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Chapter 1

Real numbers

Notation. > R is the set’ of real numbers.

> N is the set of integers that are non-negative?.

(The usual convention in English is that N is the set of positive® integers — we will not use it.)

> Z is the set of all integers; N C Z C R.

> Q is the set of rational numbers; Z C Q C R. It is the set of real numbers that can be written g where (p,q) € Z?
and g # 0.
> D is the set of decimal numbers; Z C D C Q. It is the set of rational (or real) numbers that can be written %
where (p,n) € Z x N.
> C is the set of complex numbers; R C C.
> For K one of the sets above, K* is the subset of non-zero elements.
1. SUPREMUM, INFIMUM
Definition 1. A set A of real numbers is bounded above?® if there is a number x such that x > a forall a € A.
Such a number x is called an upper bound® for A.
“majoré
bmajorant
Example. The sets A = [5,7] and B =| — o0, 10] are bounded above 10, 13 and 3002 for instance are upper bounds for

both sets, while 7 and 9 are upper bounds for A but not for B.
The sets | —3; 4oc0[ and N are not bounded above.

Definition 2. A number x is a supremum® or least upper bound of A if x is an upper bound for A and for any upper bound y
for A, we have x < y. We denote it by sup A or sup,, 4 {a} or sup{a;a € A}

"borne supérieure

Example. The sets A = [5,7] and B =] — o0, 10[ have supremums, and sup A = 7 and sup B = 10.

Lemma 3. A supremum, if it exists, is unique.

Proof. Let A be a set and let x and y be two supremums of A. They are in particular upper bounds for A so that
> since x is a supremum and y is an upper bound, we have x < y, and
> since y is a supremum and x is an upper bound, we have x > y

therefore x = y. v

Tensemble
positif (ou nul)
Sstrictement positif



Remark. Characterisation of the supremum. Let a be an upper bound for A. Then & = sup A if and only if for any
t < w there exists a € A such that t < a < a (or equivalently, if and only if for any € > 0 there exists 2 € A such that
a—e<a<a).

With quantifiers, this becomes:

n=supA < Vt<a,dae€ Asuchthatt <a<a
<= Ve>0,da € Asuchthata —e <a < a.

Indeed, if « = sup A, any t < « is not an upper bound for A so that there is an element a € A with t < a (and of course,
a < a since a is an upper bound for A).

Conversely, if « > sup A take t = sup A. By assumption there exists 2 € A such that supA =t < a < a. Thisis a
contradiction since sup A is an upper bound for A.

Remark. Sequential characterisation of the supremum. Let & be an upper bound for A. Then a = sup A if and only if
there exists a sequence (u,) of elements of A that converges to «.

Indeed, if &« = sup A then for any n € IN* there exists u;, € A such that a — % < up < « using the previous
characterisation. Then (u,,) converges to a by the Comparison Theorem.

Conversely, assume that there exists a sequence (u,,) of elements of A that converges to «. Note that since « is an upper
bound for A and u, € A, we have u, < « for any n.

Fix € > 0. Then there exists N € IN such that for all n € IN with n > N, we have |u, —a| < €. Since |uy, —a| = & — uy,
this implies that & — & < u,; < a. Therefore a = sup A using the previous characterisation.

Example. The set R itself is not bounded above, neither is IN (subset! of R), therefore it cannot have a supremum.

The interval [0,1] is bounded above (for instance, 2 and 35 are upper bounds of [0, 1]); it also has a supremum, which
is 1 (1 is an upper bound of [0, 1] and any other upper bound y satisfies 1 < y).

Note that a supremum is not always an element of the set A. For instance, sup[0,1[= 1. (Indeed, 1 is clearly an upper
bound of [0,1] and if there existed an upper bound y with y < 1, then y < 1% and # € [0,1[, which contradicts the
fact that y is an upper bound of [0, 1).

Definition 4. A number x is a maximum® of A if x is an upper bound of A and x € A. It is denoted by x = max A or
x = maXgeca{a}.

“maximum ou plus grand élément

Remark. A maximum of A, if it exists, is necessarily the supremum of A.

Remark. Every non-empty finite set has a maximum.
The proof is by induction on the number of elements in the set.

Property 5. Any non-empty subset A of R that is bounded above has a supremum.

Remark. Property 5 is not necessarily true in ordered sets other than IR.
[Not done in class.] Let A = {x € Q; x > 0 and x? < 2} (subset of Q). Clearly, A is non-empty (it contains 0 and 1) and is
bounded above (by 2) in Q.

However, A does not have a supremum in Q. This is essentially due to the fact that V2 ¢ Q (in R, v/2 would be the
supremum of A).

Proof. Assume for a contradiction that A has a supremum « in Q. We can write x = s with g € IN* and p € IN* (since
a>1).

> If o € A then a? < 2 50 p> —2¢ < 0 and therefore p? — 24> < —1. Set B = 451;;1 € Q. Then g > a and p < 2 s0
B € A: this contradicts the fact that « = sup A.

> Therefore & ¢ A. In particular, a2 > 2. We know that 2 is not a square in Q so a> > 2 and therefore p? —24% > 1.

Set y = 2’;;;1 € Q. Then 0 < ¢y < & and 72 > 2 50 7 is an upper bound for A that is smaller than «; this contradicts

the fact that @ = sup A.

Therefore A does not have a supremum « in Q. v

Tsuite
*sous-ensemble



Definition 6. A set A of real numbers is bounded below* if there is a number y such that y < a forall a € A.

Such a number y is called a lower bound® for A.

A number x is an infimum® or greatest lower bound of A if x is a lower bound of A and for any lower bound y of A, we have
x = y. If it exists, it is unique and we denote it by inf A or inf,c 4 {a}.

A number x is a minimum® of A if x is a lower bound of A and x € A. It is denoted by x = min A or x = mingc4{a}. When
it exists, it is equal to the infimum of A.

The set A is bounded?® if it is bounded above and below.

Iminoré

bminorant

‘borne inférieure

4minimum ou plus petit élément
‘borné

Remark. Characterisations of the infimum. Let B be a lower bound for A. Then

B=infA <= Vt>pB, dacAstp<a<t
> Ve>0, ncAstp<a<f+e

Moreover, B = inf A if and only if there exists a sequence (u,) of elements of A that converges to f5.

‘ Property 7. Any non-empty subset A of R that is bounded below has an infimum.

Proof. Take B = {—a;a € A} C R. Since A has a lower bound y, B has an upper bound x = —y, hence B has a supremum

«. Then B = —a is clearly a lower bound for A. Let us check that § is an infimum for A.
If t > B, then —t < —a so that there exists b € B such that —t < b < «. Therefore p = —a < —b < t with —b € A.
Therefore A has an infimum, equal to f = —a. v

Remark. Recall from the first semester that a sequence was called bounded (resp. bounded above, resp. bounded below) if the
set {un;n € N} is bounded (resp. bounded above, resp. bounded below).

Similarly, a map® f : I — R was called bounded (resp. bounded above, resp. bounded below) if the set f(I) = {f(x);x € I}
is bounded (resp. bounded above, resp. bounded below). We will usually write sup; f = sup,.; f(x) = sup,;{f(x)}
for sup{f(x); x € I} when it exists, or sup f when I is clear. Similarly, we will write inf; f, max; f and min; f when they
exist.

Exercise 1. Prove thatif f : ] — Rand g : I — R are two maps such that f < g (that is, for all x € I we have f(x) < g(x)),
then sup f <sup g and inf f > infg.

Remark. Let A be a non-empty subset of Z that is bounded above in R. Then A has a maximum.
Idea/summary of proof. Essentially, this is a consequence of the fact that any convergent sequence in Z is stationary?.

Proof. Since A is non-empty and bounded above in R, it has a supremum a € R. We know that there exists a sequence
(un) of elements of A (hence of Z) that converges to . Therefore this sequence is stationary: there exists N € IN such
that for all # > N we have u, = uy. In particular, x = uy € A.

To prove that a convergent sequence of integers is stationary, use the definition of the limit with ¢ = %, so that there exists N € IN
such that for any n > N we have |u, — a| < %; then for any n > N we have 0 < |uy — un| < |up —a| + | —upn| < % + % =1
Since uy, and uy are integers, we must have u, = uy foralln > N.

Remark. Any non-empty subset of Z that is bounded below in R has a minimum. In particular, any non-empty subset
of IN has a minimum.

II. INTEGRAL PART OF A REAL NUMBER, DENSITY OF QQ IN R

Proposition 8. For any real number x, there exists a unique integer n such that n < x < n + 1. We denote n = E(x) or
n = [x] or n = |x] and call it the integral part? of x.

“partie entiere
Proof. > We first prove uniqueness. Let n and n’ be two integers such that n < x < n+1and n’ < x < n’ 4+ 1. Then
n<x<n'+1son<n'+1andn < n. Similarly, n’ <nson=rn'.

> We now prove existence. The set A := {k € Z; k < x} is non-empty and bounded above in R, hence by a remark
on page 3, it has a maximum n € A. Then we haven < xandn+1¢ Ason+1 > x. v

Tapplication
fstationnaire



Remark. [x] is also the smallest integer satisfying x < |[x| + 1 (the set A’ = {k € Z;x < k+ 1} has a minimum # that
satisfies n < x < n + 1; the uniqueness of such an integer proves that n = |x|).

Graph of E.

Definition 9. Let x be a real number and take n € IN . A decimal number d is a decimal approximation by default® (resp.
decimal approximation by excess®) accurate within 107"¢ ifd <x<d+107" (resp. if d — 107" < x < d).

*valeur approchée par défaut
bvaleur approchée par exces
fa 107" pres

Remark. Let x be a real number. Take n € N and set g, = [10"x] € Z. Then g, is the unique integer such that

% <x< % = 1% +107". Therefore 1‘76‘,1 is a decimal approximation of x by default accurate within 10™". In fact, %
is the number x truncated to 1 decimal places’.

Proposition 10. Any real number is the limit of a sequence of decimal numbers.
In particular, every real number is the limit of a sequence of rational numbers. We say that Q is dense” in R.

2dense

Proof. Use the notation in the previous remark. We have (%) g1 < x10"*! < g,.1 +1 and 10g, < x 10" < 10(g, + 1)
therefore 10, < 4,41 < x10""! < g,11 +1 < 10(gy + 1) (the first inequality follows from the definition of [10"*!x] and
(*) and the second follows from the remark above and (x)) so

Gn_~ Gn+1 Gn1t1l _qnt1
107 S 1001 ST TpeT S o

Consequently, the sequences (%) and <q{0+,,1) are adjacent and their common limit is x. v

nelN

Corollary 11. Let x and y be two real numbers with x < y. Then there exists 4 € Q such that x < g < y.

. . . . X
Proof. By the previous proposition, there exists a sequence (g ), of rational numbers that converges to ;y . Therefore
here exists an integer N such that for all n > N we h XY o Y2 g particular, — Y% 4 X3
there exists an integer N such that tor all n > we have |y — > < BN n particular, ——5- + —5= < gy <
ygfx+¥sothatx<q1\]<y. v

Proposition 12. The set R \ Q is dense in R: for any x € R there exists a sequence (t,) of non-rational real numbers
that converges to x.

Proof. We know that V2eR \ Q.

Sety = \% We know by Proposition 10 that there exists a sequence (g,) of rational numbers that converges to y. Put
ty = qnﬁ € R\ Q. Then (t,) converges to y\/z = x. v

Corollary 13. Let x and y be two real numbers with x < y. Then there exists t € R \ Q such that x < t < y.

Proof. Same proof as that of Corollary 11, or use Corollary 11 and the same trick as in the proof of Proposition 12. v

Ttronqué a n décimales



Chapter 2

Study of functions

We shall now consider functions, building on what you have done in the first semester. We shall start with properties of
continuous functions, then differentiable functions.

A. Intermediate Value Theorem

Theorem 1. Let f be a continuous function on [a, b]. If f(a)f(b) < 0 (ie. f(a) and f(b) have opposite signs), then there
is some x €]a, b] such that f(x) = 0.

Idea/summary of proof. Assume that f(a) < 0 < f(b). We prove that there is an a €]a, b[ such that f is negative on |a, «]
and such that f is not negative on any ]a, c[ with ¢ > «. We then prove that f(x) = 0.

Proof. Assume that f(a) < 0 < f(b) (the other case is obtained from this one by considering —f). Define the set
A = {x; a < x < band f is negative on the interval [, x]}. Clearly, A # @& since a € A. Moreover, b is an upper bound
for A (since A C [a,b]), therefore A has a supremum. Set & = sup A. We shall prove that 4 < & < b and that f(a) = 0.

> We first prove that a > 4. For this, we show that there is some § > 0 such that [a,a + §] C A.

Recall from the first semester Proposition 241: if limy_,, f(x) < ¢, then f is bounded above by ¢ in a neighbourhood
of a. We apply this here with ¢ =  f(a). Indeed, since f is continuous at a, we have lim,_,, f(x) = f(a) and f(a) < c
because f(a) < 0. This means that there exists § > 0 such that for all x € [a,a + J] we have f(x) < ¢, and in particular
f(x) < 0. Finally we have [a;a + 6] C A.

In particular, « > a+6 > a.

> Let us now check that « < b. Assume for a contradiction that « = b. Since f(b) > 0, we can show as in the
previous step that there is a 6’ > 0 such that f is positive on [b — ¢’; b]. We have assumed that b = « = sup A and
we have b — ¢’ < b, therefore there exists y € A with b — 8’ < y < b. Therefore f(y) > 0 (because y € [b —¢’;b]) and
f(y) < 0 (because y € A), a contradiction. Therefore & < b.

> We will now show that f(a) = 0. Assume for a contradiction that f(a) # 0. Then there are two cases:

o First case: f(a) < 0. Then there exists 6 > 0 such that f is negative on the neighbourhood [« — 6, + §] of a.
Now there is some xg € A satisfying « — ¢ < x9 < a (by definition of the supremum «) so f is negative on
[2,x0]. But if x1 €]a, a + 4] then f is negative on [xp, x1] so f is negative on [a,x1] and therefore x; € A. This
contradicts the fact that « is an upper bound for A.

e Second case: f(«) > 0. Then there exists 6 > 0 such that f is positive on [« — §, & + 6]. Once again we know that
there is an xy € A satisfying « —§ < x9 < a. But this means that f is negative on [4, xy], which is impossible
since xg € [& — J,a + 5]. We have a contradiction.

Therefore f(a) = 0. v

Corollary 2 (Intermediate Value Theorem?). Let f be a continuous function on [a, b]. If c is a real number that is strictly
between f(a) and f(b), then there is some x €]a, b[ such that ¢ = f(x).

?théoreme des valeurs intermédiaires (TVI)

Proof. Define g : [a,b] — R by g(x) = f(x) — c. Then g is continuous. If f(a) < ¢ < f(b) then g(a) < 0 and g(b) > 0. If
f(a) > c > f(b) then g(a) > 0 and g(b) < 0. In both cases, g(a)g(b) < 0 so there exists x €]a, b[ such that g(x) = 0, that
is, f(x) =c. v

Corollary 3. A polynomial of odd degree has at least one real root.

Tvoisinagc



Proof. cf. TD. v

Definition 4. An interval® I is a subset of R satisfying the following property:

Vael, Ybel,a<b, [a,b] CL

Tintervalle

Remark. The intervals that we know, that is, of the form [a, b], |a, b[, [a, b and ]a, b] (with a and b real numbers or possibly
+oo in some cases) are precisely all the intervals in IR. (Exercise.)

Corollary 5. Let [ be an interval and f : I — R a function. If f is continuous then f(I) is an interval.

Proof. Let x and y be elements in f(I) such that x < y; we must prove that [x,y] C f(I). By definition of f(I), there exist
u and v in I such that x = f(u) and y = f(v). Let z be an element of |x,y[. Then by the Intermediate Value Theorem,
there is an element w between u and v such that z = f(w). But I is an interval so w € I. Therefore z € f(I). Moreover, if
z = x or z = y then clearly z € f(I). We have proved that [x,y] C f(I). Therefore f(I) is an interval.

Examples. (1) The image of sin : R — R is contained in [—1;1], it is an interval since sin is continuous, and it contains
1 =sin % and —1 = sin 3, therefore sin(R) = [—1;1].

2
(2) Consider the function f : R — R defined by f(x) = x*> + x + 1. We have f(x) = (x + %) + 2 so that the image of
)

f is contained in [% ; 400[. Moreover, it is an interval since f is continuous, it contains f (—% = %, and it contains
arbitrarily large real numbers since limy_, o f(x) = +o0. Therefore f(R) = [% ; o0l

(3) Consider the function f : I — R where [0, 5[ defined by f(x) = tan(x). We have f(x) > 0 for all x € I so that
the image of f is contained in [0; +co[. Moreover, it is an interval since f is continuous, it contains f(0) = 0, and it
contains arbitrarily large real numbers since lim,_, z f (x) = 4o0. Therefore f(I) = [0; +o0].

Note that f(I) is not bounded although I is bounded.

Remark. The image of an interval need not be an interval of the same type. See the previous examples.
Proposition 6. Let f : [4,b] — R be a continuous function defined on a closed bounded interval. Then f is bounded.

Idea/summary of proof. We assume for a contradiction that f is not bounded above, so that the sets A, := {x € [a,b]; f(x) > n}
are non-empty. We prove that each of these sets has a maximum, s, that the sequence (s,) converges to £ € [a,b], and
we finally show that (f(s,)) converges and diverges, a contradiction. Therefore f is bounded above.

To prove that f is bounded below, either adapt this proof or consider —f.

Proof. Assume for a contradiction that f is not bounded above. Then for any n € IN there exists x, € [a,]] such that
f(xn) > n. Therefore the set A, := {x € [4,b]; f(x) > n} is non-empty.

> We prove that A, has a maximum, s;.

Since A, is a subset of [a, b], it is bounded above (by b) and therefore it has a supremum s, = sup A,. Moreover,
a < sy < b. There exists a sequence (f) of elements in A, that converges to s,. For all k we have f(t;) > n.
Moreover, f is continuous at s,, so that (f(f;)) converges to f(s,), and therefore f(s,) > n. We have shown that
sy € Ay, hence s, = max Ay,.

> Since f(sy) > n for all n, we have limy,— o f(51) = +0o0.

> All the s, are in [g, b], therefore the sequence (s,) is bounded below. Moreover, A, ;1 C A, for all n : indeed,
if f(x) > n+1 then f(x) > n. Therefore 5,1 < s, and the sequence (s,), is non-increasing. Consequently, the
sequence (s,) converges to some ¢; moreover, since a < s, < b for all n, we have ¢ € [a,b]. Hence f is continuous at
¢ and therefore (f(s;)) converges to f(¢).

We have obtained a contradiction.

Applying this to —f (also continuous on [a,b]), we see that —f is bounded above so that f is bounded below and
therefore bounded. v

Theorem 7. Let f : [4,b] — R be a continuous function on a closed bounded interval. Then f is bounded and there
exist ¢ and d in [a,b] such that inf,c(, ;) f(x) = f(c) and SUP ¢ [a,5] f(x) = f(d). In other words, f([a,b]) is a closed
bounded interval.



Proof. (Not done in class.) We know that since f is continuous, f([4,b]) is an interval. Moreover, f([a,b]) is bounded by
the previous proposition. Let m be its infimum and M its supremum. We must show that they are both in f([a, b]).

Assume for a contradiction that M is not in f([a,b]). We then have f(t) < M for all t € [a,b], so that M — f(t) # 0.
Let us consider g : [4,b] — R defined by g(t) = M%f(t) Since M — f is continuous and does not vanish, g is continuous.

Therefore by the previous proposition it is bounded and in particular there exists K € R such that g(t) < K for all
t € [a,b].
On the other hand, since M is the supremum of f, there exists a sequence (), contained in f([a,]) and such that

limy, 10 Yyn = M. For every n there exists x, € [a,]] such that y, = f(x,). We then have ¢(x,) = m = Mly,, and

since M — i, > 0 and has limit 0, we have lim,— 4 g(Xn) = +00, a contradiction.
Therefore M € f([a,b]). The proof that m € f([a,b]) is similar, so f([a,b]) = [m, M]. v

Corollary 8. Let f : [a,b] — R be a continuous function on a closed bounded interval. If f(x) > 0 for all x € [g, b], then
there exists m > 0 such that f(x) > m for all x € [a, b].

Proof. m is the minimum of f, and m > 0 by assumption. v

Remark. The results above require the assumption that the interval is closed and bounded. For instance, tan is continuous

but not bounded on |- %; 5.

B. Monotonic functions

Proposition 9. Let I be an interval and let f : I — R be a continuous and injective function. Then f is strongly
monotonic.

Proof. (Not required.) Assume for a contradiction that f is not strongly monotonic. Then there exist elements 4, b,¢,d in I
such that

a<band f(a) < f(b); c<dand f(c) > f(d).

Now consider the function g : [0,1] — R defined by g(t) = f((1 —t)b+ td) — f((1 — t)a+ tc). This function is continuous.
Moreover, g(0) = f(b) — f(a) > 0 and g(1) = f(d) — f(c) < 0. Therefore, either g(0) = 0 or g(1) = 0, or by the
Intermediate Value Theorem, there exists fp €]0,1[ such that g(fp) = 0. In all cases, there exists fo € [0,1] such that
g(to) =0, thatis, f((1 —t9)b+tod) = f((1—tg)a+tyc). Since f is injective, we must have (1 — )b+ tod = (1 — tg)a + toc
hence (1 —ty)(b —a) = to(c — d). However, (1 —t)(b —a) > 0 and tp(c —d) < 0, and they are not simultaneously equal
to 0, a contradiction.

Therefore f is strongly monotonic. v

Lemma 10. Let I be an interval and let f : I — R be a strongly monotonic function. Then f is injective.

Proof. Let us prove the result when f is e.g. increasing. Let x and y be distinct elements in I. Then either x < y and then
f(x) < f(y), or x >y and then f(x) > f(y). In both cases we have f(x) # f(y). Therefore f is injective. v

Theorem 11. Let I be an interval and let f : I — R be a continuous and strongly monotonic function. Then:

(@) f(I)is an interval and f defines a bijection from I to f(I).

(ii) The inverse of f is a continuous function and it is strongly monotonic. Moreover, if f is increasing then so is f~!
and if f is decreasing then so is f~1.

Proof. (Proof of continuity not done in class.)

(i) This follows from the results above: f is continuous, so f(I) is an interval; f is increasing so f is injective hence
defines a bijection from I to f(I).

(ii) Let ¢ = f~1: f(I) — I denote the inverse function. It is characterised by y = f(x) <= g(y) = x.

We first show that g is increasing. Let y < i’ be elements in f(I). There exist x and x’ in I such that y = f(x) and
y' = f(x’). Note that x = g(y) and x’ = g(y’). Since f is increasing, if x > x’ we would have y > 1/, a contradiction.
Therefore x < x/, that is, g(y) < g(v/).

We must now prove that ¢ is continuous at every yg € f(I). We shall do it when I = [a,]], the other cases are
similar.

> First case: yg = f(a). Fix ¢ > 0. We may assume (replacing ¢ by a smaller ¢’ > 0 if necessary) thata < a+¢ < b.
Applying f to a < a+¢ yields yo = f(a) < f(a+¢). Therefore it is possible to choose 7 > 0 such that
Yo+1n < f(a+e). For any y with yy < y < yo+#y we have f(a) < y < f(a+e¢). Apply g to this (g is
increasing): a < g(y) <a+e <a+e Finally 0 <y—yo <y =0 < g(y) —g(yo) < & so that g is continuous
atyo = f(a).



> Second case: yg > f(a). Set xg = g(yo). Again, we may assume that a < xg — e < xg +¢& < b. Applying f to
Xo—€ < xp < xg+€give f(xg—¢) < yo < f(xp+ ¢€). We can then choose 17 > 0 such that f(xg —¢) < yo—17
and yo + 1 < f(xp +¢). For any y with yo —n < y < yo + 7 we have f(xo —¢) <y < f(xg +¢). Appplying g
gives xg — & < g(y) < xp + ¢ and hence xy — e < g(y) < xg + . Therefore g is continuous at yy. v

Proposition 12. Let I be an interval and let f : I — R be a continuous and strongly monotonic function.

Then f(I) is an interval of the same type (closed on both sides, one side or none).

Moreover, if a and b are the endpoints of I with a and b either real numbers or +oo, then the endpoints of f(I) are
limy—, f(x) and lim,_,; f(x).

Proof. (Not done in class.) We shall prove the result for f increasing (if f is decreasing, apply this to —f).

If I = [a,b] then we have seen above that f defines a bijection from [a,b] to [f(a), f(b)]. Since f is continuous,
f(a) =limy_, f(x) and f(b) = lim,_,; f(x) so we have the result in this case.

If I = [a, b] where a is a real number and b is either a real number or +oo, then again we have f(a) = limy_, f(x).

> First case: f is bounded above. Since f is increasing, the limit ¢ = lim,_,;, f(x) exists and we know that ¢ =
sup f(I). For all x € [a,b] we have f(x) € f(I) so f(a) < f(x) < £. We will show that f(I) = [f(a), ¢[.
o We first prove that f(I) C [f(a),£[, thatis, for all x € I we have f(x) < ¢.

Let us assume for a contradiction that there exists u € [a,b[ such that f(u) = £. For every x € [a,b[ we then
have f(x) < f(u) and hence x < u because f is increasing. Since u < b, there exist elements x € [a,b[ such
that 4 < x < b. But then ¢ = f(u) < f(x) < ¢, a contradiction. Therefore f(x) < ¢ for all x € [a,b[, so that
f(I) < [f(a), £,

e We now prove the other inclusion: take y € [f(a), £[. We must prove that y € f(I).

We have y < ¢ and ¢ = sup f(I) so that there exists i € f(I) such that y <y’ < £. Since y’ € f(I), there exists
x" € I such that f(x’) = y’. Consider the interval [a,x’] C I. Since f is continuous and increasing, f defines

a bijection from [a, x'] to [f(a), f(x")] = [f(a),y]. But y € [f(a),y’] therefore there exists x € [a,x'] such that
y = f(x). Since x € I, we have y € f(I). Therefore we have proved that [f(a), £[C f(I) and we finally have the
equality.

> Second case: f is not bounded above. Since f is increasing, we know that lim,_,; f(x) = +co. Moreover, for every
x € I we have f(x) > f(a). Therefore f(I) C [f(a),+oo].

We now prove the other inclusion. Take y > f(a). Since lim,_,;, f(x) = oo, there exists x’ € I such that f(x') > y.
As before, f defines a bijection from [a, x'] to [f(a), f(x")] so that there exists x € [, x'] such thaty = f(x). Butx € I
so y € f(I). Therefore [f(a), +oo[= f(I).

The case I =]a,b] is similar, and the final case can be deduced from these (Ja,b[=]a,c] U [c,b] for any ¢ €]a,b[ and

f(a,b]) = f(la,c]) U f([e, b]) =]lima—sa £(x), f(€)] U [f(€), limyp f(x) [=]limy—a f(x), limyp f(x)D)- v

Example. The function f : R — R defined by f(x) = + 1oz is continuous therefore f(IR) is an interval. The function
is even so f(R) = f([0;+co[). On the interval [0; +oo[, the function f is decreasing, therefore f(R) = f([0; +o0[) =
Jlimy—; +o0 f(x); £(0)] =]0;1].

C. Graph of a function and of its inverse

Let I and | be intervals and f : I — ] a function. Recall that the graphT of f is the subset G of R? defined by
G = {(x,f(x)) € R% x € I}. If f is bijective, then the graph of f~! is the set G’ = {(y, f"1(y)); v € ] }. Then clearly we
have

(x,y) €G <= (y,x) €G.

Consequently, the graph of f~! is obtained from the graph of f by applying the symmetry with respect to the line with
equation y = x.

D. n-th root

Let n > 2 be an integer. The function x +— x" is continuous and increasing on [0, 4+oo[. Its value at 0 is 0 and we have
limy_s oo ¥ = +00. Therefore x — x" defines a bijection from [0, +o0] to [0, +o0].

If n is odd, the function x — x" is continuous and increasing on R and limy_, o x" = —oo. In this case, x — x" is a
bijection from R to R.

In both cases, the inverse function is continuous and increasing.

Definition 13. The bijection inverse to x — x™ above is called the n-th root® function and is denoted by x — {/x. If n = 2 it
is simply the square root® denoted by x — /X.

Pracine n-ieme

bracine carrée

Tgraphe



Remark. The n-th root function is defined on [0, 00| if 1 is even and on R if n is odd. It is continuous and increasing.
> Forx >0,y >0, wehave (y =x" <— x= W)
> If x € [0,1] then x" < x s0 x < ¥/x.
> Ifx > 1then x < x" so ¢/x < x.

> If n is odd then the function x — x" is odd and so is x — /x.

E. Inverse of a differentiable function

Proposition 14 (Derivative of the inverse of a function). Let I be an open interval and let f: I — R be a function that
is differentiable and strongly monotonous on I. Set | = f(I) and let f~': ] — I the inverse of the bijection I — |
defined by f. If f/(t) # 0 for all t € I, then f~! is differentiable on | and we have

(f ') = ﬁ forally € J.

2dérivable

Proof. Set yo = f(xp). Define g: I — R by g(x) = fO=FX0) i¢ x £ x5 and 2(x0) = f'(x0), so that f(x) = f(x¢) + (x —

X—Xo

x0)g(x) for all x € I and limy_,x, g(x) = f/(xg) # 0. Then for y € ] we have
y= U ) =vo+ (£ W) — £ w0))2(F ).

Since ! is continuous, we have limy_., g(f 1 (y)) = f'(x0) # 0, so there is an interval ]’ contained in | and containing
Yo such that for all y € ]’ except y = yo we have g(f~!(y)) # 0. For all y € J', y # yo, we have

- 111
Y=o g1 W) v=w f'(x0)  f(f ' (vo))
Therefore ! is differentiable at yo and (f _1)/(y0) = m v

Example. If f :]0, +o0[—]0; +o0[ is defined by f(x) = x" for some integer n > 2, then f is a bijection with inverse g = {/ .
Moreover, f is differentiable and f'(x) = nx"~! # 0 for all x €]0; +oo[. Therefore ¢ = {/  is differentiable and

1 1 1,4
8/(35) = —x'/n71
n({/x) n
I. ROoLLE’S THEOREM AND THE MEAN VALUE THEOREM

Theorem 15 (Rolle’s Theorem?). Let a, b be real numbers with 2 < b, and let f: [2,b] — R be a function. Assume that
f is continuous on [a,b] and differentiable on |4, b[ and that f(a) = f(b). Then there exists a real number ¢ €]a, b[ such
that f/(c) = 0.

Ithéoreme de Rolle

Proof. Since f is continuous on the closed bounded interval [a, b], f has a maximum and a minimum (absolute) on [a, b].
If one of them occurs at a point ¢ €]a, b then by Theorem 279 of the first semester, we have f/(c) = 0. Otherwise, both
the maximum and the minimum occur at the endpoints. Since f(a) = f(b), the function is constant on [4, b] and we can
choose any ¢ €]a, b]. v

Example. Let ag,a1,a;,a3 be real numbers such that %ag, + %az + %al + a9 = 0. We want to prove that the polynomial
function P : x — a3x3 + a,x2 4 a1 x + ag has at least one real root in 10,1].

Consider the polynomial function Q : x %ag,x‘1 + %uzxe' + %alxz + apx. Then Q(0) = 0 and Q(1) = 0 by assumption.
Since Q is differentiable on R, it is continuous on [0, 1] and differentiable on ]0, 1 so that Rolle’s Theorem applies: there
exists ¢ €]0,1[ such that Q’(c) = 0. We have P = Q’, therefore P has a real root in |0, 1[.

Theorem 16 (Mean Value Theorem?). Let 4, b be real numbers with a < b, and let f: [2,b] — R be a function. Assume
that f is continuous on [a,b] and differentiable on ]a, b[. Then there exists a real number ¢ €]a, b such that f/(c) =

f(b)=f(a)
b—a

“théoreme des accroissements finis



Proof. Define h: [a,b] — R by h(x) = f(x) — ( fo)—fa > x — a). Clearly, h is continuous on [4,b] and differentiable on
(

b—a
la,b], and h(a) = f(a) and h(b) = f(a) so that h(a) = h(b). We may therefore apply Rolle’s theorem to h: there exists
f()

¢ €]a,b| such that 1'(c) = 0. But 1’ (x) = f'(x) — L5= {:a) so f'(c) = fO)=f (@) f( ) as required. v
Remark. > Kinematic interpretation. If the variable x is time and if f(x) is the position of a particle in a
f(b) - f(a)

straight-line motion’, you have seen in the first semester that is the average velocity of the particle

b—a
between the instants a and b of time, and that f/(c) is the velocity of the particle at the instant ¢ of time.

The Mean Value Theorem states that there is an instant ¢ of time at which the velocity*of the particle is equal to its
average$ velocity between the instants a and b of time.

> Geometric interpretation. Let Cy be the graph of f. The Mean Value Theorem states that there is a point ¢
between a and b at which the tangent line is parallel to the line through (a, f(a)) and (b, f(b)).

y=fx)

a c b

If the chord Y between (a, f(a)) and (b, (b)) is horizontal, then Rolle’s theorem says that there is a point (c, f(c)) in
between at which the tangent is horizontal.

Corollary 17. If f is defined and differentiable on an interval I and f’(x) = 0 for all x in I, then f is constant on I.

Proof. Let a, b be two elements of I with a # b; we may assume for instance that @ < b. Since I is an interval, [a,b] C I.

Then there is some ¢ €]a, b such that f'(c) = fo)=fla) ) f (a) by the Mean Value Theorem. Moreover by assumption f'(c) = 0,
therefore f(a) = f(b). This is true for any two elements of I, hence f is constant on I. v

Corollary 18. Let I be an interval and let f: I — R be a differentiable function. If f'(x) > 0 (resp. f/(x) > 0, resp.
f/(x) <0, resp. f'(x) <0) for all x € I then f is increasing (resp. non-decreasing, resp. decreasing, resp. non-increasing)
on I.

Proof. We will prove the case where f'(x) > 0 for all x € I. Let a, b be two elements of I with a < b. Since [ is an interval,

[a,b] C I. Then there is some ¢ €]a, b[ such that f'(c) = f)=f@) ) f () by the Mean Value Theorem. Moreover by assumption
f'(c) > 0, therefore f(a) < f(b). This is true for any two elements of I, hence f is increasing on I. v

Definition 19. Let f : I — IR be a function and let K be a non-negative real number. The function f is called
Lipschitz continuous with Lipschitz constant K* if

vxel Vyel, |f(x) = f(y)] < KJx—yl.

The function f is called contracting® if there exists a constant K < 1 such that f is Lipschitz continuous with Lipschitz constant
K.

?K-lipschitzienne
bcontractante

Ttrajectoire rectiligne
Fvitesse

§moyenne

Ycorde
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Proposition 20 (Mean Value Inequality?). Let I be an open interval and f: I — R a differentiable function. Assume
that there exists a real number K > 0 such that |f(#)| < K for all t € I. Then f is Lipschitz continuous with Lipschitz
constant K, that is,

Vrel vy el [f(x) - fy)| < Klx—yl.

7inégalité des accroissements finis

Proof. If x = y the result is clear. Otherwise we may assume without loss of generality that x < y. Since f is differentiable
on I, f is continuous on I hence on [x,y] and differentiable on |x, y[. Therefore there exists ¢ €]x,y[ such that f/(c) =

fi(xx?; ) . We get:

[f(x) = fFW)l = |f()|lx =yl < K|x — y]

as required. v

Theorem 21. Let f: I — R be function defined on an interval I and let xy be an element of I. Suppose that f is
continuous on [ and differentiable on I \ {xo}. Assume also that £ = limy_;y, f’(x) exists.

e £00 — F(0)

has limit £ when x goes to xg.

In particular, if £ € IR, then f is differentiable at xg and f’(xg) = limy—x, f'(x).

Proof. > First case: ¢ = +o0. Fix A € R. There exists § > 0 such that |x — xg| < § = f'(x) > A. We may choose
small enough that f is differentiable on ]xg — 6, xg[U]xo, xo + 6[. Moreover, f is continuous on [xg — &, xg + 6]. For
any x €]xg,xo + J[, by the Mean Value Theorem applied on the interval [xg, x], there exists ¢x €]xg, x[ such that

flex) = it )fo( %) and therefore f(i = f’(cx) = A. Finally we have proved:
Vx, 0 <x—xp < = M}A.

X — X0

Similarly,

Vx, 0<xg—x<6 = M}A

X — X

so that

Vx, 0 < |x — x| <6 = M>A,

X — X

that is, limy_,y, M = +o0.

X — X
> The proof when ¢ = —oco is similar — or replace f with —f.

> Last case: ¢ € R. Fix ¢ > 0. There exists 6 > 0 such that |[x —xg| < § = |f'(x) — ¢] < e&. We may choose &
small enough so that ]xy — J;xp + 6[C I and therefore f is differentiable on |xo — &, xo[U]xg, xo + 6[. Moreover,
f is continuous on [xg — J,xg + J]. For any x €]xg,x9 + 6|, by the Mean Value Theorem applied on the interval

X0, X0 , there exists ¢y , = 0 7’( <e
[ + 6], th t €]xo, x[ such that f'(cy) = fx)= {éx) and therefore ‘f . Z’ If'(cx) —£] <

o
Finally we have proved:

Vx, 0<x—x9<Jd = ‘fiﬂx())fﬂlgs.
X —Xp
Similarly,
Vx, 0 <xg—x<d = 'fif(m)—é’gs
X — Xo
so that
Vx, 0 < |x—x| < = ’fif(x())—é'gs,
X — X
that is, f is differentiable at xo and f'(x) = £. v

Remark. Geometrically, the derivative f'(xg) is the slope! of the tangent line below. The first picture on the left shows
the limit of the chords through the point (xg, f(xg)). The second picture on the right shows the limit of the derivatives
(slopes of tangent lines) from below at (xg, f(xp)).

