Hopf algebras and quivers

CIMPA School in Curitiba

Rachel Taillefer

25th February 2013-1st March 2013

CONTENTS

I Introduction to Hopf algebras 1

1. Motivation 1
2. Bialgebras 2
3. Hopf algebras 7
II Introduction to Hopf bimodules. 11
III Quiver algebras 15
4. Path algebra and identification with a tensor algebra 15
5. Conditions for a tensor algebra to be a graded Hopf algebra 16
IV Conditions for a path algebra to be a graded Hopf algebra. 17
V Examples of finite-dimensional Hopf algebras defined by quiver and relations 23
6. Quiver of a finite dimensional basic Hopf algebra 23
7. Construction of finite dimensional Hopf algebras 23
A Notes on [CR] 33

Throughout, k is a (commutative) field. We denote by \otimes the tensor product \otimes_{k} over k. Moreover, an algebra is an associative k-algebra with unit.

I. Introduction to Hopf algebras

1. Motivation

Given an algebra A and two left A-modules M and N, we would like to have a left A-module structure on $M \otimes_{k} N$.

There are some algebras A for which we know how to do this.
$>$ Group algebras. Let G be a group. If M and N are two $k G$-modules, then $M \otimes N$ is a $k G$-module for the action

$$
\forall g \in G, \forall m \otimes n \in M \otimes N, \quad g(m \otimes n)=g m \otimes g n .
$$

We have used the diagonal map $G \rightarrow G \times G$, which induces a k-linear map $\Delta: k G \rightarrow k[G \times G] \cong$ $k G \otimes k G$, and the action is defined by the composition

$$
k G \otimes M \otimes N \xrightarrow{\Delta} k G \otimes k G \otimes M \otimes N \xrightarrow{\text { id } \otimes \tau \otimes \mathrm{id}} k G \otimes M \otimes k G \otimes N \xrightarrow{\mu_{M} \otimes \mu_{N}} M \otimes N
$$

where $\tau(g \otimes m)=m \otimes g$ and $\mu_{M}: k G \otimes M \rightarrow M$ and $\mu_{N}: k G \otimes N \rightarrow N$ are the structure maps of M and N.
$>$ Enveloping algebras of Lie algebras. Let \mathfrak{g} be a Lie algebra and let $U(\mathfrak{g})$ be its enveloping algebra. If M and N are left $U(\mathfrak{g})$-modules, then $M \otimes N$ is a $U(\mathfrak{g})$-module for the action

$$
\forall x \in \mathfrak{g}, \forall m \otimes n \in M \otimes N, \quad x(m \otimes n)=x m \otimes n+m \otimes x n .
$$

This action is similar to the previous one, for the map $\Delta: U(\mathfrak{g}) \rightarrow U(\mathfrak{g}) \otimes U(\mathfrak{g})$ defined on elements $x \in \mathfrak{g}$ by $\Delta(x)=x \otimes 1+1 \otimes x$.

Hopf algebras are algebras endowed with a linear map $\Delta: H \rightarrow H \otimes H$ that satisfy some extra properties.

2. Bialgebras

We start by rewriting the axioms of an algebra in terms of commutative diagrams.
An algebra is a k-vector space A endowed with two k-linear maps $\mu: A \otimes A \rightarrow A$ (multiplication) and $\eta: k \rightarrow A$ (unit: $\eta(1)=1_{A}$) that satisfy:

where $k \otimes A \xrightarrow{\cong} A$ and $A \otimes k \stackrel{\cong}{\rightrightarrows} A$ are the natural isomorphisms, which we view as identifications, so that $\mu \circ(\eta \otimes \mathrm{id})=\mathrm{id}$ and $\mu \circ(\mathrm{id} \otimes \eta)$.

We shall now define bialgebras by formally dualising the structure maps and commutative diagrams.
Definition I.1. A bialgebra is an algebra (B, μ, η) endowed with algebra maps $\Delta: B \rightarrow B \otimes B$ and $\varepsilon: B \rightarrow k$, respectively called the comultiplication and the counit, that satisfy

Coassociativity

Counit

that is, $(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta$ and $(\varepsilon \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \varepsilon) \circ \Delta$.
Notation I.2. Given an element $b \in B, \Delta(b)$ is an element of $B \otimes B$, that is, $\Delta(b)=\sum_{i} a_{i} \otimes b_{i}$ for some a_{i}, b_{i} in B. We shall use the Sweedler notation for this:

$$
\Delta(b)=\sum_{(b)} b_{(1)} \otimes b_{(2)} .
$$

The coassociativity and counit axioms then become:
$>$ Counit: $\sum_{(b)} \varepsilon\left(b_{(1)}\right) b_{(2)}=b=\sum_{(b)} b_{(1)} \varepsilon\left(b_{(2)}\right)$.
$>$ Coassociativity:

$$
\sum_{(b)} b_{(1)} \otimes\left(\sum_{\left(b_{(2)}\right)}\left(b_{(2)}\right)_{(1)} \otimes\left(b_{(2)}\right)_{(2)}\right)=\sum_{(b)}\left(\sum_{\left(b_{(1)}\right)}\left(b_{(1)}\right)_{(1)} \otimes\left(b_{(1)}\right)_{(2)}\right) \otimes b_{(2)}
$$

and we shall denote this by $\sum_{(b)} b_{(1)} \otimes b_{(2)} \otimes b_{(3)}$.
Example I.3. (1) k is a bialgebra (with $\Delta=\mathrm{id}=\varepsilon$).
(2) If G is a group, then the k-vector space $k G$ with basis the elements of G is a bialgebra, in which the multiplication extends the group law, and whose comultiplication and counit are determined by

$$
\Delta(g)=g \otimes g \text { and } \varepsilon(g)=1 \quad \text { for all } g \in G
$$

(3) Let G be a finite group and let k^{G} be the set of maps from G to k. This is a vector space (if f and f^{\prime} are in k^{G} and $\lambda \in k$, then $\left(f+f^{\prime}\right)(g)=f(g)+f^{\prime}(g)$ and $(\lambda f)(g)=\lambda f(g)$ for all $\left.g \in G\right)$, with basis $\left\{\delta_{g} ; g \in G\right\}$ with $\delta_{g}(h)=1$ if $h=g$ and $\delta_{g}(h)=0$ if $h \neq g$. (If $f \in k^{G}$ then $f=\sum_{g \in G} f(g) \delta_{g}$.) In fact k^{G} is a bialgebra, whose structure is determined by

$$
\delta_{g} \delta_{h}=\left\{\begin{array}{ll}
\delta_{g} & \text { if } g=h \\
0 & \text { otherwise, }
\end{array} \quad \Delta\left(\delta_{g}\right)=\sum_{h k=g} \delta_{h} \otimes \delta_{k}=\sum_{h \in G} \delta_{h} \otimes \delta_{h^{-1} g} \text { and } \varepsilon\left(\delta_{g}\right)= \begin{cases}1 & \text { if } g=e \\
0 & \text { if } g \neq e\end{cases}\right.
$$

for all $g \in G$. The unit element is $\sum_{g \in G} \delta_{g}$.
(4) Let V be any finite dimensional vector space. Then the tensor algebra $T_{k}(V)$ is a bialgebra, whose comultiplication and counit are determined by

$$
\begin{aligned}
\Delta(v) & =1 \otimes v+v \otimes 1 \text { if } v \in V, \Delta(1)=1 \otimes 1 \\
\varepsilon(v) & =0 \text { if } v \text { has positive degree, } \varepsilon(1)=1 .
\end{aligned}
$$

There is a closed formula for $\Delta(x)$ with $x=v_{1} \otimes \cdots \otimes v_{n} \in V^{\otimes n}$, given in terms of $(p, n-p)$ shuffles in the symmetric group \mathfrak{S}_{n}, that is, permutations σ such that $\sigma(1)<\cdots<\sigma(p)$ and $\sigma(p+1)<\cdots<\sigma(n):$

$$
\Delta(x)=\sum_{p=0}^{n} \sum_{\sigma \in \operatorname{Sh}_{p, n-p}}\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(p)}\right) \otimes\left(v_{\sigma(p+1)} \otimes \cdots \otimes v_{\sigma(n)}\right) .
$$

Definition I.4. Let B be a bialgebra and let $\tau: B \otimes B \rightarrow B \otimes B$ be the isomorphism that sends $a \otimes b$ to $b \otimes a$. Set $\Delta^{c o p}:=\tau \circ \Delta: B \rightarrow B \otimes B$.

The bialgebra B is cocommutative if $\Delta^{\text {cop }}$ is equal to Δ.
Example I.5. The bialgebras $k, k G$ and $T_{k}(V)$ are cocommutative. The bialgebra k^{G} is cocommutative if and only if G is abelian. If G is not abelian, then the bialgebra $k G \otimes k^{G}$ (see Lemma I. 6 below) is neither commutative nor cocommutative.

Lemma I.6. Let $(B, \mu, \eta, \Delta, \varepsilon)$ and $\left(B^{\prime}, \mu^{\prime}, \eta^{\prime}, \Delta^{\prime}, \varepsilon^{\prime}\right)$ be bialgebras. Then $B \otimes B^{\prime}$ is a bialgebra, with structure maps given by $\bar{\eta}=\varepsilon \otimes \varepsilon^{\prime}, \bar{\eta}(1)=\eta(1) \otimes \eta^{\prime}(1)$,

$$
\begin{aligned}
& \bar{\mu}=\left(\mu \otimes \mu^{\prime}\right) \circ(\mathrm{id} \otimes \tau \otimes \mathrm{id}):\left(a \otimes a^{\prime}\right) \otimes\left(b \otimes b^{\prime}\right) \mapsto\left(a \otimes a^{\prime}\right)\left(b \otimes b^{\prime}\right)=a b \otimes a^{\prime} b^{\prime} \\
& \bar{\Delta}=(\mathrm{id} \otimes \tau \otimes \mathrm{id}) \circ\left(\Delta \otimes \Delta^{\prime}\right): b \otimes b^{\prime} \mapsto \sum_{(b),\left(b^{\prime}\right)}\left(b_{(1)} \otimes b_{(1)}^{\prime}\right) \otimes\left(b_{(2)} \otimes b_{(2)}^{\prime}\right)
\end{aligned}
$$

where $\tau: B \otimes B^{\prime} \rightarrow B^{\prime} \otimes B$ send $b \otimes b^{\prime}$ to $b^{\prime} \otimes b$.
Proof. It is well known that ($B \otimes B^{\prime}, \bar{\mu}, \bar{\eta}$) is an algebra. Let us check the counit axiom and the coassociativity axiom.

$$
\begin{aligned}
(\bar{\varepsilon} \otimes \mathrm{id}) \circ \bar{\Delta}\left(b \otimes b^{\prime}\right) & =\sum_{(b),\left(b^{\prime}\right)} \bar{\varepsilon}\left(b_{(1)} \otimes b_{(1)}^{\prime}\right) b_{(2)} \otimes b_{(2)}^{\prime}=\sum_{(b),\left(b^{\prime}\right)} \varepsilon\left(b_{(1)}\right) \varepsilon^{\prime}\left(b_{(1)}^{\prime}\right) b_{(2)} \otimes b_{(2)}^{\prime}=b \otimes b^{\prime} \\
(\mathrm{id} \otimes \bar{\varepsilon}) \circ \bar{\Delta}\left(b \otimes b^{\prime}\right) & =\sum_{(b),\left(b^{\prime}\right)} \bar{\varepsilon}\left(b_{(2)} \otimes b_{(2)}^{\prime}\right) b_{(1)} \otimes b_{(1)}^{\prime}=\sum_{(b),\left(b^{\prime}\right)} \varepsilon\left(b_{(2)}\right) \varepsilon^{\prime}\left(b_{(2)}^{\prime}\right) b_{(1)} \otimes b_{(1)}^{\prime}=b \otimes b^{\prime} \\
(\bar{\Delta} \otimes \mathrm{id}) \circ \bar{\Delta}\left(b \otimes b^{\prime}\right) & =\sum_{(b),\left(b^{\prime}\right),\left(b_{(1)}\right),\left(b_{(1)}^{\prime}\right)}\left(\left(b_{(1)}\right)_{(1)} \otimes\left(b_{(1)}^{\prime}\right)(1)\right) \otimes\left(\left(b_{(1)}\right)_{(2)} \otimes\left(b_{(1)}^{\prime}\right)_{(2)}\right) \otimes\left(\left(b_{(2)}\right) \otimes\left(b_{(2)}^{\prime}\right)\right) \\
& =\sum_{(b),\left(b^{\prime}\right),\left(b_{(2)}\right),\left(b_{(2)}^{\prime}\right)}\left(\left(b_{(1)}\right) \otimes\left(b_{(1)}^{\prime}\right)\right) \otimes\left(\left(b_{(2)}\right)_{(1)} \otimes\left(b_{(2)}^{\prime}\right)_{(1)}\right) \otimes\left(\left(b_{(2)}\right)_{(2)} \otimes\left(b_{(2)}^{\prime}\right)_{(2)}\right) \\
& =(\operatorname{id} \otimes \bar{\Delta}) \circ \bar{\Delta}\left(b \otimes b^{\prime}\right)
\end{aligned}
$$

