to R and if v0 ∈ Ω is a point at which both functions have partial
derivatives, then f + g and f g have partial derivatives at v0 and

∂( f + g)
∂x

(v0) =
∂ f
∂x

(v0) +
∂g
∂x

(v0)

∂( f g)
∂x

(v0) =

(
∂ f
∂x

(v0)

)
g(v0) + f (v0)

(
∂g
∂x

(v0)

)
and similarly for the partial derivatives with respect to y.

Proof. Clear. X
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Proposition 14. The partial derivatives of compositions are described as follows.

(1) Let f : Ω→ R be a function of class C1 and let g : I → R be a function of class C1 defined on an open interval in
R such that f (Ω) ⊂ I. Then g ◦ f is of class C1 and

∂(g ◦ f )
∂xi

(v) = g′( f (v))
∂ f
∂xi

(v).

(2) Let f : I → R2 be a function of class C1 on an interval I of R and let g : Ω→ R be a function of class C1 defined
on an open subset Ω ⊂ R2 such that f (I) ⊂ Ω. Let f1 and f2 be the coordinate functions of f . Then g ◦ f is of
class C1 and

(g ◦ f )′(a) =
∂g
∂x1

( f (a)) f ′1(a) +
∂g
∂x2

( f (a)) f ′2(a).

(3) Let f : U → R2 be a function of class C1 on an open subset U of R2 and let g : Ω → R be a function of class
C1 defined on an open subset Ω ⊂ R2 such that f (U) ⊂ Ω. Let f1 and f2 be the coordinate functions of f . Then
g ◦ f is of class C1 and

∂(g ◦ f )
∂xk

(v) =
∂g
∂x1

( f (v))
∂ f1
∂xk

(v) +
∂g
∂x2

( f (v))
∂ f2
∂xk

(v).

Proof. (1) We use the notation at the beginning of Section IIIIII. Then for i = 1, 2, g ◦ f ◦ pi is differentiable at the
appropriate component of v0 and we have

∂(g ◦ f )
∂x1

(v0) = (g ◦ f ◦ p1)
′(x0) = g′( f (p1(x0)))( f ◦ p1)

′(x0) = g′( f (v0))
∂ f
∂x1

(v0)

∂(g ◦ f )
∂x2

(v0) = (g ◦ f ◦ p2)
′(y0) = g′( f (p2(y0)))( f ◦ p2)

′(y0) = g′( f (v0))
∂ f
∂x2

(v0).

(2) Fix a ∈ I and b = (b1, b2) = f (a) ∈ Ω. We know by Theorem 1111 that

g(v) = g(b) + (x1 − b1)
∂g
∂x1

(b) + (x2 − b2)
∂g
∂x2

(b) + ‖v− b‖∞ε(v)

for some function ε continuous at b with ε(b) = 0. For v = f (t) we get

g( f (t)) = g(b) + ( f1(t)− f1(a))
∂g
∂x1

( f (a)) + ( f2(a)− f2(a))
∂g
∂x2

( f (a)) + ‖ f (t)− f (a)‖∞ε( f (t)).

Now f1 and f2 are also of class C1 so that for i = 1, 2 we have

fi(t) = fi(a) + (t− a) f ′i (a) + (t− a)εi(t)

for some functions εi continuous at a and such that εi(a) = 0. Therefore

g( f (t)) = g( f (a)) + (t− a)
(

f ′1(a)
∂g
∂x1

( f (a)) + f ′2(a)
∂g
∂x2

( f (a))
)
+ R(t)

with
R(t) =

∂g
∂x1

( f (a))(t− a)ε1(t) +
∂g
∂x2

( f (a))(t− a)ε2(t) + ‖ f (t)− f (a)‖∞ε( f (t)).

To conclude, we need only prove that R(t) = o(t− a). We have

R(t)
t− a

=
∂g
∂x1

( f (a))ε1(t) +
∂g
∂x2

( f (a))ε2(t) +
∥∥∥∥ f (t)− f (a)

t− a

∥∥∥∥
∞

|t− a|
t− a

ε( f (t))

in which the first two terms clearly go to 0 when t nears a. Moreover,

•
∥∥∥ f (t)− f (a)

t−a

∥∥∥
∞

goes to
∥∥( f ′1(a), f ′2(a))

∥∥
∞ as t nears a, therefore it is bounded near a,

• |t−a|
t−a is bounded and

• ε( f (t)) goes to 0 as t nears a

so that finally the third term and hence R(t) goes to 0 as t nears a as required.

(3) We use again the notation at the beginning of Section IIIIII. Using the previous case, each of the functions g ◦ f ◦ pi is
of class C1 and

∂(g ◦ f )
∂xi

(v0) = (g ◦ f ◦ pi)
′(xi) =

∂g
∂x1

( f (v0))( f ◦ pi)
′(xi) +

∂g
∂x2

( f (v0))( f ◦ pi)
′(xi)

=
∂g
∂x1

( f (v0))
∂ f
∂xi

(v0) +
∂g
∂x2

( f (v0))
∂ f
∂xi

(v0). X
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Definition 15. Let n and p be in {1; 2}, let Ω be an open subset (interval if n = 1) of Rn and f : Ω → Rp a function of class
C1. Denote by fi the coordinate functions of f .
The jacobean matrixjacobean matrixa of f at v0 is the matrix J f (v0) with p rows and n columns in which the coefficient at row i and column j

is
∂ fi
∂xj

(v0) (or f ′i (v0) if n = 1).

amatrice jacobiennematrice jacobienne

The previous proposition can then be rewritten in the form of a ”chain rule”.

Corollary 16. With the same assumptions as in Proposition 1414, we have

Jg◦ f (v0) = Jg( f (v0))J f (v0).

V. Gradient

Definition 17. If f : Ω→ R is of class C1, the gradientgradienta of f at v0 ∈ Ω is the vector ∇v0 f =

(
∂ f
∂x

(v0),
∂ f
∂y

(v0)

)
.

agradientgradient

Let f : Ω→ R be a function of class C1. The set {(x, y) ∈ Ω ; f (x, y) = 0} is called the curvecurve† with equation f (x, y) = 0.
Let v0 = (x0, y0) be a point in Ω such that ∇v0 f 6= 0. Then we define the tangent line to the curve with equation

f (x, y) = 0 at v0 to be the line with equation

(x− x0)
∂ f
∂x

(v0) + (y− y0)
∂ f
∂y

(v0) = 0.

Note that by Proposition 1111, the curve goes nearer to the tangent line as v approaches v0.
The equation of the tangent line may be expressed as the scalar product 〈v− v0,∇v0 f 〉 = 0.