T coefficient directeur (pente)

11



Remark. We can have a differentiable function f on |a,b[, xg €]a,b[ and limy_y, f'(x) # f'(xo) (that is, f’ need not be
continuous at xg).
Let f: R — R be the function defined by

~ [aZsin(1) ifx#0
f(x){o () if x = 0.

> The function f is differentiable on | — o0, 0] and on ]0, +oo[, and for every x # 0 we have f'(x) = 2x sin(%) +
x? (—%) cos(%) = 2xsin<%) — cos(%).

> For every x # 0 we have ‘sin(%) ) < 1 therefore | f(x)| < x2. Since lim,_, x> = 0 we have lim, o f(x) = 0 = £(0).
The function f is therefore continuous at 0.

> Similarly, if x # 0 we have % = @ = xsin(%) and ‘xsin(%)‘ < |x| so that limxﬁow =0.

Therefore f is differentiable at 0 and f/(0) = 0.

1

> However we have f’ <W

> = —land f (m) = 1 so by Proposition 234 in the first semester, f' does not
have a limit at 0.

Below is the graph of this function, enclosed between the graphs of x — %2 and x — —x2. Although the slopes of the
tangent lines will oscillate (faster and faster) between —1 and 1 as x goes to 0, the slopes of the chords between (0,0) and
(x, f(x)) oscillate around 0 but within a range that reduces as x goes to 0.

12



II. HIGHER-ORDER DERIVATIVES

Let I be an interval and f: I — R a differentiable function. Therefore there is a function f': I — R. If this func-
tion is in turn differentiable, we set f” = (f')’; it is called the second derivativel. More generally, we define the
higher-order derivatives? recursively: f(0) = f, f1) = £/, f(P+1) = (£(P))’ for any p € N.

Definition 22. Let f: I — R be a function defined on an interval I.
We say that f is of class C*® if all the derivatives f', f",..., f*) exist and are continuous.
The function f is of class C* or smooth? if it has derivatives of all orders (in this case, all the derivatives are continuous).

“de classe C*
bde classe C*®

Remark. Let f be a function which has derivatives up to order k such that f) is continuous. Then f is of class C¥.
Indeed, for 1 < i < k, the function f() is differentiable (since f (1) exists by assumption) and therefore continuous.

Moreover, f (k)

ck.

is continuous by assumption. Therefore all the derivatives up to order k are continuous and f is of class
Remark. The functions of class C° are precisely the continuous functions.

Proposition 23. Linear combinations, products, quotients and compositions (when defined) of functions of class Ck are
of class CF.
If f : T — R s of class C* and strongly monotonic, and if f’ does not vanish on I, then f~! is of class C* on f(I).

Idea/summary of proof. All the proofs are by induction on k > 1, applying the induction hypothesis to the first derivative.

Proof. Let f and g be functions of class C¥ on an interval I.

> If Aand p are real numbers, let & be the function / := Af + ug. Then h is of class C*: this is proved by induction
on k (exercise).

> We know that if f and g are differentiable on I, then fg is differentiable on I and that (fg)’ = f'¢ + fg'. We prove
by induction that is f and g are of class C¥ then so is fg.

e For k = 1, we have just said that fg is differentiable. Moreover, the function (fg)’ = f'¢ + f¢’' is continuous,
therefore fg is of class C!.

e Inductively, assume that if f and g are of class C* with k > 1 then so is fg.

Let f and g be functions of class C**1. Then fg is of class C! with (fg) = f'g + fg'. Moreover, f’ and g are
both of class C* therefore by induction hypothesis f’g is of class C¥, and fg’ is of class C¥ similarly. Since a

sum of functions of class C is also of class CF, it follows that (fg)’ is of class C¥ and therefore fg is of class
Ck*1 as required.

!/ i /
> If ¢ does not vanish on I, we know that é is differentiable on I and (é) = fgq;zfg_

!
e For k = 1, the function (é) above is continuous, therefore £ is of class C!.

g
f

e Inductively, assume that if f and g are of class CX with k > 1 then so is 3

/ / ’
Let f and g be functions of class C**1. Then é; is of class C! with (é) = fgg%fg. The latter is a quotient of

functions of class C¥, so that by the induction hypothesis, it is of class CX. Therefore £ is of class Ck*1.
y yp g

> e For k = 1, we know that if f and g are of class C! then g o f is differentiable and (go f) = (¢’ o f)f' is
continuous, hence g o f is of class C!.

e Inductively, assume that if f and g are of class C¥ then (g o f) is of class C¥.

Let f and g be functions of class Ck*1. Then go f is of class C! and (go f)' = (g’ o f)f’. Moreover, ¢’ o f,
which is a composition of functions of class Ck is of class C* by the induction hypothesis, and f’ is of class ck,
therefore the product (g’ o f)f’ is also of class C¥. Finally, (g o )’ is of class C* and g o f is of class CK*+1.

> e For k = 1, we know that since f is differentiable and strongly monotonic, then it defines a bijection from I

to J := f(I), and since moreover f’ does not vanish on I the function g := f~! : | — I is differentiable with

differential ¢’ = f,t) T This function is continuous, therefore g is of class C 1

T dérivée seconde
fdérivées d’ordres supérieurs
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e Inductively, assume that if f is of class C¥, strongly monotonic and f’ does not vanish on I, then g is of class
ck.
Let f be of class Ck*1 and strongly monotonic and assume f’ does not vanish on I. Then g := f~1:] — I is
differentiable with differential ¢’ = f’ . This function is of class C¥ (g is of class C¥ by induction hypothesis,

and we have already seen that the composition and the quotient of functions of class C* is of class C¥), therefore
g is of class C*1. v

Example. A polynomial is of class C®.

Proposition 24 (Leibniz’s Formula®). If f and g are two functions that are n times differentiable at xg, then fg is also n
times differentiable at xp and

(" o) = 3. ()P 30)g " (o).

p=0

2formule de Leibniz

Proof. The proof is by induction on n > 1. For n = 1 the result is already known.

Now assume that the product of two functions which are # times differentiable is #n times differentiable for some fixed
n = 1. Let f and g be two functions which are n + 1 times differentiable. They are in particular differentiable (once)
and (fg)' = f'g + f¢' is a sum of products of functions which are (at least) n times differentiable, hence (fg)’ is n times
differentiable and fg is n 4 1 times differentiable. Moreover,

(19" ) = 1 () (P57 (x0)

=O\P p=0 \F
_ n+i (p n 1)f(”) (x0)g" P+ (x0) + i} Z)f@) (x0)g " P (xg)
p= p=
= (3)r g+ X[ (") + ()] el 0

- nf ( 1) gD o)

The formula is true at rank #n + 1, therefore by induction it is true for all n > 1. Ve

Theorem 25. “ Let f: I — R be a function defined on an interval I and let xy be an element of I. Suppose that f is
continuous on I and of class C* on I \ {x0}. Assume also that for all i with 1 < i < k, the limit ¢; = limy_, f (i)(x)
exists and is finite.

Then f is of class C* on I and f()(xy) = ¢; for all i with 1 <i < k.

“Théoreme de classe C* par prolongement.

Proof. We prove it by induction on k.

> If k = 1, we know by Theorem 21 that f is differentiable at x and that f’(xp) = ¢1 = limy_,, f'(x) hence f’ is
continuous. Therefore f is of class C!.

> Fix i with 1 <i < k and assume that f is of class C’ with fU) (xq) = jforall jwith1 <j<

The function f() satisfies the assumptions of Theorem 21, therefore it is differentiable at xy and f(+1)(xy) =
(f(i)) (x0) = £is1 = limy_sy, fF1(x) so that f0+1) is continuous on I. Finally, f is of class Ci*1. v

Now for functions of class C¥, we have a generalisation of the Mean Value Inequality.
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Theorem 26 (Taylor’s inequality). Let f: I — R be a function of class C"*! on an interval I. Suppose that a and b are
elements in I. If ‘ f (n+1) (t)‘ < M for all t between a and b, then

b—a (b—a)?

—a)" _an+1
i S @+ @t S n!) f(n)(a))’ gM%'

70) - (@ +

This inequality is called Taylor’s inequality” at a of order .

“inégalité de Taylor-Lagrange
Proof. See Chapter 9. v

III. COMPLEX VALUED FUNCTIONS

Definition 27. Let f : I — C be a complex valued function. We can write f = f1 + ify where f1 and f, are functions from I
to R. We say that f is continuous (resp. differentiable, resp. of class C¥) if fi and f, are both continuous (resp. differentiable,
resp. of class Ck).

If moreover f is of class C* with k > 1, we define the k-th derivative of f to be fl(k> + if2(k).

A number of results we have seen still hold for complex valued functions, but not all.

> Linear combinations, products, quotients of functions of class ck k>0, (resp. differentiable) are of class ck (resp.
differentiable).

> If f is a real valued function of class C¥ (resp. differentiable) and g a complex valued function of class C¥ (resp.
differentiable), then g o f is of class ck (resp. differentiable).

Warning! We do not differentiate a function whose variable is complex (or an integer...).

> A differentiable function f is constant on an interval I if and only if f' = 0.

Warning! The derivative no longer has a “sign”, and it does not make sense to say that a complex valued function
is increasing...

> Rolle’s Theorem and the Mean Value Theorem do nof hold for complex valued functions.
For instance, the function f : R — C defined by f(x) = i* satisfies f(0) = f(27), but its derivative, which is
f'(x) = ie*, never vanishes.

However, the Mean Value Inequality (using modulus instead of absolute value where appropriate) does still hold.

Theorem 28 (Mean Value Inequality?). Let I be an open interval and f: I — C be a complex valued function of class
Cl. Assume that there exists a real number K > 0 such that |f’(t)| < K for all t € I. Then f is Lipschitz continuous
with Lipschitz constant K, that is,

Veel Vel [f(x) = fy)] < Klx -yl

7inégalité des accroissements finis

Proof. This result will be proved in Chapter 8 (and also in Chapter 11). v
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Chapter 3

Classical functions and their inverses

I. LOGARITHM, POWERS AND EXPONENTIAL

A. Logarithm

Later on we shall be able to use integration theory to prove that there is a unique differentiable function In: ]0; +oo[ - R

such that In'(x) = % and In1 = 0. This function is called the logarithm!. Its main properties are as follows.

Properties 1. (i) In(ab) = Ina + Inb for any positive real numbers a and b. Moreover, In(a") = nIna for any positive
real number a4 and any integer n € Z.

(ii) The logarithm is an increasing continuous bijection from ]0; +co[ to R; we have

Iimlnx = —c0 and Iim Inx = +oo.
x—0 X——+00

In(1 + x)
x

(iii) lim =1.
x—0

(iv) The function x — In(x + 1) has a Taylor expansion” of order n € IN at 0 given by

2 x3 w1 " k

m(x+1) =x =2+ 2 44 (115 o) _é(—nk—l’; ().

?développement limité (DL)

Proof. (i) Let a be a positive real number. Define f: ]0;+oo[ — R by f(x) = In(ax). Then f'(x) = a Lt = 1 =1In'(x),

X
so that the derivative of f — In vanishes on the interval ]0; +oo[ and therefore the function f — In is constant, there

exists k € R such that f(x) = k+ Inx for all x > 0. We then have f(1) = Ina by definition and f(1) = k+Inl =k,
so that k = Ina. Therefore for any x > 0 we have In(ax) = Ina + Inx. Note that in particular, Ina + ln(% =
ln<a%) =1In1 = 0so that ln(%) = —Ina.
The second formula is proved by induction on # for n € IN*. For n = 0, the formula is simply In1 = 0. Finally, for
n < 0, since —n > 0 we have In(a") = —In(a™") = —(—n)Ina = nlna.

(ii) Since the logarithm is differentiable, it is continuous. Moreover, the derivative is positive so that In is increasing.
In particular, In2 > In1 = 0 so that the sequence (n1n2), has limit +oco. Since nln2 = In(2"), the function In is
not bounded above and we then know that limy_, ;e Inx = +40c0. We also have lim,_,glnx = lim; ln<%) =

lim; 40 —Int = —co. Therefore In is a bijection from |0; 400 to R.

In(14x)
x

(iii) By definition, lim,_,o = lim,_, w is the derivative of the function In at 1, therefore it is equal to

1.

(iv) You have seen in the first semester that we can take the primitive of a Taylor expansion (Proposition 312). Let
f:] —1,+00[— R be the function defined by f(x) = In(x + 1). Then f is differentiable and f’(x) = ﬁ

Moreover, you have seen in the first semester that 11—Y = Z}’Z;S(—l)kxk +o(x"1). Since f(0) = 0, the result
follows. v

flogarithme
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B. Exponential

We have just seen that the logarithm is a bijection from ]0; 4+oo[ to R, therefore it has an inverse, the exponential® function
exp: R — ]0; +oo[. Therefore

exp(Inx) =x forallx >0

In(expx) =x forall x € R.

The properties of the exponential can be deduced from those of the logarithm.

Properties 2. (i) exp(a +b) = (expa)(expb) for any real numbers a and b, and exp(na) = (expa)" for any real
number a and any integer n € Z.
(ii) The exponential defines an increasing and continuous bijection from R to |0; +oo[; we have Em expx = 0 and
X—>—00

lim expx = +co.
x—>400

(iii) The exponential function is differentiable and exp’ = exp.

(iv) The function exp has a Taylor expansion of order n € IN at 0 given by

no ok
expx =) ar + o(x™).
k=0 ™*

Proof. (i) Set x = expa and y = exp b. Then we know that In(xy) = Inx + Iny hence In((expa)(expb)) = In(expa) +
In(exp b) = a + b and, applying exp, we get (expa)(expb) = exp(a +b).

(ii) By construction, exp is the inverse function of the continuous and increasing function In: ]0;+o0] — R, which is
bijective by the properties of the logarithm. Therefore it is a continuous and increasing function from R to ]0; +o0].

(iii) Moreover, since the derivative of In never vanishes, by Proposition 14 in Chapter 2, the function exp is differentiable

and we have
1 1

- In’ (exp x)

exp’(x)

(iv) [cf. First semester.] It is easy to use Taylor-Young’s formula here, since exp(") x = exp x for all n > 0 (by induction),
therefore exp(™) (0) = 1 for all n € N and finally

n (k)
expx =) H &P 0)

n o xk n
i +o(x)zzﬁ+o(x ). v
k=0 k=0

Notation. The real number exp 1 is denoted by e; therefore we have Ine = 1. Note that since exp is strictly increasing,
e=expl >exp0=1

Remark. For any integer n € Z, we have exp(nlna) = (exp(Ina))" = a".
Suppose that n > 2 is an integer and set y = exp(% In a). Then y" = g; since y > 0 we conclude that y = {/a by

definition of the n-th root. Therefore

Ya = exp(% lna) forall a > 0.

Definition 3. Let a be a positive real number and let b be a real number. We define the real number ab, called

a to the b or a to the power of b* by

a’ = exp(bIna).

?a puissance b

b terms
Remark. If b is a positive integer, then exp(blna) = 7- - - which is the usual power a to the b. If n > 2 is an integer, we
also have a"/* = {/a. The definition above allows us to elevate any positive real number to the power of any real number.

Proposition 4. > For any real number b we have 17 = 1.

> For any real number b and any positive real number a, we have In(a’) = bIna.

> For any positive real number x and any real numbers b and ¢ we have x(!+¢) = xPx¢ and (x?)¢ = xb¢.

C,,C

y.

> For any positive real numbers x and y and for any real number ¢ we have (xy)¢ = x

Tcxponcmic]lc

17



Proof. Let x be a positive real number. Then
> 10 = exp(bIn1) = exp0 = 1.
> In(a’) = In(exp(bIna)) = blna.
> x(0+9) = exp((b +¢)Inx) = exp(bInx +clnx) = (exp(bInx))(exp(clnx)) = x¥x°.
> We have In((x?)¢) = cIn(x?) = cbInx so (x%)¢ = exp(In((x?)¢)) = exp(bcInx) = xb.
> We have (xy)° = exp(cIn(xy)) = exp(clnx + clny) = exp(clnx) exp(clny) = xy-. v
Proposition 5. Let a be any real number. Then
. a\=x
-

n
In particular, the sequence ((1 AF %) ) converges to e.
n

Proof. > Using Taylor expansions.

1
Putt = 3 when x approches +co, t nears 0. We then have

(1 + %)x = exp(xln(l + %)) = exp(% In(1 +at)).

We shall now write a Taylor expansion of order 1 at t = 0 of t — exp (% In(1+ at)).

2
We have In(1 + at) = at — @ + 0(t?) (we need order 2 here since we divide by t afterwards).
1 a’t 1 a’t
Next, n In(1+at)=a-— 5t o(t). Therefore g(t) := n In(l+at)—a= -t o(t).

We will now compose with exp. We may do this because lim;_,o g(#) = 0. Since expu = 1+ u + o(u) we have
exp(g(t)) =1 — St + o).
Finally, exp(% In(1+ at)) =exp(a+g(t)) = (expa)(expg(t)) = (expa) ( - %t + o(t)), whose limit is exp 2 when
t—0.

> More elementary proof.

Put u(x) =1+ 2.1f x > |a| then |2| < 1 so that 2 > —1 and u(x) > 0. Therefore we can consider u(x)* for x large
enough (and in particular the limit as x approaches +o0). If 2 = 0 then u(x)* =1 = exp0 for all x. Suppose that
a # 0. Then In(u(x)*) = xIn(u(x)) and In(u(x)) has limit 0 when x approaches +oco so we have an indeterminate

form. | )
lim xInu(x) = lim 1ln(u(l)) = lim In(1 +af) =a lim M.
x—+00 t—0* ¢ t t—0+t t t—0+ at
Since limy_,q In(1+x) = 1, we get lim; o+ In(1 +at) = 1 so that limy 4 xInu(x) = a. It follows that
limy—s oo tt(x)* = expa since u(x)* = exp(xInu(x)).
The second statement follows from the first one (with a = 1). v

C. Power functions

Definition 6. Let b be a real number. The function u: ]0;+oo] — R defined by u(x) = x¥ = exp(blnx) is called
power function®.

“fonction puissance

Remark. For x > 0,

u'(x) = exp(blnx)b% =bexp(blnx) exp(ln%)
= bexp(blnx)exp(—Inx) = bexp((b—1)Inx) = bx’~1.

18



Properties 7. > For any x > 0 we have x’~1 > 050 #/(x) > 0if b > 0 and /(x) < 0if b < 0. Consequently, the
function u is increasing if b > 0 and decreasing if b < 0.

> Assume that b > 0. We have limy_, 1o bInx = +oco therefore limy_; 4 xb = lim; 4 expt = +oo. Since
limy,_,glnx = —co we have lim,_,gbInx = —oco and therefore lim,_,( x? = limps o expt = 0. The function u
has a continuous extension” at 0 that is defined by u(0) = 0.

> If b > 1, then @ = x¥~1 nears 0 as x approaches 0. Therefore the function u extended to [0; +oo[ has a
right-hand derivative at 0 equal to 0. In particular, there is a horizontal tangent line at 0.

> If0 < b <1, then @ goes to 400 as x approaches 0, therefore there is a vertical tangent line at 0.

> If b < 0 we have lim,_,gbInx = o0 so lim,_,g X’ = +0c0. Moreover, limy_, ;o bInx = —00 50 limy_s 40 ¥ =
lim;,_expt =0.

> If b = 0, the function u is constant equal to 1 on |0; +oo|.

Tadmet un prolongement par continuité

We summarise some of these properties.

Proposition 8. If b > 0, the function x — x? is a continuous and increasing bijection from [0; oo to [0; +oo[. If b < 0,

the function x — x? is a continuous and decreasing bijection from ]0; +oo| to |0; +-co].

b>1
y
b=1
0<b<l1
1
b<0
x
1
D. The general exponential function
Definition 9. Let a be a positive real number. The function v: R — R defined by v(x) = a* is called the
general exponential function® with base a.
“exponentielle de base a
Remark. > v(x) =a* = exp(xlna) so v'(x) = Inaexp(xIna) = (Ina)a* for all x € R.

> For a = e we have ¢* = exp x : the general exponential with base e is the usual exponential function.

Proposition 10. If a # 1, the function x > a* is a continuous bijection from R to ]0;+co[. If a > 1, this bijection is
increasing, if a < 1 this bijection is decreasing.

Proof. Exercise v

II. INDETERMINATE LIMITS INVOLVING LOGARITHMS, EXPONENTIALS AND POWERST

28

1
Lemma 11. lim nx_ 0and lim < _ +o00.
x—+co X X——+0o X

In other words, Inx = o(x) at +o0 and x = o(e*) at +oo.

T“croissances comparées’
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Proof. The study of the function x — In(x) — x + 1 shows that for any positive x € R we have Inx < x —1so thatlnx < x.

In+/x
Vx

In particular, for any x > 0 we have <L Ifx > 1 weget

Inx

. . 1 .
Since limy_, o ﬁ =0, we have limy_; 4 -~ = 0.
In(e* Int x
We have in partlcular hm X = lim n(e’) = lim — = 0, therefore hm £ =t v
oo eX  x—4oo e t——oo —+oo X
.ps . . Inx . b
Proposition 12. > If b > 0is a real number, then lim —= =0and lim (x’Inx) = 0.
X—+00 X x—0t

X

> Ifa > 1and b > 0 are real numbers, then llrf a—b = +co and hm (x"a*) = 0 for any integer n € Z.
o X —o0

In other words, we have Inx = o(x?) at +oc0, Inx = o( L > at 0, x* = o(a¥) at +o0 and a* zo(xin) at —
il

Proof. For any x > 0 we have the equality Inx = % In(x?) therefore Inx_ _1! ln( )

xb b
ln(x ) = 0 and therefore lim y =0.
xb x40 xb

. Since b > 0 we know that x¥ goes to

+00 as x goes to 4-00. By the previous lemma, we get limy_; 1

1
ln(g) . 1 . Int
T We have lim,_,g+ = 400 and lim;_ 4 o
)b
()

a* eXIna n xlna
F h - = =
or any x # 0, we have . ( a)xlna
xlna t

e
+o0, therefore lim = lim — = +o0. Since b > 0, we know that x — x” is a bijection from |1, 400 to |1, +o0];
x5+ xlna ~ totoo t

therefore there exists a real number a > 1 such that a = a’. For any x > 0 we then have a* = (a’)* = a?* = (a¥)? and

For any x > 0, we have xPlnx = — =0so limy_,gx’Inx = 0.

. Since a > 1, Ina is positive and xIna goes to +oco as x goes to

ax ax)b o\ P ax . a\?
— = () = . Since hm — = +coand b > 0 we get hm — = lim (— ] = +co.
xb xb x " oo xb  xmteo\ x
—Xx 1 : n,x : |_x|n : x"
For any real number x, we have a7 = —. If n € N, we have lim |x"4*| = lim = lim — = 0 by the
a* X——00 x——c0 g~ ¥ x—+oo a¥
previous result. If n € Z, n < 0, x" and a* near 0 as x goes to —co and so does their product. v

III. INVERSES OF TRIGONOMETRIC FUNCTIONS
A. The inverse sine function
The sine function is continuous and differentiable, and if x € |—

3l
function is increasing on [—%;Z]. Moreover, sin(—%) = —1 and sin
bijection from [—7Z; Z] to [-1,1].

we have sin’(x) = cosx > 0. Therefore the sine
(%) = 1. Therefore the sine function defines a

Definition 13. The inverse of the sine function on [—75 ; T is called arcsine®:

arcsin: [—1;1] — {fg,g]

Tarcsinus

y = arcsin x

|
T

y=sinx

—_ MR

]
T

11
SE

4
—

—_
NN T
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Remark. By definition we have:
{sin(arcsin x)=x forallx e [-1,1]

arcsin(sinx) =x forallx € [-5; Z].

i
2
Moreover, cos?(arcsin x) = 1 — sin?(arcsinx) = 1 — x? and cos(arcsinx) > 0 (since arcsinx € [~ 7% ;

cos(arcsinx) = V1 —x2 forall x € [-1,1].

> arcsin is continuous and increasing (inverse of sin which is continuous and increasing).
; %[ Moreover,

7

Properties 14.
> arcsin is differentiable on | —1; 1] since sin is differentiable with non-vanishing derivative on ] — 7%

forall x € ]—1;1].

, 1
arcsin’ x = ——
V1 — x?

> The graph of arcsin is symmetric to the graph of sin with respect to the line with equation y = x.

> arcsin is an odd function (as is sin).
1
> The Taylor expansion of arcsin at 0 can be obtained by taking a primitive of that of x +— ——— = (1—x?)~"/2
V1—x2
We have 5 5 _—
. . x 1-3 x 1-3:5---(2n—1) x*" 24l
arcsin(x) =¥+ 55+ s Tt 2l onr1 o)
(you should not try to remember this formula, but you should know how to find it).
B. The inverse cosine function
[ we have cos’(x) = —sinx < 0. Therefore the cosine

The cosine function is continuous and differentiable, and if x €]0; 7
function is decreasing on [0; 7r]. Moreover, cos(0) = 1 and cos(71) =

from [0; 7] to [—1,1].

—1. Therefore the cosine function defines a bijection

Definition 15. The inverse of the cosine function on [0; rt] is called arccosine®:
arccos: [—1,1] — [0; 7.

Tarccosinus

— arccos x

Remark. By definition we have:
{cos(arccos x)=x forallx e [-1,1]

arccos(cosx) =x forall x € [0; 7]
x for x € [-1,1] and 0 < Z —arcsinx < 7 so arccosx

Moreover, cos(5 — arcsinx) = sin(arcsinx) =

arccos(cos(% —arcsinx)) = 5 — arcsin x so that

arccos x + arcsin x = g for x € [-1,1].
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Properties 16. > arccos is continuous and decreasing (inverse of cos which is continuous and decreasing).

> arccos is differentiable on |—1;1[ since cos is differentiable with non-vanishing derivative on |0, 7z[. Moreover,

1
arccos’ x = —arcsin’ x = ————— forallx € |-1;1].

V1—x2

> The graph of arccos is symmetric to the graph of cos with respect to the line with equation y = x.

> We have arccos = 7 — arcsin. In particular, the Taylor expansion of arccos at 0 is given by
3 5 2n+1
o x 1-3 x 1-3-5---(2n—1) x 241
arccos(¥) = 5 —X 5 3 T w5 T 2l o B G

C. The inverse tangent function

Recall that the tangent function is defined by tanx = (s:;r;i for all x different from (2k + 1) 5, k € Z. Recall also that
tan'x = — =1+ tan? x.
cos? x

The tangent function is continuous and increasing on |—% ; 5[. Moreover lim, Sztanxy = oo and lim, Soztany =
—o0 so that it defines a bijection from |—Z; Z[ to R.

Definition 17. The inverse of the tangent function on |—7% ; Z [ is the arctangent® function:

T T
arctan: R — ] _E;E[
7arctangente
Yy = tanx

NI

Yy = arctan x

N

|
NI

NN

|

Remark. By definition we have:
tan(arctanx) =x forallx € R
arctan(tanx) = x forallx € |-5; Z[.
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Properties 18. > arctan is continuous and increasing (inverse of tan which is continuous and increasing).

> arctan is differentiable on R since tan is differentiable with non-vanishing derivative on the interval |—7% ; 5[.
Moreover,

arctan’ x = for all x € R.

o
1+ x2
> The graph of arccos is symmetric to the graph of cos with respect to the line with equation y = x.

> arctan is an odd function (as is tan).

1
> The Taylor expansion of arctan at 0 can be obtained by taking a primitive of that of x — T2 (1+22)7L

We have
+3 - w2+l
arctan(x) —x—?+...+(_ ) —

+ O(x2n+1).

IV. THE HYPERBOLIC FUNCTIONS AND THEIR INVERSES

Definition 19. The hyperbolic cosine® function, denoted by ch or cosh, and the hyperbolic sine® function, denoted by sh or
sinh, are defined for all x € R by:
X —x X _ ,—X
coshx = ete” and sinhx =" %
2 2
“cosinus hyperbolique
bsinus hyperbolique
The following properties are easy to prove.
Properties 20. > The functions cosh and sinh are continuous functions.

> cosh is even and sinh is odd.

> coshx 4 sinhx = ¢* and cosh x — sinhx = ¢~ for all x € R. Therefore cosh? x — sinh? x = 1 for all x € R.
> The functions cosh and sinh are differentiable functions. Moreover, cosh’ = sinh and sinh’ = cosh.

> coshx —sinhx = e~ > 0 so cosh x > sinh x and limy_, «(cosh x — sinh x) = 0.

> The Taylor expansions at 0 are given by

x2k n x2k+1

cosh(x) = ké) 20)! +0(x2”) and sinh(x) = Z m

+ o(x2n+1).
o

For any x > 0, we have x > —x so ¢* > ¢~* and therefore sinh x > 0. Since sinh is odd, sinh x < 0 for x < 0. Therefore
cosh is increasing on [0; +-oo[ and decreasing on |—oo;0]. Moreover, cosh0 = 1 so coshx > 1 for any x # 0. In particular,
cosh is positive so sinh is increasing on IR. Note also that sinh 0 = 0.

We also have limy_; 4« sinhx = 400 = limy_; 4«0 cosh x, limy_; _o sinh x = —co0 and limy_; _ cosh x = +o0. Therefore

Lemma 21. sinh: R — R is an increasing bijection and cosh defines an increasing bijection from [0; +o0] to [1; +oo].
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y = cosh x
y = sinh x

. o inh
Definition 22. The hyperbolic tangent® function, denoted by th or tanh, is defined by tanh x = (S:;r;hi forall x € R.
“tangente hyperbolique
Properties 23. > tanh is continuous, differentiable and odd. For all x € R we have tanh’ x = 1 — tanhZx = —1

cosh®x”
> tanh is increasing on RR.
> tanhx = il Sl e—Zx) _ 1= e Therefore lim tanh x = 1 and since tanh is odd we have
e te ™ eX(1+e ) 142 Foe B
limy__o tanhx = —1.

> It follows from the above that tanh defines an increasing bijection from R to ]—1;1].

> The beginning of the Taylor expansion of tanh at 0 is given by

3 &)

x x
hix)=x— > +22 6).
tanh(x) = x 3 4F 15+o(x)

We summarise and complete some of the properties above:

Definition-Proposition 24. (i) The function sinh: R — R is an increasing bijection. Its inverse Argsh: R — R is

continuous, differentiable, odd, and Argsh’ x = \/11+7 for x € R.

(ii) The function cosh defines an increasing bijection from [0; +oo[ to [1; +oo| whose inverse Argch: [1;+oo[ — [0; +oo] is
. ) ; . T 1
continuous, differentiable on 1 ; +oo[, and Argch’ x = T forx > 1.
(iii) The function tanh defines an increasing bijection from R to |—1;1[ whose inverse Argth: |—1;1] — IR is continuous,
differentiable, odd, and Argth’ x = 1 forx € ]-1;1].

1—x2

Proof. Exercise. v
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Chapter 4

Study of recursive sequences u,.1 = f(u,)

We shall not study these types of sequences extensively, as it is a difficult subject. But there are some useful tools that we
will see in this chapter.

Example. A trivial example: Given 1y € R, we want to know whether there exists a sequence (,,),>0 such that 1,1 =
auy for every n € IN (where a € R is fixed) and if so, whether it converges.

Clearly, the only sequence that satisfies 1,1 = au, is the sequence defined by u, = a"ug for all n > 0 (a simple
induction will prove this). Moreover, it always converges (to 0) if #y = 0, and when 1y # 0 it converges if and only if
a€]l—-1,1].

Example. A little less trivial. Fix 1,4, b in R and consider sequences (uy),>0 such that 1,1 = au, + b for every n € IN.
Assume that (u,), converges to ¢. Then ¢ = limy 1o Uy = LMy yoo iy = limyjoo(au, +b) = al + b so that
C=ual+Db,ie. (1—a)l=0>.

Up ifb=0
If a = 1, then 1,1 = uy + b so that u, = ug + nb. Therefore lim,_, oy = ¢ +oo0 ifb >0
—oo ifb<O.

If a # 1 and if (u,), converges then the limit must be £ = %. Note also that
Uyl =auy +b
L=al+b

and subtracting these equalities gives (1,11 — ¢) = a(u, — £). If we define v, = u, — £, then we are in the situation of the
previous example with v, 1 = avy, (and a # 1).

Example. Even less trivial: ug,a,b,c,d € R and u,,1 = % (and ¢ # 0 since we have already considered the case
¢ = 0). This expression is not very complicated but we already have a serious difficulty: if u, = —§ then u, is not
defined. How can we be sure that we will never have u, = — %? In practice, this kind of difficulty does arise — we shall

therefore exclude this case.

We shall now see some conditions to ensure that a sequence given by a recursion u, 1 = f(uy) is well defined and
then see how to study it.
In all this chapter, f will be a function defined on an interval I.

I. EXISTENCE OF ALL TERMS IN THE SEQUENCE

A. Stable intervals

Definition 1. An interval | C I is said to be stable® under f if f(]J) C J.

“stable
Example. The study of the function f : R — R defined by f(x) = x — x? shows that f([0;1]) = [0; 1] C [0;1] so that
[0;1] is stable under f.
B. Why do we need stable intervals?

As we have seen in the introduction, it can happen that 1,11 is not defined. Therefore we introduce stable intervals in
order to avoid this problem.

Lemma 2. Assume that | C I is an interval stable under f and that ug € J. Then we can define recursively a sequence
(un) such that u, 1 = f(uy) for all n € IN. Moreover, u, € J for all n € IN.
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Proof. We prove by induction on # that u, is defined and that u,, € ] for all n € IN. Recall that f is defined on I and hence
on J.

4+ By assumption, ug € J.

4 Now assume that u, is defined and that u,, € | for some n € IN. Then f(u,) is defined because f is defined on J.
Therefore 1,1 = f(uy) is defined, and moreover 1,1 € f(J) C ] because ] is stable under f.

4 Therefore, for all n € N, u,, is defined and u, € J. v
II. POTENTIAL LIMITS

We assume that we have a well-defined sequence (uy,) with u, 1 = f(u,) for all n € N.

A. Fixed points

Definition 3. A real number a € I is called a fixed point® of f if f(a) = a.

“point fixe

Remark. We have seen in the exercises that if f is a continuous function from [0, 1] to [0, 1], then f has a fixed point (apply
the Intermediate Value Theorem to the function g : [0,1] — R defined by g(x) = f(x) — x).

More generally, if an interval of the form [4, b] is stable under f and if f is continuous on [4, b], then f has a fixed point
in [a, b].

B. Limits

Recall from the first semester (Proposition 234) that if (v,,) is a sequence that converges to a4 and if & is a function which
has limit b at 4, with b € R or b = +o0, then the sequence (h(vy)) has limit b. In particular, if / is continuous at 4, then
(h(vy)) converges to h(a).

Theorem 4. Assume that the sequence (u,,) converges to ¢ and that f is continuous at £. Then / is a fixed point of f.

Proof. We have assumed that (u,) converges and that lim,,_, {4, = £. Then we also have lim, oo 1,11 = ¢. Taking
limits when n goes to +oo in the equality u,, 11 = f(uy) gives £ = lim,— . f(un). Moreover, since f is continous at ¢ and
(un) converges to ¢, we have limy,_, yo f(1n) = f(¢) by the result recalled above. Therefore, f(¢) = £ as required. v

Example. We fix up > 0 and set 1,11 = v/u, +2 forn € N.
The first step is to find f. We know that x — +/x +2 is defined for all x > —2 and that /x +2 > 0. In order to make
sure that the sequence is well-defined, we must have a stable interval containing uy, we choose

fi]0 400 —  [0;400]
x = x+2.
(we could have chosen the interval |—2; +o00[). We have u, 1 = f(uy), therefore the sequence (u,) is well-defined.
The function f is clearly continuous. Consequently, if (1) converges to £ we must have ¢ = /£ + 2, thatis, £ > 0 and
P —0—-2=0ic (=2

But this is not enough to prove that (u,) converges.
We shall continue this example later.

III. GRAPHICAL REPRESENTATION

We use the graph C of f to represent the terms 1, on the x-axis. The line D with equation y = x is used to transfer points
from the y-axis to the x-axis. Moreover, if f is continuous and if (u,) converges, then the limit is a fixed point of f, that
is, either one of the coordinates of a point at the intersection of C and D.

Example. For the sequence (u;) defined by 1y > 0 and u, .1 = +/u, +2 for n € N, the graphical representation is as
follows when ug < 2:
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U
3

Uy

Ug up Uz

Example. We fix up € R and set 1,11 = cosuy, for n € IN.

We first determine f. The function cos : R — IR works well, but we will simplify the discussion by noting that
cos(R) = [—1,1], so that for any uy € R we have u; € [-1,1] C] — %; F[and up = f(u1) € [0,1]; moreover, [0,1] is stable
under cos, therefore the sequence (uy),>> is well-defined and contained in [0, 1]. Therefore we may assume without loss
of generality that 1y € [0,1] (we need only forget the first two terms and shift the indices).

Therefore we define

f:00,1] — [01]
X +—  cosx

which is continuous.
If ug is “small enough”, the graphical representation is as follows:

y

C:y=f(x)=cosx

=

Uup 1

IV. MONOTONY OF THE SEQUENCE

We still have to see whether the sequence converges or not and prove it. We shall often use the theorems on the
convergence of monotonic sequences seen in the first semester. Therefore we need some methods to prove that a sequence
is monotonic (or not).

We shall assume that f is continuous on the interval I, that I is stable under f, that ug € I and that u, .1 = f(uy).

A. Sign of f(x) —x

Lemma 5. Let f : I — I be a continuous function, take 1y € I and set 1,11 = f(u) for all n € IN.

Assume that f(x) — x has constant sign on I.

Then the sequence (1) is monotonic.

More precisely, (1,) is non-decreasing if f(x) —x > 0 for all x € I and (u,) is non-increasing if f(x) —x < 0 for all
x el

Proof. For any n € IN, we have u,, 11 — u, = f(uy) — uy. Therefore

4 if f(x) —x > 0 for all x € I, then u, 1 —u, > 0 for all n € N (recall that u,, € I for all n € IN), therefore the
sequence is non-decreasing;
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4+ if f(x) —x < Oforall x € I, then u, 1 — u, <0 for all n € N, therefore the sequence is non-increasing. v

B. f is non-decreasing

Lemma 6. Let f : I — I be a continuous function, take ug € I and set 1,11 = f(u,) for all n € N.
Assume that the function f is non-decreasing.