using the counit and coassociativity axioms for B and B^{\prime}.
We must finally show that $\bar{\varepsilon}$ and $\bar{\Delta}$ are algebra maps. We have $\bar{\varepsilon}(1 \otimes 1)=\varepsilon(1) \varepsilon^{\prime}(1)=1$ and $\bar{\Delta}(1 \otimes$ $1)=(1 \otimes 1) \otimes(1 \otimes 1)$, the unit in the algebra $\left(B \otimes B^{\prime}\right) \otimes\left(B \otimes B^{\prime}\right)$. Moreover, since $\varepsilon, \varepsilon^{\prime}, \Delta$ and Δ^{\prime} are algebra maps, we have

$$
\begin{aligned}
\bar{\varepsilon}\left(\left(a \otimes a^{\prime}\right)\left(b \otimes b^{\prime}\right)\right) & =\left(\varepsilon \otimes \varepsilon^{\prime}\right)\left(a b \otimes a^{\prime} b^{\prime}\right)=\varepsilon(a b) \varepsilon^{\prime}\left(a^{\prime} b^{\prime}\right)=\varepsilon(a) \varepsilon^{\prime}\left(a^{\prime}\right) \varepsilon(b) \varepsilon\left(b^{\prime}\right)=\bar{\varepsilon}\left(a \otimes a^{\prime}\right) \bar{\varepsilon}\left(b \otimes b^{\prime}\right) \\
\bar{\Delta}\left(\left(a \otimes a^{\prime}\right)\left(b \otimes b^{\prime}\right)\right) & =\bar{\Delta}\left(a b \otimes a^{\prime} b^{\prime}\right)=\sum_{(a b),\left(a^{\prime} b^{\prime}\right)}\left((a b)_{(1)} \otimes\left(a^{\prime} b^{\prime}\right)_{(1)}\right) \otimes\left((a b)_{(2)} \otimes\left(a^{\prime} b^{\prime}\right)_{(2)}\right) \\
& =\sum_{(a),(b),\left(a^{\prime}\right),\left(b^{\prime}\right)}\left(a_{(1)} b_{(1)} \otimes a_{(1)}^{\prime} b_{(1)}^{\prime}\right) \otimes\left(a_{(2)} b_{(2)} \otimes a_{(2)}^{\prime} b_{(2)}^{\prime}\right) \\
& =\sum_{(a),(b),\left(a^{\prime}\right),\left(b^{\prime}\right)}\left(\left(a_{(1)} \otimes a_{(1)}^{\prime}\right)\left(b_{(1)} \otimes b_{(1)}^{\prime}\right)\right) \otimes\left(\left(a_{(2)} \otimes a_{(2)}^{\prime}\right)\left(b_{(2)} \otimes b_{(2)}^{\prime}\right)\right) \\
& =\sum_{(a),(b),\left(a^{\prime}\right),\left(b^{\prime}\right)}\left(\left(a_{(1)} \otimes a_{(1)}^{\prime}\right) \otimes\left(a_{(2)} \otimes a_{(2)}^{\prime}\right)\right)\left(\left(b_{(1)} \otimes b_{(1)}^{\prime}\right) \otimes\left(b_{(2)} \otimes b_{(2)}^{\prime}\right)\right) \\
& =\bar{\Delta}\left(a \otimes a^{\prime}\right) \bar{\Delta}\left(b \otimes b^{\prime}\right) .
\end{aligned}
$$

Lemma I.7. Let $(B, \mu, \eta, \Delta, \varepsilon)$ be a bialgebra. Then $B^{o p}=\left(B, \mu^{o p}, \eta, \Delta, \varepsilon\right), B^{c o p}=\left(B, \mu, \eta, \Delta^{c o p}, \varepsilon\right)$ and $B^{o p c o p}=\left(B, \mu^{o p}, \eta, \Delta^{c o p}, \varepsilon\right)$ are also bialgebras.

Proof. Exercise.
We now introduce a new product, useful later on.
Definition I.8. Let A be an algebra and let B be a bialgebra. Define a bilinear map

$$
\begin{array}{rlc}
\star: \operatorname{Hom}_{k}(B, A) \times \operatorname{Hom}_{k}(B, A) & \longrightarrow & \operatorname{Hom}_{k}(B, A) \\
(f, g) & \longmapsto f \star g=\mu_{A} \circ(f \otimes g) \circ \Delta_{B} .
\end{array}
$$

With the Sweedler notation, the definition becomes

$$
(f \star g)(b)=\sum_{(b)} f\left(b_{(1)}\right) g\left(b_{(2)}\right) \text { for all } b \in B
$$

Lemma I.9. The triple $\left(\operatorname{Hom}_{k}(B, A), \star, \eta_{A} \circ \varepsilon_{B}\right)$ is an algebra. The product \star is called the convolution product.

Proof. The product and unit are k-linear.
The product is associative:

$$
\begin{aligned}
(f \star(g \star h))(b) & =\sum_{(b)} f\left(b_{(1)}\right)(g \star h)\left(b_{(2)}\right)=\sum_{(b)} f\left(b_{(1)}\right)\left(g\left(b_{(2)}\right) h\left(b_{(3)}\right)\right) \\
& =\sum_{(b)}\left(f\left(b_{(1)}\right) g\left(b_{(2)}\right)\right) h\left(b_{(3)}\right)=\sum_{(b)}(f \star g)\left(b_{(1)}\right) h\left(b_{(2)}\right)=((f \star g) \star h)(b) .
\end{aligned}
$$

The map $\eta_{A} \circ \varepsilon_{B}$ is a left and right unit for the product:

$$
\begin{aligned}
& \left(\left(\eta_{A} \circ \varepsilon_{B}\right) \star f\right)(b)=\sum_{(b)} \eta_{A}\left(\varepsilon_{B}\left(b_{(1)}\right)\right) f\left(b_{(2)}\right)=\sum_{(b)} \eta_{A}(1) f\left(\varepsilon_{B}\left(b_{(1)}\right) b_{(2)}\right)=f(b) \\
& \left(f \star\left(\eta_{A} \circ \varepsilon_{B}\right)\right)(b)=\sum_{(b)} f\left(b_{(1)}\right) \eta_{A}\left(\varepsilon_{B}\left(b_{(2)}\right)\right)=\sum_{(b)} f\left(b_{(1)} \varepsilon_{B}\left(b_{(2)}\right)\right) \eta_{A}(1)=f(b)
\end{aligned}
$$

Definition I.10. A morphism of bialgebras from $(B, \mu, \eta, \Delta, \varepsilon)$ to $\left(B^{\prime}, \mu^{\prime}, \eta^{\prime}, \Delta^{\prime}, \varepsilon^{\prime}\right)$ is a morphism of algebras $f: B \rightarrow B^{\prime}$ that satisfies

$$
\Delta^{\prime} \circ f=(f \otimes f) \circ \Delta: B \rightarrow B^{\prime} \otimes B^{\prime} \text { and } \varepsilon^{\prime} \circ f=\varepsilon
$$

that is, the diagrams

commute.
Remark I.11. We denote by V^{*} the k-dual $\operatorname{Hom}_{k}(V, k)$ of V. Given two vector spaces V and W, there is a k-linear map $\lambda: V^{*} \otimes W^{*} \rightarrow(V \otimes W)^{*}$ which sends $\alpha \otimes \beta \in V^{*} \otimes W^{*}$ to $[v \otimes w \mapsto \alpha(v) \beta(w)]$. This map is injective but not surjective unless V or W is finite dimensional.

Proposition I.12. Let $(B, \mu, \eta, \Delta, \varepsilon)$ be a finite dimensional bialgebra. Then B^{*} is a bialgebra, with multiplication

$$
\mu_{B^{*}}: B^{*} \otimes B^{*} \xrightarrow{\lambda}(B \otimes B)^{*} \xrightarrow{\Delta^{*}} B^{*},
$$

unit $\eta_{B^{*}}=\varepsilon^{*}: k \rightarrow B^{*}$, counit $\varepsilon_{B^{*}}=\eta^{*}$ and comultiplication given by

$$
\Delta_{B^{*}}: B^{*} \xrightarrow{\mu^{*}}(B \otimes B)^{*} \xrightarrow{\lambda^{-1}} B^{*} \otimes B^{*},
$$

that is, $\Delta_{B^{*}}(\alpha): a \otimes b \mapsto \alpha(a b)$.
Moreover, if $f: B \rightarrow B^{\prime}$ is a morphism of bialgebras then $f^{*}: B^{\prime *} \rightarrow B^{*}$ is a morphism of bialgebras.

Remark I.13. Using the Sweedler notation, we have $\mu_{B^{*}}(\alpha \otimes \beta)(x)=(\alpha \beta)(x)=\sum_{(x)} \alpha\left(x_{(1)}\right) \beta\left(x_{(2)}\right)$. In fact, $\mu_{B^{*}}$ is the convolution product of the algebra $B^{*}=\operatorname{Hom}_{k}(B, k)$.

Moreover, we have identified k with k^{*} by sending 1 to id_{k} in defining $\eta_{B^{*}}$ and $\varepsilon_{B^{*}}$. With this identification, the unit element in B^{*} is $\eta_{B^{*}}(1)=\varepsilon^{*}\left(\mathrm{id}_{k}\right)=\varepsilon$ and $\varepsilon_{B^{*}}(\alpha)=\alpha(1)$.

Moreover, we can multiply an element γ in k^{*} and an element α in B^{*} as follows:

$$
\begin{array}{rlcccc}
\gamma \alpha: B & \xrightarrow{\sim} k \otimes B & \xrightarrow{\gamma \otimes \alpha} & k \otimes k & \xrightarrow{\rightarrow} & k \\
a & \mapsto & 1 \otimes a & \mapsto & \gamma(1) \otimes \alpha(a) & \mapsto
\end{array} \gamma(1) \alpha(a) .
$$

The product $\alpha \gamma$ is defined similarly.
Proof of Proposition I.12. From the remark above, it is clear that B^{*} is an algebra (for the convolution product, equal to $\left.\mu_{B^{*}}\right)$. The unit element is $\eta_{k} \circ \varepsilon=\operatorname{id}_{k} \circ \varepsilon=\varepsilon$.

The maps $\varepsilon_{B^{*}}$ and $\Delta_{B^{*}}$ are k-linear. We now check the counit axiom. For $\alpha \in B^{*}$, the map $\left(\left(\varepsilon_{B^{*}} \otimes\right.\right.$ id) $\left.\circ \Delta_{B^{*}}\right)(\alpha)=\sum_{(\alpha)} \varepsilon_{B^{*}}\left(\alpha_{(1)}\right) \alpha_{(2)}=\sum_{(\alpha)}\left(\alpha_{(1)} \circ \eta_{B}\right) \alpha_{(2)}$ sends $b \in B$ to $\sum_{(\alpha)}\left(\alpha_{(1)} \circ \eta_{B}\right)(1) \alpha_{(2)}(b)=$ $\Delta_{B^{*}}(\alpha)(1 \otimes b)=\alpha(b)$ using the remark made before this proof. Therefore $\left(\varepsilon_{B^{*}} \otimes \mathrm{id}\right) \circ \Delta_{B^{*}}=\mathrm{id}$. Similarly, $\left(\mathrm{id} \otimes \varepsilon_{B^{*}}\right) \circ \Delta_{B^{*}}=\mathrm{id}$.