Remark. If f (x, y) = g(x)− y (that is, the curve is given by an equation y = g(x)) with g differentiable at x0, then (noting
that v0 is on the curve so that 0 = f (v0) = g(x0)− y0) we have

(x− x0)
∂ f
∂x

(v0) + (y− y0)
∂ f
∂y

(v0) = (x− x0)g′(x0) + (y− g(x0))(−1)

so that we recover the usual equation of a tangent line.

Remark. The vector ∇v0 f is orthogonal to the tangent line at v0.

Definition 18. Let f : Ω→ R be a function. We say that it has

â a local maximumlocal maximuma at v0 if there exists r > 0 such that ∀v ∈ Ω, ‖v− v0‖ < r ⇒ f (v) 6 f (v0);

â a local minimumlocal minimumb at v0 if there exists r > 0 such that ∀v ∈ Ω, ‖v− v0‖ < r ⇒ f (v) > f (v0);

â a local extremumlocal extremumc at v0 if it has either a local maximum or a local minimum at v0.

In each case, we say that v0 is an extremal point.

amaximum localmaximum local
bminimum localminimum local
cextremum localextremum local

Proposition 19. Let f be a function of class C1 on Ω. If f has a local extremum at v0 ∈ Ω then ∇v0 f = (0, 0) (we say
that v0 is a critical point for f ).

Proof. Let us do the proof for a local maximum. Set v0 = (x0, y0). There exists r > 0 such that ∀v ∈ Ω, ‖v− v0‖ < r ⇒
f (v) 6 f (v0). Since Ω is an open set, we may assume that B̄(v0, r) ⊂ Ω.

Then the functions t→ f (x0 + t, y0) and t→ f (x0, y0 + t) are defined on [−r, r] and have a maximum at t = 0, therefore
their derivatives at 0 vanish, that is, the partial derivatives of f at v0 vanish. X

†courbecourbe
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Example. As in the case of functions of one variable, critical points are not necessarily extremal points.
Let f : R2 → R be defined by f (x, y) = x2 − y2. Then ∂ f

∂x (x, y) = 2x and ∂ f
∂y (x, y) = −2y so that v0 = (0, 0) is a critical

point for f . However, v0 is not an extremal point for f since f (x, 0) > 0 as soon as x 6= 0 and f (0, y) < 0 as soon as y 6= 0
(and points of the form (x, 0) or (0, y) are in every open disk around v0)

VI. Change of coordinates

A. Definition

Definition 20. Let Ω be an open subset of R2. A change of coordinateschange of coordinatesa is a function ϕ : Ω→ R2 satisfying:

â f is of class C1;

â f is injective;

â the jacobean matrix at any point of Ω is invertible.

achangement de coordonnéeschangement de coordonnées

Example. The map ϕ : R2 → R2 : (x, y)→ (x + y, x + 2y) is a change of coordinates (it is clearly of class C1, the jacobean

matrix is
(

1 1
1 2

)
whose determinant is 1 6= 0 and injectivity is easily checked).

It simplifies the resolution of the equation 2
∂ f
∂x
− ∂ f

∂y
= 0 on R2. Set g = f ◦ ϕ−1 so that g(u, v) = f (2u− v, v− u).

Since f = g ◦ ϕ, we have
∂ f
∂x

=
∂g
∂u

∂ϕ1
∂x

+
∂g
∂v

∂ϕ2
∂x

=
∂g
∂u

+
∂g
∂v

and
∂ f
∂y

=
∂g
∂u

+ 2
∂g
∂v

so that 2
∂ f
∂x
− ∂ f

∂y
=

∂g
∂u

. The equation

then becomes
∂g
∂u

= 0 so that g(u, v) = ψ(v) for some function ψ : R→ R of class C1, that is, f (x, y) = ψ(x + 2y).

B. Polar coordinates

Let A be the set of points in the Euclidean plane that are not of the form (x, 0) with x 6 0 and set B :=]0;+∞[×]− π; π[.
The map ϕ : B→ R2 defined by ϕ(r, θ) = (r cos θ, r sin θ) is a change of coordinates:

â ϕ is clearly of class C1 and

∂ϕ1
∂r

= cos θ
∂ϕ1
∂θ

= −r sin θ

∂ϕ2
∂r

= sin θ
∂ϕ2
∂θ

= r cos θ

â ϕ is injective: assume that ϕ(r, θ) = ϕ(r′, θ′), that is,

r cos θ = r′ cos θ′ (12.1)

r sin θ = r′ sin θ′ (12.2)

Then (12.112.1)2 + (12.212.2)2 gives r2 = r′2 so that r = r′. We then get θ = θ′.

â J(r,θ)(ϕ) =

(
cos θ −r sin θ
sin θ r cos θ

)
has determinant r 6= 0 hence is invertible.

We can see that ϕ(B) = A so that ϕ induces a bijection ϕ : B → A whose inverse is given by ϕ−1(x, y) =(√
x2 + y2; 2 arctan y

x+
√

x2+y2

)
.

To see this, note that y
x = tan θ, but θ ∈]− π, π[ so we cannot just apply arctan. We shall therefore consider θ

2 to which
we can apply arctan.

Note that sin θ = 2 sin θ
2 cos θ

2 = 2 cos2 θ
2 tan θ

2 and that 2 cos2 θ
2 = 1 + cos θ so that tan θ

2 =
sin θ

1 + cos θ
=

y
r

1 + x
r

=

y
r + x

=
y√

x2 + y2 + x
.

The map ϕ−1 is of class C1 on B and we have

∂r
∂x

=
x√

x2 + y2

∂r
∂y

=
y√

x2 + y2

∂θ

∂x
= − y

x2 + y2
∂θ

∂y
=

x
x2 + y2 .
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Now if f is a function of class C1 on A, the function F : B → R defined by F(r, θ) = f (r cos θ, r sin θ) is of class C1 and
we have

∂F
∂r

=
∂ f
∂x

∂x
∂r

+
∂ f
∂y

∂y
∂r

= cos θ
∂ f
∂x

+ sin θ
∂ f
∂y

∂F
∂θ

=
∂ f
∂x

∂x
∂θ

+
∂ f
∂y

∂y
∂θ

= −r sin θ
∂ f
∂x

+ r cos θ
∂ f
∂y

.

Conversely, if F is a function of class C1 on B, then the function f : A → R defined by f (x, y) =

F(
√

x2 + y2; 2 arctan y
x+
√

x2+y2
) is of class C1 and we can compute its partial derivatives.

C. Cylindrical coordinates

We can extend polar coordinates to cylindrical coordinatescylindrical coordinates† on parts of R3 via the following bijections:

A×R→ B×R

(x, y, z)→
(√

x2 + y2, 2 arctan
y

x +
√

x2 + y2
, z

)

B×R→ A×R

(r, θ, z)→ (r cos θ, r sin θ, z).