Then the sequence (1) is monotonic.

More precisely, (1) is non-decreasing if 1y = f(ug) > 1y and (u,) is non-increasing if 17 < uy.

Proof. > First assume that 17 > ug. We shall prove by induction that for all n € IN we have u,, 1 > uj.
4 The result is true for n = 0 by assumption.

4 Assume that 1,1 > uy for some n > 0. Since the function f is non-decreasing, applying f gives f(u,11) >
f(uy), thatis, u,1p > u,41 using the definition of (u,). Therefore the result is true for n + 1.

4+ By induction, we have u,;1 > uy for all n € IN. Therefore the sequence (1) is non-decreasing.

> Now assume that 11 < 1p. We shall prove by induction that for all # € IN we have 1,1 < uy.
4 The result is true for n = 0 by assumption.

4 Assume that u,,1 < uy, for some n > 0. Since the function f is non-decreasing, applying f gives f(uy11) <
f(uy), thatis, u,4o < 1,41 using the definition of (u,). Therefore the result is true for n + 1.

4 By induction, we have 1,1 < uy for all n € IN. Therefore the sequence (u,) is non-increasing. v

Example. Let us come back to the example

ug =0
Upt1 =y +2 foralln € IN.

We have seen that if this sequence converges, then its limit must be 2, the only non-negative fixed point of the function
f:[0;+0o[ — [0;+oo[ defined by f(x) = /x +2.

The function f is increasing (as the composition of the increasing functions x — x + 2 and x — +/x). Therefore the
sequence (i) is monotonic; to prove convergence, if (1,) is non-decreasing we must prove that it is bounded above, and if
it is non-increasing we must prove that it is bounded below. Therefore we want to know whether (1, ), is non-decreasing
or non-increasing, and for this we need the sign of 17 — 1y = f(u9) — 9. Therefore we shall study g = f —id.

The function g is differentiable and we have ¢/(x) = ﬁ -1< z%ﬁ —1 < 0 for all x > 0 so we get the following
table
x 0 2 +oo
—+o00
/
f(x) 2
V2
V2
flx) —x o0
—0o0

We can now conclude:
> If ug = 2 then u, = 2 for all n € IN (induction: if u,, = 2 then u,, 1 = f(u,) = f(2) = 2).
> If 0 < uy, < 20 since f([0,2[) C [0,2], we have u, € [0,2] for all n € N. Since f(x) —x > 0 for all x € [0,2], we

have uy —ug = f(ug) —uog > 0and w1 — uy = f(un) — uy > 0 therefore (uy)y is increasing. As (u,), is bounded
above (by 2), it converges. The only possible limit is 2 as we have seen before, so (1), converges to 2.

> If uy > 2: since f(]2, +o0[) C]2, 4o0[, we have u, > 2 for all n € N. Since f(x) —x < 0 for all x > 2, we can show
as before that (uy), is decreasing. As (u,), is bounded below (by 2), it converges. The only possible limit is 2 as
we have seen before, so (1), converges to 2.

Note that it appears from the graphical representation to converge quite fast. Let us look into this. Using the Mean

Value Theorem, we have
U1 —2 = f(un) — f(2) = (un — Z)f/(gn)

for some 6,, between 2 and u,,. Moreover, f'(x) = 2\/}m < le and f/(x) > 0 forall x > 0, so |f/'(6n)| < 2%5 We then

get |u,11 —2| < 21—\5|un — 2| for all n € IN hence

Remark. We have used here the Mean Value Theorem to prove that f is contracting, and used this to see that (1)

n
converges to 2 at least as fast as the geometric sequence <(2—\1/§) > converges to 0.
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C. f is non-increasing

Lemma 7. Let f : I — I be a continuous function, take g € I and set 1,11 = f(uy) for all n € IN.

Assume that the function f is non-increasing.

Then the sequence (1) is not monotonic (unless it is constant). However, the sequences (up,)n and (up,4+1), are
monotonic (one is non-decreasing and the other is non-increasing).

Proof. We have (f o f)(un) = f(f(un)) = f(uy41) = tty42 therefore

* Up(uy1) = Uznt2 = f 0 f(uzy) and

* Up(yi1)41 = Uanis = fo f(Uany1)

Moreover, the function f o f is non-decreasing. Therefore, using Lemma 6 with the function f o f, we see that (u3,), and
(uU2p41)n are both monotonic.

Moreover, assume that (1), is non-decreasing. Then up > 1. Applying the non-increasing function f gives uz =
f(uz) < f(uo) = uq and therefore (13,,4+1)n is non-increasing by Lemma 6. The other case is similar.

Example. Let us return to the example with ug € [0,1] and u;,+1 = cosu, for n € IN. We had defined

f:00,1] — [01]
X —  cosx
which is continuous and differentiable. We now study f and ¢ = f —id. We have ¢/(x) = —sinx —1 < 0 so g is

decreasing. Since ¢(0) =1 > 0 and g(1) = cos1 —1 < 0, by the Intermediate Value Theorem there exists « €]0,1[ such
that g(a) = 0 (fe. f(a) = a).

cos1

cosl—1

If uy = a then u,, = « for all n.

We know that in our situation the sequences (12, ), and (u3,+1)» are monotonic and since they are bounded (both are
contained in [0, 1]), they converge. Set ¢1 = limy— oo Uy, and £p = limy—s oo Uy 41-

If ¢4 = ¢y then (u,), converges to {1 = ¢, so that, since f is continuous, {1 = {, = a.

Can we have {1 # (5?

If ug > a then u; = f(up) < a so up to a shift in indices we can assume that 1y < a. The graphical representation we
had seen represented this situation.

It seems that there is a spiral converging to «, so that {1 = /5.

Since f is continuous, so is f o f, therefore it seems natural to look for fixed points of f o f, that is, to study i : x —
cos(cos(x)) — x. The function h is differentiable and h’(x) = sinxsin(cosx) —1 < 0 for x € [0,1]. Hence h is decreasing
from h(0) = cos1 > 0 to h(1) = cos(cos1l) —1 < 0 and there exists a unique B €]0,1[ such that cos(cos §) = B. But
we know that cosa = a so cos(cosa) = cosa = a and therefore « = B (more generally, if f(x) = a then fo f(a) = a).
Therefore the only possible value for ¢; and for ¢, is {1 = ¢, = « and finally (u,), converges to a.

Remark. Note that any fixed point of f is a fixed point of f o f, but f o f could have more fixed points than f.
Application. We cannot give an exact value for &, but this sequence gives a way to approximate «.

Remark. In general, the computation of f o f can be complicated. In order to prove that {; = ¢, we can, in some cases,
use another trick. In our example, we have 5,11 = cos iy, and uy, 9 = cos iy, 1 so taking limits gives £, = cos ¢ and
{1 = cos ¥, so that

Uy — 01 = cosly —cosly = (b1 — £3)(—sinb)

for some 0 between ¢; and ¢, by the Mean Value Theorem. We get (¢, — ¢1)(1 —sin#) = 0 and since sin® # 1 we finally
have 52 = 61.
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V. SUMMARY

We fix a function f : I — R where I is an interval of R and up € I. If I is stable under f then the recursive formula
Up1 = f(up) for all n € IN defines a sequence (i,),eN Whose terms are all in I.

> We study the continuity of f on I and solve the equation f(x) — x = 0. This may require the study of f —id on I if
we do not know how to solve this equation algebraically.

> The study of f — id gives other useful results: if it has constant sign on I then (u,) is monotonic.
> 1If (uy)n converges to £ with ¢ € I and if f is continuous on I (or at £), then ¢ = f(¢).

> If f is non-decreasing (on I) then (i), is monotonic.

> If (1), is monotonic and I is bounded, then (u,), converges.

> If f is non-increasing (on I) then the sequences (uy,)n and (up,41)n are monotonic (one is non-decreasing and the
other is non-increasing).

Note that even if [ is stable under f, it could happen that none of these properties are true on I. It will then be necessary
to work on intervals | C I which are stable under f and on which f has some nice properties.
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Chapter 5

Study of equations f(x) =0

1. DicHOTOMY

A. Principle

Consider a function f that is continuous on an interval [a,b]. Assume that f has a unique root & in |a,b[ and that

f(a)f(b) <0.Letc= “zib be the middle of the interval.
(1) If f(c) = 0, then c is the root of f and the problem is solved.

(2) If f(c) # 0, one of the following holds.
(@) If f(a)f(c) <0, thenw €a,c|.
(b) If f(c)f(b) <O, then a €]c, b].
We repeat the procedure with the interval [4, ] in the first case and the interval [c, b] in the second case. In this way we
construct inductively three sequences (a,)n, (bn)n and (cy), such that ag = a, by = b, and for all n > 0:

(i) cn = gt
(i) If f(cn)f(bn) <O thena, 1 =c, and by1 = by

(i) If f(cxn)f(an) < O thena,iq = a, and b, = ¢y

Definition 1. The algorithm above is called the dichotomy algorithm®.

"algorithme de dichotomie

B. Study of convergence

Theorem 2. Let f be a continuous function on [4, b] satisfying f(a) f (b) < 0 and assume that the equation f(x) = 0 has
a unique solution « € ]a, b[. If the dichotomy algorithm can be applied up to the n-th stage, then

b—a
on+1-°

| —cn| <
Consequently, the sequence (¢, ), converges to «.

. . . ap—b . .
Proof. Note that at each stage, the interval is halved, that is, |, 11 — b, 1| = M Therefore, by induction, we have

|ag — bo |an —ba| _ |ag —bo| _ |a—b|
|an—bn|:T.Itfollowsthat|a—cn|< ”2 == yon = ol v

Remark. In order that ¢, be an approximation of « with a precision of € > 0, it is enough that n satisfies:

b—a
il S

Then we have b

| —cn| < —4

TSE€

on+
so that we can compute beforehand the maximal number ny € IN of stages needed to have a precision of e.
b—a
€

In2

b—a b—a
T See= —— <2 >
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Example. We can use the dichotomy algorithm on f : [1,2] — R defined by f(x) = x?> — 2 to approach « = /2. We have
a sequence (¢, ), that satisfies |a — ¢,| < 2,,% If we wanted v/2 with a precision of 1072, it would be enough to compute
6 terms, since

In100 _

1 -2 n+1 ~
TS <107° «— 2 >100 < (n+1)In2 > In(100) < n > n2 1=5,6.
]

In detail, we have

| Flan) | £(0u) [ Flen) |

an | by | cn
oj1]2]|3 - + +
3 5
5 3 11
23|38 | — + -
11 3 23
S e 2 I o + +
11 23 45
418 T | 3@ | — + -
45 23 91
51381 8| - + +
6| 45 | 9 | 18
32 64 64

therefore cg = 16%1 2 1.41 is an approximation of V2 with a precision of 10—2.

II. NEWTON’S METHOD

A. Principle

Proposition 3 (Newton’s method®). Let f : [a,b] — R be a function of class C? such that f(a) < 0, f(b) >0, f'(x) > 0
and f”(x) > 0 for all x € [a, b].
Then there exists a unique « €]a, b[ such that f(a) = 0 and « is the limit of the sequence (uy,), defined by uy € [, b]

and u,1 = g(un) where g(x) = x — J{,((’;)) for all x € [a,b].

“méthode de Newton

Proof. Since f is of class C? and f’ does not vanish on [a,b], the function g is of class C' on [a,b] and ¢'(x) = 1 —
[EP—f@f"(x) _ f(X)f”)(X)
X

);(x)Z = “Fr Since f is continuous and increasing on [4, b], there exists a unique & €]a, b[ such that f(a) =0
by the Intermediate Value Theorem. Moreover, f(x) < 0 for x € [a,a[ and f(x) > 0 for x €]a, b]. Therefore ¢'(x) > 0 for

x €]a, b] so that g is increasing on this interval, from g(a) = a to g(b) = b — % €la, b[. In particular, g([a,b]) C [a, b].
Set I = [&,b]. Then I is stable under g. It follows from Chapter 4 that we can define a sequence (i), by up € I and

Upy1 = §(un). Moreover, we have seen in Chapter 4 that u, € I for all n, so that (u,), is bounded, and that (u,) is

monotonic because g is increasing. Therefore (u,), converges to ¢ € [«,b]. Since g is continuous at ¢, we have £ = g(¢),

that is, f(£) = 0 hence £ = a. The sequence (1), is therefore non-increasing and its limit is a. v

Corollary 4. Let f : [a,b] — R be a function of class C? such that f(a)f(b) < 0, f'(x) # 0 and f”(x) # 0 for all
x € [a,b].
Then there exists a unique a €]a, b[ such that f(a) = 0 and « is the limit of the sequence (1), defined by ug € [a,b]

such that (g — &) f(b)f” > 0 and u, 1 = g(un) where g(x) = x — J}:,((fc)) for all x € [a, b].

Proof. Note that f" and " are continuous and do not vanish on [g, b], therefore they have constant sign by the Intermediate
Value Theorem. Moreover, the sign of f' is the same as the sign of f(b) (if f' > 0 then f is increasing so that the hypotheses
imply f(a) < 0and f(b) > 0, and similarly when f’ < 0). There are four cases:

> First case: f/ > 0and f” > 0. This is the case in the proposition.

> Second case: f' < 0and f” < 0. This case is obtained from the previous one by replacing f with — f, which does
not change ¢. Moreover, in this case 1 is also chosen in ]a, b], and we have (uy — ) f(b) " > 0.

> Third case: f' > 0 and f” < 0. Here we follow the proof of the proposition, adapting it where necessary. In this
case, ¢’ > 0 on the interval 4, « and g([a,a]) C [a,a], and we change I to [a, a].

> Fourth case: f' < 0and f” > 0. This case is obtained from the previous one by replacing f with —f, which does
not change g. Moreover, in this case g is also chosen in [4, «[, and we have (ug —a)f(b)f" > 0. v

Remark. The final condition says only that 1y must be chosen in a sub-interval of [4, b] on which f and f” have the same
sign (ie. f(uo)f" (ug) > 0).
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Example. We can use Newton’s method to compute V2.

Consider x + x2 — 2. Tt is of class C2, with derivative x ~ 2x and second derivative x + 2 > 0. We restrict our study
to [1,2] so as to satisfy the hypotheses in the proposition.

Therefore we define f: [1,2] — R by f(x) = x> —2. We have g(x) = x — "22;2 = %(x + %) We know that f has a

unique root « = /2 and that it is the limit of a sequence (1), defined by ug € [v/2,2] and 1,11 = g(un) = 3 (un + u%)

(In this example, we can choose eg. 1y = 2 (or anything larger than /2).)
B. Study of convergence

The functions |f'| and |f”'| are continuous and positive on [4, ], hence
f1(x)]>0;
f'(x)]>0.

> there exists M = sup .1, |f" (x)| = max,e[qp)

> there exists m = infyc [,y [ f(¥)| = minyc[q )

By Taylor’s inequality (Corollary 9.26), we have
1
|f(a) = f(un) — (& — un) f' (un) | < EM — un[*M
and therefore, dividing by |f’(u,)| and using the fact that f(a) = 0 we get

f(”n)‘<M|"‘”n2<M 2

f'(un) S 2 Lf (un) | S om

| —tyi1] = & —un + | — uy

It then follows by induction that

for all n € IN.
The convergence is said to be quadratic (the power of 1, — « is 2). The convergence is fast if |ug — «| is chosen small

enough to compensate for %% if it is large.

Example. If f : [1,2] — R is defined by f(x) = x? — 2 and if we take 1y = 2, then the number of terms we would need
to compute to approach a with a precision of 1072 is 3 since we have M = 2, m = 2,0 < ug —a < b—a = 1 so that

2In10+1In2
1 In In2
Ogun—agzz,l—_lﬁ—w)z < 57 and zzn_1<10*2<:>n> 2 ~2,9=n>3.
17 77
We would then have uy =2, u; = 5 Uy = 1 and uz = ZO—S ~1,41.

Since f” = 2 > 0, the remark above says that we must choose g such that f(u() > 0. Note that this implies that ug > «
since f is increasing.

3
For example, we could choose 1y = 7 In this case, we would only need to compute 2 terms. Indeed, this time
1 1 n 1 1 1 1 _
O<uy—a<ug—a= 5 %0 that 0 < uy —a < 22,,—71(270()2 < piar T @i and 7T <102 «<=n+1>
2In10+In2
In In2
29 =n=>2.
In2 ° 3 ' 17 577
We would then have uy = 5 Uy = 1 Uy = 108 = 1,41.
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Chapter 6

Polynomials

In this chapter, K is equal to C or R or Q.

We shall study arithmetic properties of K[X], similar to those of Z, and then consider rational functions. These will be
useful for integration (as well as other things you shall see next year, eg. linear algebra).

Note that most of the results and definitions that follow are the same as those for integers, replacing polynomials by
integers and degrees of polynomials by absolute values of integers. See Appendix C for more details.

I. ArrrHMETICS IN K[X]

A. Greatest common divisors

Notation. Let A be a polynomial® in K[X]. We denote by D(A) the set of divisors of A in K[X]. Recall from the first
semester that

> D(0) = K[X];
> if A # 0 then any polynomial B in D(A) has degree at most deg A.
Recall that a polynomial is called monic? if its leading coefficient is 1.

Recall that two non-zero polynomials A and B are said to be associate¥ if there exists A € K* such that B = AA.
Given two non-zero polynomials A and B, the following properties are equivalent.

(i) A and B are associate.
(ii) A divides B and B divides A.
(iii) A divides B and deg A > deg B.

Proof. First assume that (i) is satisfied. Then there exists A € K* such that B = AA. In particular, A divides B. Moreover,
A = 1B g0 that B divides A. Therefore (ii) is satisfied.

Next assume that (ii) is satisfied. Then obviously A divides B. In particular, deg A < deg B. Moreover, since B divides
A we also have deg B < deg A. Therefore deg A = deg B. Therefore (iii) is satisfied.

Finally, assume that (iii) is satisfied. Since A divides B there exists a non-zero polynomial C such that B = AC.
Moreover, deg B = deg(AC) = deg A + deg C and by assumption deg A > deg B therefore deg C < 0; since C # 0 we
have deg C = 0 that is, C is a non-zero constant. Therefore A and B = AC are associate so that (i) is satisfied. v

If A is a non-zero polynomial, there is a unique monic polynomial which is associate to A. We shall denote it by A°.
In the sequel, we shall consider two polynomials in K[X] with at least one of them non-zero.

Remark. Let A and B be two polynomials in K[X], at least one of which is non-zero. Then D(A) N D(B) contains only
non-zero polynomials, and they all have degree at most min(deg A, deg B) if A and B are non-zero, or deg A if B = 0. In
particular, the set {degC;C € D(A) ND(B)} is a non-empty subset of N which is bounded above in R, therefore it has
a maximum, d > 0. This means that there exists a polynomial D € D(A) N D(B) whose degree is equal to d.

Definition 1. Let A and B be two polynomials in K[X] with at least one of them non-zero.
Any polynomial D € D(A) N'D(B) with maximum degree d is called a greatest common divisor® (or gcd®) of A and B.

"plus grand commun diviseur
"pged

Two polynomials have many greatest common divisors.

fpolynome

funitaire

8 coefficient dominant
Yassocié
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Lemma 2. Let A and B be two polynomials in K[X], at least one of which is non-zero. Let D be a ged of A and B. Let
P be a polynomial in K[X].

If P and D are associates, then P is a gcd of A and B.

In particular, P and D have at least one monic ged, D°.

Proof. If P is an associate of D, then we have P = AD with A € K*. By assumption, A = DA;, B = DBj and degD =4,
therefore A = P(A~1A;), B = P(A~'By) so that P € D(A) N D(B), and deg P = deg D = d is maximal therefore P is a
gcd of A and B. v

B. Euclidean algorithm

Recall that for any polynomial A and any polynomial B # 0, there exists a unique pair of polynomials (Q, R) such that
A=QB+R and
deg R < degB.

Proposition 3. Let A, B and Q be three polynomials. Then D(A) N D(B) = D(B) N D(A — QB).
In particular, if R is the remainder? of the Euclidean divison of A by B, then D(A) N D(B) = D(B) N D(R).

“reste

Proof. If P € D(A) N'D(B) then P divides A and P divides B, therefore P divides A — QB. Therefore P € D(B) N D(A —
QB). We have proved that D(A) ND(B) C D(B)ND(A — QB).

If P € D(B) ND(A — QB) then P divides A and B divides A — QB, therefore P divides QB + (A — QB) = A. Therefore
P € D(B) N D(A). We have proved that D(B) N D(A — QB) C D(A) N D(B).

Finally we have the required equality. v

Proposition 4 (Euclidean algorithm?). Let A and B be two non-zero polynomials.

Define the following sequence of polynomials, defined inductively by: Ry = A and Ry = B. For k > 1, assume that
Ry_1 and Ry are known; if Ry = 0, set Rg1q = 0; if Ry # 0, let Ry ¢ be the remainder of the Euclidean division of Ry_1
by Ry, so that Ry_; = QxR + Ri41 and deg Ry 1 < deg Rg.

Then there exists n € IN such that R;; # 0 and R, ;1 = 0. Moreover, R is a ged for A and B.

“algorithme d’Euclide

Proof. (Not done in class.)

Assume for a contradiction the for all n € IN we have R, # 0. We then have a decreasing sequence (degR;), of
elements in IN, which is impossible (every non-increasing sequence of elements in IN converges — because it is bounded
below —, therefore it is stationary — since it consists of integers —). Therefore there is an integer n such that R,.y; = 0, and
choosing n minimal we have R,; # 0 (by assumption, there are some non-zero R,, namely Ry and Ry).

We now prove that R is a ged for Ry = A and Ry = B.

> We have R,,_1 = QRj so that R, divides R,,_1. Therefore R, divides Rj for all k > n — 1. Now take N < n —1
and assume that R, divides Ry for all k > N. We have Ry_1 = QnRy + Ry41 and R, divides Ry and Ryy1,
therefore R, divides Ry;,. Therefore, inductively, R,, divides all the Ry for k > 0.

In particular, R,, divides A and B.

> We must prove that deg R, is maximal among the degrees of elements in D(A) N D(B). Let P be an element in
D(A)ND(B). Then P divides A = Ry and B = R; therefore it divides R, by the previous proposition. Now take
N > 1 and assume that P divides Ry, for all k < N. Then Ry is the remainder of the Euclidean division of Ry_1
by Ry and P divides Ry_1 and Ry, so that P divides Ry.1. By induction, P divides all the Ry and therefore P

divides R;,.
In particular, deg P < deg Rj,. Therefore deg R, is an upper bound for {deg P; P € D(A) N D(B)} and since R, €
D(A)ND(A), deg R, is a maximum. v

Example. We want to find a ged of A = X° —2X* + X% and B = X® - X.
The Euclidean division of A by B gives A = BQq + R, with Q; = X?> —2X +2 and R, = —2X? 4 2X.
The Euclidean division of B by Rj gives B = RyQy + R3 with Qy = ’TlX — % and Rz = 0.
Therefore Ry = —2X2 +2X is a ged for A and B (and X2 — X is a monic ged for A and B).

Corollary 5. Let A and B be two polynomials in K[X] with at least one of them non-zero. Let D be a ged of A and B.
Then D(D) = D(A) N D(B).
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Proof. (Not done in class.)

We already know that D(D) C D(A) ND(B).

Now let R;; be defined as in the previous proposition (Euclidean algorithm). We have seen in the proof that R;, is a ged of
A and B, therefore D(R,) C D(A) ND(B), and also that any P € D(A) N D(B) divides R, hence D(A) ND(B) C D(Ry).
Therefore D(A) N D(B) = D(R,).

In particular, D(D) C D(R;) so that D divides R,. Moreover, they both have the same degree, so that D and R, are
associates. Hence D(D) = D(R,) = D(A) ND(B). v

Remark. The previous result shows that a gcd D of A and B can be characterised by the two properties:
(i) D divides A and B, and
(ii) if P is any polynomial that divides A and B, then P divides D.

Proof. We must prove that D is a ged of A and B if, and only if, it satisfies (i) and (ii).

> First assume that D is a ged of A and B. Then (i) is satisfied by definition. Moreover, we have D(D) = D(A) N
D(B), therefore, if P is a common divisor of A and B, then P € D(A) N D(B) hence P € D(D) and finally P divides
D and (ii) is satisfied.

> Conversely, assume that (i) and (ii) are satisfied. Then D divides A and B by assumption, and we must prove
that deg D is maximal among the degrees of divisors of A and B. But if P divides A and B, then P divides D by
assumption (ii), so that deg P < deg D, as required. v

Definition-Proposition 6. Let A and B be two polynomials in K[X], at least one of which is non-zero. Let D be a gcd of A and
B. Let P be a polynomial in K[X].

Then P is a gcd of A and B if, and only if, P and D are associates.

In particular, A and B have a unique monic gcd, D°, denoted by A N\ B.

By convention, we set 0 A 0 = 0.

Proof. This follows from the proof of the previous result. v

Properties 7. (a) For any polynomials A and B we have AA B = B A A.
(b) For any non-zero polynomial A, we have A A0 = A°.
(c) For any polynomial A, we have A A1 = 1.
(d) For any non-zero polynomial A, A A B = A° if, and only if, A divides B.

(e) The polynomial A A B and its divisors are divisors common to A and B.

Proof.  (a) This is clear, since D(A) ND(B) = D(B) ND(A).
(b) We know that D(0) = K[X] so that D(A) N D(0) = D(A), therefore A A0 is the monic polynomial that divides A

and whose degree is deg A, therefore it is A°.

(c) We have D(1) = K hence D(A) N D(1) = K and therefore A A1 is the monic polynomial in K, that is, 1.

(d) Assume that A divides B. Then D(A) C D(B) so that D(A) N D(B) = D(A) and therefore AA B = A°.
Conversely, if A A B = A° then A° divides B, and therefore A (which is an associate of A°) divides B.

(e) Clear. v

Proposition 8. Let A and B be two polynomials in K[X]. For any non-zero polynomial P, we have (PA) A (PB) =
P°(A A B).

Proof. Set D = A A B and let A be a ged of PA and PB.

Since D divides A and B, PD divides PA and PB, therefore PD divides A. We must prove that deg(PD) = degA.

Since PD divides A, in particular P divides A, so that we can write A = PC for some polynomial C. Moreover,
PC = A divides PA and PB, therefore C divides A and B and finally C divides D. In particular, deg C < degD, so that
deg(PD) > deg PC = degA, as required.

We have proved that PD is a gcd of PA and PB, so that (PA) A (PB) = (PD)° = P°D since D is already monic. v
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Example. Going back to the example following Proposition 4, we wanted to find a greatest common divisor for A = X> —
2X* + X3 and B = X3 — X. Note that we have A = X3(X? —2X +1) = X3(X —1)2and B = X(X? —1) = X(X - 1)(X +1).
Therefore, with P = X(X — 1) (monic), we have AAB = X(X — 1) - (X2(X —1) A (X +1)).

The Euclidean division of X?(X —1) = X3 — X? by X + 1 gives X°> — X? = (X +1)(X? —2X +2) — 2. Since the remainder
is a constant, it must be a greatest common divisor for X?(X — 1) and X + 1, therefore X?(X — 1) A (X + 1) = 1 (we shall
see later other ways of proving this).

Finally, AAB = X(X —1).

Proposition 9. Let A and B be two polynomials in K[X]. Then there exist polynomials U and V such that AA B =
UA + VB.

This is called a Bézout relation® between A and B and the polynomials U and V are called the Bézout coefficients?
for A and B.

relation de Bézout
beoefficients de Bézout

Proof. (Not done in class.) We use the notation in the statement and proof of the Euclidean algorithm. We know that R, is
a ged for A and B. We prove by (descending) induction that for all k with 1 < k < n — 1, we have R, = UpRy + ViRy_1
for some polynomials Uy and V.

For k =n—1, we have R, = —Q,,_1R,,_1 + R;;_» as required.

Now assume that it is true for some k. We must prove it for k — 1.

We know that Ry = —Qj_1Ry_1 + Ry_», therefore

Ry = Uk Ry + VkRe—q = (Vi — UgQp—1)Rg—1 + Uk Ri—»

as required (put Ug_q = Vj — UxQx_1 and Vj_1 = Ug.)
In particular, this is true for k = 1, that is, R, = U1Ry + ViRg = U3 B + V1 A.
Finally, we divide by the leading coefficient of R, so that AAB = V;°A + U;°B. v

Remark. It follows from the proof that, to find the Bézout coefficients for A and B, we can use the Euclidean algorithm
then work backwards, as we do for integers.

Example. We want tof find A A B and the Bézout coefficients for A = X* —2X3 4+ X? +3X —1and B = X3 —2X? +3.
We have

A=XB+(X*-1)
B=(X-2)(X>—1)+(X+1)
X2—1=(X-1)(X+1)+0
therefore A A B = X + 1 (the last non-zero remainder, normalised). Moreover, working up the equalities above, we get:
X+1=B—(X-2)(X>-1)
=B—(X—2)(A-XB)
= —(X-2)A+ (X*-2X+1)B.

C. Least common multiples
In the sequel, we shall consider non-zero polynomials A and B.
Notation. The set M(A) = AK[X] is the set of multiples of A.

Remark. Let A and B be two non-zero polynomials in K[X].

The set M (A) N M(B) is the set of common multiples of A and B. It contains 0 as well as some non-zero polynomials
(such as AB). The non-zero polynomials have degree at least max(deg A, deg B).

In particular, the set {degC;C € M(A) N M(B),C # 0} is a non-empty subset of N which is bounded below in R,
therefore it has a minimum, m > 0. This means that there exists a polynomial M € M(A) N M (B) whose degree is equal
to m.

Definition 10. Let A and B be two non-zero polynomials in K[X].
Any polynomial M € M(A) N M(B) with minimum degree m is called a least common multiple® (or lem®) of A and B.

“plus petit commun multiple
'ppem

Two polynomials have many least common multiples.
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Definition-Proposition 11. Let A and B be two non-zero polynomials in K[X]. Let M be an lcm of A and B. Let P be a
polynomial in K[X].

Then P is an lcm of A and B if, and only if, P and M are associates.

In particular, A and B have a unique monic lcm, M°, denoted by AV B.

Proof. If P and M are associates, then P is clearly a common multiple of A and B with the same degree as M so that P is
an lem of A and B.

Conversely, assume that P is an lcm of A and B. There exist polynomials Q and R such that P = QM + R with
deg R < deg M. Moreover, P and M are multiples of A and B, therefore R is a multiple of A and B. If R # 0, then by
minimality of degree of M we must have deg R > deg M, a contradiction. Therefore R = 0 so that P = QM, that is, M
divides P. Moreover, deg M = deg P therefore M and P are associates. v

Notation. By convention, we set AV 0 =0 for A # 0.

Properties 12. > For any polynomials A and B, one of which is non-zero, we have AV B = BV A.
> For any non-zero polynomial A, we have AV 1 = A°.

> For any non-zero polynomial A, AV B = A° if, and only if, B divides A.

Proof. Exercise. v

Proposition 13. Let A and B be two non-zero polynomials in K[X], and let C be any polynomial.
Then C is an lem for A and B if, and only if, M(C) = M(A) N M(B).

Proof. Let M be an lem for A and B.

> Since M is a common multiple of A and B, it is clear that all its multiples are common multiples of A and B,
therefore M (M) C M(A) N M(B).

Conversely, take P € M(A) N M(B). Then there exist polynomials Q and R such that P = QM + R with degR <
deg M. The same argument as in the proof ot the previous proposition shows that M divides P, that is, P € M(M).
We have proved that M(A) N M(B) C M(M).

> Now assume that C is a polynomial such that M(C) = M(A) N M(B). We have just shown that also have
M(M) = M(A) N M(B). Therefore C and M are multiples of each other. Consequently, they are associates. Since
M is an lem for A and B, so is C.

v

Remark. Let A and B be two non-zero polynomials in IK[X]. The polynomial A V B is the unique monic polynomial such
that M(AV B) = M(A)NM(B).
Remark. The previous result shows that an lem M of A and B can be characterised by the two properties:

(i) A and B divide M, and

(ii) if P is any polynomial such that A and B divide P, then M divides P.

[Not done in class.]

Proof. We must prove that M is an lem of A and B if, and only if, it satisfies (i) and (ii).

> First assume that M is an lem of A and B. Then (i) is satisfied by definition. Moreover, we have M(M) =
M(A) N M(B), therefore, if P is a common multiple of A and B, then P € M(A) N M(B) hence P € M (M) and
finally M divides P and (ii) is satisfied.

> Conversely, assume that (i) and (ii) are satisfied. Then M is a multiple of A and B by assumption, and we must
prove that deg M is minimal among the degrees of non-zero multiples of A and B. But if P is a multiple of A and
B, then P is a multiple of M by assumption (i), so that deg P > deg M, as required. v

Proposition 14. Let A and B be two non-zero polynomials in K[X]. For any non-zero polynomial P, we have (PA) V
(PB) = P°(AV B).
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Proof. [Not done in class.] Set M = AV B and let N be an lem of PA and PB.

Since M is a multiple of A and B, PM is a multiple of PA and PB. We must prove that its degree is minimal.

Let C be a common multiple of PA and PB. Then P divides C, wo that C = PC; for some polynomial C;. Moreover,
A divides C; and B divides Cj, therefore C; € M(A) N M(B) = M(M). In particular, degM < degC; so that
deg(PM) < deg(PCy) = degC. This proves that deg(PM) is minimal among the degrees of the non-zero multiples of PA
and PB, therefore PM is an lem for PA and PB.

Finally, (PA) V (PB) = (PM)° = P°M since M is already monic. v

Proposition 15. Let A and B be two non-zero polynomials in K[X]. Then
(AAB)-(AVB) = (AB)".

Proof. [Not done in class.] Set M = AV B and D = A A B. Since AB is a common multiple of A and B, it is a multiple of
M. We can write AB = MC. To prove the result, we need only prove that C and D are associates, that is, that C is a ged
of A and B.

First, let us check that C is a common divisor of A and B. We can write M = AA;, therefore AB = MC = AAC and
B = A4C so that C divides B; similarly, C divides A.

Now let P be a divisor of A and B. Then P also divides AB. We can write A = PA,, B= PB, and AB = PQ.

We then have PQ = AB = PA,B = APB,, hence Q = A;B = AB,, so that A and B divide Q. Therefore M divides Q,
and we can write Q = MQj.

We now have MC = AB = PQ = PMQ, therefore C = PQq, that is, P divides C.

We have proved that any common divisor of A and B divides C, therefore C is a gcd of A and B. v

D. Coprime polynomials

Definition 16. Let A and B be two polynomials. We say that A and B are coprime® if ANB = 1.
In other words, the only common divisors of A and B are the non-zero constant polynomials.

“premiers entre eux

Theorem 17 (Bézout Theorem®). Let A and B be two polynomials. Then A and B are coprime if, and only if, there
exist two polynomials U and V such that AU + BV = 1.

Athéoreme de Bézout

Proof. If A and B are coprime, that is, 1 is a gcd of A and B, we have already seen that there exist U and V such that
1= AU+ BV.

Now assume that there exist U and V such that 1 = AU + BV. Let P be a common divisor of A and B. Then P divides
UA + BV and therefore P divides 1, so that P must be a constant. Therefore AAB = 1. v

Proposition 18 (Gauss’ Lemma®). Let A, B and C be three polynomials.
If A divides BC and if A and B are coprime, then A divides C.

“lemme de Gauss

Proof. Since A and B are coprime, there exist U and V such that 1 = AU + BV. Multiplying by C gives C = AUC+ BVC =
A -UC + BC - V. Since A divides A and BC, it divides A - UC + BC - V, therefore A divides C. v
Proposition 19. Let A, B and C be three polynomials. The following are equivalent:
(i) A and B are coprime and A and C are coprime;
(ii) A and BC are coprime.
More generally, let Ay, ..., Ap and By, ..., By be p + n polynomials. The following are equivalent:
(i) Aj and By are coprime for all jkwithl <j<pand1<k<m;

(i) Ay---Apand By - - - By are coprime.

Proof. We first prove the case with three polynomials.

(i) Assume that (i) holds. Then there exist polynomials U,V,W, T such that AU+ BV = 1 and AW+ CT = 1.
Multiplying these two identities gives A(AUW + UCT + VWB) + (BC)(VT) =1, so that A and BC are coprime.

(ii) Conversely, assume that (ii) holds. Let P be a common divisor of A and B. Then P divides A and BC so that by
assumption P must be a constant. Therefore A and B are coprime. Similarly, A and C are coprime.
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In the general case [not done in class], the fact that (i))=-(i) is similar to the one above.

Next, assume that p = 1 and n > 2 (or the opposite). The proof that (i)=-(ii) can be done in a similar way to the first
case, or by induction on n > 2, the first case being the case n = 2.

Finally, when p > 2 and n > 2, the case p = 1 shows that each A; is coprime to By - - - By, therefore, applying the case
n=1,B;---Byand Ay --- Ay are coprime.

Definition 20. Let Ay, ..., Ay be a family of polynomials. We say that they are pairwise coprime® if any two of them are
coprime, that is,
Vi,j, 1<i<j<n, Ajand A;jare coprime.

“premiers entre eux deux a deux

Proposition 21. Let A, B and C be three polynomials. Assume that A and B are coprime.

The polynomial C is a multiple of A and B if, and only if, it is a multiple of AB.

More generally, if Aq, ..., A, is a family of pairwise coprime polynomials, then C is a multiple of each of the Ay if,
and only if, it is a multiple of their product A1 A, - - - Ay.

Proof. If AB divides C then A divides C and B divides A (with no assumption on A A B).

Conversely, assume that A and B are coprime and that A and B both divide C. Then A V B divides C. But we know
that AB = (AAB)(AV B) = AV B. Therefore AB divides C.