Next, we prove that the coassociativity axiom is satisfied. For $\alpha \in B^{*}$, the map $\left(\left(\Delta_{B^{*}} \otimes \mathrm{id}\right) \circ\right.$ $\left.\Delta_{B^{*}}\right)(\alpha)=\sum_{(\alpha),\left(\alpha_{(1)}\right)}\left(\alpha_{(1)}\right)_{(1)} \otimes\left(\alpha_{(1)}\right)_{(2)} \otimes \alpha_{(2)}$ sends $a \otimes b \otimes c \in B \otimes B \otimes B$ to $\sum_{(\alpha),\left(\alpha_{(1)}\right)} \alpha_{(1)}(a b) \alpha_{(2)}(c)=$ $\alpha(a b c)$ and the map $\left(\left(\operatorname{id} \otimes\left(\Delta_{B^{*}}\right) \circ \Delta_{B^{*}}\right)(\alpha)=\sum_{(\alpha),\left(\alpha_{(2)}\right)} \alpha_{(1)} \otimes\left(\alpha_{(2)}\right)_{(1)} \otimes\left(\alpha_{(2)}\right)_{(2)}\right.$ sends $a \otimes b \otimes c \in$ $B \otimes B \otimes B$ to $\sum_{(\alpha),\left(\alpha_{(2)}\right)} \alpha_{(1)}(a) \alpha_{(2)}(b c)=\alpha(a b c)$ so that $\left(\Delta_{B^{*}} \otimes \mathrm{id}\right) \circ \Delta_{B^{*}}=\left(\mathrm{id} \otimes\left(\Delta_{B^{*}}\right) \circ \Delta_{B^{*}}\right.$.

Finally, we must prove that $\varepsilon_{B^{*}}$ and $\Delta_{B^{*}}$ are algebra maps. For α, β in B^{*},

$$
\begin{aligned}
\varepsilon_{B^{*}}(\alpha \beta)=(\alpha \beta) \circ & \eta_{B}: 1 \mapsto(\alpha \beta)(1)=\alpha(1) \beta(1)=\varepsilon_{B^{*}}(\alpha) \varepsilon_{B^{*}}(\beta) \\
\Delta_{B^{*}}(\alpha \beta): a \otimes b \mapsto & (\alpha \beta)(a b)=\sum_{(a b)} \alpha\left((a b)_{(1)}\right) \beta\left((a b)_{(2)}\right)=\sum_{(a),(b)} \alpha\left(a_{(1)} b_{(1)}\right) \beta\left(a_{(2)} b_{(2)}\right) \\
& =\sum_{(a),(b),(\alpha),(\beta)} \alpha_{(1)}\left(a_{(1)}\right) \alpha_{(2)}\left(b_{(1)}\right) \beta_{(1)}\left(a_{(2)}\right) \beta_{(2)}\left(b_{(2)}\right) \\
& =\sum_{(a),(b),(\alpha),(\beta)} \alpha_{(1)}\left(a_{(1)}\right) \beta_{(1)}\left(a_{(2)}\right) \alpha_{(2)}\left(b_{(1)}\right) \beta_{(2)}\left(b_{(2)}\right) \\
& =\sum_{(\alpha),(\beta)}\left(\alpha_{(1)} \beta_{(1)}\right)(a)\left(\alpha_{(2)} \beta_{(2)}\right)(b) \\
& =\sum_{(\alpha),(\beta)}\left(\left(\alpha_{(1)} \otimes \alpha_{(2)}\right)\left(\beta_{(1)} \otimes \beta_{(2)}\right)\right)(a \otimes b) \\
& =\left(\Delta_{B^{*}}(\alpha) \Delta_{B^{*}}(\beta)\right)(a \otimes b)
\end{aligned}
$$

hence $\Delta_{B^{*}}(\alpha \beta)=\Delta_{B^{*}}(\alpha) \Delta_{B^{*}}(\beta)$.
Now let $f: B \rightarrow B^{\prime}$ be a morphism of bialgebras. Then

$$
\begin{aligned}
\left(f^{*}(\alpha \beta)\right)(x) & =(\alpha \beta)(f(x))=\sum_{(f(x))} \alpha\left((f(x))_{(1)}\right) \beta\left((f(x))_{(2)}\right) \\
& =\sum_{(x)} \alpha\left(f\left(x_{(1)}\right)\right) \beta\left(f\left(x_{(2)}\right)\right)=\sum_{(x)}\left(f^{*}(\alpha)\right)\left(x_{(1)}\right)\left(f^{*}(\beta)\right)\left(x_{(2)}\right)=\left(f^{*}(\alpha) f^{*}(\beta)\right)(x)
\end{aligned}
$$

so that $f^{*}(\alpha \beta)=f^{*}(\alpha) f^{*}(\beta)$. Moreover, $f^{*}\left(\eta_{B^{\prime *}}(1)\right)=f^{*}\left(\varepsilon^{\prime}\right)=\varepsilon^{\prime} \circ f=\varepsilon$, so that f^{*} is a morphism of algebras. We also have

$$
\begin{array}{r}
\varepsilon_{B^{*}} \circ f^{*}(\alpha)=\varepsilon_{B^{*}}(\alpha \circ f)=\alpha \circ f \circ \eta_{B}: 1 \mapsto \alpha(f(1))=\alpha(1)=\varepsilon_{B^{\prime *}}(\alpha)(1) \\
\Delta_{B^{*}}\left(f^{*}(\alpha)\right)=\Delta_{B^{*}}(\alpha \circ f): a \otimes b \mapsto \alpha \circ f(a b) \\
\left(f^{*} \otimes f^{*}\right) \circ \Delta_{B^{*}}(\alpha)=\sum_{(\alpha)}\left(\alpha_{(1)} \circ f\right) \otimes\left(\alpha_{(2)} \circ f\right): a \otimes b \mapsto \alpha(f(a) f(b))=\alpha(f(a b))
\end{array}
$$

so that $\varepsilon_{B^{*}} \circ f^{*}=\varepsilon_{B^{\prime *}}$ and $\Delta_{B^{*}} \circ f^{*}=\left(f^{*} \otimes f^{*}\right) \circ \Delta_{B^{*}}$. Therefore, f^{*} is a morphism of bialgebras.
Remark I.14. Note that the dual of a bialgebra is always an algebra (even if the bialgebra is note finite dimensional).

Proposition I.15. Let B be a finite dimensional bialgebra. Then the canonical isomorphism $i: B \rightarrow B^{* *}$ is an isomorphism of bialgebras.

Proof. Let a, b be elements in B and let α, β be elements in B^{*}. Write i_{a} for $i(a)$ (so that $i_{a}(\alpha)=\alpha(a)$). Then

$$
\begin{aligned}
i_{a b}(\alpha) & =\alpha(a b)=\sum_{(\alpha)} \alpha_{(1)}(a) \alpha_{(2)}(b)=\sum_{(\alpha)} i_{a}\left(\alpha_{(1)}\right) i_{b}\left(\alpha_{(2)}\right)=\left(i_{a} i_{b}\right)(\alpha) \\
i_{1}(\alpha) & =\alpha(1)=\varepsilon_{B^{*}}(\alpha)=\left(\eta_{B^{* *}}(1)\right)(\alpha)=\left(1_{B^{* *}}\right)(\alpha) \\
\Delta_{B^{* *}}\left(i_{a}\right)(\alpha \otimes \beta) & =i_{a}(\alpha \beta)=(\alpha \beta)(a)=\sum_{(a)} \alpha\left(a_{(1)}\right) \beta\left(a_{(2)}\right)=\sum_{(a)} i_{a_{(1)}}(\alpha) i_{a_{(2)}}(\beta)=\sum_{(a)}\left(i_{a_{(1)}} i_{a_{(2)}}\right)(\alpha \otimes \beta) \\
& =((i \otimes i)(\Delta(a)))(\alpha \otimes \beta) \\
\varepsilon_{B^{* *}}\left(i_{a}\right) & =i_{a}\left(1_{B^{*}}\right)=i_{a}(\varepsilon)=\varepsilon(a)
\end{aligned}
$$

and the result follows.
Example I.16. Let G be a finite group. Then the bialgebras $k G$ and k^{G} are dual to each other (up to isomorphism).

Proof. The set $\{g ; g \in G\}$ is a basis for $k G$, whose dual basis is $\left\{e_{g} ; g \in G\right\}$ where $e_{g}: k G \rightarrow k$ is defined on the given basis of $k G$ by $e_{g}(h)=\left\{\begin{array}{ll}1 & \text { if } h=g \\ 0 & \text { if } h \neq g .\end{array}\right.$ Define a k-linear isomorphism $\varphi:(k G)^{*} \rightarrow k^{G}$ by $\varphi\left(e_{g}\right)=\delta_{g}$ for all $g \in G$.

We must now prove that φ is an isomorphism of bialgebras.
$>\varphi\left(1_{(k G)^{*}}\right)=\varphi\left(\varepsilon_{k G}\right)=\varphi\left(\sum_{g \in G} e_{g}\right)=\sum_{g \in G} \delta_{g}=1_{k G}$.
$>$ For g, h, k in G, we have $e_{g} e_{h}(k)=\sum_{(k)} e_{g}\left(k_{(1)}\right) e_{h}\left(k_{(2)}\right)=e_{g}(k) e_{h}(k)=\left\{\begin{array}{ll}1 & \text { if } k=g=h \\ 0 & \text { otherwise }\end{array}\right.$ hence $e_{g} e_{h}=\left\{\begin{array}{ll}e_{g} & \text { if } g=h \\ 0 & \text { otherwise } .\end{array}\right.$ Therefore $\varphi\left(e_{g} e_{h}\right)=\left\{\begin{array}{ll}\delta_{g} & \text { if } g=h \\ 0 & \text { otherwise } .\end{array}=\delta_{g} \delta_{h}=\varphi\left(e_{g}\right) \varphi\left(e_{h}\right)\right.$.
$>\varepsilon_{k^{G}}\left(\varphi\left(e_{g}\right)\right)=\varepsilon_{k^{G}}\left(\delta_{g}\right)=\left\{\begin{array}{ll}1 & \text { if } g=1 \\ 0 & \text { otherwise }\end{array}\right.$ and $\varepsilon_{(k G)^{*}}\left(e_{g}\right)=e_{g}(1)=\left\{\begin{array}{ll}1 & \text { if } g=1 \\ 0 & \text { otherwise }\end{array}\right.$ so that $\varepsilon_{k^{G}}\left(\varphi\left(e_{g}\right)\right)=\varepsilon_{(k G)^{*}}\left(e_{g}\right)$.
$>$ We have $\Delta_{k^{G}}\left(\varphi\left(e_{g}\right)\right)=\Delta_{k^{G}}\left(\delta_{g}\right)=\sum_{h, k \in G ; k h=g} \delta_{h} \otimes \delta_{k}$. Moreover $\Delta_{(k G)^{*}}\left(e_{g}\right)$ sends $a \otimes b$ to $e_{g}(a b)=\left\{\begin{array}{ll}\sum_{h, k \in G ; h k=g} e_{h} \otimes e_{k} & \text { if } a b=g \\ 0 & \text { otherwise }\end{array}\right.$ so that $(\varphi \otimes \varphi)\left(\Delta_{(k G)^{*}}\left(e_{g}\right)\right)=\Delta_{k^{G}}\left(\varphi\left(e_{g}\right)\right)$.

Proposition I.17. Let B be a bialgebra. Then B is a bimodule over the algebra B^{*}, where the left and right actions are defined by

$$
\alpha \rightharpoonup b=(\mathrm{id} \otimes \alpha) \circ \Delta(b)=\sum_{(b)} \alpha\left(b_{(2)}\right) b_{(1)} \quad \text { and } \quad b \leftharpoonup \alpha=(\alpha \otimes \mathrm{id}) \circ \Delta(b)=\sum_{(b)} \alpha\left(b_{(1)}\right) b_{(2)} .
$$

Proof. $>$ Recall that the unit element in B^{*} is ε. Clearly, $\varepsilon \rightharpoonup b=b=b \leftharpoonup \varepsilon$.

$$
\begin{aligned}
& >(\alpha \beta) \rightharpoonup b=\sum_{(b)}(\alpha \beta)\left(b_{(2)}\right) b_{(1)}=\sum_{(b)} \alpha\left(b_{(2)}\right) \beta\left(b_{(3)}\right) b_{(1)}=\sum_{(b)} \beta\left(b_{(2)}\right)\left(\alpha \rightharpoonup b_{(1)}\right)=\alpha \rightharpoonup \\
& \quad\left(\sum_{(b)} \beta\left(b_{(2)}\right) b_{(1)}\right)=\alpha \rightharpoonup(\beta \rightharpoonup b) .
\end{aligned}
$$

Similarly, $b \leftharpoonup(\alpha \beta)=(b \leftharpoonup \alpha) \leftharpoonup \beta$.
$>(\alpha \rightharpoonup b) \leftharpoonup \beta=\sum_{(b)} \alpha\left(b_{(2)}\right) b_{(1)} \leftharpoonup \beta=\sum_{(b)} \alpha\left(b_{(3)}\right) b_{(2)} \beta\left(b_{(1)}\right)=\sum_{(b)} \alpha \rightharpoonup b_{(2)} \beta\left(b_{(1)}\right)=\alpha \rightharpoonup$ $(b \leftharpoonup \beta)$.