If we project on the xy-plane, we get the polar coordinates.
The map ψ : B×R→ R2 defined by ψ(r, θ, z) = (r cos θ, r sin θ, z) is indeed a change of coordinates:

â It is clearly of class C1, and Jψ(r, θ, z) =

 cos θ sin θ 0
−r sin θ r cos θ 0

0 0 1

 has determinant r 6= 0 hence is invertible; moreover,

it is easy to check that ψ is injective, using the fact that ϕ defines a bijection from B to A.

VII. Higher order partial derivatives

Definition 21. Let f : Ω→ R be a function of class C1. If the function
∂ f
∂x

: Ω→ R has partial derivatives, then

â its first partial derivative is denoted by
∂

∂x

(
∂ f
∂x

)
or

∂2 f
∂x2

â its second partial derivative is denoted by
∂

∂y

(
∂ f
∂x

)
or

∂2 f
∂y∂x

.

Similarly, when they exist, the partial derivatives of
∂ f
∂y

are denoted by
∂

∂x

(
∂ f
∂y

)
=

∂2 f
∂x∂y

and
∂

∂y

(
∂ f
∂y

)
=

∂2 f
∂y2 .

Definition 22. A function f : Ω → R is said to be of class C2 on Ω if its four second order partial derivatives
∂2 f
∂x2 ,

∂2 f
∂x∂y

,

∂2 f
∂y∂x

and
∂2 f
∂y2 exist and are continuous on Ω.

Theorem 23. If f is a function of class C2 on Ω then

∂2 f
∂y∂x

=
∂2 f

∂x∂y
.

Proof. Admitted. X

Example. Let us consider the function f : R2 → R defined by f (x, y) =
(x2 − y2)xy

x2 + y2 if (x, y) 6= (0, 0) and f (0, 0) = 0.

This function is clearly continuous on R2 \ {(0, 0)}. Moreover, | f (x, y)| 6 ‖(x, y)‖4
2

‖(x, y)‖2
2

= ‖(x, y)‖2
2 so that f is also

continuous at (0, 0). We have

†coordonnées cylindriquescoordonnées cylindriques
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â
∂ f
∂x

(x, y) =
(3yx2 − y3)(x2 + y2)− xy(x2 − y2)2x

(x2 + y2)2 if (x, y) 6= (0, 0),

â
∂ f
∂x

(0, y) = −y if y 6= 0,

â
∂ f
∂x

(0, 0) = lim
h→0

f (h, 0)− f (0, 0)
h

= 0,

â
∂ f
∂y

(x, y) =
(x3 − 3xy2)(x2 + y2)− xy(x2 − y2)2y

(x2 + y2)2 if (x, y) 6= (0, 0),

â
∂ f
∂y

(x, 0) = x if x 6= 0,

â
∂ f
∂y

(0, 0) = lim
h→0

f (0, h)− f (0, 0)
h

= 0.

Now let us compute the second order partial derivatives at (0, 0).

â
∂2 f

∂x∂y
(0, 0) is the derivative of x → ∂ f

∂y
(x, 0) at 0, so

∂2 f
∂x∂y

(0, 0) = 1.

â
∂2 f

∂y∂x
(0, 0) is the derivative of y→ ∂ f

∂x
(0, y) at 0, so

∂2 f
∂y∂x

(0, 0) = −1.

In particular, we can say that f is not of class C2.

We can repeat the process of taking partial derivatives to obtain the following definition.

Definition 24. Let f : Ω→ R be a function defined on Ω. We say that f is of class Ck if all its partial derivatives up to order k
(inclusive) exist and are continuous. We denote by Ck(Ω) the set of all these functions. We say that f is of class C∞ or smoothof class C∞ or smootha

if it is of class Ck for all k ∈N.

ade classe C∞de classe C∞
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Appendix A

Trigonometric formulae

α

−α
α + π

1

−1

cos α0

sin α

tan α

1−1

π − α

− sin α

− cos α

The sine, cosine and tangent of an angle can be read off the trigonometric circle. One full turn of the circle represents
an angle of 2π.

I. Angles and properties of cos and sin

It is useful to know the cosine, sine and tangent of a few remarkable angles (the tangent may be found easily from the

other two, since tan α =
sin α

cos α
).

α 0 π
6

π
4

π
3

π
2

cos α 1
√

3
2

√
2

2
1
2 0

sin α 0 1
2

√
2

2

√
3

2 1

Next, we can find the cosine, sine and tangent of other angles, such as 2π
3 or −π

6 , using formulae from Section IIII, as
well as the following relations (that can be seen on the trigonometric circle).

cos(−α) = cos α sin(−α) = − sin α

cos(π − α) = − cos α sin(π − α) = sin α

cos(α + π) = − cos α sin(α + π) = − sin α
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So for instance
α 5π

6
3π
4

2π
3 π 7π

6

cos α −
√

3
2 −

√
2

2 − 1
2 −1 −

√
3

2

sin α 1
2

√
2

2

√
3

2 0 1
2

II. Circular trigonometric functions

The following formulae must be known (although formulae (A.2A.2) and (A.3A.3) may be recovered from ei(a+b) = eiaeib).

cos2 a + sin2 a = 1 (A.1)

cos(a + b) = cos a cos b− sin a sin b (A.2)

sin(a + b) = sin a cos b + cos a sin b. (A.3)

We deduce immediately that

cos(−α) = cos α sin(−α) = − sin α

cos(π − α) = − cos α sin(π − α) = sin α

cos(α + π) = − cos α sin(α + π) = − sin α

Moreover, from these formulae, many others may be found (even if you do not remember them, you must know that
they exist in order to recover them – for instance, you must know that there are formulae relating cos2 a and cos(2a)...).
They are especially useful to compute integrals and primitives.

Many of the formulae below may also be found using the Euler formulae, complex exponentials and (A.1A.1).

â cos(a− b) = cos a cos b + sin a sin b (Replace b by −b in (A.2A.2)).

â sin(a− b) = sin a cos b− cos a sin b (Replace b by −b in (A.3A.3)).

â cos(2a) = cos2 a− sin2 a = 2 cos2 a− 1 = 1− 2 sin2 a (Using formulae (A.2A.2) and (A.1A.1)).

â cos2 a =
1 + cos(2a)

2
(From the previous line).

â sin2 a =
1− cos(2a)

2
(Similar).

â sin(2a) = 2 sin a cos a (Formula (A.3A.3) with a = b).

â 1 + tan2 a =
1

cos2 a
(Using formula (A.1A.1)).

â tan(a + b) =
tan a + tan b

1− tan a tan b
(Using formulae (A.2A.2) and (A.3A.3)).

â tan(2a) =
2 tan a

1− tan2 a
(From the previous line).

â tan a =
2 tan( a

2 )

1− tan2( a
2 )

(From the previous line).

â cos a =
1− tan2( a

2 )

1 + tan2( a
2 )

(indeed, cos a = cos2 a
2 − sin2 a

2 = cos2 a
2
(
1− tan2 a

2
)
=

1− tan2 a
2

1 + tan2 a
2

).