For the general case [not done in class], one implication is always true, we prove the other one by induction on n > 2.
We have already done the case n = 2.

Assume the result true at the stage n > 2. Let Ay, ..., A,11 be a family of pairwise coprime polynomials such that C
is a multiple of each of the Ay. We must prove that C is a multiple of their product AjAy - -+ Aj41.

Set B = Aj...A,11. The polynomials Ay, ..., A, are n pairwise coprime polynomials such that each Ay with k > 2
divides C. Therefore by induction hypothesis, B divides C. Moreover, A; and B are coprime by Proposition 19, both
divide C, therefore AyB divides C (case n = 2), thatis, Aj Ay - -- A4 divides C. v

Remark. Let A and B be two non-zero polynomials. There exist polynomials A; and B; such that A = (A A B)A; and
B = (A AB)B;.

Then A; and B; are coprime.

Indeed, setting D = A A B, if P divides A; and By, then DP divides DA; = A and DB; = B, therefore DP divides D
and finally P divides 1, that is, P is a constant. Therefore A} A By = 1.

Proposition 22. Let a and b be two distinct elements of K. Then (X —a) A (X —b) = 1.
More generally, let ay,...,a,,by,...,b, be n+ p pairwise distinct elements of K. Let &y, ...,&n, B1,-..,Bp n+ p be non-

negative integers. Then the polynomials A = (X —a1)* (X —a3)* --- (X —a,)* and B = (X — by )P1 (X —Dby)P2 - - (X —
by)Pr are coprime.

Proof. If D = (X —a) A (X —b), then X —a = DA and X — b = DB, so that deg D < 1. Moreover, if deg D = 1, then A and
B must be constants. The polynomials involved are all monic, therefore X —a = D = X — b and a = b, a contradiction.
Therefore D is a constant, thatis, D = 1.

To prove the general case [not done in class], apply Proposition 19 (each of the A; is a polynomial of the form X —a; and
each of the By is a polynomial of the form X — bs, with a; # bs). v

Example. Consider A = X>(X —1) and B = X(X +1)3. Then AAB = X - (X(X —1)) A ((X+1)3). The proposition
above tells us that X(X — 1) and (X + 1) are coprime. Therefore A A B = X.

E. Gcd and lem of more than two polynomials

In order to avoid problems, in the sequel we assume that all polynomials are non-zero.
Proposition 23. For any three polynomials A, B and C, we have

ANBAC)=(AAB)AC
AV (BVC)=(AVB)VC.

In other words, gcds and lems are associative.

Proof. [Not done in class.] The intersection is associative (check this!). Therefore D(A A (BAC)) = D(A)ND(BAC) =
D(A)N(DB)ND(C)) = (D(A)ND(B))ND(C) =D(AAB)ND(C) = D((AA B) AC). The result for geds follows.
Similarly, replacing D by M and A by V, we get the result for lcms. v

Consequence 24. In particular, for any family of n polynomials Ajy,..., A;, we may consider Ay A Ap A--- A Ay, and
A1V Ay V-V A, (without brackets).

40



Definition 25. Let Ay,..., Ay be a family of n polynomials, with n > 2
> The polynomial Ay N Ag A --- N Ay is called the greatest common divisor (gcd) of the polynomials Ay, ..., Ay.

> The polynomial A1V Ap V - -V Ay is called the least common multiple (Iem) of the polynomials Ay, ..., Ay.

Proposition 26. The gcd and lcm of a family of polynomials are characterised as follows.
> D=A; ANAy A -+ A Ay is the unique monic polynomial such that D(D) = D(A;1) N ---ND(Ay).

> M=A;VAV---V A, is the unique monic polynomial such that M(M) = M (A7) N---NM(A,).

Proof. [Not done in class.] We prove these characterisations by induction on n > 2. The initial cases, for n = 2, are known.

We shall do the induction step for gcds, the proof for lems is similar.

Let n be an integer with n > 2 and assume that the result is true for n polynomials. Let Aj,..., A, 41 be n+1
polynomials.

The polynomial A; A Ay A -+ A Ay is the unique monic polynomial such that D(D) = D(A;) N---ND(A,) by induc-
tion hypothesis.

The polynomial Ay AAy A~ ANAyp1 = (A ANAy A -+ AN Ay) A Aygq is the unique monic polynomial such that D(A; A
Az VARERIVAN An+1) = D(Al A Az VARERIAN An) N D(AnJrl) (case n—= 2)

Therefore, combining both facts, Ay A Ap A--- A A,4q is the unique monic polynomial such that D(A; A Ay A -+ A
Aus1) = (ID(4). v

We can extend some of the results for the gcd and lem of two polynomials.

Proposition 27. Let Ay,..., A, be a family of n polynomials, with n > 2, and let P be a non-zero polynomial. Then

(PA1) A (PA2) A -+ A (PAy) = P° (A1 NAx A NAy)
(PAl) V (PAz) V.-V (PA-,,) = PO(Al VAV --- \/An)

Proof. [Not done in class.] We prove these results by induction on n > 2. The initial cases, for n = 2, are known.

We shall do the induction step for lems, the proof for geds is similar.

Let n be an integer with n > 2 and assume that the result is true for n polynomials. Let Aj,...,A,41 be n+1
polynomials. Then

(PA1) V (PA2) V-V (PAys1) = (PA1) V ((PA2) V- (PAn+1))
= (PAy) Vv (P°( Az) V-V (Ay+1))) (induction hypothesis)
= (P°A)) vV (P°((A2) V-V (Ay+1))) (normalise first polynomial)
=P(A1V ((A2) V- ( n+1))) (casen =2)
=P°(A VAV -- vAnH) v

Proposition 28. Let Aq,..., A; be a family of n polynomials, with n > 2. Then there exist polynomials Uy, . .., Uy, such
that
AT NAYN---NA, =AU+ AU + - - -+ AU,

Proof. [Not done in class.] We prove this result by induction on n > 2. The initial case, for n = 2, is known.

Let n be an integer with n > 2 and assume that the result is true for n polynomials. Let A;,...,A,11 be n+1
polynomials.

By induction hypothesis, there exist n polynomials V3, ..., V, such that Ay AAy A~ - ANAy = AV + A Vo + -+ AV
Using the case n = 2, there exist two polynomials U and U, ;1 such that (A; A Ay A~ ANA) ANAyp1 = (AT ANAZ A+ A
An)u + An+1 un+1~

Taking U; = V;U for 1 < j < n gives the result. v

Definition 29. Let Ay, ..., Ay be a family of n polynomials, with n > 2. We say that they are relatively prime® if A; N Ay A
NA, =1

“premiers entre eux dans leur ensemble

Proposition 30. Let Ay,..., A, be a family of n polynomials, with n > 2. The following are equivalent:

(i) the polynomials Ay, ..., A, are relatively prime;

(ii) there exist n polynomials Uy, ..., U, such that A;U; + AUy + - - - 4+ AU, = 1.
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Proof. [Not done in class.] The implication (i)=-(ii) is true by the previous result.
For the converse, assume that P divides A; for all i. Then P divides A;U; + AUy + - -+ + AU, = 1 so that P is
invertible. Therefore Ay A Ay A--- A Ay =1 as required. v

Example. Consider A = X2+ X,B=X%2—-1and C = X2 — X. We have
A=B+(X+1) and B=(X+1)(X-1)+0

sothat AAB=X+1and X+1=A—B.
We have

C=(X-2)(X+1)+2
sothatl = (X+1)ACand 1= 1C— (X -2)(X+1).
Finally, 1 = 1C - }(X —2)A + }(X - 2)B.

Remark. The equality (A A B) - (A V B) = (AB)° does not generalise to more than two polynomials.

Take for instance A=B = C = X. Then AABAC = Xand AVBVC = Xsothat AABAC) - (AVBVC)=X?but
ABC = X5.

However, if the polynomials Aj, ..., Ay, are pairwise coprime, then A1V Ay A--- N Ay, = AjAy - - - Ay. This follows from
Propositions 21 and 26.

II. IRREDUCIBLE POLYNOMIALS AND FACTORISATIONS

Definition 31. Let P be a polynomial in K[X]. We say that P is irreducible® if it is not constant and if its only divisors are
> the non-zero constant polynomials, and
> the polynomials which are associates of P, that is, the AP for A € K*.

A polynomial is reducibleb if it is not irreducible.

*irréductible
bréductible

Remark. A polynomial P is reducible if, and only if, there exist Q and R such that deg Q < degP, degR < deg P and
P = QR.

Properties 32. > Any polynomial of degree 1 is irreducible.
> If P is a polynomial of degree 2 or 3, then it is irreducible if, and only if, it has no root? in K.
> If P is an irreducible polynomial and if P does not divide a polynomial A, then P and A are coprime.

> Let P be an irreducible polynomial. Let Aj,..., A, be a family of polynomials. Then P divides the product
Aj - - - Ay if, and only if, P divides one of the A;.

> If a polynomial is irreducible, then so are its associates. Therefore if two irreducible polynomials are not
associates, then they are coprime. In particular, two distinct monic irreducible polynomials are coprime.

Iracine

Proof. > Let P be a polynomial of degree 1. It is not a constant. Moreover, if Q divides P, then 0 < degQ < 1.

If deg Q = 0, then Q is a constant. If deg Q = 1, then P and Q are associates (P = QR for some R with 1 = degP =
deg Q +deg R =1+ degR so that R is a constant).

Therefore the only divisors of P are constants and associates of P.

> Let P be a polynomial of degree 2 or 3.

First assume that P is irreducible. Assume for a contradiction that P has a root 4 € K. Then X — 2 is a non-
constant polynomial that divides P and which is not an associate of P (different degrees). Therefore P is reducible,
a contradiction. Therefore P does not have a root in K.

Now assume that P does not have a root in K. Assume for a contradiction that P is reducible in K[X]. Then there
exist Q and R such that P = OR, degQ < degP and degR < degP. Note that neither Q nor R are constants
(otherwise the other polynomial would have the same degree as P). Therefore we have

1< degQdegP € {2,3}
1< degRdegP € {2,3}
deg Q+degR = degP € {2,3}
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and it follows that one of Q and R has degree 1, for instance deg Q = 1. Set Q = aX + b with a # 0. Then —g is a
root of P, a contradiction. Therefore P is irreducible.

> We assume that P is an irreducible polynomial that does not divide A. We must prove that PA A = 1. Let Q be a
polynomial that divides both P and A. We must prove that Q is a constant.

Assume for a contradiction that Q is not a constant. Then, since Q divides P and P is irreducible, Q is an associate
of P. But Q divides A, therefore P divides A, a contradiction.

Therefore Q is a constant, as required.

> We prove it by induction on n > 2.

o First assume that n = 2. The polynomial P is irreducible and divides A A,. If P divides A, there is nothing
to prove. If P does not divide A, then the previous property shows that P and A; are coprime. Therefore by
Gauss’ Lemma, P divides A,.1

o [Not done in class.] Now assume that the result is true for n polynomials. Let Ay,...,A;+1 be n + 1 polynomials
such that P divides Ay --- A A, 1. If P divides one of the A; for 1 < i < n, there is nothing to prove. Assume
therefore that P does not divides any of the A; for 1 < i < n. Then by induction hypothesis (its contrapositive),
P does not divide A; - - - Aj. Therefore P and A; - - - Ay, are coprime, and by Gauss’ Lemma, P divides A, ;1.

> The first assertion is clear. Now if P and Q are two irreducible polynomials that are not associates, in particular
P does not divide Q, therefore (since P is irreducible) P and Q are coprime.

Finally, two distinct monic polynomials cannot be associates. v

Example. The polynomial X? + 1 is irreducible in R[X] since it has no root in R and has degree 2. (It is also irreducible
in Q[X] for the same reason).

However, it is reducible in C[X] since X?> +1 = (X +i)(X — i) with deg(X +i) = 1 < 2 and deg(X —i) =1 < 2 (or
because it has a root in C).

Therefore the irreducibility of a polynomial depends on K.

Example. We shall see later that there are no irreducible polynomials of degree greater than 2 in R[X] or in C[X].
However, there are in Q[X].

For instance, the polynomial X3 + 2 does not have a rational root, otherwise there would be coprime integers p and

3

p

g (with g > 0) such that q—3 = -2, that is, p3 = —24>. Therefore p> would be even, hence p also, write p = 2r, then

8r3 = —24% hence 413 = —¢g5, therefore g would be even also, which contradicts the fact that p and q are coprime.
Consequently, since deg(X> +2) = 3, it must be irreducible in Q[X].

Example. The polynomial (X? + 1)? is reducible in R[X] but has no root in R: the property above does not hold for
polynomials of degree 4 or more.

Remark. Any non-constant polynomial has an irreducible divisor.
This can be proved by induction on the degree.

> Any polynomial of degree 1 is irreducible, hence has an irreducible divisor.

> Assume that any non-constant polynomial Q of degree deg Q < d for some d > 1 has an irreducible divisor. Let
P be a non-constant polynomial of degree d + 1.
If P is irreducible, there is nothing to prove.

If P is reducible, then P has a non-constant divisor Q with degQ < degP, that is, degQ < d. By induction
hypothesis, Q has an irreducible divisor, hence so has P.

In particular, to prove that two polynomials A and B are coprime, it is enough to prove that they have no common
irreducible divisor.

Indeed, if P divides A and B and if P is not constant, then P has an irreducible divisor which is a common divisor of
A and B.

A. Irreducible polynomials in C[X]

Theorem 33 (Fundamental Theorem of Algebra”). Any non-constant polynomial in C[X] has at least one root in C.

Ithéoreme de d’Alembert-Gauss

Proof. Admitted. v

Corollary 34. The irreducible polynomials in C[X] are the polynomials of degree 1.
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Proof. We already know that any polynomial of degree 1 is irreducible.

Conversely, let P be an irreducible polynomial in C[X]. We must have deg P > 1 (P is not constant). If deg P > 1 then
P has a root in C, therefore there exists Q with deg Q < deg P such that Q divides P. The polynomial Q is not constant
and not an associate of P. This contradicts the irreducibility of P. Therefore deg P = 1. v

The irreducible polynomials in C[X] are the ‘building blocks’ for polynomials in C[X] (just like prime numbers are for
integers).

Corollary 35. Let A be a non-constant polynomial in C[X]. Then A can be written uniquely (up to reordering of the
factors)

A= ATT(X = )™ = AX =) (X — )"+ (X — ap)"
k=1

where A is the leading coefficient” of A, the scalars ay, ..., a, are the distincts roots of A in C and the positive integers
ny are their respective multiplicities.

Acoefficient dominant

Proof. The existence is proved by induction on deg A > 1.

If deg A = 1, the result is clear.

Assume that deg A = d > 1 and assume that the result is true for polynomials of degree < d — 1. By the Fundamental
Theorem of Algebra (d’Alembert-Gauss), the polynomial A has a root « € C. Then A = (X — «)B with degB = d — 1.
By induction hypothesis, we can write B = /\H;F::1(X —a)™ = (X —a;)"(X —ap)"--- (X —ap)" where A is the
leading coefficient! of B, the scalars ai,...,ap are the distincts roots of B in C and the positive integers my are their
respective multiplicities. The result for A then follows.

[The remainder of the proof was not done in class.]

We now prove uniqueness. Assume that A = ATTL_, (X — a,)"™ = uTTl_, (X — by)™. Itis clear that A and y are the
leading coefficient of A hence A = pi.

For ¢ € {1,...,q}, the polynomial X — b, is irreducible and divides the product H,’f:l (X — ag)"™ hence X — by divides
one of the factors X — ay. It follows that by = ay. Therefore {by,...,b;} C {a1,...,a,}. The other inclusion is proved in
the same way, hence we have equality and p = 4. We now have A = A I—[]’::l (X —ag)™ = /\]—[,’?:1 (X — ag)™. Assume for a
contradiction that 1 < my for some k. To simplify notation, say k = 1. Then H,f:z(X — ) = (X —ap)™m—™m H£:2(X -
a;)™ so that X — ay divides HfZZ(X — a;)"™ and therefore X — a7 (irreducible) divides one of the a; for k > 2 and a1 = g
for some k > 2, a contradiction. This proves that ny = my for all k so that the decomposition is unique.

It is clear that the a; are the roots of A. Moreover, the multiplicity of a; as a root of A is necessarily at least ny, and it
cannot be greater (same argument as above), hence it is the multiplicity of a; as a root of A. v

Definition 36. A non-constant polynomial A in K[X] is said to be split® in K[X] if it is a product of polynomials of degree 1.
In other words, the number of roots of A in K is exactly deg A.

7scindé

Remark. The existence part of the result above can be expressed as follows: any non-constant polynomial in C[X] is split.

Example. Roots of unity. Let 7 > 1 be an integer. The polynomial X" — 1 has # roots in C. The elements wy = ¢/

for 0 < k < n—1 are roots of this polynomial and are pairwise distinct. Indeed, if wy = wy, then 1 = a)kwgl =
exp(# — %) = exp<w), so that % must be an integer; however, —n —1 < k — ¢ < n — 1 so that we must

have k — ¢ = 0 as required. Therefore they are all the roots of X" — 1. In particular, X" — 1 = H]’(l;é (X — wy).

Proposition 37. Let A and B be two polynomials in K[X] which are split. Set A = Anle(x —ag)™ and B =
U Hle (X — ag)™ with ny and my non-negative integers (a; need not be a root of A or B if ny = 0 or my = 0).
Then A divides B if, and only if, nj < my for all k.

Proof. 1f ny < my for all k, then B = ApA~'[T}_, (X — ;)" hence A divides B.

Conversely, assume that A divides B. Since the polynomial (X — a;)" divides A, it divides B. If 1, = 0 then necessarily
my > 0 = ny. Otherwise, this means that a; is a root of B with multiplicity at least n;. But we know that the multiplicity
of a; as a root of B is m and therefore m; > ny. v

Proposition 38. Let A and B be two polynomials in K[X] which are split. Set A = /\HI’Z:l(X —ag)™ and B =
yﬂle(x — a;)™k with n and my non-negative integers. For each k, set uy = min(ny, my) and v = max(ny, ny).
Then AAB =TT}_,(X —a)" and AV B =TIL_ (X — a;)%.

T coefficient dominant
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Proof. [Not done in class.] Set D = Hle (X —ag)* and M = H]f:l (X — a)%. The previous result shows that D divides A
and B and that M is a multiple of A and B.

We have A = DA; and B = DBy with A1 = /\Hle(X —ag)"™ " and By = yH]’Z:l(X — ag)™— " Moreover, if P is
an irreducible polynomial that divides A; and By, it divides one of their factors, say X — a;. But X — a; is irreducible,
therefore P and X — ay are associates, so that X — a; divides both A and By. This implies that 1y, — uy > 0 and my —uy > 0
which is impossible. Therefore A; and B; have no non-constant divisor, hence they are coprime. Consequently, D is a
ged of A and B and it is monic therefore D = A A B.

Finally, MD = TT,_ (X — a)"+% = [T/_ (X — a;)" ™ = (AB)° (since for each k we have mj + my = w; +vy),

(AB)" _ (AB)°

thereforeM:T:A/\B:A\/B. v

Example. Let us return to the example following Proposition 4, where we wanted to find a greatest common divisor for
A=X>-2X*+Xx3=X3(X-1)2and B = X3 - X = X(X —1)(X + 1). We may now immediately say, using the result
above, that AAB = X(X —1). We also have AV B = X3(X —1)3(X +1).

B. Irreducible polynomials in IR[X]

Lemma 39. Let A be a polynomial in IR[X]. Let z € C be a root of A. Then the conjugate Z is also a root of A. Moreover,
the multiplicity of Z is equal to the multiplicity of z.
In other words, the non-real complex roots of A are pairwise conjugate.

Proof. Write A = Zi:o 2 X with a; € R. Then we have A(z) = Z?:o mzk = ZZ:O azk = Zz:o azk = A(z) =0 =0s0
that Z is a root of A. Hence z is a root of A of and only if Z is a root of A.

Similarly, for any k > 1, z is a root of the derivative A if, and only if, Z is a root of A (2). Therefore the multiplicities
of z and z as roots of A are the same (Corollary 159 in the first semester). v

Proposition 40. The irreducible polynomials in R[X] are exactly

> the polynomials of degree 1, and

> the polynomials of degree 2 with no roots in IR.

Proof. We already know that polynomials of degree 1 and polynomials of degree 2 with no roots in R are irreducible.
Now let A be a polynomial in R[X].

> If deg A > 11is odd, then by the Intermediate Value Theorem, A has a root in R. Therefore A is not irreducible.

> If deg A > 2 is even, we may assume that A has no real root (otherwise it is clearly not irreducible in R[X]). As a
polynomial in C[X], using the previous lemma, we have A = A]_[}f:l (X — ag)" (X — ;)" where the a, @ in C for
1 <k < p are the pairwise distinct roots of A, A € R is the leading coefficient of A and 7 is the multiplicity of ay.
Therefore A = )\H]f:l(Xz —2Ra X + \ak|2)”k in R[X]. Since deg A > 2, we must have either p > 2 or p = 1 and
nyp > 2. Therefore A is reducible in R[X].

The result then follows. v

Theorem 41. Let A be a non-constant polynomial in R[X]. Then A can be written uniquely (up to reordering of the
factors)

4 s
A=ATT(X —a)™ [T(X? +beX +cp)™
k=1 (=1

= (X — )" (X — )" -+ (X — )" (X2 + by X + 7)™ (X2 + byX + c)"2 - (X2 + b X + ¢5)™

where A is the leading coefficient” of A, the scalars ay, ..., a, are the distincts roots of A in R and the positive integers
ny are their respective multiplicities, the polynomials X? + b, X + ¢, are pairwise distinct with negative discriminant
and the my are positive integers.

Each polynomial X? + by X + ¢, can be written X? + b, X + ¢, = (X — B;)(X — B;) where B is a non-real complex root
of A; the integer my it then the multiplicity of B, as a root of A.

“coefficient dominant

Proof. [Not done in class.] Let ay,...,a, be the distinct roots of A, with multiplicities ny,..., n, respectively. Then each
polynomial (X — a;)" divides A. Moreover, the polynomials (X —a1)™,...,(X — a,)" are pairwise coprime (indeed, if
P is an irreducible polynomial that divides (X — ;)" and (X —a)"™ (k # j), then P divides X — a; and X — a, therefore,
since all three polynomials are irreducible, we have X —a; = P = X — ay, a contradiction). Therefore A is a multiple of
TT}_, (X — ax)™, that is, we have A = ATT;_, (X — ax)™Q where A is the leading coefficient of A and Q is a polynomial
in R[X] with no real roots.
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The same argument as in the proof of the previous proposition shows that we can write Q = [T;_{ (X — B,)"™ (X —

Be)™ =TT5_; (X? + by X + c,)™ with the notation of the statement. This proves existence.
Uniqueness follows from the uniqueness of the decomposition of A in C[X]. v

III. LAGRANGE INTERPOLATION

In this section we fix an integer n > 1 and n distinct elements x1, ..., x, in K.
Given any # elements y1, ..., Yy, the aim is to find and characterise polynomials A such that for all i we have A(x;) = y;.

Definition 42. Forany k € {1,...,n}, define the polynomial
X—x

xk—xj'

Li(X) =
=1
j#k

It is the k" Lagrange interpolation polynomial®

“polynéme d’interpolation de Lagrange

Lemma 43. We have deg Ly = n — 1, Li(x;) = 1 and Li(x;) = 0if j # k.

Proof. Clear. v

Proposition 44. Let x1,...,x, be a family of pairwise distinct elements in K and let yy, ..., y, be a family of elements
in K.

There exists a unique polynomial A with deg A <n—1and, forallk € {1,...,n}, A(xx) = Y.

This polynomial is given by A = Y ' ; yiLy.

Proof. Put A = Y J_; yxLy. Then deg A < n—1and A(xj) = ¥, ykLi(x;) = yjLj(xj) = y; for all j as required. Therefore
the polynomial exists.

We now prove uniqueness. Assume that A and B are two polynomials of degree at most n — 1 such that A(x;) = y; =
B(x;) foralli € {1,...,n}. Then x; is a root of A — B for all i, so that A — B has at least n distinct roots. But we know
that the number of roots of A — B is at most deg(A — B) if A — B # 0, and deg(A — B) < n — 1 by assumption, therefore
A = B. The polynomial A is therefore unique. v

Proposition 45. Let x1,...,x, be a family of pairwise distinct elements in K and let vy, ...,y, be a family of elements
in K.

Let P be a polynomial such that for all k € {1,...,n} we have P(xx) = y.

Then P(X) = A(X) + Q(X) [T;_; (X — x¢) where A is the polynomial in Proposition 44 and Q is any polynomial.

Proof. The Euclidean division of P by (X —x1) - - (X — x) gives P = QTT}_1(X — x¢) + A with deg A < n — 1. Moreover,
A(xg) = P(xx) = yy for all k, therefore by the previous proposition, A = Y} _; yxL.

We could also say that x; is a root of P — A, with A = Y, yiLy, for all j, therefore since the polynomials X — x1, ..., X — xn
are pairwise coprime (the x; are pairwise distinct), the polynomial (X — x1) - - - (X — xy,) divides P — A, as required. v
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Chapter 7

Rational fractions and partial fraction decomposition

I. RATIONAL FRACTIONS

A
We consider the set IK(X) of fractions of the form F = 3 where A and B are polynomials in K[X] with B # 0. Such a

A '
fraction is called a rational fraction®, the polynomial A is the numerator? of 3 and the polynomial B is the denominator?
A

£ 2
"B

Definition 1. Two such fractions % and % are said to be equal if, and only if, A1By = Ay By. In particular, for any non-zero
1 2
A AC

polynomial C, we have 2= BC

A
Remark. Note that any polynomial may be viewed as a rational fraction: if A is a polynomial in K[X] then T is a rational
fraction in K(X).

Definition-Proposition 2. We define two operations on K(X),

, A C AD+BC
> ition? — - = @
addition®, defined by ) BD

A C AC
= . g . b . L2 _ 2
multiplication®, defined by 5D~ BD

Taddition
’multiplication

A
Proof. We must check that these operations are well defined, that is, different expressions of the rational fractions 3 and

% gives the same final result.

A A

Assume that — and ¢ = % This means that AB; = A;B and CD; = C;D.
1

B B D
Then
(A1Dq + B1C1)BD — (AD + BC)B1Dy = A1BD1D + B1BCyD — AB1D1D — B{BCD,
= (A1B— AB1)D1D +B1B(Ci1D —CDq) =0
AD + BC A1D1+ B
h =
so that ED B.D, , and

A,C,BD — ACB1D; = A;C,BD — AC{B,D + AC;B;D — ACB,D;
= (A1B — AB1)C1D + AB1(C;D — CD;) = 0

AC;  AC

that - 2=
SOMa B D, T BD

ffraction rationnelle
fnumérateur
8 dénominateur
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Definition-Proposition 3. The set K(X) is a commutative field?, that is, the operations above satisfy, for all F, G and H in
K(X):

(i) F4+ G = G+ F and FG = GF (the operations are commutative®);
(i) (F+G)+ H=F+(G+ H) and (FG)H = F(GH) (the operations are associative);
(iii) 0+ F = F and 1F = F (addition and multiplication have an indentity element®);

1

(iv) F4+ (—=1)F =0and, if F #O,FF

invertiblel for multiplication);

=1 (elements in K(X) are invertible® for addition and non-zero elements in IK(X) are

(v) F(G+ H) = FG + FH (multiplication is distributive8 with respect to addition).

“corps commutatif
bcommutative
fassociative
4¢lément neutre
¢inversible
finversible
8distributive

Proof. Exercise. v

A
Definition-Proposition 4. For any F € K(X), there exist coprime polynomials A and B such that F = B

This expression for F is called the irreducible form® of F.

?forme irréductible

Proof. Set F = % Then C = (CAD)A and D = (C A D)B with A and B coprime. Moreover, F = (enrb)a _

AD)A A
CAD)B B’

—

Definition 5. Let F = 3 be a rational fraction in irreducible form. We associate to F a function defined on a subset of K with

values in K, again denoted by F, which sends x to F(x) := Alx) (where A and B are viewed as polynomial functions®). This

B(x)

function is called rational function® associated to F. It is defined on K \ {roots of B}.

“fonctions polynomiales
bfonction rationnelle

Definition-Proposition 6. Let F = % be a rational fraction. The degree® of F is the integer deg F = deg A — deg B € Z.

A
This definition does not depend on the choice of A and B such that 3= F.

We put deg 0 = —oo, as for polynomials.

"degré

Proof. We must check that the degree does not depend on the choice of expression for F.

If F= % = %, then AD = BC therefore deg A + deg D = deg B + deg C and finally deg A — deg B = degC — deg D
as required. v
Properties 7. > If F is a polynomial, then deg F is the degree of F viewed as a polynomial.

> For any rational fractions F and G we have

deg(F + G) < max(degF,degG)
deg(FG) = deg F + deg G.
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Proof. The first part is clear since deg1 = 0.
Set F = % and G = %

We have F + G = 4D+ BC so that deg(F + G) = deg(AD + BC) — deg(BD) < max(deg(AD);deg(BC)) — degB —

degD. Bb

Assume that deg F > deg G. Then deg A — deg B > deg C — deg D so that deg(AD) > deg(BC). We then have deg(F +
G) < deg(AD) —degB —degD = deg A —degB = degF. Similarly, if degF < degG, we get deg(F + G) < degG.
Therefore deg(F + G) < max(degF,degG).

Finally, deg(FG) = deg 455 = deg(AC) — deg(BD) = deg A + deg C — deg B — deg D = deg F + degG. v

Proposition 8. Let F be a rational fraction in IK(X). Then F can be written uniquely as F = Er + G where Er is a
polynomial in K[X] and G is a rational fraction in K(X) with deg G < 0.

Proof. Set F = % with A, B in K[X], B # 0. We can do the Euclidean division of A by B, si that A = QB + R with

deg R < deg B. Therefore we get F = Q + % Taking Er := Q and G := % gives the existence.

Now assume we can write F = P + H where P is a polynomial and H is a rational fraction with deg H < 0. Then we
have G — H = P — Ef. The previous result gives deg(G — H) < max(deg G,deg H) < 0. However, P — Ef is a polynomial,
hence has non-negative degree or is zero. Therefore we get P — Er = 0 and G — H = 0. Finally, the expression in the
statement is unique. v

Definition 9. The polynomial Er in the Proposition above is called the integral part® of the rational fraction F.

"partie entiere

A
Remark. Put F = B We have Er = 0 if, and only if, deg F < 0. Otherwise, deg Er = deg A — deg B.
If deg A = deg B then Ef is the quotient of the leading coefficients of A and B.

Proof. Exercise. v
. . X3 +3X+2 . o 5
Example. The rational fraction F = —x2-1 has degree 1. Therefore deg Er = 1. The Euclidean division of X +
X(X2—1)+4X+2 4X +2
3X +2by X? — 1 gives X3 +3X 42 = X(X? —1) +4X + 2 so that F = ( X2)+1 T2 ox+ X2+1. OnaEp =X
4X+2

qui est bien un polyndéme de degré 1 et G = qui est bien une fraction rationnelle de degré —1 < 0.

X2-1

Definition 10. Let F = % be a rational fraction in irreducible form. In particular, the polynomials A and B have no common
root.

An element a € K is a root® of F, with multiplicity’® m € IN*, if a is a root of the polynomial A with multiplicity m.

An element o € K is a pole® of F, with multiplicity m € IN*, if a is a root of the polynomial B with multiplicity m. The pole is
called simple® (resp. double®) if m = 1 (resp. m = 2).

Tracine
bmultiplicité
‘pole
dsimple
¢double

II. PARTIAL FRACTION DECOMPOSITION
A. Partial fraction decomposition in C(X)

A
Theorem 11. Let F = — be a rational fraction in C(X), in irreducible form. Let ay,...,a, be the distinct poles of F,

with respective multiplicities ny, ..., 1.
Then F can be written uniquely in the form

P Tk A
F=Ep+), <Z (X—k’flk)é>

k=1 \/=1

where Ef is the integral part of F and the Ay  are complex numbers.
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Proof. Admitted. v

Definition 12. The expression of F given in the theorem is called partial fraction decomposition® of F in C(X).

?décomposition en éléments simples

X341
X3(X —1)2(X+))
of the numerator X! + 1. Therefore F is in irreducible form and 0, i and — j are the poles of F.

We know that deg Er = deg F = 13 — 10 = 3. Moreover, the pole 0 has multiplicity 3, the pole i has multiplicity 2 and
the pole j has multiplicity 5. Therefore the partial fraction decomposition of F is of the following form:

Example. We may consider F = = The roots of the denominator are 0, i and —j, which are not roots

F=aX>+bX?+cX+d

A A A
13 M2 A

X3 X2 X

A2 A2

txonztxoi
n A3s5 A34 n A33 A3p n A3
X+ X+t (X+))P (X+))? X+]

To find the coefficients, we can then reduce to the same denominator and identify, but that is usually long and technical.
We shall see later a few methods to find the coefficients, although they will not necessarily yield all the coefficients.

B. Partial fraction decomposition in R(X)

A
Proposition 13. Let F = — be a rational fraction in R(X), in irreducible form. Assume that B is split in R[X]. Let

ay,...,ap be the distinct poles of F, with respective multiplicities ny, ..., 7.
Then F can be written uniquely in the form

Ll My
F=Ep+ _ ke
k;(; (X—ak)e>

where Ef is the integral part of F and the A ¢ are real numbers.

More generally,

A
Theorem 14. Let F = 3 be a rational fraction in R(X), in irreducible form.

Let B = ATT,_, (X — a)" [T;_1 (X? + byX + ;)™ be the factorisation of B as a product of irreducible polynomials in
R[X].
Then F can be written uniquely in the form

P Ny /\kl s my .Bth+'7tj
F=Ep+ — | + e
g 1;1(1721 (Xﬂk)é> t; <]; (X2 4 by X + c1))

where Ep is the integral part of I and the Ay, B ; and 7 ; are real numbers.

Proof. Admitted. v

Definition 15. The expression of F given in the theorem is called partial fraction decomposition® of F in R(X).

?décomposition en éléments simples

A P
Remark. The terms in the partial fraction decomposition of F = B that are not polynomials are all of the form —.. where

Q is an irreductible factor in B, P is a polynomial with deg P < deg Q — 1 and # is a positive integer which is between 1
and the power at which Q appears in the factorisation of B (in other words, the multiplicity of the complex roots of Q in
B).
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X12+1 '
X2(X-1)(X2+1)5(X2+X+1)%
nominator are X, X — 1, X2 + 1 and X? + X + 1, which do not divide the numerator).

We know that degF = 12 —17 = —5 < 0 hence Er = 0. Moreover, the pole 0 has multiplicity 2, the pole 1 has

multiplicity 1, the irreducible factor X? + 1 appears to the power 5 and the irreducible factor X? + X + 1 appears to the

power 2 (in other words, the poles £i in C have multiplicity 5 and the poles %,\/g have multiplicity 2). Therefore the

partial fraction decomposition of F is of the following form:

Example. Consider F = it is in irreducible form (the irreducible divisors of the de-

F=aX?>+bX+c
Ma | Mg
X2 + X
Aa
X—-1 7.1)
BisX+ms5 | BraX+714 | PraX+ 73 | ProX+ 12 | BraX+11a
(X24+1)° (X2 4+1)* (X2+1)3 (X2 41)2 X2+1
BopX+ 722 | B2aX+ 721
(X2+X+4+1)2  X2+X+1°

+

—+

+ + + + +

+

C. Simple poles

A
Proposition 16. Let F = B be a rational function in K(X) in irreducible form, and let a be a simple pole of F. Then

A
in the partial fraction decomposition of F is (a)

1
X—a B/(a)’

the coefficient of

A
Proof. Since a is a simple pole of F, we have F = X—2 -+ G where G is a rational fraction such that a is not a pole of G.

Moreover, we have B = (X — a)C where C is a polynomial such that a is not a root of C.

A A ’ | A
Multiplying F = X—aC ~ X—a + G by X —a gives - A+ (X —a)G and evaluating at a gives A = ca)’
A
Moreover, B' = C-+ (X - 1)C'so that 5/(a) = C(a). Fnally, 1 = 7). Y
X241

Example. Let us return to the previous example F = . The only simple pole of F is

X2(X-1)(X2+1)°(X2+ X +1)?

A
1. The method in the proof will enable us to find the corresponding coefficient Ay;. Set G = F — X 21

T Multiplying

equation (7.1) by X — 1 gives

X2 +1 B
X2(X2+1)5(X2+X+1)2

(X—1)F

Mo Mg

Txr T X

n B15X+ 715 n BraX + 714 L B13X + 713 n B12X+ 71,2 L B11X + 711
(X2 41)° (X2 +1)4 (X2+1)3 (X2 +1)2 X2+1

B2 X+ 722 | BoaX+ 721
(X24+X+1)2 X2+X+1

2 . 1
then we evaluate at 1 to get 2557 = Az1 and finally Ay ; = Taa

Example. Consider F = ﬁ in C(X). Itis in irreducible form. Its poles are the third roots of unity, 1, j = ¢

They are all simple. Moreover, deg F < 0. Therefore the partial fraction decomposition of F has the form

/3 and j2.

F_a+b+c
TX-1 X X—f

To find the coefficients, since F is in irreducible form, we may apply the proposition. We have B = X3 —1and B’ =3X?
so that B'(1) = 3, B'(j) = 3/2 and B/(j?) = 3j. Moreover, A = 1. Thereforea = 1, b = 3}—2 =ljandc= 3% = 172 (we use
the fact that /3 = 1 so that j2 = j~1).

. 1001 j i
Fmauy’F_§<X—l+ij+X7]'2)'
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Note that F is in R(X) so that we may consider its partial fraction decomposition in R(X), which is F =

1 1 X—-2
3 ( X1 + ) (adding the last two terms in the complex decomposition, using the relation 1+ j + j> = 0).