Definition I.18. Let B be a bialgebra. An element $x \in B$ is called grouplike if $x \neq 0$ and $\Delta(x)=x \otimes x$. The set of grouplike elements in B is denoted by $G(B)$.

Remark I.19. If x is a grouplike element in B, then $\varepsilon(x)=1$. Indeed, we have $x=(\varepsilon \otimes \mathrm{id})(\Delta(x))=\varepsilon(x) x$ with $x \neq 0$.

Example I.20. $>$ In any bialgebra $B, 1$ is grouplike (since Δ is an algebra map).
$>$ Let G be a group. Then $G(k G)=G$.

Proof. By definition of Δ, the elements in G are grouplike elements in $k G$.
Let $x=\sum_{g \in G} \lambda_{g} g$, with $\lambda_{g} \in k$ for all g, be a grouplike element in $k G$. The identity $\Delta(x)=x \otimes x$ becomes $\sum_{g \in G} \lambda_{g} g \otimes g=\sum_{g, h \in G} \lambda_{g} \lambda_{h} g \otimes h$. In particular, $\lambda_{g}^{2}=\lambda_{g}$ for all $g \in G$ so that $\lambda_{g} \in\{0 ; 1\}$. Moreover, $\varepsilon(x)=1$ so that $\sum_{g \in G} \lambda_{g}=1$. Therefore precisely one λ_{g} is equal to 1 , the others are equal to 0 , so that $x \in G$.
> Let G be a finite group. Then $G\left(k^{G}\right) \cong \operatorname{Alg}_{k}(k G, k)$.
More generally,
Proposition I.21. Let B be a finite dimensional bialgebra. Then the set $G\left(B^{*}\right)$ is equal to $\operatorname{Alg}_{k}(B, k)$.
Proof. Note that both $G\left(B^{*}\right)$ and $\operatorname{Alg}_{k}(B, k)$ are subsets of B^{*}.
Let α be an element in B^{*}. Then $\left(\Delta_{B^{*}}(\alpha)\right)(a \otimes b)=\alpha(a b)$ by definition of $\Delta_{B^{*}},(\alpha \otimes \alpha)(a \otimes b)=$ $\alpha(a) \alpha(b)$ and $\alpha(1)=\varepsilon_{B^{*}}(\alpha)$ so that α is a grouplike element if and only if α is an algebra map. Hence $G\left(B^{*}\right)=\operatorname{Alg}_{k}(B, k)$.

Proposition I.22. Distinct grouplike elements are linearly independent.
Proof. By induction on the number n of grouplike elements.
$>$ For $n=2$, if $\lambda_{1} g_{1}+\lambda_{2} g_{2}=0$, applying ε gives $\lambda_{2}=-\lambda_{1}$ so that $\lambda_{1}\left(g_{1}-g_{2}\right)=0$ and $\lambda_{1}=0=$ λ_{2}.
$>$ Assume the result true for $n-1$ grouplikes. Suppose that $\sum_{i=1}^{n} \lambda_{i} g_{i}=0$. Then

$$
0=\Delta\left(\sum_{i=1}^{n} \lambda_{i} g_{i}\right)-\sum_{i=1}^{n}\left(\lambda_{i} g_{i}\right) \otimes g_{n}=\sum_{i=1}^{n-1} \lambda_{i} g_{i} \otimes\left(g_{i}-g_{n}\right) .
$$

Since $\left\{g_{1}, \ldots, g_{n}\right\}$ is linearly independent, there are $g_{i}^{*} \in H^{*}$ such that $g_{i}^{*}\left(g_{j}\right)=\delta_{i, j}$. Apply $g_{j}^{*} \otimes \mathrm{id}$ to the last relation for each j with $1 \leqslant j \leqslant n-1$. Then $\lambda_{j}\left(g_{j}-g_{n}\right)=0$ for $1 \leqslant j \leqslant n-1$ so that $\lambda_{j}=0$. Finally, $\lambda_{n}=0$ also.

3. Hopf algebras

Definition I.23. A Hopf algebra is a bialgebra H endowed with a linear map $S: H \rightarrow H$ that satisfies

$$
S \star \mathrm{id}_{H}=\eta \circ \varepsilon=\mathrm{id}_{H} \star S
$$

or equivalently

$$
\forall x \in H, \sum_{(x)} S\left(x_{(1)}\right) x_{(2)}=\varepsilon(x) 1=\sum_{(x)} x_{(1)} S\left(x_{(2)}\right)
$$

The map S is called the antipode of H.
Remark I.24. The antipode is unique. Indeed, S is the inverse of id_{H} for the convolution product, and the inverse (when it exists) is unique.

Examples I.25. $>k$ is a Hopf algebra, with antipode id_{k}.
$>$ For any finite group G, the bialgebra $k G$ is a Hopf algebra with antipode defined by $S(g)=g^{-1}$.
$>$ For any group G, the bialgebra k^{G} is a Hopf algebra with antipode defined by $S\left(\delta_{g}\right)=\delta_{g^{-1}}$.
$>$ For any finite dimensional vector space V, the bialgebra $T(V)$ is a Hopf algebra with antipode determined by $S(v)=-v$ for all $v \in V$.

Proposition I.26. Let H be a Hopf algebra. Then $S:(H, \mu, \eta, \Delta, \varepsilon) \rightarrow\left(H, \mu^{o p}, \eta, \Delta^{c o p}, \varepsilon\right)$ is a morphism of bialgebras. In other words, for all x, y in H, we have

$$
S(x y)=S(y) S(x), S(1)=1, \varepsilon(S(x))=\varepsilon(x) \text { and } \sum_{(x)} S\left(x_{(1)}\right) \otimes S\left(x_{(2)}\right)=\sum_{(S(x))}(S(x))_{(2)} \otimes(S(x))_{(1)}
$$

Proof. $>$ Let $\sigma, v: H \otimes H \rightarrow H$ be the linear maps defined by $\sigma(x \otimes y)=S(x y)$ and $v(x \otimes y)=$ $S(y) S(x)$. Then

$$
\begin{aligned}
(\sigma \star \mu)(x \otimes y) & =\sum_{(x \otimes y)} \sigma\left((x \otimes y)_{(1)}\right) \mu\left((x \otimes y)_{(2)}\right)=\sum_{(x),(y)} \sigma\left(x_{(1)} \otimes y_{(1)}\right) \mu\left(x_{(2)} \otimes y_{(2)}\right) \\
& =\sum_{(x),(y)} S\left(x_{(1)} y_{(1)}\right) x_{(2)} y_{(2)}=\sum_{(x y)} S\left((x y)_{(1)}\right)(x y)_{(2)}=\varepsilon(x y) 1=\eta_{H} \circ \varepsilon_{H \otimes H}(x \otimes y) \\
(\mu \star v)(x \otimes y) & =\sum_{(x \otimes y)} \mu\left((x \otimes y)_{(1)}\right) v\left((x \otimes y)_{(2)}\right)=\sum_{(x),(y)} \mu\left(x_{(1)} \otimes y_{(1)}\right) v\left(x_{(2)} \otimes y_{(2)}\right) \\
& =\sum_{(x),(y)} x_{(1)} y_{(1)} S\left(y_{(2)}\right) S\left(x_{(2)}\right)=\sum_{(x)} x_{(1)} S\left(x_{(2)}\right) \varepsilon(y)=\varepsilon(x) \varepsilon(y) 1 \\
& =\varepsilon(x y) 1=\eta_{H} \circ \varepsilon_{H \otimes H}(x \otimes y) .
\end{aligned}
$$

Therefore μ is invertible for the convolution product on $\operatorname{Hom}_{k}(H \otimes H, H)$, and by uniqueness of the inverse, $\sigma=\mu$ as required. Moreover, $\Delta(1)=1 \otimes 1$ so that $1=\varepsilon(1) 1=1 S(1)=S(1)$ and therefore $S(1)=1$.
$>$ We must prove that $\Delta^{c o p} \circ S=(S \otimes S) \circ \Delta$, which is equivalent to $\Delta \circ S=(S \otimes S) \circ \Delta^{c o p}$. Set $\sigma=\Delta \circ S$ and $v=(S \otimes S) \circ \Delta^{c o p}$. We have

$$
\begin{aligned}
(\sigma \star \Delta)(x) & =\sum_{(x)} \sigma\left(x_{(1)}\right) \Delta\left(x_{(2)}\right)=\sum_{(x)} \Delta\left(S\left(x_{(1)}\right)\right) \Delta\left(x_{(2)}\right)=\sum_{(x)} \Delta\left(S\left(x_{(1)}\right) x_{(2)}\right)=\Delta(\varepsilon(x) 1) \\
& =\varepsilon(x) 1 \otimes 1=\eta_{H \otimes H} \circ \varepsilon_{H}(x) \\
(\Delta \star v)(x) & =\sum_{(x)} \Delta\left(x_{(1)}\right) v\left(x_{(2)}\right)=\sum_{(x)} \Delta\left(x_{(1)}\right)\left((S \otimes S)\left(x_{(3)} \otimes x_{(2)}\right)\right)=\sum_{(x)} \Delta\left(x_{(1)}\right)\left(S\left(x_{(3)}\right) \otimes S\left(x_{(2)}\right)\right) \\
& =\sum_{(x)}\left(x_{(1)} \otimes x_{(2)}\right)\left(S\left(x_{(4)}\right) \otimes S\left(x_{(3)}\right)\right)=\sum_{(x)} x_{(1)} S\left(x_{(4)}\right) \otimes x_{(2)} S\left(x_{(3)}\right) \\
& =\sum_{(x)} x_{(1)} S\left(x_{(3)}\right) \otimes \varepsilon\left(x_{(2)}\right) 1=\sum_{(x)} x_{(1)} S\left(x_{(2)}\right) \otimes 1=\varepsilon(x) 1 \otimes 1=\eta_{H \otimes H} \circ \varepsilon_{H}(x) .
\end{aligned}
$$

Therefore Δ is invertible for the convolution product on $\operatorname{Hom}_{k}(H, H \otimes H)$, with inverse σ and v so that $\sigma=v$ as required. Finally,

$$
\varepsilon(S(x))=\sum_{(x)} \varepsilon\left(S\left(\varepsilon\left(x_{(1)}\right) x_{(2)}\right)\right)=\sum_{(x)} \varepsilon\left(x_{(1)}\right) \varepsilon\left(S\left(x_{(2)}\right)\right)=\sum_{(x)} \varepsilon\left(x_{(1)} S\left(x_{(2)}\right)\right)=\varepsilon(\varepsilon(x) 1)=\varepsilon(x) .
$$

Definition-Proposition I.27. A morphism of Hopf algebras is a morphism $f: H \rightarrow H^{\prime}$ of the underlying bialgebras. It satisfies the identity $S^{\prime} \circ f=f \circ S$.

Proof. Fix $x \in H$. We have

$$
\begin{aligned}
& ((f \circ S) \star f)(x)=\sum_{(x)}(f \circ S)\left(x_{(1)}\right) f\left(x_{(2)}\right)=f\left(\sum_{(x)} S\left(x_{(1)}\right) x_{(2)}\right)=f(\varepsilon(x) 1)=\varepsilon(x) 1=\eta \circ \varepsilon(x) \\
& \left(f \star\left(S^{\prime} \circ f\right)\right)(x)=\sum_{(x)} f\left(x_{(1)}\right)\left(S^{\prime} \circ f\right)\left(x_{(2)}\right)=\sum_{(f(x))} f(x)_{(1)} S^{\prime}\left(f(x)_{(2)}\right)=\varepsilon^{\prime}(f(x)) 1=\varepsilon(x) 1=\eta \circ \varepsilon(x) .
\end{aligned}
$$

Therefore f is invertible for the convolution product, with inverse $S^{\prime} \circ f=f \circ S$.