â sin a =
2 tan( a

2 )

1 + tan2( a
2 )

(indeed, sin a = 2 sin a
2 cos a

2 = 2 tan a
2 cos2 a

2 = 2
tan a

2
1 + tan2 a

2
).

III. Linearisation

When we want to compute primitives and integrals, it is useful to know how to linearise the (even) powers of cos and

sin. We can use for instance the Euler formulae to linearise. For example, the primitives of cos2 x =
1 + cos(2x)

2
are

x
2
+

sin 2x
4

+ C.
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IV. Hyperbolic trigonometric functions

The hyperbolic functions have been defined in Chapter 33 by the formulae ch x =
ex + e−x

2
and sh x =

ex − e−x

2
. Note

that they are similar to the Euler formulae, and we can use them in the same way to recover the relations below.
The following formulae must be known.

ch2 a− sh2 a = 1 (A.4)

ch(a + b) = ch a ch b + sh a sh b (A.5)

sh(a + b) = sh a ch b + ch a sh b. (A.6)

From there, the following formulae can be recovered (or use the definitions of ch and sh, as well as exp).

• ch(a− b) = ch a ch b− sh a sh b (Replace b by −b in (A.5A.5)).

• sh(a− b) = sh a ch b− ch a sh b (Replace b by −b in (A.6A.6)).

• ch(2a) = ch2 a + sh2 a = 2 ch2 a− 1 = 1 + 2 sh2 a (Using formulae (A.5A.5), (A.6A.6) and (A.4A.4)).

• ch2 a =
1 + ch(2a)

2
(From the previous line).

• sh2 a =
ch(2a)− 1

2
(Similar).

• sh(2a) = 2 sh a ch a (Formula (A.6A.6) with a = b).
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Appendix B

Greek alphabet

Nom Lower case Upper case

alpha α A

beta β B

gamma γ Γ

delta δ ∆

epsilon ε E

zeta ζ Z

eta η H

theta θ Θ

iota ι I

kappa κ K

lambda λ Λ

mu µ M

nu ν N

xi ξ Ξ

omicron o O

pi π, v Π

rho ρ, $ R

sigma σ, ς Σ

tau τ T

upsilon υ U

phi ϕ, φ Φ

chi χ X

psi ψ Ψ

omega ω Ω

The lighter coloured letters are not used in mathematics since they are the same as the latin ones.
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Appendix C

Integer arithmetics

This appendix is a reminder on the arithmetics of integers. These are not on the syllabus, but are considered to be known.
(Most of) the proofs are left as exercises.

I. Greatest common divisor

Notation. Let a be an integer in Z. We denote by D(a) the set of divisors of a in Z. Recall that

â D(0) = Z;

â if a 6= 0 then for any integer b in D(a) we have |b| 6 |a|.

In the sequel, we shall consider two integers in Z with at least one of them non-zero.

Remark. Let a and b be two integers in Z, at least one of which is non-zero. Then D(a) ∩ D(b) contains only non-zero
integers, and they all have absolute value at most min(|a|, |b|) if a and b are both non-zero, or at most |a| if b = 0.
In particular, the set {|c|; c ∈ D(a) ∩D(b)} is a non-empty subset of N which contains 1 and is bounded above in R,
therefore it has a maximum, d > 1.

Definition 1. Let a and b be two integers in Z with at least of them non-zero. Then d = max{|c|; c ∈ D(a) ∩D(b)} is called
the greatest common divisorgreatest common divisora (or gcdgcdb) of a and b. It is denoted by a ∧ b.
By convention, we set 0∧ 0 = 0.

aplus grand commun diviseurplus grand commun diviseur
bpgcdpgcd

A. Euclidean algorithm

Theorem 2 (Euclidean divisionEuclidean divisiona). For any integer a and any integer b 6= 0, there exists a unique pair of integers (q, r)

such that

a = qb + r and

0 6 r < |b|.
The integer r is called the remainderremainderb and the integer q is called the quotientquotientc of the division.

adivision euclidiennedivision euclidienne
brestereste
cquotientquotient

Proposition 3. Let a, b and q be three integers. then D(a) ∩D(b) = D(b) ∩D(a− qb).
In particular, if r is the remainder of the Euclidean divison of a by b, then D(a) ∩D(b) = D(b) ∩D(r).

Proposition 4 (Euclidean algorithmEuclidean algorithma). Let a and b be two non-zero integers.
Define the following sequence of integers, defined inductively by: r0 = a and r1 = b. For k > 1, assume that rk−1 and
rk are known; if rk = 0, set rk+1 = 0; if rk 6= 0, let rk+1 be the remainder of the Euclidean division of rk−1 by rk, so that
rk−1 = qkrk + rk+1 and 0 6 rk+1 < |rk|.
Then there exists n ∈N such that rn 6= 0 and rn+1 = 0. Moreover, rn = a ∧ b.

aalgorithme d’Euclidealgorithme d’Euclide
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Example. We want to find a gcd of a = 530 and b = 280. We do successive Euclidean divisions until the remainder
vanishes:

530 = 1 · 280 + 250

280 = 1 · 250 + 30

250 = 8 · 30 + 10

30 = 3 · 10 + 0

therefore a ∧ b = 10 (the last non-zero remainder).

Corollary 5. Let a and b be two integers in Z with at least one of them non-zero. Set d = a ∧ b.
Then D(d) = D(a) ∩D(b).

Remark. The previous result shows that the gcd d of a and b can be characterised by the three properties:

(i) d > 0 and

(ii) d divides a and b, and

(iii) if c is any integer that divides a and b, then c divides d.

Properties 6. (a) For any integers a and b, one of which is non-zero, we have a ∧ b = b ∧ a.

(b) For any non-zero integer a, we have a ∧ 0 = |a|.

(c) For any integer a, we have a ∧ 1 = 1.

(d) a ∧ b = |a| if, and only if, a divides b.

(e) The integer a ∧ b and its divisors are all the divisors common to a and b.

Proposition 7. Let a and b be two integers in Z with at least one of them non-zero. For any non-zero integer c, we
have (ca) ∧ (cb) = |c|(a ∧ b).

Proposition 8. Let a and b be two integers in Z, at least one of which is non-zero. Then there exist integers u and v
such that a ∧ b = ua + vb.
This is called a Bézout relationBézout relationa between a and b and the integers u and v are called the Bézout coefficientsBézout coefficientsb for a and
b.

arelation de Bézoutrelation de Bézout
bcoefficients de Bézoutcoefficients de Bézout

Remark. It follows from the proof that, to find the Bézout coefficients for a and b, we can use the Euclidean algorithm
then work backwards, as we do for integers.