X2+ X+1
To find the coefficients 4, b and c, we could also have used the method outline in the proof of the proposition. Note
1 a b c
that F = = - = -
T EDE X X1 X X7
1 b c
> Multiplying by X —1 gives ————— = a+ (X — 1)<7 + ), then evaluating at 1 gives
P ST xR jTX-F S

1 — . _ 22N 12 i3 _ _1
(l_j)(l_],Z)—u,wehave(l Hl—-j)=1-j—j7+j7=1+1+1=3sothata= 3.

i o 1 . a c . o
> Multiplying by X — j gives X-DE—p b+ (X —j) (ﬁ + ﬁ)l then evaluating at j gives

1
— = bhwehave j—1)(j—A) =R - -+ =22-j-1=32=3j"1sothath = 1j.
i—0G-P ] J=17 F=1=75 T Jm =] ] ] 3]

> Multiplying by X — j? gives m =c+(X-— ]2)< Xa_ 7t XL—]) then evaluating at j? gives

1
————5—— = C; we have (j* —1 == —-j+j= 1-2+j=3j=3j2s0thata = 12
D)) F-DP-D=F-FP-F+i=j-1-+j=3j=3j 3/

Example. Consider F = X(X=T)(X _XZj)L(lX_S)( X=4) in R(X). It is in irreducible form, its roots are 0, 1, 2, 3 and 4, all simple,
and deg F < 0. Therefore

a b c d e
F= X+X71+X72+X73+X74 7.2)
for some real numbers a,b,c,d,e.
. . . X+1 bX cX aX eX
ltiply (7.2 X, which = hi
Now multiply (7.2) by X, which gives (X—1)(X—2)(X—3)(X —4) a+X—1+X—2+X—3+X—4’ten

evaluate at 0, which gives 214 =a.

Similarly, multiply (7.2) by X — 1 then evaluate at 1, which gives b = —%
Similarly, multiply (7.2) by X — 2 then evaluate at 2, which gives ¢ = %
Similarly, multiply (7.2) by X — 3 then evaluate at 3, which gives d = f%
Similarly, multiply (7.2) by X — 4 then evaluate at 4, which gives e = %

Finally, F= ~ >+ 1 3 1 2 1 .5 1
A= 04X T3X—1 "4X—2 3X—-3 ' 24X—4

/
D. Partial fraction decomposition of —

Proposition 17. Let P be a split polynomial in K[X]. Let a, ... ,ap be its distinct roots, with multiplicities 7y, .

M
respectively.

/
Then the partial fraction decomposition of % in K(X) is

P/

P

Proof. We prove the result by induction on the number p of distinct roots of P.
P/
If p=1then P=(X—a)"sothat P =n(X —a)"" and — = % as required.
If p > 1, then we can write P = (X — a7)"Q; where Q1 is a polynomial such that a; is not a root of Qj. Then

P’ ;

P =ny(X —a1)"1Qq + (X — a1)™ Q] so that 5= anu + % We may apply the induction hypothesis to 8 (the

—a 1
polynomial Q; has p — 1 distinct roots, a, ..., ap) to get the result.
Example. Take P = X(X — 1)>(X +2)°(X — 13)3 in R[X]. Then r_1 + 2 + > + &

: ’ P X X-1 X+42 X-13
P 2 7 3
(Y _2%7 N3 [ -z
If P=(X—1)?X"(X+j) thenp X—i+X+X+j'
E. Tricks

1. Partial fraction decomposition in C(X) of a rational fraction in R(X)

If F € R(X), it can be viewed in C(X) and therefore we can write its partial fraction decomposition in C(X). The
coefficients in elements of the same degree corresponding to conjugate poles must be conjugate. This halves the number
of complex unknowns. (See example below.)

52



2. Use of limy_,,(x — a)"F(x)

Let F = 4 be in irreducible form, with deg F < 0 (we can always reduce to this case). Let a be a pole of F of order n.

A

X ayic Whereai : h
(X —a)iC where a is not a root of C. We then have

Then we have F =

F= ii)‘k +G
= (X —a)k

where G is a rational fraction such that a is not a pole of G (we have isolated the part of the partial fraction decomposition

of F corresponding to the pole a).
Then, in order to find A,, we can multiply the equation above by (X — a)" then evaluate at a.

Example. Consider F = % in R(X). It is in irreducible form, it has two double poles, 0 and 1 in R, therefore we

know that F = % + % + ﬁ + %. The method above enables us to find a2 and c.

Multiply by X? then evaluate at 0. This gives a = 1.

Multiply by (X — 1)? then evaluate at 1. This gives ¢ = 2.

WegetF:%—F%—&-ﬁ—F%.

We shall continue this example later.

3. Use of parity

If F is even or odd, this gives extra equations on the coefficients of the partial fraction decomposition.

Example. Consider F = (XZlT)Z in R(X). It is even.

In C(X), the poles of F are i and —i of multiplicity 2. Therefore, in C(X) we have

a b c d
F = 7.
TP SRS ST & @.3)

with a,b,c,d in C. B
a b ¢ h. =c¢and b=d.

(X+i)2+X+i+(X—i)2+X—iSOtata_can =d.

. . a b c d

Moreover, since F is even, we have F(X) = F(—X) = _(X+i)2 "Xt X_i7 ~ X so thata = cand —b =d.

Conjugating (7.3) gives F =

Therefore a is a real number and b is an imaginary number.
Multiplying (7.3) by (X — i)? then evaluating at i gives }4 = a. Bvaluating at 0 gives 1 = —2a+i(b —b) so that b = — i.
FinallywegetF:—1 1 —i 1 +£ ! —1 1
’ 4(X—i)2 4X—1 4X+i 44X+
Note that F is its own partial fraction decomposition in R(X).

4. Evaluating at elements in K

When there are few coefficients remaining to be found, it can be helfpul to evaluate at an element « € K which is not a
pole of F. Note that evaluating the expression of F € R(X) at an element a € C gives two equations.

Example. Consider F = m in R(X). The poles are —1 (simple) and 0 (double). Therefore F = ¢ + % +%.
Multiplying by X + 1 then evaluating at —1 gives a = 1. Evaluating at i gives — % (1-i)= @ — b — ci which gives
two equations, § —b = f% and -4 —c= % Thereforea=1,b=1and c = —1.

Finally, F = XLH + % — %
5. Use of limy_, o XF(x)

We assume here that deg F < 0 (the integral part is 0). Then multiplying the expression of F by x then taking the limit
when x goes to +co gives an equation between some of the coefficients.

Example. Consider F = % in R(X). Recall that we had found F = % + % + ﬁ + %
Now multiply by X; this gives X+t o1 +b+ X + X Taking the limit when X goes to +oco gives
Py by &/ TS BIVES y(x =12 ~ X X_12 " X-1° & & &

0 = b+d. Therefore b = —d.
To complete the decomposition, we can evaluate for instance at —1. This gives0 =1 —b + % - % = % - % so that b = 3.
3 2 3

. 1
Fmally’F*ﬁJ’?J’m‘x,l'
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Chapter 8

Integration

Given a function f : I — R, we would like to find a differentiable function F such that I/ = f. This will not always

be possible of course, since a derivative function is not just any function. For instance if f : [0,2] — R is defined by
0 ifog<x<1

flx) =<1 ifx=1 then if F exists we must have F(x) = a for x € [0,1] and F(x) = b for x €]1,2] for some
0 ifl<x<2

constants 4 and b. Since F is differentiable, it is in particular continuous, so that lim, ,;- F(x) = lim, ,1+ F(x) = F(1)

and therefore a = b = F(1), so that F is constant on [a,b] and F' =0 # f.

Now assume that f is continuous. Provided we can give a precise meaning to the area between the x axis, the graph of
f and the vertical lines at 4 and at x, the shaded area F(x) is a good candidate.

y

o' a x x+h

Fix real numbers a and b with a < b. We shall consider functions defined on [g, b].

I. INTEGRATION OF STEP FUNCTIONS

Definition 1. A partition® of [a, ] is a finite collection S of points in [a,b], one of which is a and the other is b. We shall write
S ={sq,...,5n} wherea =sy < sy < ...<8,_1 < sy =Db. The mesh® of the partition S is [max (siy1 — Si)-
<i

?subdivision
bpas

Definition 2. A function ¢ : [a,b] — R is called a step function® if there exists a partition S = {sg,...,sn} of [a,b] such that
for each i with 0 < i < n — 1, the function ¢ is constant on |s;, ;11|
Such a partition is said to be adapted® to ¢.

“fonction en escalier ou étagée
badaptée

Lemma 3. Let ¢ : [4,b] — R be a step function. If S = {sp,...,s,} is a partition adapted to ¢ and if ¢(x) = m; on the
interval |s;, s;1[ for all i with 0 < i < n — 1, then the number Zf:ol m;(siy 1 — s;) does not depend on the choice of S
(adapted to ).

Proof. > Special case: S C T. To simplify notation, we shall assume that T = S U {u} with s; < u < s;;;. Since ¢ is
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constant on |s;, s;;1[ we have ¢(x) = m; on |s;, u[ and on Ju,s;1[. Then

n—1 i—1 n—1
Z;,) mj(sjt1 —sj) = E)mj(sjﬂ =) +mi(u = s;) +mi(sipn —u) + '21 mj(sjt1 = sj)
j= j= j=i+

n

=) ety — k)
k=0
where T = {to,...,t,11} and py is the value of ¢ on J#, t;, 1], as required.
When S C T in general, since both sets are finite, we can write T = SU {uy,...,u,} and do an induction on r (the
case ¥ = 1 is done).

> General case: S and T are not necessarily contained in each other. Set U = SUT. Then U is a partition of [a, ]
adapted to ¢, S C U and T C U. If we set U = {up,...,u,}, m; the value of ¢ on |s;,s;11[, px the value of ¢ on
|tk tis 1], and g; the value of ¢ on Ju;j, uj [, then the special case shows that

n—1 r—1 m—1
Y (siv1 —siymi =Y (ujpqr —uj)gj = Y (tks1 — ) pee v
i=0 =0 =0

Definition 4. Let ¢ be a step function. Then, with the notations of the previous definition and lemma, we define the integral® of
¢ on [a,b] by:

/ubq) — /ab(p(x) dx := ni; m;(siz1 — Si)-

i=l

"intégrale

Remark. This definition is independant of the choice of partition of [a,b] adapted to ¢ by the previous lemma.

Remark. This is the (signed) area under the graph of ¢ as we know it.

Notation. Given any map h : X — Y between two sets X and Y and any subset A of X, the restriction of 1 to A is the
map hj4 : A — Y defined by h4(a) = h(a) foralla € A.

c Cc
If ¢ is a step function on [a,b] and if ¢ €]a, b[, then ¢y, is a step function on [a, c| and we define / Q= / P|[a,]-
a a

Proposition 5. Let ¢ and 1 be two step functions on [a, b].

b b
(1) If ¢ < 3 we have / @(x)dx < / P(x)dx,
a a
b b b
(2) The function ¢ + ¢ is a step function and / (p(x) +9(x))dx = / @(x)dx + / P(x) dx

b b
(3) For any real number A, the function A¢ is a step function and / (Ap(x))dx=A / ¢(x) dx,
a a

(4) Two step functions that are equal except at a finite number of points have the same integral.

b b
(5) For any c €]a, b], we have / @(x)dx = /C(p(x) dx + / ¢(x) dx (Chasles relation).
a a (¢}

Proof. Let S (resp. T) be a partition of [4, b] adapted to ¢ (resp. ). Replacing S and T by S U T if necessary (which does not
change the integrals), we may assume that S = T = {sg,...,sn}. Let m; (resp. p;) be the value of ¢ (resp. ) on |s;, Si1]
for all i.
b n—1 n—1 b
(1) Since ¢ < ¢ we have m; < p; for all i. Then / p(x)dx = Z (si41 —si)m; < Z (siy1 —si)pi = / P(x) dx.
a i=0 i=0 a

(2) The function ¢ + ¢ is constant, equal to m; + p;, on ]s;, s;1 1], therefore it is a step function. Moreover,

n—1
[ (000 + ) dx =T+ p) 11— 1)
a i=0

n—1 n—1

=Y mi(sig1 —si) + Y pilsip1 —si)
' i=0



(3) [Not done in class] The function A¢ is constant, equal to Am;, on |s;, s;1 1], therefore it is a step function. Moreover,

b n—1 n—1 b
[ o) dx = T m(si1 —s) =2 L milsin —s) =2 [ (x) .
a i=0 i=0 a

(4) If ¢ and ¢ are equal except at a finite number of points, then ¢ — i is a step function which is zero except at a finite
number of points. Let T = {tg, t1,...,t, } be the set of points at which ¢ — 1 is non-zero to which we have added a
and b if necessary. Then T is a partition of [, b] that is adapted to ¢ — . Therefore

p—1
0(ti+1 — f]) =0.
=0

[o-pax=

b b
Using (2) and (3) we get / p(x)dx = / P(x) dx
a a
(5) [Not done in class] By Lemma 3 we may assume that ¢ € S (adding it to the partition will not change the integrals).
Say ¢ = sr. Then {so, ..., s} is a partition of [4, c] adapted to ¢, and {s,...,sn} is a partition of [c, b] adapted to
?|[c,p)- We then have

c b r—1 n—1
[ o) s+ [(p()dx = ¥ milsizr =5 + 3 milsisa — )
a 4 i=0 i=r
n—1 b
= m;(Sjy1 —8;) = X)) dx. v
L milsisa =) = [ (p()

II. INTEGRABLE FUNCTIONS

Definition-Proposition 6. A function f on [a,b] is integrable® if it is bounded and

b b
sup{/ﬂ ¢(x) dx; @ step function and ¢ < f} = inf{/g P(x) dx; ¢ step function and P > f},

“intégrable

b
Proof. We must verify that this definition makes sense. Set A; := { / @; ¢ step function and ¢ < f } and By =
a

b
{ / ;¢ step function and ¢ > f } We must prove that Ay has a supremum and that By has an infimum.
a

First note that both sets are non-empty: since f is bounded, the constant functions ¢y = inf f and 1y = sup f satisfy
b b
Qo < f < 9o so that/ ¢oisin Ag ancl/ o is in By.
a a

b b
Moreover, A¢ is bounded above by / o therefore it has a supremum, and By is bounded below by / @o therefore it
a a

has an infimum. v

Remark. Note that we always have sup Ay < inf By. Indeed, for any step functions ¢ and ¢ with ¢ < ¢ < ¢, we have

b b b b
/ 9 < / 1 so that / ¢ is an upper bound for A and therefore sup A¢ < / . Therefore sup Ay is a lower bound for
ij and vge have sup zgf <inf Bf. ’

Proposition 7. A step function is integrable.

Proof. If ¢ is a step function, then it is bounded because it only takes a finite number of values, and clearly sup A, >

b b
/{Z ¢ > inf By > sup Ay so that sup Ay = inf By, = /,; Q. v

Proposition 8. Let f : [2,b] — R be a function. Then f is integrable if and only if for any ¢ > 0 there exist step

b
functions ¢ and ¥ such that ¢ < f < ¢ and / (p—¢) <e
a
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Proof. > First assume that f is integrable so that sup Ay = inf B;. Fix e > 0.

By definition of the supremum and the infimum, there exist step functions ¢ and ¢ such that ¢ < 1,() and

supAr— 5 < [ ¢ < supAy and infBy < [ ¢ < infBy —|— =. Therefore we have Pp— [ ¢ <
a5 < [ <upt mni < | forn-[s ]
(inf By + E) —(sup Af — 5) =

b
> Now assume that for any ¢ > 0 there exist step functions ¢ and ¥ such that ¢ < f < ¢ and / (p—¢) <
a

In particular, f is bounded (since any step function is bounded). Fix ¢ > 0 and let ¢ and ¥ be as above. Clearly

b b b b
sup Ay > /go and inf By < /1/) so that 0 < infBf —sup Ay < /ﬂlp—/ago = /ﬂ(tp—q)) and therefore 0 <
inf By —sup Ay < ¢. This is true for any € > 0, therefore sup Ay = inf By and f is integrable.

Definition 9. If f is an integrable function on [a, b, the integral® of f on [a,b] is

b b b b
/f = /f(t) dt:= sup{/ @; @ step function, ¢ < f} = inf{/ ¥; ¢ step function, P > f}

“intégrale

Remark. Note that the integral just defined for an integrable function generalises the integral of a step function.

Example. There exist functions that are not integrable. For instance, let f : [0,1] — R be the function defined by

1 ifxeQ
f(x)_{o if x ¢ Q.

Let ¢ be a step function such that ¢ < f. Let S = {s¢,s1,...,5:} be a partition adapted to ¢. For eachi with0 <i<n—1,
there exists r; € J5;, s;11[ such that r; € Q (because R\ Q is dense in R). In particular, ¢(r;) < f(r;) = 0. But ¢ is constant
on ks;,s;41], therefore ¢y, o 1 < 0. Finally ¢ <0.
Similarly, using the fact that Q is dense in R, any step function ¢ with ¢ > f must satisfy ¢ > 1
1

In particular, for any step functions ¢ and ¢ such that ¢ < f < ¢, we have / (¥ — ¢) > 1. By Proposition 8, f is not
Jo

integrable.
We could also note that sup Ay < 0 <1 < inf By and use the definition to prove that f is not integrable.

Proposition 10. Any monotonic function on [4, b] is integrable.

Proof. [Not done in class] We prove it for a non-decreasing function (the case of a non-increasing function is obtained in
a similar way or by changing f to —f). Note that f is bounded below by f(a) and bounded above by f(b) hence f
is bounded. A constant function is integrable (step function), so we may assume that f is not constant and therefore
fla) < f(b).

If S is any partition of [a, b], define step functions ¢y s and ¢,s by
Qof,S(t):[mf foifte s, siq[for0<i<n

Si 1+1

Prs(t)= sup f ift € [s;siq[for0<i<nm

[sissis[
r,s(b) = f(b) = les( )-
For x <yin [a,b] and any ¢ € [x,y[, we have f(x) =infy, ,| f < f(t) <sup,, f < f(y) hence g5 < f < ¢5,5. Moreover,

if t € [si,si11[ we have g s(t) = f(s;) and ¢rg(f) < f(si11)-
(b — )(f(b)—f( a))

i =0,...,n (any partition S with 7 = mesh(S) g 0 )7 FO—F@) works) and the corresponding step functions ¢ s and ¥ s.

For any € > 0, choose an integer n > . Consider the partition of [4, b] defined by s; = a + ib;“ for

Then we have

|
—

n

0< [rs— [ors < _ism Fsi1) = £ls0)) <0 ¥ (Flsisn) = £(50)) = n(f(6) = f(0)) <.

i=0
Therefore, for any &€ > 0, we have 0 < / Yrs— / ®f,s < €& Hence f is integrable by Proposition 8. v
a a
Theorem 11. If f is continuous on [4, b] then f is integrable on [a, b].
Proof. We will accept this result without proof. v
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III. PROPERTIES OF THE INTEGRAL

Theorem 12. Let f and g be integrable functions on [a, b] and let A be a real number. Then:

(1) f+ g and Af are integrable on [4, b] and we have
b b b b b
/u(f(x)—i-g(x)dx) :/uf(x)dx—l—/ug(x)dx and /IJ(Af(x))dx:/\/af(x)dx

b b
(2) if for all x € [a,b] we have f(x) > 0, then /f(x) dx > 0. In particular, if f < g on [a, b] we have /f(x) dx <
a a

/ubg(x) dx

b b
(8) If his a function on [a, b] that is equal to f except at a finite number of points, then # is integrable and / h= / f.
a a

(4) (Chasles relation) For any ¢ €]a, b], the function f is integrable on [a,b] if and only if it is integrable on [4, c] and
b c b
on [c,b], and when f is integrable on [a, b] we have / flx)dx = /f(x) dx + / f(x)dx.
a a ©

Proof. (1) > [Not done in class.] We first prove that f 4 g is integrable and that / (f+g) = /f + / g. Fix e > 0.
Since f and g are integrable, there exist step functions @1, ¢1, @2 and ¢, such that

€

b
m<f<tup<s<ds [(h-o<iand [(hr—g) <l

b
Set 3 = @1 + @2 and 3 = 1 + . Then @3 and i3 are step functions, ¢3 < f+ ¢ < ¢3 and / (Y3 — @3) =
Ja

b b

/ (Y1 — 1) + / (2 — ¢2) < e. Therefore f + g is integrable.
a

Since @3 < f + ¢ < 3 we have

Lot [o= [os< [rro< [t= o+ [n
/ﬂbsow/ab(pz</abf+/ubg</ub¢1+/ﬂh¢z.

Subtracting these inequalities gives

/<p1+/fpz*/¢1 /wz /f+g /f /g /1P1+/1Pz*/rp1 /fpz

The term on the right is equal to / (1 — 1) +/ (P2 — @) < % +
> —e. Therefore ’ ’

Moreover, we also have

% = ¢ and similarly the term on the left is

feé/b(f+g)*/bf*/abg<8

Since this is true for any € > 0 we get/ (f+9) = /f+/g

> We now prove that Af is integrable and that / Af=A / f.
a a

e If A = 0 the result is clear so we assume that A £ 0.

b b
e We prove that —f is integrable and that / —f=- / f. Fix ¢ > 0. Since f is integrable, there exist step
a a
functions ¢ and ¢ such that

b
p<f<ypand [(p—g)<e

Then —¢ and — are step functions and

b b
—y<—f<—pand [((=p)=(—9) = [w—p<e

therefore — f is integrable. Moreover,

*/ll) ) / +/¢ / f)+/bf</:(*qv)+/;¢:/:w*rp

b
s0 that —¢ < / )+ / F<eforalle > 0and finally / - / 7.
a a

Consequently, it is enough to prove the required result for A > 0.
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o Now assume that A > 0. Fix ¢ > 0. Since f is integrable, there exist step functions ¢ and ¢ such that
b €
p<f<ypand [(p—g)< 1.
Then A¢ and Ay are step functions and
b b
Mo <Af<Apand [((49) = (1g) =2 [(p—g) <e

therefore Af is integrable. Moreover,

—A/ab(llﬁ—qv) /MP A/w /Af A/f /Allﬂ A/fp A/l/} 2
so that —sg/ﬂb()\f)—/\/ahfgsfor all ¢ > 0 and finally /ﬂb(/\f) :)\/abf.

b
(2) Assume that f is integrable and f > 0. The zero function is a step function that is less than f, therefore 0 = / 0<
Ja

b
5
If f and g are integrable with f > ¢ then f — g is mtegrable (by the previous two points) and f — g > 0 therefore

b
/ (f — g) = 0 and (again by the previous two points) / f- / g§=20
a a a

(3) Assume that f and & are equal except at a finite number of points. Define ¢ = I — f; it is equal to zero except at
a finite number of points hence it is a step function. Then i = f + ¢ is integrable as the sum of two integrable

b b
functions. Moreover, ¢ is a step function that is 0 except at a finite number of points, therefore / h= / (f+¢) =
a a

[+ [o=[*

(4) [Not done in class.]
> First assume that f is integrable on [a, b]. We must prove that f is integrable on [4,c] and on [c, b], that is, that
fla,) and f|cp) are integrable.

b
Fix € > 0. There exist step functions ¢ and ¢ such that ¢ < f < ¢ and / (p—¢)<e
Ja
We then have Plla,] < f|[ﬂ,C] < lp\[u,c] and Pllc.b] < f‘ [c,b] < lp\[c,b]' We also have

/(%ac P[a,c] +/ P[] — Pllcb]) = /1/’ 4’+/1P ) /b(¢—¢)<€

using the Chasles relation for step functions. Since both terms on the left are non-negative, we have

b
/ (¥|(a,c] = P|a,) < €and /C (¥|(cp) = P|[cp)) < & Therefore f|, ) and fj. 4 are integrable.

b b
Moreover, / < / f< / Y and
Ja Ja Ja

/ab(P= /£;C<P+/Cb<l)= /;90\[‘1,4 +/Cb(P|[c,b] < /ﬂcf\[u,c] +/be\[c,b] =/:f+/cbf
</ac¢\[u,c]+/f¢\[c,b] =/;1/’+/C.b¢’=/ﬂ.b¢

[o-w<[r-([1+[F)< [w-0
—SS/abf—(/aCer/cbf) <e

b c b
and since this is true for all £ > 0 we get / f= /f+ / f-
a a c

so that
hence

> Now assume that f is integrable on [a,c] and on [c,b]. We must prove that f is integrable on [a,b]. Fix ¢ > 0.
Then there are step functions ¢ and ¢ on [4,¢] and ¢, and ¥, on [c, b] such that

b
$1 < flla) < ¢1 and /u (1 — 1) <

NI o N m

b
#2 < fliep) < Y2 and /u (P2 — 2) <

59



Define step functions on [a,b] by ¢ = ¢1 + ¢ and ¢ = ¢ + ¢, (that is, ¢(x) = ¢1(x) for x € [a,c[, p(x) =
@2(x) for x €]c,b] and ¢(c) = ¢1(c) + @2(c)). Let x be the step function which is equal to 0 everywhere except
at ¢ where x(c) = f(c). Then

b
¢<f+x<pand /ﬂ(¢—¢)+<

N[ ™

Therefore f + x is integrable on [4, b] and so is f. v

b
Notation. We have defined / f when a < b. We set
a

/;fzo and /bgf:f/abfwhena<b

so that the Chasles relation is always true (not only if a < ¢ < b).

b
Theorem 13. Let f : [a,b] — R be a continuous function that does not change sign. If / f =0then f =0.
a

Proof. We prove the result when f(x) > 0 for all x € [a,]] (the case f < 0 can be deduced from it by considering — f).
Assume for a contradiction that f # 0. Then there exists a € [a, b] such that f(a) > 0. Since f is continuous, there is an

c b
interval [c,d] C [a, ] containing « and such that f(x) > @ for all x € [c,d]. Note that / f>0and /d f > 0since f is
Ja

non-negative. We then have
b c d b
/ﬂf(x)dx: ./af(x)der./C f(x)der./df(x)dx

> ./Cdf(x)dx > ‘/Cd@dx

>0,

a contradiction. Therefore f = 0. v

Proposition 14 (Mean Value Theorem for integrals?). Let f : [a,b] — R be an integrable function. If m and M are real
numbers such that m < f(x) < M for all x € [a,b], then

b
bfﬁ/uf(x)dng.

m<

“formule de la moyenne

b b b
Proof. We have m(b —a) = /mdtg /f(t)dtg /Mdt:M(b—a).Sinceb—a>0we get the result. v
Ja Ja Ja

b
Proposition 15. Let f : [4,b] — R be a continuous function. Then there exists ¢ € [a,b] such that / flx)dx =
a

(b—a)f(c).

Proof. Since f is continuous on a closed bounded interval, it has a maximum M and a minimum m and f([a, b]) = [m, M].

The previous proposition shows that ﬁ / .bf (x) dx is in [m, M], therefore there exists ¢ € [a, b] such that blfa / .bf (x)dx =

f(e) “ v
More generally, we have

Proposition 16. Let f be a continuous function on [4, b] and g a non-negative continuous function on [4, b]. Then there

exists 6 € [a, b] such that /ab(fg) = f(0) /ubg.

Proof. Since f is continuous on a closed bounded interval, it is bounded: f([a,b]) = [m, M]. Since g is non-negative, we
b b b b

have mg < fg < Mg so that m/g < / (fg) < M/g. If ¢ = 0 the result is clear. If g is non-zero, then /g >0 (gis

a a a a

[z foo

5 — < M. Therefore there exists 6 € [a,b] such that ~*—— = f(0)
[s |5
a a
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Proposition 17. Let f : [2,b] — R be an integrable function. Then |f| is integrable and

[rna]< [lola

Proof. For any function  on [a,b], define k™ and h™ on [4, ] by
. S .
i (x) = h(x) %fh(x) >0 and B (x) = 0 1fh(x) >0
0 ifh(x) <0 —h(x) if h(x) <O0.

Then we have
h=ht—h~ and |h|=h"+h".

Moreover, if h is a step function, then so are h* and h~.

b
Fix € > 0. Since f is integrable, there exist step functions ¢ and ¢ such that ¢ < f < ¢ and / ( — ¢) < e. Then we
a

have

Therefore ¢ + 1~ and ¢~ + ¢ are step functions such that
o Yy S =< +yT
b b b
and [((p™+9")— (9" +47) = [(" 9~ (0" —p7) = [(p-p) <t

therefore |f| integrable.
b b b b
Moreover, —|f| < f < |f] so —/ If] < /fg / |f]- Since |f| > 0 and therefore/ |f| > 0, we have
a Ja Ja a

b b
[r]< [ v
Ja Ja

Corollary 18. For any x,y in [a, b], we have

Yy Y
|| <[ fn|
X X
Proof. If x < y the inequality is true by the previous result. If x = y we have 0 on both sides so the inequality is true. If
X X
[1< [
Y Y
Y x X x Y
Lo=|- o = | A < =] [ ‘
Jx Ty Jy Jy Jx

IV. SOME GENERALISATIONS

x >y, then

A. Complex valued functions

Definition 19. Let f : [a,b] — C be a complex valued function. We can write f = fy + if where f and f, are functions from
[a,b] to R. We say that f is integrable® if fi and f, are both integrable, and we define the integral® of f to be

/ﬂbf(x) dx = /ﬂ.bfl(X)dx+i/abf2(x)dx.

“intégrable
bintégrale

Remark. Note that /l;bfl(x) dx = %(/L;bf(x) dx) and /;fz(x) dx = (/ﬂbf(x) dx). This means that

[ren==([7)ana [str)-3([7)

Proposition 20. Linearity and the Chasles relation remain true for integrable complex valued functions.
Moreover, if f : [a,b] — C is an integrable function, then so is |f| and we have

4] < [in
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Proof. The first part is easy to check.

We shall accept without proof that if f = f; + if, is integrable then |f| = \/f? + f3 is integrable. Note that if f is
continuous, then so is | f| and therefore |f| is integrable in this case (the main one we shall consider).

b b .
When f is integrable, z := / f is a complex number: / f = |z[e®. We then have
a a

/ﬂbf’ — ity — %<e—i92>
(e 1) (o) 3

< [les] = [51 y

B. Piecewise continuous functions

Definition 21. A function f : [a,b] — R is piecewise continuous® if it is continuous on [a,b] except at a finite number of
points where it has finite limits from above and from below.

“continue par morceaux

Example. Continuous functions and step functions are piecewise continuous.

Remark. A function f is piecewise continuous if, and only if, there exists a partition S = {sg,...,ss} of [4,b] such that
f is continuous on each |s;,s;.1] and has limits from above and from below at each s; (from above only at sy and from
below only at s,). Moreover, if f is piecewise continuous, then for each i there is a continuous extension g; of f), si55(i+1)]

to [si,siv1]-

Proposition 22. A piecewise continuous function is integrable and (with the notations in the remark above)
b n=l rs;iy
L= [
a i=0 /Si

Proof. Define functions f; for 0 < i < n by f; = g; on [s;,s;11] and 0 elsewhere. Set f =fo+fi+-+ fu_1. Then f is
equal to f except perhaps at each s;. Moreover, the f; are integrable (f; is equal to the sum of a continuous function an a

5 b b, n=1 ,p n=1 g
step function on [a, b]). Therefore f integrable and so is f. Moreover, / f= / =) / fi=)Y / +1f. v
a a i=0 "7 i=0 7Si

V. RIEMANN SUMS

Definition 23. If f is a function on [a,b], a Riemann sum® of f is a sum of the form R, (f) = b%” ZZ’;& f(sx) where n is an

integer and, for each k, s, = a + kb%”.

?somme de Riemann

Remark. The figure below shows the geometric interpretation of a Riemann sum; it is the total area of n rectangles that
lie partly below the graph of f and partly above it. Because of the arbitrary way in which the heights of the rectangles

b
have been picked, we cannot say whether a particular Riemann sum is less than or greater than the integral / f. But the
a

theorem below shows that this does not matter; provided the mesh of the partition 7 is large enough (that is, the bases of
the rectangles are small enough), the Riemann sum is close to the integral.
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b
Theorem 24. Let f : [4,b] — R be a continuous function. Then the sequence (R, (f)), converges to / f
a

In particular, if f : [0,1] — R is a continuous function, then the sequence (R (f)), defined by R, (f) = % ZZ;& f (%)

1
converges to /0 f

Proof. [Admitted.]
Set sp = a+ khn;“. Then for a fixed integer n, Sy = {so,51,...,sx} is a partition of [a,b]. Set my = infl; o | f and
My = supy,, ) f- For any partition T = {to,...,tp} of [a,b], define ¢ ¢r and ¢ 7 as in Proposition 10. Clearly, for any
b

b
integer n we have / ?f5, < Ru(f) < / ¥rs,
a a

b
Fix ¢ > 0. We know that there exist step functions ¢ and ¢ such that ¢ < f < ¢ and / (Y —¢) < % If T is any
a

b
partition adapted to ¢ and to ), we have ¢ < ¢f 1 < f < ¢5,r < ¢ and therefore / (l/}f T 9f,1) <
Set M = supy, ) f —inflgy) f > 0 and 17 = 5oy

have bn;” < 1. There are at most p intervals [s;, s;11[ that contain a t;. For these intervals, we have

(j+1—s)< sup f— inf f)
sl il

All the other intervals [s;,s;,1[ are contained in an [f; t;11[ so that (sj;1 — S])(Sup[s,sﬂ[f*inf[si,sj+1[f) < (b —

> 0. Fix N € N such that b < 7. Then for any n > N we also

t) (sup[ti,tm[ f—infy o f ) and summing over j gives
b
[ ps w550 < [ —ppn +pnm < S5 =
b b b b b
We have/(pf,sn < /fg /1/Jf,5” and/cpf,S” < Ru(f) g/wﬁsn so that
a a Ja a a

7g</(lllf5 *ll)fs /f / l/)fS,,*leS)

as required. v

b b
Remark. The figure below shows a geometric interpretation of / ¢, (the lightly shaded area) and / ¥r s, (the whole
shaded area (light and dark)). o o

y=f(x)
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n—1
Application. We want to find the limit (if there is one!) of the sequence u defined by u, = ) le
k=0

1'& 1'& . . 1
Wehaveun—ﬁg +3k _Eg (7) wheref.[O,l]—>]R1sdef1nedbyf(x)—2+3x

1
ition above shows that t / = / 5 a-d
proposition above shows tha (un)n converges to of 0 2+ 3x X

and is continuous. The

—lln§
32

Remark. Assume that f: [2;b] — R is continous. For n € IN*, define S, (f) b%“ Yoy f(s) withsp = a+ k% for each

b
k. Then the sequence (S, (f))» converges to / f.
a
b=a (£(1) — £(0)) which has limit 0 when 1 goes to +co.

Indeed, we have S,,(f) — Ru(f) = =
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Chapter 9

Primitives. Integration techniques.

1. PRIMITIVE OF A FUNCTION

Definition 1. Let I be an interval and f : I — R be a function.

> If I is an open interval, an antiderivative or primitive® of f is a differentiable function F : I — R such that F'(x) =
f(x) forall x € I.

> If I = [a,b] or |a,b] or [a,b], an antiderivative or primitive® of f is a continuous function F : I — R that is
differentiable on |a, b| and such that F'(x) = f(x) for all x €]a, b|.

*primitive
bprimitive

Proposition 2. Let I be an interval. If F and G are two primitives of a function f : I — IR, the function F — G is constant
on I.

Proof. If I is an open interval, then F — G is differentiable on I and we have (F — G) = F/ — G’ = f — f = 0, therefore
F — G is constant on I.

If I is not an open interval, then F — G is differentiable on |a,b[ and (F — G)' = F' — G’ = f — f = 0 on ]a, b|, therefore
F — G is constant on |a, b]. Since F — G is continuous on I, we finally have F — G constant on I. v

Remark. Primitives do not always exist. If we consider the function f in the introduction of the previous chapter, there
does not exist a differentiable function F such that I’ = f (the function f is integrable). However, for continuous functions
they do, as the next theorem shows.

Theorem 3. Let I be an interval and let f : I — RR be a continuous function. For any a € I, the function F : I — R
defined by

X X
F(x) :/ f:/ f(t)dt for any x € I
a a
is a primitive for f.

Proof. If a and x are in I, the closed bounded interval | with endpoints a2 and x is contained in I; since f is continuous
on I, it is continuous and hence integrable on | and therefore the integral F(x) = [ ax f is well defined for all x € I. Fix

xp € I. We have, for any x € I,
P —Fao) = [Tf= [Tr= [y
and (x — x0)f(xo) = [ f(xo)

(integral of the constant function equal to f(xp)) so that
Fx) = Flxo) = (x=x0)f(x0) = [ 0yt = [ fayar = [ (£(8) ~ flxo)) at.

0

Taking absolute values gives

|F(x) — F(x0) — (x — x0) f(x0)| =

/:<f(t) —f(XO))dt‘ < ‘/):U(t) — f(xo)| dt|.

0
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Fix € > 0. Since f is continuous at xy, there exists 7 > 0 such that |f(x) — f(xp)| < e whenever x € I and |x — xg| < 7. Let
x € I be such that |x — xg| < 5. If t is between xy and x then t € I so that |t — xg| < 7 and therefore |f(t) — f(xo)| < &. If
X > xg then we have

X
/|f fxg)| dt < /sdt:s(x—xo)
Xo
and if x < xp we have
X X
0< [CIf0) - fao)ldr < [ edt = e(xo - x)
X Jx
so that

0> [ 1)~ flxo) dt = = [15(0) = flxo) b > —e(x0 ~ )

In all cases we have

/|f f(xo |dt‘ elx — xg]

for any x € I such that |x — xg| < 7.
Therefore, for any e there exists # > 0 such that for any x € I with |x — x| < 77 we have

|F(x) — F(x0) — (x — x0) f(x0)| < e[x — xo]- ©.1)

In particular, it follows that F(x) has limit F(xg) when x goes to xg, so that F is continuous at xy and hence on I.
Now assume that xg is not an endpoint of I. Dividing (9.1) by |x — xp| gives

F(x) — F(xo)
X — Xo

—f(xo)| <¢

whenever x # xg and |x — xp| < 5. Therefore we have lim,_,y, %ﬁgﬁf@) = f(xp) so that F is differentiable at xy and

F'(x0) = f(x0)- v

Corollary 4. Let I be an interval and f : I — R be a continuous function.