Proposition I.28. Let H be a finite dimensional Hopf algebra. Then H^{*} is a Hopf algebra, whose antipode is the transpose S^{*} of the antipode S of H.
Moreover, the canonical isomorphism $i: H \rightarrow H^{* *}$ is an isomorphism of Hopf algebras.
Proof. We already know that H^{*} is a bialgebra. We need only check that S^{*} is the antipode, that is, that $S^{*} \star \operatorname{id}_{H^{*}}=\eta_{H^{*}} \circ \varepsilon_{H^{*}}: \alpha \mapsto \alpha(1) \varepsilon$ and that $\mathrm{id}_{H^{*}} * S^{*}=\eta_{H^{*}} \circ \varepsilon_{H^{*}}$.

For any $\alpha \in H^{*}$, we have $\left(S^{*} \star \operatorname{id}_{H^{*}}\right)(\alpha)=\sum_{(\alpha)} S^{*}\left(\alpha_{(1)}\right) \alpha_{(2)}=\sum_{(\alpha)}\left(\alpha_{(1)} \circ S\right) \alpha_{(2)}$. For any $x \in H$ we then have $\left(\left(S^{*} \star \operatorname{id}_{H^{*}}\right)(\alpha)\right)(x)=\sum_{(\alpha),(x)} \alpha_{(1)}\left(S\left(x_{(1)}\right)\right) \alpha_{(2)}\left(x_{(2)}\right)=\sum_{(x)} \alpha\left(S\left(x_{(1)}\right) x_{(2)}\right)=\alpha(\varepsilon(x) 1)=$ $\alpha(1) \varepsilon(x)$ as required. The other identity is similar.

We know that i is an isomorphism of bialgebras, therefore it is an isomorphism of Hopf algebras.

Example I.29. Let G be a finite group. Then $k G$ and k^{G} are dual Hopf algebras.
Indeed, we already know that they are dual bialgebras. Moreover, the antipode on $(k G)^{*}$ is S^{*} which sends δ_{g} to $S^{*}\left(\delta_{g}\right)=\delta_{g} \circ S: h \mapsto \delta_{g}\left(h^{-1}\right)=\delta_{g^{-1}}(h)$ so that $S^{*}\left(\delta_{g}\right)=\delta_{g^{-1}}$. Therefore S^{*} is the antipode of k^{G}.

Proposition I.30. Let H be a finite dimensional Hopf algebra. Then the set $G\left(H^{*}\right)$ of grouplike elements in H^{*} is a group.

Proof. We prove that $G\left(H^{*}\right)$ is a group for the convolution product $\alpha \star \beta: x \mapsto \sum_{(x)} \alpha\left(x_{(1)}\right) \beta\left(x_{(2)}\right)$ of H^{*}. Recall that $G\left(H^{*}\right)=\operatorname{Alg}_{k}(H, k)$.
$>$ The law is associative since H^{*} is an associative algebra.
$>$ The counit ε is in $G\left(H^{*}\right)$ since it is an algebra map, and it is the unit element in H^{*}, hence it is the unit element in $G\left(H^{*}\right)$.
$>$ Let α be an element in $G\left(H^{*}\right)$. Then

$$
((\alpha \circ S) \star \alpha)(h)=\sum_{(h)} \alpha\left(S\left(h_{(1)}\right)\right) \alpha\left(h_{(2)}\right)=\sum_{(h)} \alpha\left(S\left(h_{(1)}\right) h_{(2)}\right)=\alpha(\varepsilon(h) 1)=\varepsilon(h) \alpha(1)=\varepsilon(h)
$$

so that $(\alpha \circ S) \star \alpha=\varepsilon$. Similarly, $\alpha \star(\alpha \circ S)=\varepsilon$. Therefore, $\alpha \circ S$ is the inverse of α in $G\left(H^{*}\right)$.

Theorem I.31. Let H be a finite dimensional Hopf algebra that is isomorphic to k^{n} as an algebra. Then there exists a finite group G such that $H \cong k^{G}$ as Hopf algebras.

Proof. Set $G=G\left(H^{*}\right)=\operatorname{Alg}_{k}(H, k)$. We know that G is a group, whose law is the restriction of the product of H^{*} to G.
$>$ Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical basis of $k^{n} \cong H$. Let $\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ be the dual basis. Then $e_{i}^{*} \in G$ for all i; we need only check that $e_{i}^{*}\left(e_{j} e_{k}\right)=e_{i}^{*}\left(e_{j}\right) e_{i}^{*}\left(e_{k}\right)$ for all j, k and that $e_{i}^{*}(1)=1$:
\diamond We have $e_{i}^{*}\left(e_{j} e_{k}\right)=e_{i}^{*}\left(\delta_{j, k} e_{j}\right)=\delta_{i, j} \delta_{j, k}$ and $e_{i}^{*}\left(e_{j}\right) e_{i}^{*}\left(e_{k}\right)=\delta_{i, j} \delta_{i, k}=\delta_{i, j} \delta_{j, k}$.
$\diamond e_{i}^{*}(1)=e_{i}^{*}\left(\sum_{j=1}^{n} e_{j}\right)=\sum_{j=1}^{n} e_{i}^{*}\left(e_{j}\right)=1$.
Consequently, span $\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\} \subset k G \subset H^{*}=\operatorname{span}\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$, so that $k G=H^{*}$ as vector spaces.
$>$ Since $k G$ and H^{*} have the same unit element and the same product, $k G$ and H^{*} are equal as algebras. Moreover, they have the same comultiplication and counit (it is enough to check this on the basis elements e_{i}^{*}), therefore they are equal as bialgebras.
$>$ Dualising gives $H \cong k^{G}$.
Definition I.32. Let H be a Hopf algebra.
A Hopf ideal in H is a two-sided ideal I in the algebra H such that

$$
\Delta(I) \subseteq I \otimes H+H \otimes I, \quad \varepsilon(I)=0 \quad \text { and } \quad S(I) \subseteq I
$$

A Hopf subalgebra of H is a subalgebra K of H that satisfies

$$
\Delta(K) \subseteq K \otimes K \quad \text { and } \quad S(K) \subseteq K
$$

Lemma I.33. Let H be a Hopf algebra and let E be a subset of H that satisfies $\Delta(E) \subseteq E \otimes H+H \otimes E$, $\varepsilon(E)=0$ and $S(E) \subseteq E$. Then the ideal in H generated by E is a Hopf ideal.

Proof. Let I be the ideal generated by E. Let h be an element in I, then $h=\sum_{j \in J} u_{j} e_{j} v_{j}$ where J is a finite set, the e_{j} are in E and the u_{j}, v_{j} are in H. Clearly, since ε is a morphism of algebras such that $\varepsilon(E)=0$, we have $\varepsilon(I)=0$.

By assumption, $\Delta\left(e_{j}\right) \in E \otimes H+H \otimes E$ so that $\Delta\left(e_{j}\right)=\sum_{r \in R} e_{r} \otimes x_{r j}+\sum_{t \in T} y_{t j} \otimes e_{t}$ where R, T are finite sets, the e_{r}, e_{t} are in E and the $x_{r j}, y_{t j}$ are in H. We then have

$$
\begin{aligned}
\Delta(h)= & \sum_{j \in J} \Delta\left(u_{j}\right) \Delta\left(e_{j}\right) \Delta\left(v_{j}\right) \\
= & \sum_{j \in J}\left(\sum_{\left(u_{j}\right)}\left(u_{j}\right)_{(1)} \otimes\left(u_{j}\right)_{(2)}\right)\left(\sum_{r \in R} e_{r} \otimes x_{r j}+\sum_{t \in T} y_{t j} \otimes e_{t}\right)\left(\sum_{\left(v_{j}\right)}\left(v_{j}\right)_{(1)} \otimes\left(v_{j}\right)_{(2)}\right) \\
= & \sum_{j \in J} \sum_{\left(u_{j}\right)_{\left(v_{j}\right)}} \sum_{r \in R}\left(u_{j}\right)_{(1)} e_{r}\left(v_{j}\right)_{(1)} \otimes\left(u_{j}\right)_{(2)} x_{r j}\left(v_{j}\right)_{(2)} \\
& \quad+\sum_{j \in J} \sum_{\left(u_{j}\right),\left(v_{j}\right)} \sum_{t \in T R}\left(u_{j}\right)_{(1)} y_{t j}\left(v_{j}\right)_{(1)} \otimes\left(u_{j}\right)_{(2)} e_{t}\left(v_{j}\right)_{(2)} \\
\in & H \otimes I+I \otimes H
\end{aligned}
$$

and $S(h)=\sum_{j \in J} S\left(v_{j}\right) S\left(e_{j}\right) S\left(u_{j}\right)$ is in I since $S\left(e_{j}\right)$ is in E by assumption.
Therefore $\Delta(I) \subseteq I \rightarrow H+H \otimes I$ and $S(I) \subseteq I$ as required.
Example I.34. Let \mathfrak{g} be a Lie algebra and let I be the ideal in $T(\mathfrak{g})$ generated by the elements $x y-y x-$ $[x, y]$ for all x, y in \mathfrak{g}. Then I is a Hopf ideal in $T(\mathfrak{g})$.

Set $E=\{x y-y x-[x, y] ; x \in \mathfrak{g}, y \in \mathfrak{g}\}$. We need only check that $\Delta(E) \subseteq E \otimes H+H \otimes E, \varepsilon(E)=$ 0 and $S(E) \subseteq E$. The fact that $\varepsilon(E)=0$ is clear since ε vanishes on all elements of positive degree. Moreover,

$$
\begin{aligned}
\Delta(x y-y x-[x, y])= & \Delta(x) \Delta(y)-\Delta(y) \Delta(x)-\Delta([x, y]) \\
= & (1 \otimes x+x \otimes 1)(1 \otimes y+y \otimes 1)-(1 \otimes y+y \otimes 1)(1 \otimes x+x \otimes 1) \\
& -(1 \otimes[x, y]+[x, y] \otimes 1) \\
= & x y \otimes 1-y x \otimes 1-[x, y] \otimes 1+1 \otimes x y-1 \otimes y x-1 \otimes[x, y] \\
= & (x y-y x-[x, y]) \otimes 1+1 \otimes(x y-y x-[x, y]) \in E \otimes H+H \otimes E \\
S(x y-y x-[x, y])= & S(y) S(x)-S(x) S(y)-S([x, y])=(-y)(-x)-(-x)(-y)-(-[x, y]) \\
= & y x-x y-[y, x] \in E .
\end{aligned}
$$

Lemma I.35. Let $f: U \rightarrow U^{\prime}$ and $g: V \rightarrow V^{\prime}$ be linear maps. Then $\operatorname{Ker}(f \otimes g)=\operatorname{Ker}(f) \otimes V+U \otimes$ $\operatorname{Ker}(g)$.

Proof. The inclusion $\operatorname{Ker}(f) \otimes V+U \otimes \operatorname{Ker}(g) \subseteq \operatorname{Ker}(f \otimes g)$ is clear.
Let $\left\{x_{i} ; i \in I\right\}$ be a basis of $\operatorname{Ker}(f)$, that we complete to obtain a basis $\left\{x_{i} ; i \in I\right\} \cup\left\{y_{j} ; j \in J\right\}$ of U. The restriction of f to $W=\operatorname{span}\left\{y_{j} ; j \in J\right\}$ is injective. If $X \in \operatorname{Ker}(f \otimes g)$, then X can be written uniquely $X=\sum_{i \in I} x_{i} \otimes z_{i}+\sum_{j \in J} y_{j} \otimes t_{j}$ for some z_{i}, t_{j} in V. We then have $\sum_{j \in J} f\left(y_{j}\right) \otimes g\left(t_{j}\right)=0$ with the $f\left(y_{j}\right)$ linearly independent, therefore $g\left(t_{j}\right)=0$ for all $j \in J$ (for $j \in J$, let $\alpha_{j} \in U^{*}$ be equal to 1 on $f\left(y_{j}\right)$ and 0 on all other elements of a basis of U containing $\left\{f\left(y_{j}\right) ; j \in J\right\}$, then apply $\left.\alpha_{j} \otimes \mathrm{id}_{V}\right)$. Finally $X \in \operatorname{Ker}(f) \otimes V+U \otimes \operatorname{Ker}(g)$.

Proposition I.36. Let $f: H \rightarrow H^{\prime}$ be a morphism of Hopf algebras. Then Ker f is a Hopf ideal in H and $\operatorname{Im} f$ is a Hopf subalgebra of H^{\prime}.