Example. In the example above, we have seen that 530∧ 280 = 10.
Moreover, working up the Euclidean algorithm, we have

10 = 250− 8 · 30

= 250− 8 · (280− 250) = 9 · 250− 8 · 280

= 9 · (530− 280)− 8 · 280

10 = −17 · 280 + 9 · 530.

II. Least common multiples

In the sequel, we shall consider non-zero integers a and b.

Notation. The setM(a) = aZ is the set of multiples of a.

Remark. Let a and b be two non-zero integers in Z.
The setM(a) ∩M(b) is the set of common multiples of a and b. It contains 0 as well as some non-zero integers (such

as ab). The non-zero integers have degree at least max(|a|, |b|).
In particular, the set {|c|; c ∈ M(a) ∩M(b), c 6= 0} is a non-empty subset of N∗ which is bounded below in R, therefore

it has a positive minimum, m > 0.
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Definition 9. Let a and b be two non-zero integers in Z.
The integer m = min{|c|; c ∈ M(a) ∩M(b), c 6= 0} > 0 is called the least common multipleleast common multiplea (or lcmlcmb) of a and b. It is
denoted by m = a ∨ b.
By convention, if a or b is zero, then a ∨ b = 0.

aplus petit commun multipleplus petit commun multiple
bppcmppcm

Notation. By convention, we set A ∨ 0 = 0 for A 6= 0.

Properties 10. â For any integers a and b, one of which is non-zero, we have a ∨ b = b ∨ a.

â For any non-zero integer a, we have a ∨ 1 = |a|.

â a ∨ b = |a| if, and only if, b divides a.

Proposition 11. Let a and b be two non-zero integers in Z, and let c be any integer.
Then c is the lcm for a and b if, and only if,M(c) =M(a) ∩M(b).

Remark. Let a and b be two non-zero integers in Z. The integer a∨ b is the unique positive integer such thatM(a∨ b) =
M(a) ∩M(b).

Proposition 12. Let a and b be two non-zero integers in Z. For any non-zero integer c, we have (ca)∨ (cb) = |c|(a∨ b).

Proposition 13. Let a and b be two non-zero integers in Z. Then

(a ∧ b) · (a ∨ b) = |ab|.

III. Coprime integers

Definition 14. Let a and b be two integers. We say that a and b are coprimecoprimea if a ∧ b = 1.
In other words, the only common divisors of a and b are ±1.

apremiers entre euxpremiers entre eux

Theorem 15 (Bézout TheoremBézout Theorema). Let a and b be two integers. Then a and b are coprime if, and only if, there exist two
integers u and v such that au + bv = 1.

athéorème de Bézoutthéorème de Bézout

Proposition 16 (Gauss’ LemmaGauss’ Lemmaa). Let a, b and c be three integers.
If a divides bc and if a and b are coprime, then a divides c.

alemme de Gausslemme de Gauss

Proposition 17 (Euclid’s LemmaEuclid’s Lemmaa). Let a and b be two integers and let p be a prime integer.
If p divides ab then p divides a or p divides b.

alemme d’Euclidelemme d’Euclide
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Proposition 18. Let a, b and c be three integers. The following are equivalent:

(i) a and b are coprime and a and c are coprime;

(ii) a and bc are coprime.

More generally, let a1, . . . , ap and b1, . . . , bn be p + n integers. The following are equivalent:

(i) aj and bk are coprime for all j, k with 1 6 j 6 p and 1 6 k 6 n;

(ii) a1 · · · ap and b1 · · · bn are coprime.

Definition 19. Let a1, . . . , an be a family of integers. We say that they are pairwise coprimepairwise coprimea if any two of them are coprime,
that is,

∀i, j, 1 6 i < j 6 n, ai and aj are coprime.

apremiers entre eux deux à deuxpremiers entre eux deux à deux

Proposition 20. Let a, b and c be three integers. Assume that a and b are coprime.
The integer c is a multiple of a and b if, and only if, it is a multiple of ab.
More generally, if a1, . . . , an is a family of pairwise coprime integers, then c is a multiple of each of the ak if, and only
if, it is a multiple of their product a1a2 · · · an.

Remark. Let a and b be two non-zero integers. There exist integers a1 and b1 such that a = (a ∧ b)a1 and b = (a ∧ b)b1.
Then a1 and b1 are coprime.

IV. Solving equations ax + by = c

Given three integers a, b and c, we would like to find, if possible, all the pairs of integers (x, y) ∈ Z2 such that ax + by = c.

Lemma 21. The equation (E) ax + by = c has a solution if, and only if, a ∧ b divides c.

Proof. Assume that (E) has a solution (x, y). Then a ∧ b divides ax + by = c.
Conversely, assume that d := a ∧ b divides c, so that c = dc′. There exists (u, v) ∈ Z2 such that d = au + bv. Therefore

c = auc′ + bvc′. We have found a solution, (uc′, vc′). X

Definition 22. The homogeneous equationhomogeneous equationa associated to (E) is (E0) ax + by = 0.

aéquation homogèneéquation homogène

Lemma 23. Given a solution (x0, y0) of (E), the set of all solutions of (E) is the set of (x0 + s, y0 + t) with (s, t) solution
of the homogeneous equation (E0).

Proof. Let (s, t) be a solution of the homogeneous equation (E0). Then as + bt = 0 so that a(x0 + s) + b(y0 + t) =
ax0 + by0 = c, therefore (x0 + s, y0 + t) is a solution of (E).

Conversely, let (x, y) be a solution of (E). Put s = x − x0 and t = y− y0. Then as + bt = (ax + by)− (ax0 + (by0) =
c− c = 0 so that (s, t) is a solution of (E0). X

Lemma 24. Let d be the gcd of a and b. The solutions of (E0) are the pairs
(
− b

d k, a
d k
)

with k ∈ Z.

Proof. First note that for any k ∈ Z,
(
− a

d k, b
d k
)

is a solution of (E0), since a
(
− b

d k
)
+ b
( a

d k
)
= 0.

Conversely, let (s, t) be a solution of (E0). Then as + bt = 0. Divide by d, we get a
d s = − b

d t. Then a
d divides b

d t, But a
d

and b
d t are coprime, therefore by Gauss’ Lemma, a

d divides t. We can write t = a
d k for some k ∈ Z. It then follows that

s = − b
d k. X
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Combining everything, we get the following result.

Proposition 25. The equation (E) ax + by = c has a solution if, and only if, d := a ∧ b divides c.
Assuming d divides c, the solutions of (E) are the sum of one solution of (E) and of all the solutions of the homogen-

eous equation (E0) ax + by = 0 associated to (E), and the solutions of (E0) are the
(
− b

d k, a
d k
)

with k ∈ Z. Moreover, a

solution of (E) may be obtained from the Bézout coefficients of a and b.

Example. The equation 4x + 6y = 7 has no solutions, since 4∧ 6 = 2 does not divide 7.