> There exist primitives for f.
> If a € I, the function x — [ ax f is the unique primitive for f that vanishes at a.

> (Fundamental Theorem of Calculus?) If F is a primitive for f, then for any 4 and x in I we have

[ 5= [ fya =) - @

“Théoreme fondamental de 1’analyse

Proof. Fix a € I. Then the theorem above shows that G : x — j f is a primitive for f. Moreover, G(a) = f f=0.

If F is another primitive for f, then we know that F — G = ¢ is constant. Moreover ¢ = F(a) — G(a) = F(a). Therefore
F(x) = G(x) + F(a) = [ f + F(a). In particular, if F vanishes at a, then F = G so that G is the unique primitive for f
that vanishes at a. v

Notation. If f is continuous, a primitive for f will be denoted by / for / f(#) dt. In this notation, t and dt are symbols.

This notation is only defined up to a constant.
Warning: this notation is dangerous, you must be aware of its meaning, but it is very convenient.

We shall also write F(t) = / f= / f(t) dt for a primitive for f. It is an abuse of notation, since F(t) is a real number,

not a function.

We can now prove the Mean Value Inequality for complex valued functions. Let us recall the statement.

Theorem (Mean Value Inequality® — Theorem 2.28). Let I be an open interval and f: I — C be a complex valued
function of class C!. Assume that there exists a real number K > 0 such that |f'(#)| < K for all t € I. Then f is Lipschitz
continuous with Lipschitz constant K, that is,

Vxel Yy el |f(x)— f(y)] < K[x—y|

“inégalité des accroissements finis

Proof. Take x € I and y € I with x > y. The function f’ is continuous and f is a primitive of f’, therefore f(x) — f(y) =
X
/ f' and it follows that
Y

£ = F)1 < [1F] < [ K =K(x—y) = Klx ).

Now if y > x, exchanging x and y in the line above yields |f(y) — f(x)| < K|y — x| and therefore |f(x) — f(y)]
Klx —yl.

NN
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xn+1
Remark. If n € IN, then a primitive of x — x" is x — g

. Therefore any primitive of a polynomial function is a

polynomial function.
However this is not true in general of rational functions, for instance the primitives of x — % are not rational functions.
This leads to the following definition.

Definition 5. The logarithm® function, denoted by In, is the primitive of x — % defined on ]0; 4-oo] that vanishes at 1:

X
Inx :/ %dt for all x €]0; +oo].
1

"logarithme

Examples. > The function x — — cos x is a primitive of the sine function. The function x — 1 — cos x is the primitive

of sin that vanishes at 0 and x — 2 — cos x is a positive primitive of sin. We can then write / sintdt = —cost or
/sintdt =2 —cost.
> The function x — 1+ cos x is periodic, but none of its primitives are periodic.

II. CLASSICAL PRIMITIVES

The following primitives must be known.

(t+a)bt
/U+aﬁdh: b+1 ifb# -1
: Injt+a|  ifb=—1

b can be any real number if t 44 > 0 on the domain

/cos(at) dt = siniut) /sin(at) = 7@ ifa#0
/Cosh(at) dt = % /sinh(at) = %ﬁlﬂ ifa#0

at
e‘”dt:%ifa;éO

t
tdr= 25
/a dt—lna1fu>0anda7é1

dt dt
/7:tant /7:tanht
cos? t cosh? ¢

/ i = arctant
J1+82

Remark. Note that these formulas are only true on some intervals that should be specified.

Remark. Sometimes we want to find a primitive of a function of the form u(x)?u/(x) where b € R. This is given by

g ()P if b # —1 and Infu(x)| i b = —1.

III. INTEGRATION BY PARTS

When u and v are differentiable functions, then uv is differentiable and (uv)’ = u'v + uv’. If u and v are of class C', then

w', v, u'v, uv’ and (uv)’ are continuous and therefore have primitives. We then have uv = [u'v+ [uv’. The principle of

integration by parts is to use this formula to find [u'v.

Theorem 6 (Integration by parts®). If u and v are of class C 1 then

/M/TJI M”U—/MU/

“intégration par parties (IPP)
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T
Example. We want [ = / tsintdt. Set u’(t) = sint and v(t) = t. Then u(t) = — cost and v'(t) = 1. Therefore
0
s
= [ftcost]gf/ —costdt = [—tcost]) — [—sint]f =m—0+0—0=m.
0

Example. This method enables us to find primitives for In. Set #/ = 1 and v = In. Then u(t) = t and ¢/ (t) = % Therefore

/lntdt - tlnt—/t%dt: tlnt—/ldt: tint—t+C.

Example. We want a primitive of arctan, that is / arctan. We do an integration by parts, setting ' = 1 and v = arctan so

that u(t) =t and o'(t) = 1_%2 This gives
tdt
/ arctant df = tarctant —
J1+12
= tarctant — L patdt
N 2/1+142
1
= tarctant — Eln‘l + tz‘ +C
1
= tarctant — 5 In(1+#*)+C
/
since ! is of the form w (t).
142 w(t)

IV. INTEGRATION BY SUBSTITUTION

We now introduce a new technique to find integrals or primitives, that arises from the chain rule, called
integration by substitution?.

Theorem 7. Let f : [4,b] — R be a continuous function and let ¢ : [x, 8] — R be a function of class C! such that
@([a, B]) C [a,b]. Then

?(B) B ,
Ly O = [ F(o()g' () dx

"X
Proof. Note that (f o ¢)¢’ is continuous and therefore integrable on [«, B]. Set F(x) = / ( )f (t)dt so that F' = f. Now
Pl

consider u := F o ¢. Then by the chain rule we have

u'(x) = (Fog)'(x) = F'((x))g'(x) = f(g(x))¢'(x) forx € [a, B].

Therefore u is a primitive of (f o ¢)¢’ so that
g ?(B)
[ F(@0)g' @) dx = u(p) ~ u(@) = Flg(p)) ~ Flp(a) = || "f() . v
Remark. This formula can be used in two ways.

b
> From right to left. We want to compute / g(x) dx and we notice that g(x) can be written in the form g(x) =
a
f(o(x))¢'(x). We then set t = ¢(x) and write dt = ¢'(x) dx.

This essentially means that we recognise that g is the derivative of the composition F o ¢ where F is a primitive of
f, but the change of variable can still be useful to simplify or clarify our computations.

2 |
Example. Say we want to compute / lnTx dx. We see that % is of the form f(¢(x))¢'(x) with f = id and
1

¢(x) = Inx. Therefore
2lnx In2 A
——dx=[ tdt=|-| =(In2)%
L= {2} 22
> From left to right. In this case, we should check that ¢ is bijective from [, f] to ¢([«, f]) so as to recover the

b
boundaries « and B from ¢(«) and ¢(B). This is used in practise to make sure that / f(t)dt has a more tractable
a

form. In this case, it is more difficult to find ¢, but practising helps...

Tchangemcnt de variable
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1
Example. We want to compute /0 V1 —t2dt. We set ¢(x) = cosx. The function ¢ is of class C! and is bijective

from [0, %] to [0,1]. We have ¢'(x) = — sinx. Using the theorem, and the fact that sin > 0 on [0, F], we get
1 0 /2 /2
/ V1—t2dt = / V1 —cos? x(—sinx)dx = / Vsin? xsinxdx = / sin? x dx
JO 7, 0 0
/2
1 1 . T
/ (1 —cos(2x))dx = [5 <xf§sm2x)}o =7

\/5/2 1
Example. We want to compute / dt. Define ¢ : [F; 5] = R by ¢(x) = sinx so that ¢/(x) = cosx > 0. We

Jiva 124/1 — 12

then have

V2 /3 cosx KAN| 117 1
N )
1Yvi 24/1 — 2 /4 SiN“ X COS X /s sin® x tanx |, V3
We could also have made the change of variable ¢(x) = cos x.

Remark. In practise, in the example above, we set # = sinx, so that du = cosxdx and we adjust the bounds of the
integral.

9
More generally, to use the substitution formula / ( fhydt = / fle(x)¢'(x)dx, we set
[ o

t=¢(x), dt=¢'(x)dx and change the bounds of the integral.

Examples. (1) To compute / r 5 dx, we substitute x = tant so that dx = (1 + tan? t) dt hence dt = I +x2 dx and

therefore

1 1 .7'[/4 T
—— d :/ ar="2.
/01+x2 X 4

Note that we could have computed this integral directly using a primitive of ; +x2 :

11
A mdx = [arctanx](l) = %

(2) Substitution can also be used (if we are careful!) to compute primitives. In particular, it requires ¢ to be bijective.

Let us compute /

I S

V3 + 4t —4t?

Note that this only makes sense if 3 + 4t — 4t > 0. We have 3 + 4t — 41> = —4(> —t — 3) = —4((t — 1)2 - 1). Let
us put x = t — 1. Then 3+ 4t — 4t = —4(x? — 1) = 4(1 — x?) and dx = dt. We work only when —1 < ¢
equivalently — 1 x < 1. We then have

VA
TS

1 1 1
x = - arcsinx + C = Earcsin(t — 5) +C.

, 1 1/
7&:7/701 =
/\/3+4t—4t2 2)V1—x2 2

(We must not forget to go back to the original variable in order to really have a primitive of the original function.)

V. PRIMITIVE OF A RATIONAL FUNCTION

P
Let F = — be a rational fraction in R(X). Then we know that F decomposes into a partial fraction decomposition, that
is, F is the sum

> of a polynomial,

. a
> of fractions ———— where g and « are real numbers and n € IN¥,

(x —a)"

> of fractions __axtb where 4, b, p and g are real numbers such that p> —4q < 0 and n € N*.

(x2 + px +g)"
Since we already know the primitives of polynomial functions, we need to know how to find primitives of x — (x#)”

ax+b

d —_.
and x — (x2+px+q)”
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A. Computation of / _dx
(x —a)

1 !
The function x - ——— is of the form w(x) so that

G-y ux)"
I S
/(4L—ux= (n—D)(x—a) T

— n
x— ) In|x — «] ifn=1

ifn#1

(up to a constant).

ax+b

——d
(x2 4 px+g)" *

B. Computation of /

Set u(x) = x> + px +4.
> First note that u/(x) = 2x + p so that ax + b = 4u’(x) — ¥ + b = cu/(x) + d. Therefore,

ax+b . u'(x) 1
Pt prtar ulo)"
!

Moreover, we know the primitives of Z—n

1 _ -
> We now consider o (case n = 1). Write x> + px+q = (x + g)z + 4q4p2 and put and a? = # (this is possible
2
since 4q — p?> > 0). Then u(x) = a2(<%(x + g)) + 1>.

We shall now use substitution. Set t = %(x + £) (that is, ¢(x) = %(x + £)). Then dt = %dx (since ¢'(x) = %),
therefore

/‘dx —/ adt / 1rtn(t)—lrtr11(x+g>

u(x) aZ(124+1) 2+ o ArCAnE) = ardan 2))

1
> It is possible to do find the primitives of — for n > 2 inductively, but we shall not do it in this course.

1
First step: partial fraction decomposition of 71 We get

1 1/ 1 1
2—1 2\t—1 ¢t+1°

dt 1 1

Therefore
t—1

t+1

+c

Example. We want to find / dt. This rational fraction is in irreducible form, its degree is negative and the

denominator is irreducible.
We must now apply the method described above.
The derivative of t — t> — t + 1 sends ¢ to 2t — 1 and we have t —2 = %(Zt -1)—-3 3 so that

—t+1

t—-2 1 2t—-1 3 1
2—t+1 28L2—t+1 2£2—t+1

and therefore (s . 3 a4t
;dt:fln’tz—t 1)—7/7.
/tz—t+1 2 + 2)t2—t+1

2 2
Next, to compute /L we write 2 —t +1 = <t - 1) +§ = 3((%1) +1> and put u = % We then

2—t+1 2 4 4 V3
_ 2
haveduf\/gdtsothat
/ dt —/ ?du = / arctanu— iarctan(Zt_l)
P—t+1 J3u2+1) V3 w21 V3 V3 )
t—2 2t—1
Finally, we have /md In‘t2—t+1‘ 3arctan< 7 )—i—C.

70



dt
Example. We want to fi d/i.
Xampe € want to 1n t3+1

First step: partial fraction decomposition of ; We get

S+1
1 11 1 t—2
B+1 3t+1 3£2—t+1

a1 1/ t-2
tht/ — Clnft+1] - = [ ar.
sothat [ = 3Inlt+1 =3 J—

Using the previous example, we have /

dt 2t -1
Bl 1 \t+1|ffln‘t27t+1)+ arctan( )JrC.

V3
VI. PRIMITIVE OF A RATIONAL FUNCTION IN Sin, cos AND tan

This is usually done by substitution, then integration of an ordinary rational function as in the previous section.
If f(x) is a rational function in sin x, cos x and tan x, the substitution ¢ = tan 5 always changes / f into the primitive of

a rational functiun in f, but different (and more efficient) substitutions can sometimes be found. '
It is important to know the trigonometry formulas.

1 1
Example. To compute F = /7sm P dx, we set t = tan 5. Then dx = 1ft2 dt so that F =2 /7% LIETLP
+2 T 148
2./7_152 Y dt. The partial fraction decomposition of 7t2+12t+1 is 42+12t+1 = 2\% (ﬁ - ﬁ) where & = 1+ /2
1 1 tan( ) -1-v2
and B = 1 — /2. Therefore / so that F(x) = - In —2/ | This formula is valid

S

— _dt=
—2 42641 2[

on the interval ]0, 7] or in fact in any interval that does not contain k7, k € Z.

tan(%) —14+2

VII. TAYLOR’S FORMULA WITH INTEGRAL REMAINDER

Theorem 8 (Taylor’s formula with integral remainder). Let f : I — R be a function of class C"*! on an open interval I
for some 1 € IN. For any elements a and b of I, we have

£6) = £@) + 222 @ o+ C D ooy 4 PO ey

b(b;pn (+1) (1) dt is called the remainder?.

“reste

Proof. We shall prove it by induction on 7.

For n = 0, this is the Fundamental Theorem of Calculus.

Now assume that the result is true at order n — 1 for functions of class C" on I for some n > 1, and let f be a function
of class C"t1. Then, since f is also of class C" we have

50 = @)+ 25w+ G 0y [

For any t € I, set

u(t) = — (b- t)n, v(t) = f(”) f) and R = / >(s)ds.
n! (n— 1
, nb-tr-1  (b—t)n! b, . . o (s .
We have u'(t) = = = =1 so R = / u'(+)v(t) dt. The function u is of class C* (it is a polynomial
. - a
function) and the function v is of class C! since o = f("+1) is continuous by assumption. We can therefore do an

integration by parts
R = [u(t)o(t)] — /:u'(t)v(t) dt
= u(v)os) — ulayota) — [~ e ) a
= —u(a)o(a) + /a bw FO (1) dt

_ (b _na)nf(n)(a)_'_/b(b_Tt)nf(n-‘rl)(t) dr
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Finally, we have

(b—a)" 1

f(b) = f(a) + T f%“)*‘"""Wf(nfl)(ﬂ)‘f'R
b—a b—a)1 e b—a)" bo—1)" .,
= f(a)+ 1!“f(a)+...+%f( 1>(a)+(Ta)f< )(a)+/a%f( +1)(t)dt
which is the formula of order n. v

As a corollary, we get Taylor’s inequality.

Theorem (Taylor’s inequality — Theorem 2.26). Let f: I — R be a function of class C"*! on an interval I. Suppose that
a and b are elements in I. If ’ i) (t)‘ < M for all t between a and b, then

b—a gy (=0 (b=0)" () [b—a"!

— RSP e <ML
1) - (r@+ 5@+ L5+ T ) )| < Bt
This equality is called Taylor’s inequality? at a of order n.
?inégalité de Taylor-Lagrange
Proof. By the Taylor formula with integral remainder, we have
b—a b—a)? b—a)" b(b—t)"
0= (7o + 0 @+ EG T o CE @) | | [ s

Mf(nﬂ)(t)‘ dt‘

n!

N

/

b _\n
< /L n't) Madt
a .
M
- mw—a\"ﬂ. v

Remark. You have already seen a Taylor formula: Taylor-Young’s formula (first semester, Théoréeme 156). That formula
was of a local nature: it gives an approximation of f by a polynomial (the larger the 1, the better the approximation), but
only in an immediate neighbourhood of a point in I.

The results we have just seen (Taylor’s formula with integral remainder and Taylor’s inequality) are of a global nature.
They require assumptions on [4, b], and the results are valid on [a, ].

VIII. APPROXIMATIONS

A. Trapezium rule

The idea is to approximate the graph of f by a broken line.

y

\ y = £(x)

— X
0 a 51 52 53 54 b

Consider the partition S of [,b] given by s; = a + k2.2 (divide [a,b] into 1 intervals of equal length 2-2).
Let f be a function on [4, b]. Define

_gn=l —afl X
T, == T 20+ floe)) = <kzof<sk> (@ +f<b>>>

(this is the shaded area above).

72



Theorem 9. If f is of class C? on [a,b], then

b (b— a)3 1
- f‘ < ———=—sup|f" |
/tl 127’12 [u,b]‘ |

Proof. [Not done in class.]
> We first prove that if 2 < o < B < b, there exists y €]a, B[ such that

/f

(F(@) + () = 158 — 0F" (7).

area of the trapezium error

Define F(x) = /xf(t) dt — @(f(a) + f(x)) + (¥ — «)®K where K is chosen so that F(B) = 0. We then have

F(a) = F(B) = g and [ is twice differentiable. By Rolle’s theorem there exists § €]a, B[ such that F/(§) = 0. We
have F/(x) = f(x) — 3(f(a) + f(x)) — 3(x — &) f'(x) + 3(x — &)?K so that F'(x) = F'(5) = 0. Therefore by Rolle’s
theorem again, there exists 7 €]a, d[ such that /() = 0. We have F”(x) = —J(x — a)f”(x) + 6(x — a)K hence
K= f—l(;). Finally, F(B) = 0 becomes fff = B2 (F(a) + £(B)) — & (B—a)3f" (7).

> We then have vy € ]sg, si1[ for all k such that

/:flszi

L)+ fae) - [

(b— ,
= 12”3 Z |f"(7k)| by the first part of the proof
(b—a)'c 1 ( ) 1
< sup|f ‘: sup}f ‘ v
123 k;) la,b] 2 o)
11 T
Example. We know that / I dx = arctan1 — arctan0 = i 0.785.
We want to apply the result above to get approximations of / 5 dx. We have f/(x) = (7622%?1 f(x) =2 (xazc:jl%
and f"'(x) = % > 0 so that f” is non-decreasing.
If we apply the result above with n = 1 we have f”(0) = —2, f”(1) = 1 and f” is non-decreasing so that |f"| < 2;

1 1 13 .
_ — == — — = —— — = 0.75 — i < £ i
we then get /0 15 dxT) — Rq 2(f(O) +f(1)) — Ry 31 Ry = 0.75 — Ry with |Ry| < ¢ so that the error in

1

/0 1_’_7 dx = 0.75 is less than % 1
1 1 1

If we apply the result above with n = 2 we still have |f”| < 2; we then get/0 i dx=T,—R, = i (f(O) +f(§)) +
1/,1 1/3 8 ) IR
1 f(i) +f(1)) =Ry = izt 5] Ry = 0.775 — Ry with |Ry| < 157 = 0.04 so that the error in / i dx =0.775

0

is less than 0.04.

B. Simpson’s rule

The idea here is to approach the graph of f by a (broken) quadric.

b —
Note that if g is a polynomial of degree 2 then /g(t) dt = bTa (g( )+ élg(‘Z +b
a

> + g(b)). Moreover, given three

distinct real numbers &, B and v in [a,b] (such as 4, b and ”%b), there is a unique polynomial g of degree 2 such that

g(#) = (), g(B) = (B) and g(7) = f(7) (use Lagrange interpolation).

Theorem 10. Let f be a function of class C* on [a,b]. Then

’ ab a(f( )+4f( )+f( ))‘ wsfxg\f“)\-

Proof. (Admitted - not difficult but technical.)
+b and h = b%a.Notethatb—c:h:c—a.

S . a
To simplify notation, set ¢ =
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We use integration by parts in each of the following equalities:

A=)t (b—x)°
A.—/c< 7 —h 13 )f(4)(x)dx

L) ()

:% ®)(c) — (%3_@) +/( ng)f"(x)dx
:% (3)(C),(h;,ﬁ) +/( 7x77> "(x) dx
= 00 - e - Ay - L+ [

[

= R0 - e - R ey + [F

Similarly,

cf (a— x)4 —_x)3 c
B:= / <( 24") G 18’“) )f(4)(x)dx——712h4f(3)(c)+2h2f(c)—;h(f(a)+2f(c))+/uf.

Adding these equalities gives
[7 -t w50 + 5 w) = A+

We must now find an upper bound for A + B.
We use Proposition 8.16: there exists 6 € [c, b] such that

b _ +\4 _ \3
|A|</c <(b 24X) _h(b 18X) )f(4)(X)

b )4 )3
dx:/c (_(b 24x) kb 18x) >‘f(4)(x)’dx
ol b—-x)*  (b—x)?
/C< o1 +h 18 )dx

_ ‘f(4)(9)‘ {(b—x)S _h(b—x)4]b

= f9 @

120 72

c

- ‘f ‘180 p‘f }%'

Similarly, |B| < 12 5 SUP[ab) ‘ fé ‘ The result then follows. v

Remark. In practise, we divide [a,b] into smaller intervals and apply Simpson’s rule to each, thus obtaining a better
approximation.

4
Example. We use Simpson’s rule with three intervals to compute / V1+x3dx. Set f(x) = V1 +x3. We have f4)(x) =
1

9x%(56x> + x® — 80)
16(1 + x3)"/2

/ VI+ddy = ( )+4f<§) +2£(2) +4f(g) +2£(3) +4f(;) +f(4)) +R

1
6
1 7 V2
6<f+4‘<:0+2 3+4¥+2\/ +4 ‘ﬁ+f>+R%12.871+R

with R <

1 9 (2%(56-2°+2°-80)  3%(56-3°+3°—80)  4%(56-4°+4°—80)\ _ o,
2830 16 27/2 37 287/2 < 0.032.
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Chapter 10

Improper integrals

b
We have defined the integral / f of an integrable function on an interval [, b]. Recall that it represents the area under the
a

b
graph of f between a and b. We shall now study conditions under which we shall be able to define / f when f defined
a

on [a,b| or ]a,b].
More precisely, we want to generalise (when it is possible) in two ways:

> define the area under the graph between a real number a and +co or between —co and a (the interval is no longer

bounded).
T X t X
0 a a0

> define the area under the graph between two real numbers when the function is unbounded near a or b.

y y

Definition 1. Let f : I — R be a function where I is an interval that is not necessarily closed or bounded.

> We say that f is piecewise continuous® on I if f is piecewise continuous on any closed bounded interval [a,b] C I.

> More generally, we say that f is locally integrable? on I if it is integrable on any closed bounded interval [a,b] C I.

“continue par morceaux
blocalement intégrable

Definition 2. Let f : [a,b[— R be a locally integrable function with b € R or b = +o0.
x b

If the function x — / f has a finite limit when x goes to b, we say that the improper integral® / f is convergent®. This limit
a Ja

b
is also denoted by / f.
a
b
If the limit does not exist or is infinite, we say that the improper integral / f is divergent®.
Ja
b

Similarly, let g :]a,b] — R be a locally integrable function with a € R or a = —oo. If the function x — /g has a finite limit

X

b
when x goes to a, this limit is denoted by / g and we use the same terminology as for f.
a

“intégrale impropre
bconvergente
‘divergente
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b
Warning! The notation / f stands for the improper integral and, when it converges, for its value. Use of the notation
/ f does not imply that the limit exists. Writing / f = -+ has no meaning until the existence of the limit has been
proved.
. . Unt
Example. Is the improper integral / - dt convergent?
J0

Int
The function g: ]0,1] — R defined by g(t) = nT is continuous and of the form uu’ so that it is easy to find a primitive:

G(r) = J(nt).

lnt 1
We then have, for x €]0,1], / = -3 (Inx)? whose limit when x approaches 0 is +co.

Therefore the improper integral / lnTt dt is divergent.
0

X c X Cc
Remark. Let f be a function defined on [4,b] and take ¢ €]a,b[. Then / f = / f+ / f and / f is an ordinary
a a c a

X X
integral. Clearly, / f is convergent if and only if / f is convergent. Therefore the fact that an improper integral is

Ja JC
convergent or divergent only depends on the bound where the function is not defined.

b
Definition 3. Let f: |a,b[— R be a locally integrable function. Fix any ¢ €|a,b[. We say that the improper integral /f is
a

c b
convergent if the improper integrals / f and / f are both convergent. It does not depend on the choice of c. We then define
a C

[r= [+ [

+oo T
. > = =,
Examples / T t2 dt converges. Indeed, / T 5 dt = arctan(x) i
Similarly, / 1 5 df converges and / T t2 dt = g
—+o0
Therefore [ o 1 ) 5 df converges and / m dt = .

o0 x
> / sint dt diverges. Indeed, | sintdt =1 — cos x has no limit when x goes to +-co.
0 0

2170

Note that for any n € IN, we have / sintdt = 0.
0

Remark. ‘Falsely improper integrals’.
If f is continuous on [a,b[ and has a finite limit £ when x nears b, then f can be extended to a continuous function
fon [a, b} Therefore the function f is integrable on [a,b]. Moreover, by the Fundamental Theorem of Calculus we have

/f F(x) —F(a) g F(b) — F(a) for a primitive F of f.

b
Therefore the improper integral / f is convergent.
a
sin t

Example. Consider f: ]0; 1] — R defined by f(t) = - This function is not defined at 0 but lim;_q L?t =1, therefore

s
/ f(t) dt is falsely improper and hence converges.
J0

I. FUNDAMENTAL EXAMPLES

Proposition 4. (1) Let a be a positive real number. Then

(a) the improper integral / - dt converges if « > 1 and diverges if # < 1,

(b) the improper integral / = dt converges if # < 1 and diverges if & > 1
0

b
(2) Let a < b be real numbers. Then the improper integral / dt converges if « < 1 and diverges if « > 1.

1
a (t—a)®
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1 1,
Proof. Ifa#l,/t—adt—it

% so that

X1 1,4 - 71 1 1 1-
Ix:/at—adtzl_m(x Y—a 7% and Jy = xﬁdtzl—zx(a S |
if1—a>0 if1-a<0
and limy e o= 0% 00 andlim o fp =4 1T 00
%1 ifl—a<0 =1 ifl—a>0
Now if « =1, then | — dt Inx — Ina which goes to +0c0 as x goes to +oo, and / dt = Ina — Inx which goes to
—+0o0 as x goes to 0, therefore the i improper integrals are both divergent.
The proof of the last statement is similar. v

Remark. These examples will be very important once we have developed some tools to study the convergence of im-
proper integrals.

b
Proposition 5. Let f,¢: [4,b[— R be locally integrable functions. We assume that the improper integrals / f and
a

b b b
/ g are convergent. Then for any A € R, the improper integrals / (f+g) and / (Af) are convergent. Moreover,
a a
/(f+g /f+/gand/)Lf A/f

X X X X X
Proof. Wehave/ (f+g) :/f+/gand/ (Af) :/\/f. We then take limits when x — b. v
a a a a a

Remark. There is a similar statement for locally integrable functions on |a, b].

We shall need more tools to study convergence of improper integrals, as this example shows.

+oo
Example. What is the nature of / t*~le=tdt? This integral is an improper integral at 4-co but also at 0 if a < 1.
Jo

1 400
Therefore we study separately the improper integrals / #=1o=t 4t and / -le=t gy,
0 1

1
> Study of / t*~le~tdt.
0
If « > 1, then t — t*~le~! is continuous on [0, 1] so that it is a falsely improper integral.

1 1 1
If0 < a <1, then / p-lo=t gy < / -1 gy < / =1 4t the last integral being an convergent integral. Moreover,
Jx JO

X

the function y — / t%~1e~t dt is increasing (the integrand is positive), and since it is bounded above it has a finite
Juy

1
limit when y — oo, that is, when x — 0. Therefore / p-lo=t gy converges.
0

-1 -1 1 1 1
Ifa<O then/ et g > / t7le7ldt = ZIn - —— 400, therefore / ple=t gy diverges.
X X 0

e X x—0

00
> Study of [ " e,

1
For any & we have lim_, o t>#* " le™! = 0. Therefore the function t — +?t*~le~* is bounded on [1,+co[, so that
M

there exists M € R such that for all > 1 we have #*~1le~f < 7

X XM 1 X
Therefore, for any x > 1 we have / pletqr < / t—zdt = M(l — ;) < M. The function x — / ple—t gy
1 J1 1
is therefore increasing and bounded above, so that it has a finite limit when x goes to +co. Finally the improper

00
integral / %~ 1e=t dt converges.
1

400
Therefore the improper integral / et gt converges if and only if & > 0.
0

II. CONVERGENCE THEOREMS

We shall state all results for locally integrable functions defined on an interval [g, b], but the corresponding results for
locally integrable functions defined on an interval ]a, b] are true.
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A. The comparison theorems

b
Proposition 6. Let f be a locally integrable non-negative function defined on [a, b[. The improper integral / f converges
a

X
if and only if x — / f is bounded above on [a, .
a

Proof. Consider the function F: x — / f. Then for x < y we have F(y) = F(x) + / f. Since f is non-negative, / f=

and therefore F is non-decreasing. Therefore F has a limit when x nears b if and only if it is bounded above.

b
Proposition 6 bis. Let f be a locally integrable non-negative function defined on ]a, b]. The improper integral / f
a

b
converges if and only if x — / f is bounded above on |a, b].
X

b
Proof. Consider the function F: ]ﬁ,ﬁ—oo[ — R defined by y — / , f. Then for y < v/, thatis, 7 < 1, we have
a+1/y

;Y y’
a+1/y a+1/y

F(y') = F(y) + / , f. Since f is non-negative, / , f = 0 and therefore F is non-decreasing. Therefore F has a limit
a+1/y a+1/y

when y nears 4o if and only if it is bounded above. v

Theorem 7. Let f and g be locally integrable functions defined on [, b[ (or ]a, b]) such that 0 < f < g.

b b b b
> If the improper integral / g is convergent, then so is / f and we have / f< / g
a a a a
b b
> If the improper integral / f is divergent, then so is / S
a a
"X "X
Proof. For x € [a,b], define F(x) = / f and G(x) = / g. Since f < g we have F(x) < G(x) for any x € [a,b[. If the
a a

improper integral / g is convergent, since g is non-negative this means by the previous proposition that G is bounded

above, so that F is bounded above, and since f is non-negative the previous proposition shows that / f is convergent.

Moreover if this is the case, since F(x) < G(x) for all x, we have / f= lin}i F(x) < hm G(x /g
X—
The second statement is the contrapositive of the first. The proof in the case of ]a,b] is similar, using f and

a+1/y

/ v
+1/y

We know that the convergence of an integral only depends on the local behaviour of f as x approaches b. Therefore we
have a more general version of the previous theorem.

Theorem 8. Let f and g be locally integrable functions defined on [a, b[ (resp. |a, b]). Assume that there exists ¢ €]a, b|
such that for all x € [c, b[ (resp. for all x €]a, c]) we have 0 < f(x) < g(x).

b b
> If the improper integral / g is convergent, then so is / f-
a a

b b
> If the improper integral / f is divergent, then so is / g
a a

Remark. If f is non-positive, we can apply the previous results to —f.

+oo

0
Example. Let us prove that / £ dt converges. We study separately / ~# dt and / et

1 +oo
> Therefore / eftz dt
1

12

1
ox

. _ 1
Se*tmncetz)t,and/e tdt:E_e
1

> Forany t > 1, we have 0 < e "
X—+00

+oo
converges, and / et dt also (t — e~ is continuous on [0,1]).

0
2 p 2 Ly e
> For any t < —1, we have 0 < et < el since —#2 < t, and /e dt = e — e ——— e. Therefore / e b dt
Jx X—r—00

J—00
0

converges, and e~ dt also (t — e~* is continuous on [—1,0]).
+oo
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teo o
Therefore / e ' dt converges.

J—00
y
_— — X
0
The total area under the graph is finite.
1 — cos t

Example. Let us prove that / — dt converges.

0

Lcost < 2 el +o0] — cost
We have, for any ¢t > 1, 0 < —° < 7 and 7 dt converges therefore 7 dt converges. Moreover,
1 1

1lfcost 1 —cost

lim;_s9 w = %, so that / - dt is a falsely improper integral. Therefore, / 7 dt converges.
J0 J0

B. Consequences of the comparison theorems

Proposition 9. Let f and g be locally integrable functions on [a, b[ (resp. on |a, b]) that are positive. If f~g at b (resp. at
b

g b
a), then the improper integrals / f and / g have the same behaviour (both convergent or both divergent).
a a

Proof. By assumption, lim, (J; E ; = 1 so there exists A € [a,b[ such that 1 <! E ) < 3 3 for x > A. Since g(x) > 0 for all

x, we get % g(x) < f(x) < % g(x) if A < x < b. Therefore, since both functlons are on-negatlve

b
> the first inequality shows that if if / g is divergent, so is / f and if / f is convergent so is / <
Ja a a a

b b b b
> the second inequality shows that if if / g is convergent, so is / f and if / f is divergent so is / g v
a a a a

Example. / l+oox7_1 dx converges. Indeed, it converges if and only if / .+oox7_1 dx converges; we have i i
P 148 ges: & y 1+ a8 ges 1+x3 a2

+o0
at +oo with both functions positive on [2, +oo[, and / — dx converges, therefore / 1x+ 3
2

Proposition 10. Let f and g be locally integrable functions on [a, b[ (resp. on ]a, b]) such that f is non-negative and g
b b

is positive. If f = o(g) at b (resp. at a), then if the improper integral / g converges, so does / f and if the improper
a a

b b
integral / f diverges, so does / g
a a

Proof. By assumption, lim,_,;, £ — 0 50 there exists A € [a,b] such that 0 < <£ gx; 1 for x > A. Since g(x) > 0 for all x,

(x)
we get 0 < f(x) < g(x) if A < x < b. Therefore, since both functions are non-negative, Theorem 8 gives the result. v

oo

—+o0
Examples. > / 10 —VE gt converges, since 0= VE = 0( ) at 400 and / - dt converges.
J0

1 11
: _ 1
b /0 [In ¢| dt converges, since [Inf| = o ( a /Z> at 0 and /0 o dt converges.
More generally, we can obtain the following criterion for ‘Bertrand integrals’.

+o0
Proposition 11. The improper integral / ﬁ dt converges if and only if « > 1 ora =1 and g > 1.
2 n

Proof. Note that the function f — is positive for t > 2.

L
t¢(Int)P

o

i . i ! Wi / _ 1 1 —
> First case: &« > 1. Fix &’ with 1 < &’ < a. Then YT R )y — 0 so that FInTF =

oo

t¢(Int)P

( Iy ) Moreover,

—+00

1
we know that / o dt is convergent, therefore / dt converges.
2 2
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X
> Second case: & = 1. Then, if B # 1, we have /2 t(lrit)ﬁ dt = 1 i 3 ((ln xl)ﬁ% — (1n21)ﬁ*1) and this has a finite
X

o . . . 1
limit when x goes to +co if and only if ﬁ > 1; if B = 1, we have / Tnt dt = In(Inx) — In(In2) P +oo0.

Therefore the improper integral / Hin dt converges if and only if g > 1.

t)/5
> Third case: « < 1. Fix a’ with 1 > &’ > a. Then i, = 0( FInD)P ) at +oc0 and the improper integral / — dtis
+oo  q
divergent, therefore , /2 m dt diverges. v

C. Absolute convergence

We now consider the case where f does not have constant sign.
b
Theorem 12. Let f be a locally integrable function defined on [a, b[ (or ]a, b]). If the improper integral / |f] is conver-
a

[7]< i

Proof. For any real number r we have 0 < |r| —r < 2|r| so that for any t € [a,b[ we have 0 < |f(f)| — f(f) < 2|f()]. Set
8§ =|f] — f. We have 0 < g < 2|f].
b

b
By assumption, / |f] is convergent, therefore so is / 2|f], and since g is non-negative and g < 2|f|, the improper
Ja Ja

b
gent, then so is / f and we have
a

b b
integral / g is convergent. We have f = |f| — g, so / f is convergent. Moreover,
a a

[1) < m [ls1= [ls1 ‘

lim
xX—+0c0

b b
Definition 13. If the improper integral / |f| is convergent, we say that the improper integral / f is absolutely convergent®.
Ja

The theorem above then states that an absolutely convergent improper integral is convergent.

"absolument convergente

Remark. When trying to prove absolute convergence, we can use the results of the previous section since |f| is non-
negative.

sin t sint
Example. Consider the improper integral / > dt. The integrand does not have constant sign. However, [
1
178 Moreover, for any x > 0 we have / 172 dt = arctanx i 2 " so that the i improper integral / —5dtis

sint

convergent and / > dt is therefore absolutely convergent hence convergent.

1

We could have used the fact that ~ 72 at +oo to prove convergence of / (e dt (both functions are positive
Jo

on [1, +o0]).

1+t2

III. SEMI-CONVERGENCE
There exist improper integrals that are convergent but not absolutely convergent.

Definition 14. An improper integral that is convergent but not absolutely convergent is called semi-convergent®.

semi-convergente

+
Example. Consider /0 Lntdt

This improper integral is Convergent:

in ¢
> At 0, since lim;_,g % =1, it is a falsely improper integral.
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Xsin t cost]* Xcos t
> At 4o, integration by parts gives - dt = [77} — / e dt. The first term has a finite limit when x
1 1 1

goes to 400, the second term is an absolutely convergent improper integral.
sin? t
t

+oogin? ¢
t

sin t

However, the integral is not absolutely convergent. We have > dt

so it is enough to prove that /
1

diverges. We have, using integration by parts,

Xqin2 x1 —
/ sin tdt:/ 1 — cos2t dr
1t 1 2t
171 1
=§{?(t725m2t>] Z/tz(ffsm%)d

_7sm2x+sin2 71 1 [*sin2t
T 4x 4 4 £2

dt.