Proof. Since f is a morphism of algebras, $\operatorname{Ker} f$ is an ideal in H and $\operatorname{Im} f$ is a subalgebra of H.
Take $x \in \operatorname{Ker} f$. Then $(f \otimes f)(\Delta(x))=\Delta^{\prime}(f(x))=\Delta^{\prime}(0)=0$ so that $\Delta(x) \in \operatorname{Ker}(f \otimes f)=\operatorname{Ker} f \otimes$ $H+H \otimes \operatorname{Ker} f$ by Lemma I.35. Moreover, $f(S(x))=S^{\prime}(f(x))=S^{\prime}(0)=0$ so that $S(x) \in \operatorname{Ker} f$. Finally, $\varepsilon(x)=\varepsilon^{\prime}(f(x))=\varepsilon^{\prime}(0)=0$, therefore Ker f is a Hopf ideal of H.

Now let $y=f(x)$ be an element of $\operatorname{Im} f$. Then $\Delta^{\prime}(y)=\Delta^{\prime}(f(x))=(f \otimes f)(\Delta(x)) \in \operatorname{Im}(f \otimes f)=$ $\operatorname{Im} f \otimes \operatorname{Im} f$ and $S^{\prime}(y)=S^{\prime}(f(x))=f(S(x)) \in \operatorname{Im} f$. Therefore $\operatorname{Im} f$ is a Hopf subalgebra of H^{\prime}.

Proposition I.37. Let H be a Hopf algebra and let I be a Hopf ideal in H. Then there exists a unique structure of Hopf algebra on the algebra H / I such that the natural projection $\pi: H \rightarrow H / I$ is a morphism of Hopf algebras.

Proof. The algebra map $(\pi \otimes \pi) \circ \Delta: H \rightarrow H / I \otimes H / I$ vanishes on the ideal I, therefore it induces a unique algebra map $\bar{\Delta}: H / I \rightarrow H / I \otimes H / I$ such that $\bar{\Delta} \circ \pi=(\pi \otimes \pi) \circ \Delta$. Similarly, ε induces a unique algebra $\operatorname{map} \bar{\varepsilon}: H / I \rightarrow k$ such that $\bar{\varepsilon} \circ \pi=\varepsilon$ and S induces a unique algebra map $\bar{S}: H / I \rightarrow(H / I)^{o p}$ such that $\bar{S} \circ \pi=\pi \circ S$.

Note that the product and unit maps on H / I satisfy $\bar{\mu} \circ(\pi \otimes \pi)=\pi \circ \mu$ and $\bar{\eta}=\pi \circ \eta$. We have

$$
\begin{aligned}
(\bar{\Delta} \otimes \mathrm{id}) \circ \bar{\Delta} \circ \pi & =(\bar{\Delta} \otimes \mathrm{id}) \circ(\pi \otimes \pi) \circ \Delta=(\pi \otimes \pi \otimes \pi) \circ(\Delta \otimes \mathrm{id}) \circ \Delta \\
& =(\pi \otimes \pi \otimes \pi) \circ(\mathrm{id} \otimes \Delta) \circ \Delta=(\mathrm{id} \otimes \bar{\Delta}) \circ(\pi \otimes \pi) \circ \Delta=(\mathrm{id} \otimes \bar{\Delta}) \circ \bar{\Delta} \circ \pi \\
(\bar{\varepsilon} \otimes \mathrm{id}) \circ \bar{\Delta} \circ \pi & =(\bar{\varepsilon} \otimes \mathrm{id}) \circ(\pi \otimes \pi) \circ \Delta=(\varepsilon \otimes \pi) \circ \Delta=\pi \\
(\mathrm{id} \otimes \bar{\varepsilon}) \circ \bar{\Delta} \circ \pi & =\mathrm{id} \otimes(\bar{\varepsilon}) \circ(\pi \otimes \pi) \circ \Delta=(\pi \otimes \varepsilon) \circ \Delta=\pi \\
\bar{\mu} \circ(\bar{S} \otimes \mathrm{id}) \circ \bar{\Delta} \circ \pi & =\bar{\mu} \circ(\bar{S} \otimes \mathrm{id}) \circ(\pi \otimes \pi) \circ \Delta=\bar{\mu} \circ(\pi \otimes \pi) \circ(S \otimes \mathrm{id}) \Delta=\pi \circ \mu \circ(S \otimes \mathrm{id}) \Delta \\
& =\pi \circ \eta \circ \varepsilon=\bar{\eta} \circ \bar{\varepsilon} \circ \pi \\
\bar{\mu} \circ(\mathrm{id} \otimes \bar{S}) \circ \bar{\Delta} \circ \pi & =\bar{\mu} \circ(\mathrm{id} \otimes \bar{S}) \circ(\pi \otimes \pi) \circ \Delta=\bar{\mu} \circ(\pi \otimes \pi) \circ(\mathrm{id} \otimes S) \Delta=\pi \circ \mu \circ(\mathrm{id} \otimes S) \Delta \\
& =\pi \circ \eta \circ \varepsilon=\bar{\eta} \circ \bar{\varepsilon} \circ \pi
\end{aligned}
$$

and since π is surjective, we get $(\bar{\Delta} \otimes \mathrm{id}) \circ \bar{\Delta}=(\mathrm{id} \otimes \bar{\Delta}) \circ \bar{\Delta},(\bar{\varepsilon} \otimes \mathrm{id}) \circ \bar{\Delta}=\mathrm{id}=(\mathrm{id} \otimes \bar{\varepsilon}) \circ \bar{\Delta}$ and $\bar{\mu} \circ(\bar{S} \otimes \mathrm{id}) \circ \bar{\Delta}=\bar{\eta} \circ \bar{\varepsilon}=\bar{\mu} \circ(\mathrm{id} \otimes \bar{S}) \circ \bar{\Delta}$ so that H / I is a bialgebra with structure maps $\bar{\Delta}, \bar{\varepsilon}$ and \bar{S}.

It is clear from the formulas (or diagrams) above that π is a morphism of Hopf algebras.
Example I.38. Let \mathfrak{g} be a Lie algebra. Let $U(\mathfrak{g})=T(\mathfrak{g}) /(\{x y-y x-[x, y] ; x \in \mathfrak{g}, y \in \mathfrak{g}\})$. Then $U(\mathfrak{g})$ is a Hopf algebra, whose comultiplication and counit are determined by

$$
\begin{aligned}
\Delta(x) & =x \otimes 1+1 \otimes x \quad \text { for all } x \in \mathfrak{g} \\
\varepsilon(x) & =0 \quad \text { for all } x \in \mathfrak{g} \\
\varepsilon(1) & =1
\end{aligned}
$$

Indeed, we have already seen that $(\{x y-y x-[x, y] ; x \in \mathfrak{g}, y \in \mathfrak{g}\})$ is a Hopf ideal in $T(\mathfrak{g})$.

II. Introduction to Hopf bimodules.

Let A be an algebra. Recall that a left A-module is a vector space M endowed with a k-linear map $\mu_{M}: A \otimes M \rightarrow M$ that satisfies

and a right A-module is a vector space M endowed with a k-linear map $\mu_{M}: M \otimes A \rightarrow M$ that satisfies

Finally, an A-bimodule is a left module and a right module M with structure maps $\mu_{\ell}: A \otimes M \rightarrow M$ and $\mu_{r}: M \otimes A \rightarrow M$ that satisfy

(that is, the left and right actions commute).
We will now formally dualise these definitions.

Definition II.1. Let B be a bialgebra. A left comodule over B is a pair $\left(V, \rho_{V}\right)$ where V is a vector space and $\rho_{V}: V \rightarrow B \otimes V$ is a linear map that satisfies

The map ρ_{V} is called the left coaction. A right comodule over B is a pair $\left(V, \rho_{V}\right)$ where V is a vector space and $\rho_{V}: V \rightarrow V \otimes B$ is a linear map that satisfies

The map ρ_{V} is called the right coaction. A bicomodule over B is a left comodule and right comodule V with structure maps $\rho_{\ell}: V \rightarrow B \otimes V$ and $\rho_{r}: V \rightarrow V \otimes B$ that commute:

Notation II.2. There is also a Sweedler notation for comodules.
$>$ If V is a right B-comodule, we put $\rho_{V}(v)=\sum_{(v)} v_{(0)} \otimes v_{(1)}$. The axioms become, for all $v \in V$,

$$
\begin{aligned}
\sum_{(m),\left(m_{(1)}\right)} m_{(0)} \otimes\left(m_{(1)}\right)_{(1)} \otimes\left(m_{(1)}\right)_{(2)} & =\sum_{(m),\left(m_{(0)}\right)}\left(m_{(0)}\right)_{(0)} \otimes\left(m_{(0)}\right)_{(1)} \otimes m_{(1)} \\
& =: \sum_{(m)} m_{(0)} \otimes m_{(1)} \otimes m_{(2)}
\end{aligned}
$$

$>$ If V is a left B-comodule, we put $\rho_{V}(v)=\sum_{(v)} v_{(-1)} \otimes v_{(0)}$. The axioms become, for all $v \in V$,

$$
\begin{aligned}
\sum_{(m),\left(m_{(-1)}\right)}\left(m_{(-1)}\right)_{(1)} \otimes\left(m_{(-1)}\right)_{(2)} \otimes m_{(0)} & =\sum_{(m),\left(m_{(0)}\right)} m_{(-1)} \otimes\left(m_{(0)}\right)_{(-1)} \otimes\left(m_{(0)}\right)_{(0)} \\
& =: \sum_{(m)} m_{(-2)} \otimes m_{(-1)} \otimes m_{(0)} .
\end{aligned}
$$

Example II.3. $>H$ is a bicomodule over itself, using Δ.
$>k$ is a bicomodule over H, using η : for any $\lambda \in k, \rho_{\ell}(\lambda)=1_{H} \otimes \lambda$ and $\rho_{r}(\lambda)=\lambda \otimes 1_{H}$. Using the identifications $k \otimes H \cong H \cong H \otimes k$, both coactions are given by η. This is called the trivial bicomodule (or comodule if we forget one of the structures).

Examples of constructions of new H-(co)modules over a Hopf algebra H.

$>$ Let M be a left H-module. Then M is a right H-module via S, that is,

$$
\forall h \in H, \forall m \in M, \quad m \triangleleft h=S(h) m .
$$

Similarly, every right H-module is a left H-module via S.
$>$ Let M be a left H-module. It is well known that the k-dual M^{*} is a right H-module:

$$
\forall \alpha \in M^{*}, \forall h \in H, \forall m \in M, \quad(h \cdot \alpha)(m)=\alpha(m h)
$$

Hence M^{*} is a left H-module via S.
$>$ Let M and N be two left H-modules. Then $M \otimes N$ is a left H-module via Δ, that is,

$$
\forall h \in H, \forall m \in M, \forall n \in N, \quad h(m \otimes n)=\sum_{(h)} h_{(1)} m \otimes h_{(2)} n
$$

This action of H on $M \otimes N$ is called diagonal.
$>$ We can dualise the previous construction. Let M and N be two left H-comodules. Then $M \otimes N$ is a left H-comodule with coaction

$$
\rho_{M \otimes N}=(\mu \otimes \mathrm{id}) \circ(\mathrm{id} \otimes \tau \otimes \mathrm{id}) \circ(\Delta \otimes \Delta)
$$

that is, $\rho_{M \otimes N}(m \otimes n)=\sum_{(m),(n)} m_{(-1)} n_{(-1)} \otimes m_{(0)} \otimes n_{(0)}$. This coaction is called codiagonal.
Definition II.4. Let M and N be two left comodules over B. A morphism of left comodules from M to N is a linear map $f: M \rightarrow N$ such that $\rho_{n} \circ f=(\mathrm{id} \otimes f) \circ \rho_{M}$, that is,

A morphism of right comodules is defined similarly. A morphism of bicomodules is a morphism of left and right comodules.

We shall now combine module and comodule structures.
Definition II.5. Let H be a Hopf algebra. A left Hopf module over H is a left H-module M that is also a left comodule whose structure map $\rho_{M}: M \rightarrow H \otimes M$ is a morphism of left H-modules, where the left H module structure on $H \otimes M$ is the diagonal structure given above (with the Sweedler notation, this can be written $\left.\sum_{(h m)}(h m)_{(-1)} \otimes(h m)_{(0)}=\sum_{(m),(h)} h_{(1)} m_{(-1)} \otimes h_{(2)} m_{(0)}\right)$.

A morphism of left Hopf modules is a morphism of left H-modules that is also a morphism of left H comodules.

The definitions of a right Hopf module over H and of a morphism of right Hopf modules are similar.
A Hopf bimodule over H is an H-bimodule M that is also a bicomodule whose structure maps $\rho_{\ell}: M \rightarrow$ $H \otimes M$ and $\rho_{r}: M \rightarrow M \otimes H$ are morphisms of H-bimodules. A morphism of Hopf bimodules is a morphism of H -bimodules that is also a morphism of H -bicomodules.