Example. Consider the equation 12x + 8y = 28. Then 12∧ 8 = 4 divides 28, therefore it has solutions.
We first look for one solution. We have 28 = 4 · 7 and 4 = 12− 8 therefore 28 = 12 · 7− 8 · 7. Hence one solution is

given by (x0, y0) = (7,−7).
Now consider the homogeneous equation 12x + 8y = 0. Dividing by 4 = 12, 8∧ gives the equivalent equation 3x + 2y =

0. We then have 3x = −2y so that 3 divides 2y. But 3 and 2 are coprime, therefore by Gauss’ Lemma 3 must divide y,
so that y = 3k for some k ∈ Z. Therefore 3x = −6k and x = −2k. The solutions of the equation 12x + 8y = 0 are the
(−2k, 3k) for k ∈ Z.

Finally, the solutions of the equation 12x + 8y = 28 are (7− 2k,−7 + 3k) for k ∈ Z.

V. Gcd and lcm of more than two integers

Proposition 26. For any three integers a, b and c, we have

a ∧ (b ∧ c) = (a ∧ b) ∧ c
a ∨ (b ∨ c) = (a ∨ b) ∨ c.

In other words, gcds and lcms are associative.

Consequence 27. In particular, for any family of n integers a1, . . . , an, we may consider a1 ∧ a2 ∧ · · · ∧ an and a1 ∨ a2 ∨
· · · ∨ an (without brackets).

Definition 28. Let a1, . . . , an be a family of n integers, with n > 2.

â The integer a1 ∧ a2 ∧ · · · ∧ an is called the greatest common divisor (gcd) of the integers a1, . . . , an.

â The integer a1 ∨ a2 ∨ · · · ∨ an is called the least common multiple (lcm) of the integers a1, . . . , an.

Proposition 29. â d = a1 ∧ a2 ∧ · · · ∧ an is the unique positive integer such that D(d) = D(a1) ∩ · · · ∩ D(an).

â m = a1 ∨ a2 ∨ · · · ∨ an is the unique positive integer such thatM(m) =M(a1) ∩ · · · ∩M(an).

We can extend some of the results for the gcd and lcm of two integers.

Proposition 30. Let a1, . . . , an be a family of n integers, with n > 2, and let c be a non-zero integer. Then

(ca1) ∧ (ca2) ∧ · · · ∧ (can) = |c|(a1 ∧ a2 ∧ · · · ∧ an)

(ca1) ∨ (ca2) ∨ · · · ∨ (can) = |c|(a1 ∨ a2 ∨ · · · ∨ an)

Proposition 31. Let a1, . . . , an be a family of n integers, with n > 2. Then there exist integers u1, . . . , un such that

a1 ∧ a2 ∧ · · · ∧ an = a1u1 + a2u2 + · · ·+ anun.

Definition 32. Let a1, . . . , an be a family of n integers, with n > 2. we say that they are relatively primerelatively primea if a1 ∧ a2 ∧ · · · ∧ an =
1.

apremiers entre eux dans leur ensemblepremiers entre eux dans leur ensemble

Proposition 33. let a1, . . . , an be a family of n integers, with n > 2. The following are equivalent:

(i) the integers a1, . . . , an are relatively prime;

(ii) there exist n integers u1, . . . , un such that a1u1 + a2u2 + · · ·+ anun = 1.
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Remark. The equality (a ∧ b) · (a ∨ b) = |ab| does not generalise to more than two integers.
However, if the integers a1, . . . , an are pairwise coprime, then a1 ∧ a2 ∧ · · · ∧ an = a1a2 · · · an.

VI. Prime integers and factorisations

Definition 34. Let p be an integer in Z. We say that p is primeprimea if it is not constant and if its only divisors are ±1 and ±p.

apremierpremier

Remark. An integer p is not prime if, and only if, there exist q and r such that |q| < |p|, |r| < |p| and p = qr.

Properties 35. â ±2 are the only even prime numbers.

â If p is an prime integer and if p does not divide an integer a, then p and a are coprime.

â Let p be an prime integer. Let a1, . . . , an be a family of integers. Then p divides the product a1 · · · an if, and
only if, p divides one of the ai.

Proposition 36. There is are infinitely many distinct prime numbers.

Remark. Any integer a with |a| > 1 has an prime divisor.
In particular, to prove that two integers a and b are coprime, it is enough to prove that they have no common prime

divisor.

Corollary 37. Let a be a non-zero integer. Then a can be written uniquely (up to reordering of the factors)

a = λ
r

∏
k=1

pnk
k = λpn1

1 pn2
2 · · · p

nr
r

where λ = ±1 is the sign of a, the integers p1, . . . , pr are positive prime integers and the nk are positive integers.

Proposition 38. Let a and b be two integers in Z which are not in {−1; 0; 1}. Set a = λ ∏r
k=1 pnk

k and b = µ ∏r
k=1 pmk

k
with nk and mk non-negative integers (pk need not occur in the decomposition of a or b if nk = 0 or mk = 0).
Then a divides b if, and only if, nk 6 mk for all k.

Proposition 39. Let a and b be two integers in Z which are not in {−1; 0; 1}. Set a = λ ∏r
k=1 pnk

k and b = µ ∏r
k=1 pmk

k
with nk and mk non-negative integers (not both zero). For each k, set uk = min(nk, mk) and vk = max(nk, mk).
Then a ∧ b = ∏r

k=1 puk
k and a ∨ b = ∏r

k=1 pvk
k .
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Glossary

A

accurate within 10−n – à 10−n près 44
antiderivative or primitive – primitive 6565
associative – associative 4848
average – moyenne 1010

B

bounded – borné 33
bounded above – majoré 11
bounded below – minoré 33

C

change of coordinates – changement de coordonnées 9595
chord – corde 1010
closed disk – disque (ou boule) fermé 8888
commutative – commutative 4848
commutative field – corps commutatif 4848
contracting – contractante 1010
coordinate function – fonction coordonnée 8585
curve – courbe 9494
cylindrical coordinates – coordonnées cylindriques 9696

D

decimal approximation by default – valeur approchée par défaut 44
decimal approximation by excess – valeur approchée par excès 44
dense – dense 44
dichotomy algorithm – algorithme de dichotomie 3131
distributive – distributive 4848