The first two terms have finite limits when x — +oco and so does the last one (absolutely convergent improper integral),
*sin? t

and limy_ 4 % Inx = +oo therefore limy_, ;o / df =
1
y
i x
0

The areas compensate.

This example shows that semi-convergent improper integrals exist.

. . +Tsin nt - sint
Example. Note that as in the previous example, we can prove that / — dt converges. Moreover,
Jo ot \/ T Vitsint
sint
at 4+-co. However, we shall now prove that ——— dt diverges.
\f t+sint
sint sint sint
We have ——— = 15m and limy sint — 0, Set y = ¢ then =ut =u(l—u+o(u)) =
\ﬁ—&-sint N TV Vi VE+sint THu ( (1))
sint
u—u?+o(u?) = >—= + g(t). Note that as t approaches +co, we have g(t) < 0 so that we can use equivalent functions
Vit
. sin® t +oo gin? ¢ .
to determine convergence. We have g(t) ~ — at 400, and we have seen that / — dt diverges so that
J2
T sint
——  dt diverges.

J2 \t+sint

This example shows that equivalent functions cannot be used to determine convergence when the functions do not
have constant sign.

Remark. We have seen that integration by parts and Taylor expansions at infinity are useful tools when determining the
nature of an improper integral (especially if the function does not have constant sign).

400 ¢
Example. We wish to determine the nature of / In (1 + ﬂ) dt. We have
2

In 1+smt __sint sin2t+0 1
ot 212 )

+oogj sin?

sin £ . in2
We have seen that / E dt converges, and the function — T
2

1 is negative and equivalent to — sin” £ at +o0;
[ & d 22 '
+oogin?2 ¢
moreover, / T dt is (absolutely) convergent.
2
+oo sin t

Therefore / In( 1+ —— ) dt is convergent.
2

We shall now see one more tool to determine the nature of an improper integral.
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IV. SUBSTITUTION

Theorem 15. Let f be a continuous function on [a, b[ (resp. ]a,b]) Let ¢ be an increasing function of class C! on [a, A
such that a = ¢(a) and b = hmxﬂg @(x) (resp. such that a = limy—, ¢(x) and b = @(B)). Then the improper integrals

/ f(x)dx and / fle t) dt have the same nature and if they converge we have

[r@ax= [rowewa

Remark. There is a similar statement with ¢ decreasing, in which the roles of « and j are reversed.

Proof. If « < v < B then /(p(v)f(x) /f t)dt. Define F(u) = L(l )f(x) dx for u € [a,b] and G(v) =
o
/f t) dt for v € [a, B[. We then have F o ¢(v) = G(v).

If / f(x)dx converges then the limit of F(u) as u nears b exists, therefore so does the limit of G(v) = F(¢(v)) as v
a
nears B and we have lim, 5 G(v) = lim,_,g F(¢(v)) = lim,,,}, F(u) as required.

The converse is proved similarly, using the relation F = G o ¢! (¢ is continuous and strongly monotonic on an interval
therefore it defines a bijection on its image). v

400
Example. Fix « > 2. We want the nature of / tsin(t*) dt.
1

Set u = t%, that is, ¢(t) = t*. The function ¢ is of class C! and defines an increasing bijection from [1; +co[ to [1; +oo].

We have t = u"/*, therefore dt = 1 u/ldu = T du. Moreover, tsin(t*) = u"/*sin u. It then follows from the theorem
au

sinu

1,2

+
that the improper integrals / tsin(t*) df and / du have the same nature. Moreover, the improper integral
1

T sinu
/ > du is convergent (similar to a previous example use integration by parts — or take a = 4 to get exactly the
1

au e

+
previous example). Therefore / tsin(t*) dt is convergent.
1

This is the end of the lectures given in the University year 2014-2015. The sequel is contained in the syllabus of the second semester
of the second year and was intended as an introduction.
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Chapter 11

Derivation and integration of functions defined on an interval
of R with values in R?

In this chapter, all maps are defined on an interval I in R and take values in R?; such a map is called a vector functionf.
We shall extend what we have done for functions from a subset of R to R to this situation.

y

fa(t) (t)

f(8)

A vector function not only gives a curve, it also gives the way it is drawn. For instance, the curve described by the
function f: R — R defined by f(f) = (cost,sint) is a circle around which we go an infinite number of times, and the
curve described by the function g: [0;271] — R defined by g(t) = (cost,sint) is the same circle around which we go once.

We first need the notion of norm.

L. NorMs 1IN R?

Definition 1. A norm® on R? is a map N : R*> — R such that:
> VYo € R%, N(v) >0,
> YWweR,Nw) =0=0=0,
> YA € Rand v € R?, N(Av) = [A|N(v),
> V(u,0) € R? x R?, N(u+v) < N(u) + N(v) (triangle inequality?).

“norme
binégalité du triangle

Remark. The triangle inequality can also be written (as is the case for the absolute value): [N(u) — N(v)| < N(u —v).

Example. The Euclidean norm? on IR? is defined by N(x,y) = || (x,y)|, = v/ +y2. The fact that it is indeed a norm is
left as an exercise.

Example. The supremum norm$ on IR? is defined by N(x,y) = ||(x,¥) ||, = sup{|x|, |y|} = max{|x|, [y|}.

The first three properties of a norm are easy to check (exercise). For the last one, let (x,y) and (x’,’) be two vec-
tors in R% Then [x + x'| < [x] + [x'| < [|(x,y)]lo + [ (x',")l|o and similarly [y +y'| < [|(x, 1)l + (', y")l|eo s0 that
12 y) + (Y oo = I+ 25y + Y oo < 1 W) lloo + 1+, ) [l as required.

Remark. We can define many norms on IR?>. However we shall only consider the supremum norm and the Euclidean
norm in the sequel. The notation ||-|| will stand for one of those two norms.

ffonction a valeurs vectorielles
fnorme euclidienne
$norme sup
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In this chapter, we aim to extend the definitions of limit, continuity, differentiability, etc. to functions that takes values
in IR2. We shall replace the absolute value wherever necessary by a norm. It is therefore very useful to know that we can
use whichever norm we prefer.

Proposition 2. The norms |-||, and ||-||,, are equivalent, that is, there exist real numbers &« > 0 and p > 0 such that for
every v € R? we have
[olls < #folle  and ol < IVl

Proof. We can take « = /2 and g = 1. v

Remark. The figure below represents this equivalence:

1

A:{mwewwmwmsyﬂcB:{mwewwmwmsq

cC={xy) eR;|(xy)]. <1}

Remark. We can identify C with R?. The modulus on C corresponds via this identification to the Euclidean norm ||-||,.
Everything that follows can therefore be applied to complex-valued functions. In fact, we have already seen some of the
results in this case.

To simplify notation, we only consider functions with values in IR?, but everything can be immediately generalised to
functions with values in R”, as you will see next year.

II. L1MITS, CONTINUITY AND DIFFERENTIABILITY OF A VECTOR FUNCTION

Definition-Proposition 3. Let f : I — IR? be a vector function and let ¢ be an element of R?. Let tq be an element of I or an
endpoint of 1. Let ||-|| be one of the norms ||-||, or |||l

> We say that f has limit® { when t nears ty if the function t — || f(t) — £|| has limit O when t nears ty. In other words,
Ve>0,Iy >0 0<|t—ty <y=|f(t) =4 <e.
We write limy_y, f(t) = £.

> We say that f is continuous® at to € I if f(t) has limit f(to) when t nears to.

> We say that f is differentiable® at ty € I if mz:i{;(to) has a finite limit when t nears to; this limit is denoted by f'(ty)

and is called the derived vector® of f at t.

limite
bcontinue
¢dérivable
dyecteur dérivé

Proof. We must check that the definition makes sense, that is, that it does not depend on the norm we have chosen.

> Assume that f has limit £ when t nears fg for the norm |||, This means that lim;_, || f(£) — ¢||, = 0. We have
0 < |If() —£lly, < V2||If(t) — €] s0 that lims, || f(t) — ¢||, = 0. Therefore f has limit £ when t nears t; for the
norm |-

> Assume that f has limit £ when f nears t for the norm |-||,. This means that lim;_, || f(t) — ¢||, = 0. We have
0<|If(t) = ¥l < IIF(E) — €||, so that limy_, || f () — £|| o = O. Therefore f has limit £ when t nears t; for the norm
. v

|lleo
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Example. Consider the function f : R — R? defined by f(t) = (t* — ¢, cost). Then lim; o f(t) = (—1,1).
Indeed, we have | f(t) — (—1,1)||, = max(|t? —e' + 1], [cost — 1), |2 —ef +1] v 0 and |cost — 1| v 0 so that
— —

IIf(t) — (—=1,1) || =7 0. Note that f(0) = (—1,1) so that f is in fact continuous at 0.
—

Remark. If we view f : [ — R? as a complex-valued function, the definitions above differ from those we gave earlier.
However, they are equivalent, as we shall now see.

Definition 4. Let f : I — R? be a function. Define the linear projections r; : R> — R for i = 1,2 by m1(x,y) = x and
112(x,y) = y. The coordinate functions® of f are the functions f; = mjo f : I - R fori =1,2.

?fonctions coordonnées

Proposition 5. Let f : [ — R? be a vector function, defined by f(t) = (fi(t), fo(t)) for t € I, where f; = m;o f. Let
¢ = ({1,£;) be in R? and let ty be an element of I or an endpoint of I.
Then f has limit ¢ as ¢ nears ty if and only if for i = 1,2 the function f; = 7; o f has limit ¢; as f nears #.

Proof. By definition of |||, we have 0 < [f;(t) — ¢;| < ||f(t) — ¢||- Therefore it is clear that if f has limit £ as ¢ nears t
then f; has limit ¢; as t nears ty fori =1,2.

Conwversely, since || f(t) — ||, = max(|f1(t) — l1],|f2(f) — £2]), if both | f1(t) — 1] and |f>(t) — £2] near 0 as t goes to to,
then || f(t) — ||, nears 0 as t goes to to. v

Corollary 6. Let f : I — IR? be a vector function, defined by f(t) = (fi(t), fo(t)) for t € I, where f; = m; o f. Then f is
continuous (resp. differentiable) at ty € I if and only if f; and f, are continuous (resp. differentiable) at fy. Moreover, if
f is differentiable at ty, we have f'(to) = (f{(to), f3(t0))-

Proof. Exercise. v

Definition 7. Let f : [ — R? be a vector function, defined by f(t) = (fi(t), fo(t)) for t € I. If tg € I we say that f is of class
Ck at to if the functions fi and f, are of class C* at to. The set of all functions of class C¥ is denoted by C*(I,R?).

Definition 8. Let u = (x,y) and u’ = (x',y') be two vectors in R?. We denote by (u,u’) the scalar product® of u and v, that
is, (u,0) = xx' +yy'.

*produit scalaire

Remark. Note that (u, u) = ||lu]],.

Corollary 9. Let f and g be functions from I to R? and « a function from I to R. Let ¢ be a point in I.
> If limyyy, f(t) = £ and lim¢_, g(¢) = ¢’ then limy—y, (f(£) + g(t)) = £+ £
> If limg_y, f(¢) = ¢ and lim¢_y4, a(t) = a, then limg_y4, (a(£) f(2)) = al.
> If limy_yy, f(t) = € and limy_,4, g(t) = ¢ then limy—, (f(£), g(£)) = (¢, ¢').

> If f, g and « are continuous (resp. differentiable, resp. of class C¥), then so are f + g, af and (f,g). Moreover,
when they are differentiable, we have

(f+8) =f+¢, @) =df+af and (f,g) =(f.g +(f.8)

Proof. Exercise. v
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III. MEAN VALUE INEQUALITY

Theorem 10. Let a < b be two real numbers and let f : [a,b] — R? be a continuous function that is differentiable on
|a, b[. Assume that there is a real number M such that, for all ¢ €]a, b[, we have || f/(t)|| < M. Then

1£(0) = fa)|l < M(b — a).

Proof. Fix € > 0 and consider the function ¢ : [4,b] — R defined by ¢¢(t) = || f(t) — f(a)|| — (M + €)t. This function is
continuous, therefore it has a minimum at ¢ € [a, b].

We shall now prove that ¢ = b. Assume for a contradiction that ¢ € [a,b[; this means that there exist real numbers
t € [a, bl witht > c.

There exists 7 > 0 such that for ¢ € [a,b] with 0 < |t —¢| < 1 we have H% ff’(c)H < e. Now let t € [a,b] be
such that ¢ < t < ¢ + #. Using the triangle inequality ||u| — ||| < ||# — v|| and multiplying by t — ¢ > 0 we get

1£(E) = F) < [[f(e)||(t =) +e(t —c) S M(t—c) +e(t—c) = (M+e)(t—c).
We then have

Pe(t) = ge(c) = (1) = f(a)| = 1 f(c) = fF(a)]| = (M +e)t + (M +¢)c
<) = fle)ll =8() = (M+e)(t—c) <0,
which is a contradiction since ¢¢(c) is a minimum value of ¢, on [a, b].

Therefore ¢¢(b) is a minimum value of ¢, on [a,]. In particular, ¢ (b) < @¢(a), thatis, || f(b) — f(a)|| < M +e+ (b—a).
This is true for any & > 0, so that the result follows. v

Remark. There is no equivalent of Rolle’s Theorem for functions with values in R2. For instance, if f:0,2n] — R? is

defined by f(t) = (cost,sint) then we have f(0) = f(27) but f'(t) = (— sint, cost) never vanishes.

Corollary 11. Let f : I — R? be a differentiable function whose derived vector function is 0 on I. Then f is a constant
function.

Proof. We can take M = 0 in the previous theorem. v
IV. TAYLOR EXPANSIONS OF VECTOR FUNCTIONS

Assume that the coordinate functions of a function f : I — R? have a Taylor expansion of order p at t; :
fi(t) = ago +aga(t —to) + ... +ag,(t —to)? +o((t —to)”).
For each j with 0 < j < p let A; denote the vector (ﬂl,j;az,j)- Then
ft)=Ag+A(t—tg) + -+ Ap(t —to)P + o((t — to)P) (11.1)
h(t)

where o((t — tg)?) is a function & such that lim;_, (t—(w = 0. The expression (11.1) is called a Taylor expansion’ of f of

order p at fg.

Example. Let f : R — R? be defined by f(t) = (23 — tsint, 3 + cost). Then we have the Taylor expansions of order 4 at
0:

23 —tsint = -2 + 263 + ét‘l + o(t4)
1 1
3 2 3 4 4
— 1 _ _
t° +cost = 2t +t +24t +o(t%)
f(t)= (0 1)—f—t2 -1 ! +t3(2 1)—|—t4 11 +0(t4)
’ ) / 6’ 24 ’
In the same way as for functions with values in IR, if f is sufficiently regular, Taylor expansions for f exist.

Theorem 12. (Taylor-Young formula?) Let f : I — R? be a function of class C? and let o be an element of I. Then

Vx €1, f(x) = f(to) + (t—to) f'(to) + - + (t = fo)”M +o((t=to)P).

p!

“formule de Taylor-Young

Tdévcloppcmcnt limité
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Proof. The result is true for each of the coordinate functions hence it is true for f. v

Remark. A continuous function from I to R? are also called a parametric curve!. Taylor expansions are used for the
local study of these curves.

V. INTEGRATION OF VECTOR FUNCTIONS

Definition 13. Let f : [a,b] — R? be a piecewise continuous function (that is, each coordinate function fy is piecewise continu-

ous). The integral® of f on [a,b] is
/ﬁ;bf(t) dt = (/a,bfl(t)dt, /;fz(i’) dt),

“intégrale

Remark. This definition makes sense since each of the fy is integrable.

Properties 14. Let f, g : [a,b] — R? be piecewise continuous functions. Then

b b b
> for any constant A we have /‘Z (f(8) +Ag(t))dt = /a]‘(t) dr+A /‘Z g() dt;

> for any c € [a,b] we have /uhf(t) dt = /:f(t) dt + /Chf(t) dt;

Theorem 15. Let f : [a,b] — R? be a piecewise continuous function. Then

H/abf ® de <[ Il

Proof. Admitted. v

We clearly have the following result (since x — ||f(x)]| is a function from [a, b] to R).

Proposition 16. Let f : [a,b] — RR? be a piecewise continuous function. If M is a real number such that || f(x)|| < M
for all x € [a, b], then

1 b
=2 /a [ f(x) ]l dx < M.
The next results are consequences of the corresponding results for functions I — R applied to the coordinate functions.

Theorem 17. Let f : I — IR? be a continuous function and let ¢ : [, B] — I be a function of class C!. Then

[fiotngwan= [ raar

p(a)

Theorem 18. (Taylor formula with integral remainder?) Let f : I — IR? be a function of class C”*! and a an element of
I. Then for all t € I we have

)= £G@) + ¢ a)fa) +-oo+ (=T [ )

This is called the Taylor formula of order p at a2 with integral remainder.

“formule de Taylor avec reste intégral

T courbe paramétrée
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Chapter 12

Functions of two variables with values in R or R?

We shall now consider functions of two variables. We need to replace the intervals of IR by a new object that we shall
define now.

I. OPEN SUBSETS OF IR2

Definition 1. Fix a norm ||-| on R
The open disk® centered at vy € R? of radius® r € R is the set B(vg,r) := {v € R%; |[v — vy < r}.
The closed disk® centered at vy € R? of radius r € R is the set B( ={veR%|v—uy| <r}.

0,7) i=
The sphere® centered at vy € R? of radius r € R is the set S(vg, ) := {v € R%; ||v — vg|| = r} = B(vo, 1) \ B(vg, 7).
A unit disk® is a disk of radius 1.

“disque (ou boule) ouvert
brayon

‘disque (ou boule) fermé
dsphere

¢disque (ou boule) unité

Remark. We shall write B, or Be to specify which of the norms we are using.

We represent below some spheres for our two norms.

y
1 Se(0,1)
- N\%0,1)
X
0 1

We now define the parts of R? that will replace open intervals in RR.

Definition 2. A subset of R? is called an open subset® if it is empty or a union of open disks.

Touvert (ou partie ouverte)

Proposition 3. Let Q be a non-empty subset of R?. The following statements are equivalent:
(i) Q) is open
(ii) for every v € () there exists an open disk B such thatv € B C Q)

(iii) for every v € Q) there exists r > 0 such that B(v,r) C Q.

Proof. > (i)=(ii) By assumption we have () = U;¢;B; for some set I and some open disks B;. Therefore if v € Q),
there exists i € I such that v € B; C () as required.
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> (ii)=>(iii) Take v € Q. By assumption, there exist u € R? and p € R* such that v € B(u,p) C Q. If v = u the
result is proved. Otherwise, set ¥ = min(||v — ul|,p — ||v — u||) > 0. We need only prove that B(v,r) C B(v,p) to
conclude. Therefore let w be a point in B(v,r). Then ||[w — u|| < |[w — || + ||[v —u|| < p — |[v —u|| + ||lo — u|| = p so
that w € B(u,p).

> (ili)=-(1) Our assumption is that for every v € (), there exists r, > 0 such that B(v,r,) C Q. We then have
UpeqB(9, 1) C Q. But the other inclusion is clearly true, therefore Q = UyeqB(v, 1) so that Q) is open. v

Remark. Although the definition of an open subset of R? seems to depend on the norm we choose, this is in fact not the
case.

Indeed, suppose that Q) is an open set for ||-||,- Let v be a point in Q. Then we know that there is an open disk
Bw(v,7) C Q. We also know that By (v, Lz) C Boo(v,7) C Q) and this proves that ) is open for ||-||,. The converse is

75
similar.
Examples. > The open disks are obviously open sets by definition.
> A rectangle QO =]a,b[x]c,d[ is an open subset of R2 Indeed, if vg = (xo,y0) € Q, set r =
min(xg —a,b — xg,yo — ¢, d — yp); then Boo(vg,7) C Q.
c d
L))
a b

> Fix vp € R? and r € Ry. Then the set Q = R?\ By(vp,r) = {v € R?%|v—1p|, >r} is open. Indeed, let
v1 be a point in Q) and set p = ||jv; —vg||;, —* > 0. We prove that By(vy,0) C Q: if v € By(vq,p) we have
[0 =20l = [loo —v1lly = [lor = lly > [lvo — w1l —p =7
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II. LIMITS AND CONTINUITY
In this section, Q) is a non-empty open subset of R?.

Definition 4. Let f : QO — R be a function and let vy be a point in Q). Fix one of the norms ||-||. We say that:
> f has limit £ € R at vy if f(v) has limit £ when ||v — vo|| nears 0, that is,

Ve>0, Iy >0, |lv—uv| <y=|f(v)—{ <e.

> f is continuous at vy if f has limit f(vy) at vy.

> f is continuous on Q) if f is continous at every point in Q). The set of all functions from ) to R that are continuous is
denoted by C°(Q, R).

Let g : QO — R? be a function and let vy be a point in Q). Fix a norm ||-|| on R? at the origin and a norm ||-||" at the target (they
may be different). We say that:

> ¢ has limit w € R? at vy if ||g(v) — w|| has limit O when ||v — vg|| nears 0, that is,

Ve>0,3n >0, [[v—uv| <y = Hg(v)—wH' <e.

> ¢ is continuous at vy if g has limit g(vy) at v.

> g is continuous on Q) if g is continous at every point in Q. The set of all functions from Q) to R? that are continuous is
denoted by C°(Q, R?).

Proposition 5. Let f be a function defined on Q with values in R (resp. R?), let vy be a point in Q and let ¢ be an
element of R (resp. R?). Then the fact that f has limit £ as v nears vy does not depend on the choice of norms.

Proof. We do the proof when f takes values in IR?, the other case is left as an exercise. Assume that we have two norms
|-Il, and [|-]|, at the origin and two norms ||-||; and ||-||}, at the target, and that f(v) has limit ¢ when v nears v for the

norms ||-||, and HH; We know that there exist real numbers & > 0 and B > 0 such that ||-||, < «||-||, and HHZ < /3||HfZ
Fix e > 0. Then there exists 77 > 0 such that ||o — vg||, < 77 = ||f(v) — £||, < g+ Therefore

n

€
~ = lo=voll, <n=llf(@) =ty < 5 = If(0) = L]l <&

p

as required. v

[0 =0, <

Remark. The properties of limits and of continuous functions (uniqueness of the limit, linear combinations, products,
compositions) are still true and the proofs are similar.

Definition 6. Let f : O — R? be a function. Define the linear projections 7; : R> — R for i = 1,2 by m1(x,y) = x and
112(x,y) = y. The coordinate functions of f are the functions f; = mjo f: QO — R fori=1,2.

Proposition 7. Let f: OO — R? be a function, let ¢ = (€1, ¢7) be in R? and let v, be a point in Q). Then f has limit ¢ as
v nears vy if and only if for i = 1,2 its coordinate function f; has limit ¢; as v nears vg. In particular, f is continuous at
vy if and only if its coordinate functions f; and f, are continous at vy.

Proof. We work with ||-||. For i = 1,2, for any v € Q, we have |f;(v) — ;| < ||f(v) — ]| -

> First assume that f has limit £ at vg. Then || f(v) — £||, goes to 0 as v nears vy so for i = 1,2, |f;(v) — ¢;| goes to 0
as v nears vy as required.

> Now assume that fi has limit ¢; and f, has limit ¢, at vy. Fix ¢ > 0. Then there exist ; > 0 and 7, > 0 such
that ||o — vg| < 17 = |fi(v) — 4| < &. Set y = min(y,12) so that |[v — vy, < # = |fi(v) — ¢;] < e. Then we have
immediately that ||v — gl <7 = ||f(v) — ¢l <&

Therefore f has limit ¢ at vy. v

Remark. Assume that f has a limit ¢ (in R or R?) as v nears vy = (X, o). Then in particular f has limit ¢ as (xq,y) nears
(x0,y0); since |y — yo| = ||(x0,y) — (x0,¥0)]|, this means that f(xp,y) has limit ¢ as y nears yg. This means that if f has a
limit as v nears v, then f has the same limit as v nears vy along the vertical line with equation x = x.

There are similar statements as v approaches vy along any line through vg. They are mostly useful to prove that f does
not have a limit as v nears v, using their contrapositives.
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Examples. > The norm is a continuous function. Indeed, it follows from the triangle inequality |||v] — ||vg]|| <
[0 —ooll.

X 2
> lim(yy) 60 (7 +3w) = 2+ 1)) = 3

: 3xy?
> We want to prove that lim, ), o) m = 0. We have
3xy? 3xy? y
P 0| = [ 22| = ol | <ol <3l
where the final norm is either of our two norms. Therefore, when ||(x,y)| = |[(x,y) — (0,0)| goes to 0, so does
3xy*
x2+y?

2

2
> Let us show that f(x,y) = ;7-&-52 does not have a limit as (x,y) nears (0,0).

We have seen that if such a limit £ exists, then there are limits as (x,y) nears (0,0) along the x-axis and along the
y-axis, and they are both equal to /.

Along the x-axis, we have f(x,0) = 1 so that £ = 1.

Along the y-axis, we have f(0,y) = —1 so that £/ = —1.

We have a contradiction, therefore the limit does not exist.

¥2 _ 12
Assume that this limit exists and is equal to /.

> Let us show that f(x,y) = ( ) does not have a limit as (x,y) nears (0,0).

Along the x-axis and the y-axis, the limit is equal to 1.

Now consider the line with equation y = x that goes through (0,0). Along this line, we have f(x,x) = 0 so that
{=0.

We have a contradiction, therefore the limit does not exist.

Proposition 8. Let ¢ : R” — R7 with p,gq € {1,2} be a linear function. Then ¢ is continuous.

Proof. If g = 2, we need only prove that the coordinate functions, each of which is linear (since 7; is linear), is continuous.
Therefore we may assume that g = 1.

If p =1, then ¢(x) = ax for some a € R so that ¢ is clearly continuous.

Now assume that p = 2. Let {ej,e,} be the canonical basis of R?. Set M = max(|¢(e1)],|¢(e2)|). Then for any vector
u = (x,y) = xe; + yep we have

lp(u)| = |xg(e1) +yo(ea)| < |x[l@(er)| + [yl|@(e2)| < 2[ul|M.

Let vg be a point in R2. Then |@(v) — ¢(vg)| = |@(v —vg)| < 2||v — vy||[M. Therefore when v nears vy, that is, when
||lv — vg|| nears O, then |¢(v) — ¢(vp)| nears 0 so that ¢(v) has limit ¢(vg). Therefore ¢ is continuous at vp. v

III. PARTIAL DERIVATIVES

In this section, () is a non-empty open subset of R2.

Let vg = (x0,40) € Q be a point, we know that there exists r > 0 such that B(vg,7) C Q. For any x €]xg —r;x9 + 7|
we have ||(x,y0) — (x0,40)|| = |[(x — x0,0)|| = |x — xp| (for both our norms) so that (x,y9) € B(vg,r) C Q. We may
therefore consider the function py: |xg —r; xg + r[— Q defined by p1(x) = (x,yo). Similarly, we can consider the function

p2: lyo — 1;yo + r[— Q defined by pa2(y) = (x0,¥)-
Now if f: Q — R is a function, then f o p1: |xg — ;X9 + r[— R is the map obtained by fixing y = y in the expression
of fand fopy: Jyo —1;yo + r[— R is the map obtained by fixing x = xj in the expression of f.

Definition 9. Let f : ) — R be a function and vy a point in Q).

If fopy: |xg — r;x0 + r[— R is differentiable at xo, the number (f o p1)’(x0) is called the partial derivative® of f with
respect to x at xo and is denoted by % (vo).

If fopa: lyo —1;yo + r[— Ris differentiable at yo, the number (f o p2)' (yo) is called the partial derivative of f with respect
to y at yg and is denoted by %(Uo).

If for every v € Q) the function f has a partial derivative with respect to x (resp. y) at v, then the function QO — R defined by
of
2,

v — g(v) (resp. %(‘0)) is the partial derivative function with respect to x (resp. y) and is denoted by % (resp. 3y

?dérivée partielle

91



Remark. If we write (x1, xp) instead of (x,y) for a point in (), then o becomes 9f and o becomes ﬁ
ox dxq ay x>

Remark. Note that if v = (x,y), we may write %(x,y). The two letters x do not have the same meaning. The x in
of

5x means that we differentiate with respect to the first variable, whereas the other letter x is a real number, the first

component of the point (x,y).

Example. > Consider f : R*> — R defined by f(x,y) = y?sin(x). Then %(x,y) = y?cos(x) and %(x,y) =
2y sin(x)
> Now consider f : R> — R defined by f(x,y) = y?sin(xy). Then %(x,y) = y3cos(xy) and %(x,y) =

2y sin(xy) + y?x cos(xy).

Definition 10. A function f : Q — R is of class C' if its partial derivatives % and % are defined and continuous on Q).

A function f : Q — R? is of class C! if its two coordinate functions are of class C.

Theorem 11. Let f : Q — R a function of class C! and let vy be a point in Q. Then there exists a real number 7 > 0
and a function ¢ : B(0,7) — R, continuous at 0 and such that €(0) = 0 and satisfying the following property: for any
h = (h1,hy) € B(0,r) we have

o+ 1) = flco) + b 3 (e0) + o (o) + i)

Proof. Admitted. v
Remark. If f : | — R is a function defined on an interval I C R, then f is differentiable at 2 € I if and only if
f(a+h) = f(a) +hf'(a) + he(h) with e continuous and ¢(0) = 0. The theorem above is a generalisation of this.

Corollary 12. Let f : QO — R or f : Q — RR? be a function of class C!. Then f is continuous.

Proof. We need only consider the case f : () — R (the other follows from this one for the coordinate functions).
Let vy be a point in (). By the theorem there exist r > 0 and ¢ : B(0,7) — R continuous at 0 with ¢(0) = 0 such that for
all h € B(0,7) we have
of of

f(vo+h) = f(vo) + 15~ (v0) + hza(vo) + [[Rlle(h).
> . of of - . . .
The map ¢ : R* — R defined by ¢(h) = hla(vo) + th(vo) is linear hence continuous. The norm is continuous
therefore i — ¢(h) + ||h||e(h) is continuous at 0. The constant functions are clearly continuous, therefore h — f(vg + h)
is continous at 0, and finally f is continuous at vy. v

IV. COMPUTATION OF PARTIAL DERIVATIVES

Proposition 13. If f and g are functions from Q) to R and if vy € Q is a point at which both functions have partial
derivatives, then f + ¢ and fg have partial derivatives at vy and

Lfg);r 8 (vo) = %(Uo) + %(Uo)

28 (00) = (& 00 )st00)+ £00) (L))

and similarly for the partial derivatives with respect to y.

Proof. Clear. v
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Proposition 14. The partial derivatives of compositions are described as follows.

(1) Let f : Q — R be a function of class C! and let g : I — R be a function of class C! defined on an open interval in
R such that f(Q) C I. Then go f is of class C! and

%820) () = ¢ (FON 5L o)

(2) Let f : I — R? be a function of class C! on an interval I of R and let ¢ : QO — R be a function of class C! defined
on an open subset QO C IR? such that f(I) C Q. Let f; and f, be the coordinate functions of f. Then go f is of
class C! and

(80 f)(a) = ag [ (fla ))fi(a) + ag S (fla ))f3(a).

(3) Let f : U — R? be a function of class C! on an open subset U of R? and let ¢ : Q — R be a function of class
C! defined on an open subset Q C R? such that f(U) C Q. Let f; and f, be the coordinate functions of f. Then
go fis of class C! and

o g df1
WD w) - Brnhw+ L

axk axk

8 (£(0) 22 v).

E)x2 8xk

Proof. (1) We use the notation at the beginning of Section IIl. Then for i = 1,2, go f o p; is differentiable at the
appropriate component of vy and we have

A8 (vg) = (g0 £ o 1) (30) = &' (F(p1(x0)))(F o 1) (30) = (£ 00) 32 o0)
A8°1) () = (g0 f o pa) (90) = 8/ (F(pa(30))) (F o p2)' (0) = & (F(e0)) & (w0).
2 2

(2) FixaeIand b = (by,by) = f(a) € Q. We know by Theorem 11 that
°) )
8(0) = g(0) + (x1 = b1) 35 (b) + (32 = b2) 35 () + [0 — b oe(0)
8x1 8x2

for some function € continuous at b with ¢(b) = 0. For v = f(¢) we get

g(f (1)) :g(b)+(f1(f)*f1(ﬂ));7gl(f( a)) + (f2(a) = fa(a ))aafg(f(ﬂ))ﬂ\f(f)*f(ﬂ)l\oos(f(f))-

X2
Now f; and f, are also of class C! so that for i = 1,2 we have

fit) = fi(a) + (t = a) fi(a) + (t — a)ei(t)
for some functions ¢; continuous at a and such that ¢;(a) = 0. Therefore
U7 = s7(a)) + (¢ =) ()35 (F@) + )3 (7(a)) ) + RO
1 2
with
98 98
R() = g5, F@)(E = @)er(t) + 5~ (f(@)(t = a)ea(t) + 1 £(1) = F(@) ot (f(£))-
To conclude, we need only prove that R(t) = o(t — a). We have
R(t) _ 9g
t—a E

t—a

FaNer®) + 55 (e + | L =1

' |t —al
€

in which the first two terms clearly go to 0 when t nears a. Moreover,

- a> goes to ||(f](a), f3(a))]|., as t nears a, therefore it is bounded near a,
(o)

\ t—

° is bounded and

° e(f( )) goes to 0 as f nears a

so that finally the third term and hence R(t) goes to 0 as t nears a as required.

(3) We use again the notation at the beginning of Section III. Using the previous case, each of the functions go f o p; is
of class C! and

2820 t0g) = (g0 £ o i) (x) = 2 (F00))(F 0 i) () + 25 (F0))(F i) (x1)
— 35 (Flo0)) 5L (o) + 5 (£ (00)) 51 (v0). v

E)xl
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Definition 15. Let n and p be in {1;2}, let () be an open subset (interval if n = 1) of R" and f : O — RP a function of class
Cl. Denote by f; the coordinate functions of f.
The jacobean matrix® of f at vy is the matrix J¢(vo) with p rows and n columns in which the coefficient at row i and column j

is %(UO) (or fl(vo) if n =1).

“matrice jacobienne

The previous proposition can then be rewritten in the form of a ”chain rule”.

Corollary 16. With the same assumptions as in Proposition 14, we have

Jgof (v0) = Jg(f (v0))]f(v0)-

V. GRADIENT

Definition 17. If f : Q — R is of class C', the gradient® of f at vy € Q) is the vector N, f = (%(vo), %(Uo)).

"gradient

Let f : O — R be a function of class C!. The set {(x,y) € Q; f(x,y) = 0} is called the curve with equation f(x,y) = 0.
Let v9 = (x0,y0) be a point in Q such that Vj, f # 0. Then we define the tangent line to the curve with equation
f(x,y) = 0 at vy to be the line with equation

(=) (o0) + y =) L (o0) = 0

Note that by Proposition 11, the curve goes nearer to the tangent line as v approaches vy.
The equation of the tangent line may be expressed as the scalar product (v — vg, ¥, f) = 0.

Remark. If f(x,y) = g(x) —y (that is, the curve is given by an equation y = g(x)) with g differentiable at x(, then (noting
that vg is on the curve so that 0 = f(vg) = g(x0) — yo) we have

(= 30) F (00) + (5= 90) 5 (00) = (x = x0)¢/(30) + (v = (60)) (1)

so that we recover the usual equation of a tangent line.

Remark. The vector V, f is orthogonal to the tangent line at vy.

Definition 18. Let f : ) — R be a function. We say that it has
> a local maximum® at vy if there exists r > 0 such that Vv € Q, ||[v —vg|| < r = f(v) < f(vo);
> a local minimum® at vy if there exists r > 0 such that Yo € Q, ||v — vo|| < 7 = f(v) > f(v0);
> q local extremum® at vy if it has either a local maximum or a local minimum at vy.

In each case, we say that vy is an extremal point.

Imaximum local
bminimum local
fextremum local

Proposition 19. Let f be a function of class C! on Q. If f has a local extremum at vy € Q then V, f = (0,0) (we say
that vy is a critical point for f).

Proof. Let us do the proof for a local maximum. Set vy = (xg,yp). There exists r > 0 such that Vo € Q, ||[v — vg|| < r =
f(v) < f(vp). Since () is an open set, we may assume that B(vg,7) C Q.

Then the functions t — f(xo +¢t,v0) and t — f(xg,yo +t) are defined on [—r, 7] and have a maximum at = 0, therefore
their derivatives at 0 vanish, that is, the partial derivatives of f at vy vanish. v

T courbe
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Example. As in the case of functions of one variable, critical points are not necessarily extremal points.

Let f : R> — R be defined by f(x,y) = x? — y2. Then

X

ﬂ(x, y) = 2x and %(x,y) = —2y so that vy = (0,0) is a critical

point for f. However, v is not an extremal point for f since f(x,0) > 0 as soon as x # 0 and f(0,y) < 0 assoonasy # 0

(and points of the form (x,0) or (0,y) are in every open disk around vy)
VI. CHANGE OF COORDINATES

A. Definition

> fis of class cL;
> f is injective;

> the jacobean matrix at any point of () is invertible.

“changement de coordonnées

Definition 20. Let Q) be an open subset of R2. A change of coordinates® is a function ¢ : Q — R? satisfying:

Example. The map ¢ : R> — R?: (x,y) — (x +y,x +2y) is a change of coordinates (it is clearly of class C!, the jacobean

—I—Za—g so that 2i —

matrix is G ; whose determinant is 1 # 0 and injectivity is easily checked).
It simplifies the resolution of the equation 2% - %
; _ of _ 98991 , 9gd¢» _9g  dg . 9f _og
Since f = g o ¢, we have 5% = 9 x93 x — 3u T 30 and o

then becomes

B. Polar coordinates

Jv Jx 9y

%

ou’

=0onR? Set g = fog!sothat g(u,v) = f(2u —v,0 — u).
of _

The equation

gi 0 so that g(u,v) = 1(v) for some function ¢ : R — R of class C!, that is, f(x,y) = ¥(x + 2y).