Example II.6. $>$ Let H be a Hopf algebra. Then H is a left (resp. right) Hopf module with coaction Δ.
$>$ Let M be any left H-module. Then $H \otimes M$ is a left H-module for the diagonal action. It is moreover a left Hopf module with coaction $\Delta \otimes \mathrm{id}$.

Proof. The fact that $H \otimes M$ is a left comodule follows from the properties of Δ. We must check that $\rho=\Delta \otimes \mathrm{id}$ is a morphism of left H-modules. Let a, h be elements in H and m be an element of M. Then

$$
\begin{aligned}
a \rho(h \otimes m) & =a\left(\sum_{(h)} h_{(1)} \otimes h_{(2)} \otimes m\right)=\sum_{(h),(a)} a_{(1)} h_{(1)} \otimes a_{(2)} h_{(2)} \otimes a_{(3)} m \\
\rho(a(h \otimes m)) & =\rho\left(\sum_{(a)} a_{(1)} h \otimes a_{(2)} m\right)=\sum_{(a)} \Delta\left(a_{(1)} h\right) \otimes a_{(2)} m=\sum_{(h),(a)} a_{(1)} h_{(1)} \otimes a_{(2)} h_{(2)} \otimes a_{(3)} m
\end{aligned}
$$

so that $a \rho(h \otimes m)=\rho(a(h \otimes m))$.
$>$ Let V be a vector space. Then V is a left H-module via ε (that is, $h \cdot v=\varepsilon(h) v$ for $v \in V$ and $h \in H$, we say the V is a trivial left H-module). Therefore $M=H \otimes V$ is a left Hopf module, with $\mu_{M}=\mu \otimes \mathrm{id}$ and $\rho_{M}=\Delta \otimes \mathrm{id}$.
Indeed, $a(h \otimes v)=\sum_{(a)} a_{(1)} h \otimes \varepsilon\left(a_{(2)}\right) v=\sum_{(a)} a_{(1)} \varepsilon\left(a_{(2)}\right) h \otimes v=a h \otimes v$.
This will be called a trivial Hopf module.
$>H$ is a Hopf bimodule for the multiplication and comultiplication of H.
$>$ Let M and N be Hopf bimodules (eg. $M=H=N$) and let V be a bicomodule. Then $M \otimes V \otimes N$ is a Hopf bimodule with the following structure maps:

$$
\begin{aligned}
& h \cdot(m \otimes v \otimes n)=(h m) \otimes v \otimes n, \quad \rho_{\ell}(m \otimes v \otimes n)=\sum_{(m),(v),(n)} m_{(-1)} v_{(-1)} n_{(-1)} \otimes\left(m_{(0)} \otimes v_{(0)} \otimes n_{(0)}\right), \\
& (m \otimes v \otimes n) \cdot h=m \otimes v \otimes(n h), \quad \rho_{r}(m \otimes v \otimes n)=\sum_{(m),(v),(n)}\left(m_{(0)} \otimes v_{(0)} \otimes n_{(0)}\right) \otimes m_{(1)} v_{(1)} n_{(1)}
\end{aligned}
$$

for any $h \in H, m \in M, n \in N$ and $v \in V$ (the coactions are codiagonal).
In particular, taking $V=k$, the tensor product of Hopf bimodules is a Hopf bimodule as above. For instance, $H^{\otimes n}$ is a Hopf bimodule with codiagonal coactions for any $n \in \mathbb{N}$.
$>$ Let M and N be Hopf bimodules (eg. $M=H=N$) and let W be a comodule. Then $M \otimes W \otimes N$ is a Hopf bimodule with the following structure maps:
$h \cdot(m \otimes w \otimes n)=\sum_{(h)}\left(h_{(1)} m\right) \otimes\left(h_{(2)} w\right) \otimes\left(h_{(3)} n\right), \quad \rho_{\ell}(m \otimes w \otimes n)=\sum_{(m)} m_{(-1)} \otimes\left(m_{(0)} \otimes w \otimes n\right)$,
$(m \otimes w \otimes n) \cdot h=\sum_{(h)}\left(m h_{(1)}\right) \otimes\left(w h_{(2)}\right) \otimes\left(n h_{(3)}\right), \quad \rho_{r}(m \otimes w \otimes n)=\sum_{(n)}\left(m \otimes w \otimes n_{(0)}\right) \otimes n_{(1)}$
for any $h \in H, m \in M, n \in N$ and $w \in W$ (the actions are diagonal).
In particular, taking $W=k$, the tensor product of Hopf bimodules is a Hopf bimodule as above (the structure is not the same as in the previous example). For instance, $H^{\otimes n}$ is a Hopf bimodule for any with diagonal actions $n \in \mathbb{N}$.
We shall now see that every Hopf module is isomorphic to a trivial Hopf module $H \otimes V$. For this we need the following definition.

Definition II.7. Let B be a bialgebra and let M be a left B-comodule. The space of (left) coinvariants of M is the vector space ${ }^{H} M:=\{m \in M ; \rho(m)=1 \otimes m\}$.

Theorem II. 8 (Fundamental Theorem for Hopf modules). Let H be a Hopf algebra and let M be a left Hopf module. Then $M \cong H \otimes{ }^{H} M$ as left Hopf modules, where $H \otimes{ }^{H} M$ is a trivial Hopf module. In particular, M is a free left H-module of rank $\operatorname{dim}_{k}{ }^{H} M$.

Proof. Define $\varphi: H \otimes{ }^{H} M \rightarrow M$ by $\varphi(h \otimes v)=h v$ and $\psi: M \rightarrow H \otimes M$ by $\psi(m)=\sum_{(m)} m_{(-2)} \otimes$ $S\left(m_{(-1)}\right) m_{(0)}$.
$>$ We first check that $\psi(M) \subseteq H \otimes{ }^{H} M$.

$$
\begin{aligned}
\sum_{(m)} \rho\left(S\left(m_{(-1)}\right) m_{(0)}\right) & =\sum_{(m)} S\left(m_{(-1)}\right) \rho\left(m_{(0)}\right)=\sum_{(m)} S\left(m_{(-2)}\right)\left(m_{(-1)} \otimes m_{(0)}\right) \\
& =\sum_{(m),(S(m))}\left(S\left(m_{(-2)}\right)\right)_{(1)} m_{(-1)} \otimes\left(S\left(m_{(-2)}\right)\right)_{(2)} m_{(0)} \\
& =\sum_{(m)} S\left(m_{(-2)}\right) m_{(-1)} \otimes S\left(m_{(-3)}\right) m_{(0)}=\sum_{(m)} \varepsilon\left(m_{(-1)}\right) 1 \otimes S\left(m_{(-2)}\right) m_{(0)} \\
& =\sum_{(m)} 1 \otimes S\left(m_{(-1)}\right) m_{(0)}
\end{aligned}
$$

so that $S\left(m_{(-1)}\right) m_{(0)} \in{ }^{H} M$.
$>$ We now check that φ is a bijection.

$$
\begin{aligned}
\psi \circ \varphi(h \otimes v)= & \psi(h v)=\sum_{(h v)}(h v)_{(-2)} \otimes S\left((h v)_{(-1)}\right)(h v)_{(0)}=\sum_{(h),(v)} h_{(1)} v_{(-2)} \otimes S\left(h_{(2)}^{\left.v_{(-1)}\right)} h_{(3)} v_{(0)}\right. \\
& \stackrel{\left(v \in \in^{H} M\right)}{=} \sum_{(h)} h_{(1)} \otimes S\left(h_{(2)}\right) h_{(3)} v=\sum_{(h)} h_{(1)} \otimes \varepsilon\left(h_{(2)}\right) v=h \otimes v \\
\varphi \circ \psi(m)= & \sum_{(m)} \varphi\left(m_{(-2)} \otimes S\left(m_{(-1)}\right) m_{(0)}\right)=\sum_{(m)} m_{(-2)} S\left(m_{(-1)}\right) m_{(0)} \\
& =\sum_{(m),\left(m_{(-1)}\right)}\left(m_{(-1)}\right)_{(1)} S\left(\left(m_{(-1)}\right)_{(2)}\right) m_{(0)}=\sum_{(m)} \varepsilon\left(m_{(-1)}\right) m_{(0)}=m
\end{aligned}
$$

so that $\psi \circ \varphi=\mathrm{id}$ and $\varphi \circ \psi=\mathrm{id}$.
$>$ We finally prove that φ is a morphism of Hopf modules. It is clearly an H-module morphism, and, since $v \in{ }^{H} M$,

$$
\begin{aligned}
\rho \circ \varphi(h \otimes v) & =\rho(h v)=\sum_{(h),(v)} h_{(1)} v_{(-1)} \otimes h_{(2)} v_{(0)}=\sum_{(h)} h_{(1)} \otimes h_{(2)} v \\
& =\sum_{(h)} h_{(1)} \otimes \varphi\left(h_{(2)} \otimes v\right)=(\operatorname{id} \otimes \varphi)\left(\sum_{(h)} h_{(1)} \otimes h_{(2)} \otimes v\right)=(\mathrm{id} \otimes \varphi)(\rho(h \otimes v))
\end{aligned}
$$

so that $\rho \circ \varphi=(\operatorname{id} \otimes \varphi) \circ \rho$.

III. QUIVER ALGEBRAS

1. Path algebra and identification with a tensor algebra

Definition III.1. Recall from Patrick Le Meur's lectures that a quiver is an oriented graph Γ. We denote by Γ_{0} the set of vertices, Γ_{1} the set of arrows and more generally Γ_{n} the set of paths of length n in Γ. We shall always assume that the quiver is finite, that is, that Γ_{0} and Γ_{1} are finite sets. There are two maps $\mathfrak{s , t}: \Gamma_{1} \rightarrow \Gamma_{0}$, which associate to an arrow in Γ its source and its target respectively.

The path algebra $k \Gamma$ is the k-vector space with basis the set $\bigcup_{n \in \mathbb{N}} \Gamma_{n}$ of paths in Γ, and the product of two paths p and q is given by $p q= \begin{cases}\text { concatenation of } p \text { and } q & \text { if } \mathfrak{t}(p)=\mathfrak{s}(q) \\ 0 & \text { otherwise. }\end{cases}$

The algebra $k \Gamma$ is graded, with $(k \Gamma)_{n}=k \Gamma_{n}$.
We will show that $k \Gamma$ is isomorphic to a tensor algebra.
Definition III.2. Let R be a k-algebra and let M be an R-bimodule. The tensor algebra of M over R is the R-bimodule $T_{R}(M)=\bigoplus_{n \in \mathbb{N}} T_{R}^{n}(M):=R \oplus \bigoplus_{n \in \mathbb{N}^{*}} M^{\otimes_{R} n}$ in which the product is defined by

$$
\left(x_{1} \otimes_{R} \cdots \otimes_{R} x_{p}\right) \cdot\left(y_{1} \otimes_{R} \cdots \otimes_{R} y_{q}\right)=x_{1} \otimes_{R} \cdots \otimes_{R} x_{p} \otimes_{R} y_{1} \otimes_{R} \cdots \otimes_{R} y_{q}
$$

for $x_{1} \otimes_{R} \cdots \otimes_{R} x_{p} \in T_{R}^{p}(M), y_{1} \otimes_{R} \cdots \otimes_{R} y_{q} \in T_{R}^{q}(M)$.
First recall the universal property of the tensor algebra $T_{R}(M)$ (where R is a k-algebra and M is an R-bimodule).

Proposition III.3. For any k-algebra A and any homomorphisms $\varphi_{R}: R \rightarrow A$ ofk-algebras and $\varphi_{M}: M \rightarrow A$ of R-bimodules, where A is an R-bimodule via φ_{R}, there exists a unique homomorphism $\Phi: T_{R}(M) \rightarrow A$ of k-algebras such that $\Phi_{\mid R}=\varphi_{R}$ and $\Phi_{\mid M}=\varphi_{M}$. If moreover $A=\bigoplus_{n \in \mathbb{N}} A_{n}$ is graded, $\operatorname{Im} \varphi_{R} \subseteq A_{0}$ and $\operatorname{Im} \varphi_{M} \subseteq A_{1}$, then Φ is graded.