E

exponential – exponentielle 1717

F

fixed point – point fixe 2626
function – fonction

n-th root – racine n-ième 88
arccosine – arccosinus 2121
arcsine – arcsinus 2020
arctangent – arctangente 2222
continuous – continue 1515
cosine – cosinus 2121
derivative – dérivée

higher-order derivative – dérivée d’ordre supérieur 1313
second derivative – dérivée seconde 1313

differentiable – dérivable 99, 1515
graph – graphe 88
has a continuous extension – admet un prolongement par continuité 1919
hyperbolic cosine – cosinus hyperbolique 2323
hyperbolic sine – sinus hyperbolique 2323
hyperbolic tangent – tangente hyperbolique 2424
integrable – intégrable 5656, 6161
locally integrable – localement intégrable 7575

i



odd – impaire 2121
of class C∞ or smooth – de classe C∞ 1313, 9797
of class Ck – de classe Ck 1313, 1515
piecewise continuous – continue par morceaux 6262, 7575
power function – fonction puissance 1818
sine – sinus 2020
square root – racine carrée 88
step function – fonction en escalier ou étagée 5454
tangent – tangente 2222

Fundamental Theorem of Algebra – théorème de d’Alembert-Gauss 4343
Fundamental Theorem of Calculus – Théorème fondamental de l’analyse 6666

G

general exponential function – exponentielle de base a 1919
gradient – gradient 9494
greatest lower bound – borne inférieure 33

I

improper integral – intégrale impropre 7575
absolutely convergent – absolument convergente 8080
convergent – convergente 7575
divergent – divergente 7575
semi-convergent – semi-convergente 8080

indentity element – élément neutre 4848
induction – récurrence 1414
infimum – borne inférieure 33
integer – entier

Bézout coefficients – coefficients de Bézout 103103
Bézout relation – relation de Bézout 103103
Euclid’s Lemma – lemme d’Euclide 104104
Euclidean algorithm – algorithme d’Euclide 102102
Euclidean division – division euclidienne 102102
Gauss’ Lemma – lemme de Gauss 104104
gcd – pgcd 102102
greatest common divisor – plus grand commun diviseur 102102
homogeneous equation – équation homogène 105105
pairwise coprime – premiers entre eux deux à deux 105105
prime – premier 107107
quotient – quotient 102102
remainder – reste 102102

integral – intégrale 5555, 5757, 6161
integration by parts – intégration par parties (IPP) 6767
integration by substitution – changement de variable 6868

integral part – partie entière 33
Intermediate Value Theorem – théorème des valeurs intermédiaires (TVI) 55
interval – intervalle 66

stable – stable 2525
invertible – inversible 4848

J

jacobean matrix – matrice jacobienne 9494

L

least upper bound – borne supérieure 11
Leibniz’s Formula – formule de Leibniz 1414
Lipschitz continuous with Lipschitz constant K – K-lipschitzienne 1010
local extremum – extremum local 9494
local maximum – maximum local 9494
local minimum – minimum local 9494
logarithm – logarithme 1616, 6767
lower bound – minorant 33

M

map – application 33
maximum – maximum ou plus grand élément 22

ii



Mean Value Inequality – inégalité des accroissements finis 1111, 1515, 6666
Mean Value Theorem – théorème des accroissements finis 99
Mean Value Theorem for integrals – formule de la moyenne 6060
minimum – minimum ou plus petit élément 33

N

neighbourhood – voisinage 55
Newton’s method – méthode de Newton 3232
non-empty – non vide 22
non-negative – positif (ou nul) 11
norm – norme 8383

euclidean norm – norme euclidienne 8383
supremum norm – norme sup 8383

O

open disk – disque (ou boule) ouvert 8888
open subset – ouvert (ou partie ouverte) 8888

P

parametric curve – courbe paramétrée 8787
partial derivative – dérivée partielle 9191
partition – subdivision 5454

adapted – adaptée 5454
mesh – pas 5454

polynomial – polynôme 3434
associate – associé 3434
Bézout coefficients – coefficients de Bézout 3737
Bézout relation – relation de Bézout 3737
Bézout Theorem – théorème de Bézout 3939, 104104
coprime – premiers entre eux 3939, 104104
Euclidean algorithm – algorithme d’Euclide 3535
Gauss’ Lemma – lemme de Gauss 3939
gcd – pgcd 3434
greatest common divisor – plus grand commun diviseur 3434
irreducible – irréductible 4242
Lagrange interpolation polynomial – polynôme d’interpolation de Lagrange 4646
lcm – ppcm 3737, 104104
leading coefficient – coefficient dominant 3434, 4444, 4545
least common multiple – plus petit commun multiple 3737, 104104
monic – unitaire 3434
pairwise coprime – premiers entre eux deux à deux 4040
reducible – réductible 4242
relatively prime – premiers entre eux dans leur ensemble 4141, 106106
remainder – reste 3535
root – racine 55, 4242
split – scindé 4444

polynomial function – fonction polynomiale 4848
positive – strictement positif 11
a to the b or a to the power of b – a puissance b 1717

R

radius – rayon 8888
rational fraction – fraction rationnelle 4747

addition – addition 4747
degree – degré 4848
denominator – dénominateur 4747
integral part – partie entière 4949
irreducible form – forme irréductible 4848
multiplication – multiplication 4747
multiplicity – multiplicité 4949
numerator – numérateur 4747
partial fraction decomposition – décomposition en éléments simples 5050
pole – pôle 4949

double – double 4949
simple – simple 4949

root – racine 4949

iii



rational function – fonction rationnelle 4848
recursively – par récurrence 1313
Riemann sum – somme de Riemann 6262
Rolle’s Theorem – théorème de Rolle 99

S

scalar product – produit scalaire 8585
sequence – suite 22

stationary – stationnaire 33
set – ensemble 11
slope – coefficient directeur (pente) 1111
sphere – sphère 8888
straight-line motion – trajectoire rectiligne 1010
subset – sous-ensemble 22
supremum – borne supérieure 11
symmetry with respect to – symétrie par rapport à 88

T

Taylor expansion – développement limité (DL) 1616
Taylor’s formula with integral remainder – formule de Taylor avec reste intégral 7171

remainder – reste 7171
Taylor’s inequality – inégalité de Taylor-Lagrange 1515, 7272
triangle inequality – inégalité du triangle 8383
x truncated to n decimal places – tronqué à n décimales 44

U

unit disk – disque (ou boule) unité 8888
upper bound – majorant 11

V

vector function – fonction à valeurs vectorielles 8383
continuous – continue 8484
derived vector – vecteur dérivé 8484
differentiable – dérivable 8484
integral – intégrale 8787
limit – limite 8484
Taylor expansion – développement limité 8686
Taylor formula with integral remainder – formule de Taylor avec reste intégral 8787
Taylor-Young formula – formule de Taylor-Young 8686

velocity – vitesse 1010
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Glossaire

A

à 10−n près – accurate within 10−n 44
algorithme de dichotomie – dichotomy algorithm 3131
application – map 33
associative – associative 4848

B

borné – bounded 33
borne inférieure – infimum 33
borne supérieure – supremum 11

C

changement de coordonnées – change of coordinates 9595
coefficient directeur (pente) – slope 1111
commutative – commutative 4848
contractante – contracting 1010
coordonnées cylindriques – cylindrical coordinates 9696
corde – chord 1010
corps commutatif – commutative field 4848
courbe – curve 9494
courbe paramétrée – parametric curve 8787