Let A be the set of points in the Euclidean plane that are not of the form (x,0) with x < 0 and set B :=]0; +-o0[X]| — 7; 71[.
The map ¢ : B — IR? defined by ¢(r,0) = (rcos8,rsin8) is a change of coordinates:

> ¢ is clearly of class C! and

B = cos b
9pr .
5 = sin 6

> ¢ is injective: assume that ¢(r,0) = ¢(v,0'), that is,
rcosf = r' cos @’
rsinf = ' sin@’
Then (12.1)% 4 (12.2)% gives 12 = #'? so that r = +'. We then get0 =10".

—rsinf
rcosf

cos 0
sin 6

> Jire) (@) = (
We can see that ¢(B) =

2 2. ¥y
(\/x +y,2arctanx+w).

A so that ¢ induces a bijection ¢ :

991

% = —rsinf
90¢2 _
20 = rcosf

) has determinant r # 0 hence is invertible.

(12.1)
(12.2)

B — A whose inverse is given by ¢~ !(x,y) =

To see this, note that % = tan#, but 6 €] — 7, 7| so we cannot just apply arctan. We shall therefore consider % to which

‘we can apply arctan.

Note that sinf = 2sin%cos% = ZCOSthan% and that 2COSZ% = 1+ cosf so that tan% =
y _ Y )
r+x a2+ +x

The map ¢~ is of class C! on B and we have

ar x
o Ay
0 y
o
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Now if f is a function of class C! on A, the function F : B — R defined by F(r,0) = f(rcos8,rsin#) is of class C! and
we have

OF oo ofay __ oF L of
or “oxar Tayar %05 Toinfy,
oF 8f8x+8fay —rsn98f+rcos(98f

90 9x 90 ' dy ob ox oy’
Conversely, if F is a function of class C! on B, then the function f : A — R defined by f(x,y) =
F(\/x2+y% 2arctan \/7) is of class C! and we can compute its partial derivatives.
7

C. Cylindrical coordinates

We can extend polar coordinates to cylindrical coordinatest on parts of R3 via the following bijections:

AxR —BxR
X,Y,2) = x2 + 2,2arctan#,z
(x,y,2) (\/ y VAT

BxR— AxR
(r,0,z) — (rcosf,rsinb,z).

If we project on the xy-plane, we get the polar coordinates.
The map ¢ : B x R — R? defined by (r,0,z) = (rcos,rsin,z) is indeed a change of coordinates:

cos 6 sinf 0
> It is clearly of class Cl, and Ty (r,0,z) = | —rsinf rcosf 0 ] hasdeterminantr # 0 hence is invertible; moreover,
0 0 1

it is easy to check that 1 is injective, using the fact that ¢ defines a bijection from B to A.

VII. HIGHER ORDER PARTIAL DERIVATIVES

Definition 21. Let f : QO — R be a function of class C. If the function % : QO = R has partial derivatives, then
> its first partial derivative is denoted by — o 82f
E) ax ) ox2
Y Pf
> its second partial derivative is denoted by — or
8_1/ ox dyox’

f of ?f 9 (of\ _f
Similarly, when they exist, the partial derivatives of are denoted by — 8 3y Bxay and ay\ay) = a2

*f
Definition 22. A function f : Q — R is said to be of class C* on Q) if its four second order partial derivatives é, Bxafy’
0% f
nd —= exist and are continuous on Q).
Jyox ay2
Theorem 23. If f is a function of class C? on Q) then
2f  %f
dydx  0xdy’
Proof. Admitted. v

2 _ .2
Example. Let us consider the function f : R? — R defined by f(x,y) = % if (x,y) # (0,0) and £(0,0) = 0.
1(x, )
‘ ”2 — H(

1 )13

This function is clearly continuous on R?\ {(0,0)}. Moreover, |f(x,y)| < x,y)H% so that f is also

continuous at (0,0). We have

coordonnées cylindriques
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(Byx* — v*) (2 +y*) — xy(x* —y?)2x

= Ly = if (x,) # (0,0),

(x2 +12)2
> %(Ofy) =—yify #0,
L
- Sy - S (XZZ _y:;;)zxy(xz R it ) £ (0,0,
> %(x,O) =xifx #0,
- 5100 = fim FOR L0 <o
Now let us compute the second order partial derivatives at (0,0).
> %(0,0) is the derivative of x — %(x,ﬂ) at 0, so aangy (0,0) = 1.

> W(O’O) is the derivative of y — a(o,y) at 0, so ayor (0,0) = —1.

In particular, we can say that f is not of class C2.

We can repeat the process of taking partial derivatives to obtain the following definition.

Definition 24. Let f : Q — R be a function defined on Q0. We say that f is of class C¥ if all its partial derivatives up to order k
(inclusive) exist and are continuous. We denote by C¥(Q) the set of all these functions. We say that f is of class C™ or smooth®
if it is of class C* for all k € IN.

?de classe C*®
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Appendix A

Trigonometric formulae

ftan «
,

The sine, cosine and tangent of an angle can be read off the trigonometric circle. One full turn of the circle represents

an angle of 2.

I. ANGLES AND PROPERTIES OF COS AND SIN

It is useful to know the cosine, sine and tangent of a few remarkable angles (the tangent may be found easily from the

. sina
other two, since tana = )-
CoS &
T 7T 7T 7T
« [|0] 5§ 7|3 |7
V3| V2|1

cos « 1 5 5 5 0

: 1 V2 | V3
SN« 0 2 7 v 1

Next, we can find the cosine, sine and tangent of other angles, such as ZT” or —%, using formulae from Section II, as
well as the following relations (that can be seen on the trigonometric circle).

cos(—a) = cosa sin(—a) = —sina
cos(m—a) = —cosw sin(m — ) = sinw
cos(a + 1) = —cosa sin(a + 71) = —sina
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So for instance

51 3 21 7
« 6 4|3 | T e
V3 V2 1 V3
cosw || =" | =% |~ | 1] =%
. 1 V2 | V3 1
sina 21510 3

II. CIRCULAR TRIGONOMETRIC FUNCTIONS

The following formulae must be known (although formulae (A.2) and (A.3) may be recovered from ei(a+b) — piapib ).

2a=1

cos? a + sin
cos(a+b) = cosacosb —sinasinb

sin(a + b) = sinacosb + cosasinb.

We deduce immediately that

cos(—a) = cosw sin(—a) = —sinw
cos(m—a) = —cosw sin(m —a) = sinw
cos(a+ 71) = —cosw sin(a + 1) = —sina

(A1)
(A2)
(A.3)

Moreover, from these formulae, many others may be found (even if you do not remember them, you must know that
they exist in order to recover them — for instance, you must know that there are formulae relating cos? a and cos(2a)...).

They are especially useful to compute integrals and primitives.
Many of the formulae below may also be found using the Euler formulae, complex exponentials and (A.1).

> cos(a —b) = cosacosb + sinasinb (Replace b by —b in (A.2)).
> sin(a —b) = sinacosb — cosasinb (Replace b by —b in (A.3)).
> cos(2a) = cos?a —sin?a = 2cos?a — 1 = 1 — 2sin? a (Using formulae (A.2) and (A.1)).

’ 1+ cos(2a)

> cos“a = — (From the previous line).
> sin%a = 1_#8(2(1) (Similar).

> sin(2a) = 2sinacosa (Formula (A.3) with a = b).
> 14 tan?a = % (Using formula (A.1)).
cos?a

tana + tanb

> tan(a+0b) = 1 tenztand (Using formulae (A.2) and (A.3)).
> tan(2a) = _2tana (From the previous line)
" 1—tan2a P ’
2tan(4
> tana = % (From the previous line).
1—tan*(%)
1—tan?(§) s 5 9 9 1—tan®§
> cosa = m (indeed, cosa = cos® § —sin® § = cos? § (1 —tan* §) = a2 %).
2tan(4 tan 2
> gina = # (indeed, sina = 2sin § cos § = 2tan § cos? £ = 2722).
1+ tan2(4) 1+ tan” §

III. LINEARISATION

When we want to compute primitives and integrals, it is useful to know how to linearise the (even) powers of cos

1 2
sin. We can use for instance the Euler formulae to linearise. For example, the primitives of cos? x = —l—c%(x)
x  sin2x
= C.
2 * 4 +
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The hyperbolic functions have been defined in Chapter 3 by the formulae chx =

IV. HYPERBOLIC TRIGONOMETRIC FUNCTIONS

eX + efx

and shx =

e

X

—e

—X

that they are similar to the Euler formulae, and we can use them in the same way to recover the relations below.
The following formulae must be known.

ch?a—sh’a=1
ch(a+b) =chachb+shashb
sh(a+b) =shachb+ chashb.

From there, the following formulae can be recovered (or use the definitions of ch and sh, as well as exp).

ch(a—b) =chachb—shashb (Replace b by —b in (A.5)).
sh(a —b) =shachb — chashb (Replace b by —b in (A.6)).

ch(2a) = ch®a+sh?a =2ch?>a—1=1+2sh’a (Using formulae (A.5), (A.6) and (A.4)).

ch?a = H—cfh(&z) (From the previous line).
h(2a) — 1
sh?a = % (Similar).

sh(2a) = 2shacha (Formula (A.6) with a = b).
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Appendix B

Greek alphabet

Nom Lower case | Upper case
alpha o A
beta B B
gamma | 7y r
delta o A
epsilon | ¢ E
zeta 4 Z
eta n H
theta 0 0
iota L I
kappa K K
lambda | A A
mu U M
nu v N
xi ¢ I
omicron | o (@]
pi 7T, @ I1
rho 0,0 R
sigma 0,6 N
tau T T
upsilon | v u
phi ) @
chi X X
psi P Y
omega w Q

The lighter coloured letters are not used in mathematics since they are the same as the latin ones.
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Appendix C

Integer arithmetics

This appendix is a reminder on the arithmetics of integers. These are not on the syllabus, but are considered to be known.
(Most of) the proofs are left as exercises.

I. GREATEST COMMON DIVISOR

Notation. Let a be an integer in Z. We denote by D(a) the set of divisors of a in Z. Recall that
> D(0) =2%Z;
> if a # 0 then for any integer b in D(a) we have |b| < |a].
In the sequel, we shall consider two integers in Z with at least one of them non-zero.

Remark. Let 2 and b be two integers in Z, at least one of which is non-zero. Then D(a) N D(b) contains only non-zero
integers, and they all have absolute value at most min(|a|, |b|) if 2 and b are both non-zero, or at most |a| if b = 0.
In particular, the set {|c|;c € D(a) ND(b)} is a non-empty subset of N which contains 1 and is bounded above in R,
therefore it has a maximum, d > 1.

Definition 1. Let a and b be two integers in Z with at least of them non-zero. Then d = max{|c|;c € D(a) ND(b)} is called
the greatest common divisor® (or gcd®) of a and b. It is denoted by a A b.
By convention, we set 0 A0 = 0.

“plus grand commun diviseur
bpged

A. Euclidean algorithm

Theorem 2 (Euclidean division?). For any integer a and any integer b # 0, there exists a unique pair of integers (g, )

such that {a =qb+r and

0<r<|b.
The integer 7 is called the remainder” and the integer g is called the quotient¢ of the division.

?division euclidienne
breste
‘quotient

Proposition 3. Let 4, b and g be three integers. then D(a) N D(b) = D(b) N D(a — gb).
In particular, if 7 is the remainder of the Euclidean divison of a by b, then D(a) N D(b) = D(b) N D(r).

Proposition 4 (Euclidean algorithm?). Let a and b be two non-zero integers.

Define the following sequence of integers, defined inductively by: ry = a and rq = b. For k > 1, assume that r;_; and
1 are knowny; if 1y = 0, set rx 1 = 0; if ¢ # O, let ri 1 be the remainder of the Euclidean division of rx_; by ry, so that
-1 = Gk"k + k1 and 0 <rpyg < [rgl.

Then there exists n € IN such that r, # 0 and r,, .1 = 0. Moreover, r, = a A b.

"algorithme d’Euclide
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Example. We want to find a ged of a = 530 and b = 280. We do successive Euclidean divisions until the remainder
vanishes:

530 =1-280 + 250
280 =1-2504 30
250 =8-30+10
30=3-10+0

therefore a A b = 10 (the last non-zero remainder).

Corollary 5. Let a and b be two integers in Z with at least one of them non-zero. Set d = a A b.
Then D(d) = D(a) N D(b).

Remark. The previous result shows that the gcd d of @ and b can be characterised by the three properties:
(i) d >0 and

(ii) d divides a and b, and

(iii) if ¢ is any integer that divides a and b, then c divides d.

Properties 6.  (a) For any integers a and b, one of which is non-zero, we have a Ab = b A a.
(b) For any non-zero integer 4, we have a A 0 = |a|.
(c) For any integer a2, we havea A1 = 1.
(d) a Ab=|a|if, and only if, a divides b.

(e) The integer a A b and its divisors are all the divisors common to a and b.

Proposition 7. Let a and b be two integers in Z with at least one of them non-zero. For any non-zero integer ¢, we
have (ca) A (cb) = |c|(a A b).

Proposition 8. Let a and b be two integers in Z, at least one of which is non-zero. Then there exist integers u and v
such that a A b = ua + vb.
This is called a Bézout relation” between a and b and the integers u and v are called the Bézout coefficients? for a and

b.

relation de Bézout
beoefficients de Bézout

Remark. It follows from the proof that, to find the Bézout coefficients for a and b, we can use the Euclidean algorithm
then work backwards, as we do for integers.

Example. In the example above, we have seen that 530 A 280 = 10.
Moreover, working up the Euclidean algorithm, we have

10 =250 —-8-30
=250 — 8- (280 — 250) = 9250 — 8 - 280
=9 (530 —280) — 8- 280

10 = —17-280 + 9 - 530.

II. LEAST COMMON MULTIPLES

In the sequel, we shall consider non-zero integers a and b.
Notation. The set M (a) = aZ is the set of multiples of a.

Remark. Let 2 and b be two non-zero integers in Z.

The set M (a) N M (D) is the set of common multiples of @ and b. It contains 0 as well as some non-zero integers (such
as ab). The non-zero integers have degree at least max(|a/, |b]).

In particular, the set {|c|;c € M(a) N M (b),c # 0} is a non-empty subset of N* which is bounded below in R, therefore
it has a positive minimum, m > 0.
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Definition 9. Let a and b be two non-zero integers in Z.

The integer m = min{|c[;c € M(a) N M(b),c # 0} > 0 is called the least common multiple® (or lem®) of a and b. It is
denoted by m = a V' b.

By convention, if a or b is zero, then a \V b = 0.

“plus petit commun multiple
’ppem

Notation. By convention, we set AV 0 =0 for A # 0.

Properties 10. > For any integers a and b, one of which is non-zero, we have a Vb = b V a.
> For any non-zero integer a, we have a V1 = |a|.

> qV b= |a| if, and only if, b divides a.

Proposition 11. Let a and b be two non-zero integers in Z, and let ¢ be any integer.
Then c is the lem for 4 and b if, and only if, M(c) = M(a) N M (D).

Remark. Let 2 and b be two non-zero integers in Z. The integer 4 V b is the unique positive integer such that M (a V b) =

M(a) N M(b).

Proposition 12. Let a and b be two non-zero integers in Z. For any non-zero integer ¢, we have (ca) V (c¢b) = |c|(a V b).

Proposition 13. Let a and b be two non-zero integers in Z. Then

(anb)-(aVb)=|abl.

III. COPRIME INTEGERS

Definition 14. Let a and b be two integers. We say that a and b are coprime® ifa Nb = 1.
In other words, the only common divisors of a and b are 1.

“premiers entre eux

Theorem 15 (Bézout Theorem”). Let a and b be two integers. Then a and b are coprime if, and only if, there exist two
integers u and v such that au 4 bv = 1.

Athéoreme de Bézout

Proposition 16 (Gauss’ Lemma®). Let a, b and c be three integers.
If a divides bc and if a2 and b are coprime, then a divides c.

“lemme de Gauss

Proposition 17 (Euclid’s Lemma“). Let a2 and b be two integers and let p be a prime integer.
If p divides ab then p divides a or p divides b.

“lemme d’Euclide
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Proposition 18. Let 4, b and c be three integers. The following are equivalent:
(i) a and b are coprime and a and c are coprime;
(ii) a and bc are coprime.

More generally, let ay, . ..,a, and by, ..., by be p + n integers. The following are equivalent:
(i) aj and by, are coprime for all j,k with1 <j<pand1 <k <

(i1) ay---ap and by - - - by are coprime.

Definition 19. Let ay, ..., a, be a family of integers. We say that they are pairwise coprime® if any two of them are coprime,
that is,
Vi,j, 1<i<j<n, a;and aj are coprime.

“premiers entre eux deux a deux

Proposition 20. Let a, b and c be three integers. Assume that a and b are coprime.

The integer ¢ is a multiple of 2 and b if, and only if, it is a multiple of ab.

More generally, if a1, ..., a, is a family of pairwise coprime integers, then c is a multiple of each of the ay, if, and only
if, it is a multiple of their product ajas - - - a,.

Remark. Let 2 and b be two non-zero integers. There exist integers a1 and by such that a = (a Ab)a; and b = (a A b)b.
Then a; and b; are coprime.

IV. SOLVING EQUATIONS ax + by = ¢

Given three integers a, b and ¢, we would like to find, if possible, all the pairs of integers (x,y) € 72 such that ax + by =c.

Lemma 21. The equation (E) ax + by = ¢ has a solution if, and only if, a A b divides c.

Proof. Assume that (E) has a solution (x,y). Then a A b divides ax + by = c.
Conversely, assume that d := a A b divides c, so that ¢ = dc’. There exists (u,v) € Z? such that d = au + bv. Therefore
¢ = auc’ + boc’. We have found a solution, (uc’, vc’). v

Definition 22. The homogeneous equation® associated to (E) is (Eg) ax + by = 0.

#équation homogene

Lemma 23. Given a solution (xg, o) of (E), the set of all solutions of (E) is the set of (xg +s,yo + t) with (s, t) solution
of the homogeneous equation (Ep).

Proof. Let (s,t) be a solution of the homogeneous equation (Ep). Then as + bt = 0 so that a(xg +s) +b(yp +1t) =
axg + byy = ¢, therefore (xg + s, + t) is a solution of (E).

Conversely, let (x,y) be a solution of (E). Put s = x — xg and t = y — yo. Then as + bt = (ax + by) — (axy + (byy) =
¢ —c = 0so that (s, t) is a solution of (Ep). v

Lemma 24. Let d be the ged of 4 and b. The solutions of (Ep) are the pairs (—%k, %k) with k € Z.

Proof. First note that for any k € Z, <—%k, %k) is a solution of (Ey), since a (— %k) + b(%k) =0.
Conversely, let (s,t) be a solution of (Ep). Then as + bt = 0. Divide by d, we get %s = —gt. Then % divides %t, But %

and %t are coprime, therefore by Gauss” Lemma, % divides t. We can write t = %k for some k € Z. It then follows that
b

s = —"k. v
d
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Combining everything, we get the following result.

Proposition 25. The equation (E) ax + by = ¢ has a solution if, and only if, d := a A b divides c.
Assuming d divides c, the solutions of (E) are the sum of one solution of (E) and of all the solutions of the homogen-

eous equation (Ep) ax + by = 0 associated to (E), and the solutions of (Ep) are the (,%k, %k) with k € Z. Moreover, a
solution of (E) may be obtained from the Bézout coefficients of a and b.

Example. The equation 4x + 6y = 7 has no solutions, since 4 A 6 = 2 does not divide 7.

Example. Consider the equation 12x 4 8y = 28. Then 12 A 8 = 4 divides 28, therefore it has solutions.
We first look for one solution. We have 28 = 4-7 and 4 = 12 — 8 therefore 28 = 12 -7 — 8 - 7. Hence one solution is

given by (xo, y0) = (7, =7).

Now consider the homogeneous equation 12x + 8y = 0. Dividing by 4 = 12, 8A gives the equivalent equation 3x 42y =
0. We then have 3x = —2y so that 3 divides 2y. But 3 and 2 are coprime, therefore by Gauss’ Lemma 3 must divide y,
so that y = 3k for some k € Z. Therefore 3x = —6k and x = —2k. The solutions of the equation 12x 4- 8y = 0 are the
(—2k,3k) fork € Z.

Finally, the solutions of the equation 12x + 8y = 28 are (7 — 2k, —7 + 3k) for k € Z.

V. GCD AND LCM OF MORE THAN TWO INTEGERS

Proposition 26. For any three integers 4, b and c, we have

aN(bAc)=(anb)Ac
aV(bVve)=(aVb)Ve.

In other words, gcds and lems are associative.

Consequence 27. In particular, for any family of n integers ay,...,a,, we may consider ay Aay A--- Aa, and a3 Vay V
-+ V ay (without brackets).

Definition 28. Let ay,...,a, be a family of n integers, with n > 2.

> The integer ay Nay A - - - N\ ay is called the greatest common divisor (gcd) of the integers ay, ..., a,.

> The integer a1 V ap \V - - -V ay, is called the least common multiple (Icm) of the integers aq, ..., ay.

Proposition 29. > d=uay Nay A\ - Aday is the unique positive integer such that D(d) = D(ay) N - - - N D(ay).
> m=a;VayV---Vayis the unique positive integer such that M (m) = M(ay) N --- N M(ay).
We can extend some of the results for the gcd and lem of two integers.

Proposition 30. Let ay,...,a, be a family of n integers, with n > 2, and let ¢ be a non-zero integer. Then

(car) A (cag) A+ A (can) = |c|(ag ANag A -+ - Aay)
(cay) V (cap) V-V (can) = |c|(ay Vap V- - - Vay)

Proposition 31. Let ay,...,a, be a family of n integers, with n > 2. Then there exist integers u, ..., u, such that

apNay N\ ---Nay = ajuy +dplp + - -+ + ayly.

Definition 32. Let aq,...,ay be a family of n integers, with n > 2. we say that they are relatively prime® ifa; Nay \-- - Nay =
1.

“premiers entre eux dans leur ensemble

Proposition 33. let a;,...,a, be a family of n integers, with n > 2. The following are equivalent:
(i) the integers ay,...,a, are relatively prime;

(ii) there exist n integers uy, ..., u, such that aju; + asup + - - - +ayu, = 1.

106



Remark. The equality (a A b) - (a V b) = |ab| does not generalise to more than two integers.
However, if the integers ay, ..., a, are pairwise coprime, then ay Aay A--- Aay = ayay - - - a.

VI. PRIME INTEGERS AND FACTORISATIONS

Definition 34. Let p be an integer in Z. We say that p is prime? if it is not constant and if its only divisors are 1 and +p.

“premier
Remark. An integer p is not prime if, and only if, there exist 4 and r such that |g| < |p|, |r| < |p| and p = gr.

Properties 35. > =2 are the only even prime numbers.
> If p is an prime integer and if p does not divide an integer 4, then p and a are coprime.

> Let p be an prime integer. Let ay,...,a, be a family of integers. Then p divides the product a; - - - a, if, and
only if, p divides one of the a;.

Proposition 36. There is are infinitely many distinct prime numbers.

Remark. Any integer a with |a| > 1 has an prime divisor.
In particular, to prove that two integers a and b are coprime, it is enough to prove that they have no common prime
divisor.

Corollary 37. Let a be a non-zero integer. Then a can be written uniquely (up to reordering of the factors)

r
a = )\Hp;;lk = )qullpgz .. p;”lr
k=1

where A = £1 is the sign of 4, the integers py, ..., p, are positive prime integers and the 7y are positive integers.

Proposition 38. Let a and b be two integers in Z which are not in {—1;0;1}. Set a = ATT;_; p;* and b = u[T;_; p*
with n; and m; non-negative integers (py need not occur in the decomposition of a or b if 7, = 0 or my = 0).
Then a divides b if, and only if, nj < my, for all k.

Proposition 39. Let a and b be two integers in Z which are not in {—1;0;1}. Seta = AT[;_; p;* and b = u[T;_; pi*
with n; and my non-negative integers (not both zero). For each k, set uy, = min(ny, my) and vy = max(ny, my).
Thena Ab =T, pi* and aV b =TT, pi*.
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Glossary

A

accurate within 107" - a 107" pres 4
antiderivative or primitive — primitive 65
associative — associative 48

average — moyenne 10

B

bounded - borné 3
bounded above — majoré 1
bounded below — minoré 3

C

change of coordinates — changement de coordonnées 95
chord - corde 10

closed disk — disque (ou boule) fermé 88

commutative — commutative 48

commutative field — corps commutatif 48

contracting — contractante 10

coordinate function — fonction coordonnée 85

curve — courbe 94

cylindrical coordinates — coordonnées cylindriques 96

D

decimal approximation by default — valeur approchée par défaut 4
decimal approximation by excess — valeur approchée par exces 4
dense — dense 4

dichotomy algorithm — algorithme de dichotomie 31

distributive — distributive 48

E
exponential — exponentielle 17
F

fixed point — point fixe 26
function — fonction
n-th root — racine n-iéme 8
arccosine — arccosinus 21
arcsine — arcsinus 20
arctangent — arctangente 22
continuous — continue 15
cosine — cosinus 21
derivative — dérivée
higher-order derivative — dérivée d’ordre supérieur 13
second derivative — dérivée seconde 13
differentiable — dérivable 9, 15
graph — graphe 8
has a continuous extension — admet un prolongement par continuité 19
hyperbolic cosine — cosinus hyperbolique 23
hyperbolic sine — sinus hyperbolique 23
hyperbolic tangent — tangente hyperbolique 24
integrable — intégrable 56, 61
locally integrable — localement intégrable 75



odd - impaire 21

of class C* or smooth — de classe C* 13, 97

of class C¥ — de classe C* 13, 15

piecewise continuous — continue par morceaux 62, 75

power function - fonction puissance 18

sine — sinus 20

square root — racine carrée 8

step function — fonction en escalier ou étagée 54

tangent — tangente 22
Fundamental Theorem of Algebra — théoréme de d’Alembert-Gauss 43
Fundamental Theorem of Calculus — Théoreme fondamental de 1’analyse 66

G

general exponential function — exponentielle de base 2 19
gradient — gradient 94
greatest lower bound — borne inférieure 3

I

improper integral — intégrale impropre 75
absolutely convergent — absolument convergente 80
convergent — convergente 75
divergent — divergente 75
semi-convergent — semi-convergente 80
indentity element — élément neutre 48
induction — récurrence 14
infimum - borne inférieure 3
integer — entier
Bézout coefficients — coefficients de Bézout 103
Bézout relation — relation de Bézout 103
Euclid’s Lemma - lemme d’Euclide 104
Euclidean algorithm — algorithme d’Euclide 102
Euclidean division — division euclidienne 102
Gauss’ Lemma — lemme de Gauss 104
ged — pged 102
greatest common divisor — plus grand commun diviseur 102
homogeneous equation — équation homogene 105
pairwise coprime — premiers entre eux deux a deux 105
prime — premier 107
quotient — quotient 102
remainder — reste 102
integral — intégrale 55, 57, 61
integration by parts — intégration par parties (IPP) 67
integration by substitution — changement de variable 68
integral part — partie entiere 3
Intermediate Value Theorem — théoreme des valeurs intermédiaires (TVI) 5
interval — intervalle 6
stable — stable 25
invertible — inversible 48

J

jacobean matrix — matrice jacobienne 94
L

least upper bound — borne supérieure 1

Leibniz’s Formula — formule de Leibniz 14

Lipschitz continuous with Lipschitz constant K — K-lipschitzienne 10
local extremum — extremum local 94

local maximum — maximum local 94

local minimum — minimum local 94

logarithm — logarithme 16, 67

lower bound — minorant 3

M

map — application 3
maximum — maximum ou plus grand élément 2

ii



Mean Value Inequality — inégalité des accroissements finis 11, 15, 66
Mean Value Theorem — théoréme des accroissements finis 9

Mean Value Theorem for integrals — formule de la moyenne 60
minimum — minimum ou plus petit élément 3

N

neighbourhood - voisinage 5
Newton’s method — méthode de Newton 32
non-empty — non vide 2
non-negative — positif (ou nul) 1
norm — norme 83
euclidean norm — norme euclidienne 83
supremum norm — norme sup 83

(0]

open disk — disque (ou boule) ouvert 88
open subset — ouvert (ou partie ouverte) 88

P

parametric curve — courbe paramétrée 87
partial derivative — dérivée partielle 91
partition — subdivision 54
adapted — adaptée 54
mesh — pas 54
polynomial — polynoéme 34
associate — associé 34
Bézout coefficients — coefficients de Bézout 37
Bézout relation — relation de Bézout 37
Bézout Theorem — théoréme de Bézout 39, 104
coprime — premiers entre eux 39, 104
Euclidean algorithm — algorithme d’Euclide 35
Gauss’ Lemma — lemme de Gauss 39
ged — pged 34
greatest common divisor — plus grand commun diviseur 34
irreducible - irréductible 42
Lagrange interpolation polynomial — polynéme d’interpolation de Lagrange 46
Iem — ppem 37, 104
leading coefficient — coefficient dominant 34, 44, 45
least common multiple — plus petit commun multiple 37, 104
monic — unitaire 34
pairwise coprime — premiers entre eux deux a deux 40
reducible — réductible 42
relatively prime — premiers entre eux dans leur ensemble 41, 106
remainder — reste 35
root — racine 5, 42
split — scindé 44
polynomial function — fonction polynomiale 48
positive — strictement positif 1
a to the b or a to the power of b — a puissance b 17

R

radius — rayon 88
rational fraction — fraction rationnelle 47
addition — addition 47
degree — degré 48
denominator — dénominateur 47
integral part — partie entiere 49
irreducible form — forme irréductible 48
multiplication — multiplication 47
multiplicity — multiplicité 49
numerator — numérateur 47
partial fraction decomposition — décomposition en éléments simples 50
pole — pole 49
double — double 49
simple — simple 49
root — racine 49

iii



rational function — fonction rationnelle 48
recursively — par récurrence 13

Riemann sum — somme de Riemann 62
Rolle’s Theorem — théoréme de Rolle 9

S

scalar product — produit scalaire 85
sequence — suite 2
stationary — stationnaire 3
set — ensemble 1
slope — coefficient directeur (pente) 11
sphere — sphere 88
straight-line motion — trajectoire rectiligne 10
subset — sous-ensemble 2
supremum — borne supérieure 1
symmetry with respect to — symétrie par rapport a 8

T

Taylor expansion — développement limité (DL) 16

Taylor’s formula with integral remainder — formule de Taylor avec reste intégral 71
remainder — reste 71

Taylor’s inequality — inégalité de Taylor-Lagrange 15, 72

triangle inequality — inégalité du triangle 83

x truncated to n decimal places — tronqué a n décimales 4

U

unit disk — disque (ou boule) unité 88
upper bound - majorant 1

v

vector function — fonction a valeurs vectorielles 83
continuous — continue 84
derived vector — vecteur dérivé 84
differentiable — dérivable 84
integral — intégrale 87
limit — limite 84
Taylor expansion — développement limité 86
Taylor formula with integral remainder — formule de Taylor avec reste intégral 87
Taylor-Young formula — formule de Taylor-Young 86
velocity — vitesse 10
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Glossaire

A

a 107" pres — accurate within 107" 4

algorithme de dichotomie — dichotomy algorithm 31
application — map 3

associative — associative 48

B

borné — bounded 3
borne inférieure — infimum 3
borne supérieure — supremum 1

C

changement de coordonnées — change of coordinates 95
coefficient directeur (pente) — slope 11

commutative — commutative 48

contractante — contracting 10

coordonnées cylindriques — cylindrical coordinates 96
corde — chord 10

corps commutatif — commutative field 48

courbe — curve 94

courbe paramétrée — parametric curve 87

D

dense — dense 4

dérivée partielle — partial derivative 91
développement limité (DL) — Taylor expansion 16
disque (ou boule) fermé — closed disk 88

disque (ou boule) ouvert — open disk 88

disque (ou boule) unité — unit disk 88
distributive — distributive 48

E

élément neutre — indentity element 48
ensemble — set 1
entier — integer
algorithme d’Euclide — Euclidean algorithm 102
coefficients de Bézout — Bézout coefficients 103
division euclidienne — Euclidean division 102
équation homogene — homogeneous equation 105
lemme d’Euclide — Euclid’s Lemma 104
lemme de Gauss — Gauss’ Lemma 104
pged — ged 102
plus grand commun diviseur — greatest common divisor 102
premier — prime 107
premiers entre eux deux a deux — pairwise coprime 105
quotient — quotient 102
relation de Bézout — Bézout relation 103
reste — remainder 102
exponentielle — exponential 17
exponentielle de base 2 — general exponential function 19
extremum local - local extremum 94

F



fonction — function
admet un prolongement par continuité — has a continuous extension 19
arccosinus — arccosine 21
arcsinus — arcsine 20
arctangente — arctangent 22
continue par morceaux — piecewise continuous 62, 75
cosinus hyperbolique — hyperbolic cosine 23
de classe C*° — of class C* or smooth 13, 97
de classe C¥ - of class C¥ 13
dérivable — differentiable 9
dérivée — derivative
dérivée d’ordre supérieur — higher-order derivative 13
dérivée seconde — second derivative 13
fonction en escalier ou étagée — step function 54
fonction puissance — power function 18
graphe — graph 8
intégrable — integrable 56, 61
localement intégrable — locally integrable 75
racine carrée — square root 8
racine n-iéme — n-th root 8
sinus hyperbolique — hyperbolic sine 23
tangente hyperbolique — hyperbolic tangent 24
fonction a valeurs vectorielles — vector function 83
continue — continuous 84
dérivable — differentiable 84
développement limité — Taylor expansion 86
formule de Taylor avec reste intégral — Taylor formula with integral remainder 87
formule de Taylor-Young — Taylor-Young formula 86
intégrale — integral 87
limite — limit 84
vecteur dérivé — derived vector 84
fonction coordonnée — coordinate function 85
fonction polynomiale — polynomial function 48
fonction rationnelle — rational function 48
formule de la moyenne — Mean Value Theorem for integrals 60
formule de Leibniz — Leibniz’s Formula 14
formule de Taylor avec reste intégral — Taylor’s formula with integral remainder
reste — remainder 71
fraction rationnelle — rational fraction 47
addition — addition 47
décomposition en éléments simples — partial fraction decomposition 50
degré — degree 48
dénominateur — denominator 47
forme irréductible — irreducible form 48
multiplication — multiplication 47
multiplicité — multiplicity 49
numérateur — numerator 47
partie entiére — integral part 49
pole — pole 49
double — double 49
simple — simple 49
racine — root 49

G
gradient — gradient 94
I

inégalité de Taylor-Lagrange — Taylor’s inequality 15, 72
inégalité des accroissements finis — Mean Value Inequality 11, 15, 66
inégalité du triangle — triangle inequality 83
intégrale — integral 55, 57, 61
changement de variable — integration by substitution 68
intégration par parties (IPP) — integration by parts 67
intégrale impropre — improper integral 75
absolument convergente — absolutely convergent 80
convergente — convergent 75
divergente — divergent 75
semi-convergente — semi-convergent 80

vi



intervalle — interval 6
stable — stable 25
inversible — invertible 48

L

K-lipschitzienne — Lipschitz continuous with Lipschitz constant K 10
logarithme — logarithm 16, 67

M

majorant — upper bound 1

majoré — bounded above 1

matrice jacobienne — jacobean matrix 94
maximum local - local maximum 94
maximum ou plus grand élément — maximum 2
méthode de Newton — Newton’s method 32
minimum local — local minimum 94
minimum ou plus petit élément — minimum 3
minorant — lower bound 3

minoré — bounded below 3

moyenne — average 10

N

norme — norm 83
norme euclidienne — euclidean norm 83
norme sup — supremum norm 83

o
ouvert (ou partie ouverte) — open subset 88
P

partie entiére — integral part 3
point fixe — fixed point 26
polynéme — polynomial 34
algorithme d’Euclide — Euclidean algorithm 35
associé — associate 34
coefficients de Bézout — Bézout coefficients 37
coefficient dominant — leading coefficient 34, 44, 45
irréductible - irreducible 42
lemme de Gauss — Gauss’ Lemma 39
pged — ged 34
plus grand commun diviseur — greatest common divisor 34
plus petit commun multiple — least common multiple 37, 104
polynome d’interpolation de Lagrange — Lagrange interpolation polynomial 46
ppcm — lem 37, 104
premiers entre eux — coprime 39, 104
premiers entre eux dans leur ensemble — relatively prime 41, 106
premiers entre eux deux a deux — pairwise coprime 40
racine — root 42
réductible — reducible 42
relation de Bézout — Bézout relation 37
reste — remainder 35
scindé — split 44
théoréme de Bézout — Bézout Theorem 39, 104
unitaire — monic 34
positif (ou nul) - non-negative 1
primitive — antiderivative or primitive 65
produit scalaire — scalar product 85
a puissance b — a to the b 17

R
rayon — radius 88

S

somme de Riemann — Riemann sum 62
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sous-ensemble — subset 2
sphere — sphere 88
strictement positif — positive 1
subdivision - partition 54
adaptée — adapted 54
pas — mesh 54
suite — sequence 2
stationnaire — stationary 3

T

théoréme de d’Alembert-Gauss — Fundamental Theorem of Algebra 43
théoréeme de Rolle — Rolle’s Theorem 9

théoréme des accroissements finis — Mean Value Theorem 9

théoréeme des valeurs intermédiaires (TVI) — Intermediate Value Theorem 5
Théoreme fondamental de I’analyse — Fundamental Theorem of Calculus 66
trajectoire rectiligne — straight-line motion 10

tronqué a n décimales — x truncated to n decimal places 4

\'

valeur approchée par défaut — decimal approximation by default 4
valeur approchée par excés — decimal approximation by excess 4
vitesse — velocity 10

voisinage — neighbourhood 5
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