D

dense – dense 44
dérivée partielle – partial derivative 9191
développement limité (DL) – Taylor expansion 1616
disque (ou boule) fermé – closed disk 8888
disque (ou boule) ouvert – open disk 8888
disque (ou boule) unité – unit disk 8888
distributive – distributive 4848

E

élément neutre – indentity element 4848
ensemble – set 11
entier – integer

algorithme d’Euclide – Euclidean algorithm 102102
coefficients de Bézout – Bézout coefficients 103103
division euclidienne – Euclidean division 102102
équation homogène – homogeneous equation 105105
lemme d’Euclide – Euclid’s Lemma 104104
lemme de Gauss – Gauss’ Lemma 104104
pgcd – gcd 102102
plus grand commun diviseur – greatest common divisor 102102
premier – prime 107107
premiers entre eux deux à deux – pairwise coprime 105105
quotient – quotient 102102
relation de Bézout – Bézout relation 103103
reste – remainder 102102

exponentielle – exponential 1717
exponentielle de base a – general exponential function 1919
extremum local – local extremum 9494

F

v



fonction – function
admet un prolongement par continuité – has a continuous extension 1919
arccosinus – arccosine 2121
arcsinus – arcsine 2020
arctangente – arctangent 2222
continue par morceaux – piecewise continuous 6262, 7575
cosinus hyperbolique – hyperbolic cosine 2323
de classe C∞ – of class C∞ or smooth 1313, 9797
de classe Ck – of class Ck 1313
dérivable – differentiable 99
dérivée – derivative

dérivée d’ordre supérieur – higher-order derivative 1313
dérivée seconde – second derivative 1313

fonction en escalier ou étagée – step function 5454
fonction puissance – power function 1818
graphe – graph 88
intégrable – integrable 5656, 6161
localement intégrable – locally integrable 7575
racine carrée – square root 88
racine n-ième – n-th root 88
sinus hyperbolique – hyperbolic sine 2323
tangente hyperbolique – hyperbolic tangent 2424

fonction à valeurs vectorielles – vector function 8383
continue – continuous 8484
dérivable – differentiable 8484
développement limité – Taylor expansion 8686
formule de Taylor avec reste intégral – Taylor formula with integral remainder 8787
formule de Taylor-Young – Taylor-Young formula 8686
intégrale – integral 8787
limite – limit 8484
vecteur dérivé – derived vector 8484

fonction coordonnée – coordinate function 8585
fonction polynomiale – polynomial function 4848
fonction rationnelle – rational function 4848
formule de la moyenne – Mean Value Theorem for integrals 6060
formule de Leibniz – Leibniz’s Formula 1414
formule de Taylor avec reste intégral – Taylor’s formula with integral remainder

reste – remainder 7171
fraction rationnelle – rational fraction 4747

addition – addition 4747
décomposition en éléments simples – partial fraction decomposition 5050
degré – degree 4848
dénominateur – denominator 4747
forme irréductible – irreducible form 4848
multiplication – multiplication 4747
multiplicité – multiplicity 4949
numérateur – numerator 4747
partie entière – integral part 4949
pôle – pole 4949

double – double 4949
simple – simple 4949

racine – root 4949

G

gradient – gradient 9494

I

inégalité de Taylor-Lagrange – Taylor’s inequality 1515, 7272
inégalité des accroissements finis – Mean Value Inequality 1111, 1515, 6666
inégalité du triangle – triangle inequality 8383
intégrale – integral 5555, 5757, 6161

changement de variable – integration by substitution 6868
intégration par parties (IPP) – integration by parts 6767

intégrale impropre – improper integral 7575
absolument convergente – absolutely convergent 8080
convergente – convergent 7575
divergente – divergent 7575
semi-convergente – semi-convergent 8080
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intervalle – interval 66
stable – stable 2525

inversible – invertible 4848

L

K-lipschitzienne – Lipschitz continuous with Lipschitz constant K 1010
logarithme – logarithm 1616, 6767

M

majorant – upper bound 11
majoré – bounded above 11
matrice jacobienne – jacobean matrix 9494
maximum local – local maximum 9494
maximum ou plus grand élément – maximum 22
méthode de Newton – Newton’s method 3232
minimum local – local minimum 9494
minimum ou plus petit élément – minimum 33
minorant – lower bound 33
minoré – bounded below 33
moyenne – average 1010

N

norme – norm 8383
norme euclidienne – euclidean norm 8383
norme sup – supremum norm 8383

O

ouvert (ou partie ouverte) – open subset 8888

P

partie entière – integral part 33
point fixe – fixed point 2626
polynôme – polynomial 3434

algorithme d’Euclide – Euclidean algorithm 3535
associé – associate 3434
coefficients de Bézout – Bézout coefficients 3737
coefficient dominant – leading coefficient 3434, 4444, 4545
irréductible – irreducible 4242
lemme de Gauss – Gauss’ Lemma 3939
pgcd – gcd 3434
plus grand commun diviseur – greatest common divisor 3434
plus petit commun multiple – least common multiple 3737, 104104
polynôme d’interpolation de Lagrange – Lagrange interpolation polynomial 4646
ppcm – lcm 3737, 104104
premiers entre eux – coprime 3939, 104104
premiers entre eux dans leur ensemble – relatively prime 4141, 106106
premiers entre eux deux à deux – pairwise coprime 4040
racine – root 4242
réductible – reducible 4242
relation de Bézout – Bézout relation 3737
reste – remainder 3535
scindé – split 4444
théorème de Bézout – Bézout Theorem 3939, 104104
unitaire – monic 3434

positif (ou nul) – non-negative 11
primitive – antiderivative or primitive 6565
produit scalaire – scalar product 8585
a puissance b – a to the b 1717

R

rayon – radius 8888

S

somme de Riemann – Riemann sum 6262
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sous-ensemble – subset 22
sphère – sphere 8888
strictement positif – positive 11
subdivision – partition 5454

adaptée – adapted 5454
pas – mesh 5454

suite – sequence 22
stationnaire – stationary 33

T

théorème de d’Alembert-Gauss – Fundamental Theorem of Algebra 4343
théorème de Rolle – Rolle’s Theorem 99
théorème des accroissements finis – Mean Value Theorem 99
théorème des valeurs intermédiaires (TVI) – Intermediate Value Theorem 55
Théorème fondamental de l’analyse – Fundamental Theorem of Calculus 6666
trajectoire rectiligne – straight-line motion 1010
tronqué à n décimales – x truncated to n decimal places 44

V

valeur approchée par défaut – decimal approximation by default 44
valeur approchée par excès – decimal approximation by excess 44
vitesse – velocity 1010
voisinage – neighbourhood 55
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