Proof. $>$ Uniqueness. If $\Phi: T_{R}(M) \rightarrow A$ is an algebra map such that $\Phi_{\mid R}=\varphi_{R}$ and $\Phi_{\mid M}=\varphi_{M}$, then $\Phi_{\mid R}=\varphi_{R}=\Phi_{\mid R}$ and, for $n \geqslant 1$ and x_{1}, \ldots, x_{n} in M,

$$
\Phi\left(x_{1} \otimes_{R} \cdots \otimes_{R} x_{n}\right)=\Phi\left(x_{1}\right) \cdots \Phi\left(x_{n}\right)=\varphi_{M}\left(x_{1}\right) \cdots \varphi_{M}\left(x_{n}\right)=\Phi\left(x_{1} \otimes_{R} \cdots \otimes_{R} x_{n}\right)
$$

Since the $x_{1} \otimes_{R} \cdots \otimes_{R} x_{n}$ generate $T_{R}^{\geqslant 1}(M)$ as an abelian group, Φ is completely determined in a unique way.
$>$ Existence. Let Φ be the additive map defined by $\Phi_{\mid R}=\varphi_{R}$ and $\Phi\left(x_{1} \otimes_{R} \cdots \otimes_{R} x_{n}\right)=$ $\Phi\left(x_{1}\right) \cdots \Phi\left(x_{n}\right)$ for $n \geqslant 1$ and x_{1}, \ldots, x_{n} in M. Then $\Phi_{\mid M}=\varphi_{M}$ so that we need only prove that Φ is a map of algebras. Note that $\Phi(1)=\varphi_{R}(1)=1$ and, if x and y have degree 0 we have $\Phi(x y)=\varphi_{R}(x y)=\varphi_{R}(x) \varphi_{R}(y)=\Phi(x) \Phi(y)$. Morever, if x has degree 0 and $y=y_{1} \otimes_{R} \cdots \otimes_{R} y_{q}$ has degree at least 1 , we have

$$
\begin{aligned}
\Phi(x y) & =\Phi\left(x y_{1} \otimes_{R} y_{2} \otimes_{R} \cdots \otimes_{R} y_{q}\right)=\varphi_{M}\left(x y_{1}\right) \varphi_{M}\left(y_{2}\right) \cdots \varphi_{M}\left(y_{q}\right)=\varphi_{R}(x) \varphi_{M}\left(y_{1}\right) \cdots \varphi_{M}\left(y_{q}\right) \\
& =\Phi(x) \Phi(y)
\end{aligned}
$$

Similarly, if y has degree 0 and x has degree at least 1 , then $\Phi(x y)=\Phi(x) \Phi(y)$. Finally, if both $x=x_{1} \otimes_{R} \cdots \otimes_{R} x_{p}$ and $y=y_{1} \otimes_{R} \cdots \otimes_{R} y_{q}$ have degree at least 1 , then

$$
\begin{aligned}
\Phi(x y) & =\Phi\left(x_{1} \otimes_{R} \cdots \otimes_{R} x_{p} \otimes_{R} y_{1} \otimes_{R} \cdots \otimes_{R} y_{q}\right) \\
& =\varphi_{M}\left(x_{1}\right) \cdots \varphi_{M}\left(x_{p}\right) \varphi_{M}\left(y_{1}\right) \cdots \varphi_{M}\left(y_{q}\right)=\Phi(x) \Phi(y)
\end{aligned}
$$

$>$ In the graded case, $\varphi_{R}(r) \in A_{0}$ and $\varphi_{M}\left(x_{i}\right) \in A_{1}$ for all i so that for $n \geqslant 1$ we have $\Phi\left(x_{1} \otimes_{R}\right.$ $\left.\cdots \otimes_{R} x_{n}\right) \in A_{n}$ (since A is graded) so that $\Phi\left(T_{R}^{n}(M)\right) \subseteq A_{n}$ for all n.

Corollary III.4. Let Γ be a quiver. Let Γ_{0} be the set of vertices in Γ and let Γ_{1} be the set of arrows in $k \Gamma$. Let $k \Gamma_{0}$ be the semisimple commutative k-subalgebra of $k \Gamma$ with basis Γ_{0}.
Then $k \Gamma_{1}$ is a $k \Gamma_{0}$-bimodule and the graded k-algebra $k \Gamma$ is isomorphic to $T_{k \Gamma_{0}}\left(k \Gamma_{1}\right)$.
Proof. Set $R:=k \Gamma_{0}$ and $M=k \Gamma_{1}$. Then the inclusions $\varphi_{0}: R=k \Gamma_{0} \hookrightarrow k \Gamma$ and $\varphi_{1}: M=k \Gamma_{1} \hookrightarrow k \Gamma$ are respectively a k-algebra map and an R-bimodule morphism. Therefore there is a unique k-algebra map $\Phi: T_{R}(M) \rightarrow k \Gamma$ such that $\Phi_{\mid R}=\varphi_{0}$ and $\Phi_{\mid M}=\varphi_{1}$. Moreover, this map is graded.

To prove that Φ is bijective, we need only prove that the restriction $\Phi_{n}: T_{R}^{n}(M) \rightarrow(k \Gamma)_{n}=k \Gamma_{n}$ is bijective. This is clearly true for $n=0$ and $n=1$. Since Γ_{1} is a k-basis of M, we have, for $n \geqslant 2$,

$$
\begin{aligned}
T_{r} R^{n}(M)=M^{\otimes_{R} n} & =\left(k \Gamma_{1}\right)^{\otimes_{R} n}=\bigoplus_{\alpha_{1}, \ldots, \alpha_{n} \in \Gamma_{1}} k \alpha_{1} \otimes_{R} \cdots \otimes_{R} k \alpha_{n}=\bigoplus_{\substack{\alpha_{1}, \ldots, \alpha_{n} \in \Gamma_{1} \\
t\left(\alpha_{i}\right)=\mathfrak{s}\left(\alpha_{i+1}\right), i=1, \ldots, n-1}} k \alpha_{1} \otimes_{R} \cdots \otimes_{R} k \alpha_{n} \\
& =\bigoplus_{\alpha_{1} \cdots \alpha_{n} \in \Gamma_{n}} k \alpha_{1} \otimes_{R} \cdots \otimes_{R} k \alpha_{n}
\end{aligned}
$$

so that $\mathcal{B}=\left\{\alpha_{1} \otimes_{R} \cdots \otimes_{R} \alpha_{n} ; \alpha_{1} \cdots \alpha_{n} \in \Gamma_{n}\right\}$ is a basis of $T_{R}^{n}(M)$. Since $\Phi(\mathcal{B})=\Gamma_{n}$, it is a basis of $(k \Gamma)_{n}$ and Φ_{n} is bijective as required.

2. Conditions for a tensor algebra to be a graded Hopf algebra

Definition III.5. A bialgebra H is graded if $H=\bigoplus_{n \in \mathbb{N}} H_{n}$ is graded as an algebra and

$$
\begin{aligned}
& \varepsilon=\varepsilon_{\mid H_{0}} \\
& \Delta\left(H_{n}\right) \subseteq \bigoplus_{p=0}^{n} H_{p} \otimes H_{n-p}
\end{aligned}
$$

If H is a Hopf algebra, then it is graded if it is graded as a bialgebra and

$$
S\left(H_{n}\right) \subseteq H_{n}
$$

Proposition III.6. Let R be a k-algebra and let M be an R-bimodule. If $T_{R}(M)$ is a graded Hopf algebra, then

 R is a Hopf subalgebra of $T_{R}(M)$ and M is a Hopf bimodule over R.Proof. Assume that $T_{R}(M)$ is a graded Hopf algebra with comultiplication Δ, counit ε and antipode S. These structure maps induce the following k-linear maps:

$$
\begin{aligned}
& \varepsilon_{R}=\varepsilon_{R}: R=T_{R}^{0}(M) \rightarrow k \\
& \Delta_{R}=\Delta_{\mid R}: R=T_{R}^{0}(M) \rightarrow T_{R}^{0}(M) \otimes T_{R}^{0}(M)=R \otimes R \\
& S_{R}=S_{\mid R}: R=T_{R}^{0}(M) \rightarrow T_{R}^{0}(M)=R
\end{aligned}
$$

and the subalgebra R of $T_{R}(M)$ endowed with these maps is clearly a Hopf subalgebra of $T_{R}(M)$. Moreover, we also have

$$
\Delta_{\mid M}: M=T_{R}^{1}(M) \rightarrow T_{R}^{0}(M) \otimes T_{R}^{1}(M) \oplus T_{R}^{1}(M) \otimes T_{R}^{0}(M)=(R \otimes M) \oplus(M \otimes R)
$$

Let $p_{1}:(R \otimes M) \oplus(M \otimes R) \rightarrow R \otimes M$ and $p_{2}:(R \otimes M) \oplus(M \otimes R) \rightarrow M \otimes R$ be the natural projections, and define

$$
\begin{aligned}
& \rho_{\ell}: M \rightarrow R \otimes M \text { by } \rho_{\ell}=p_{1} \circ \Delta_{\mid M} \\
& \rho_{r}: M \rightarrow M \otimes R \text { by } \rho_{r}=p_{2} \circ \Delta_{\mid M} .
\end{aligned}
$$

We have $\left(\varepsilon_{R} \otimes \mathrm{id}\right) \circ p_{2}=0$ and $\left(\mathrm{id} \otimes \varepsilon_{R}\right) \circ p_{1}=0$ so that

$$
\left(\varepsilon_{R} \otimes \mathrm{id}\right) \circ \rho_{\ell}=\left(\varepsilon_{R} \otimes \mathrm{id}\right) \circ \Delta_{\mid M}-(\varepsilon R \otimes \mathrm{id}) \circ p_{2} \circ \Delta_{\mid M}=\operatorname{id}_{M}
$$

and similarly $\left(\mathrm{id} \otimes \varepsilon_{R}\right) \circ \rho_{r}=\mathrm{id}_{M}$.
The maps $(\Delta \otimes \mathrm{id}) \circ \Delta$ and $(\mathrm{id} \otimes \Delta) \circ \Delta$ restricted to M take values in $(R \otimes R \otimes M) \oplus(R \otimes M \otimes R) \oplus$ $(M \otimes R \otimes R)$. Let

$$
\begin{aligned}
& \pi_{1}:(R \otimes R \otimes M) \oplus(R \otimes M \otimes R) \oplus(M \otimes R \otimes R) \rightarrow R \otimes R \otimes M \\
& \pi_{2}:(R \otimes R \otimes M) \oplus(R \otimes M \otimes R) \oplus(M \otimes R \otimes R) \rightarrow R \otimes M \otimes R \\
& \pi_{3}:(R \otimes R \otimes M) \oplus(R \otimes M \otimes R) \oplus(M \otimes R \otimes R) \rightarrow M \otimes R \otimes R
\end{aligned}
$$

be the natural projections. Then applying π_{1}, π_{2} and π_{3} to the identity $(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta$ gives, in that order,

$$
\begin{aligned}
\left(\Delta_{R} \otimes \mathrm{id}_{M}\right) \circ \rho_{\ell} & =\left(\mathrm{id}_{R} \otimes \rho_{\ell}\right) \circ \rho_{\ell} \\
\left(\rho_{\ell} \otimes \mathrm{id}_{R}\right) \circ \rho_{r} & =\left(\mathrm{id} \otimes \rho_{r}\right) \circ \rho_{\ell} \\
\left(\rho_{r} \otimes \mathrm{id}_{R}\right) \circ \rho_{r} & =\left(\mathrm{id}_{M} \otimes \rho_{r}\right) \circ \rho_{r}
\end{aligned}
$$

so that M is a Hopf bimodule over R.

The converse is also true. We shall need the following result.
Theorem III. 7 (Takeuchi). Let $H=\bigoplus_{n \in \mathbb{N}} H_{n}$ be a graded bialgebra such that H_{0} is a Hopf algebra. Then H is a graded Hopf algebra.

Proof. We must prove that H has an antipode, that is, that id_{H} is \star-invertible.
$>$ Take $f \in \operatorname{End}_{k}(H)$ a graded map such that $f_{\mid H_{0}}$ is the unit of $\operatorname{End}_{k}\left(H_{0}\right)$ for the convolution product of H_{0}. Then f is invertible for the convolution product of H.

Indeed, consider $h=\eta \circ \varepsilon-f$. Then $h_{\mid H_{0}}=0$. By induction, $h^{\star n}$ vanishes on $\oplus_{s \leqslant n} H_{s}$ so that $\eta \circ \varepsilon+\sum_{n \in \mathbb{N}^{*}} h^{\star n}$ is well-defined on H. Moreover, it is the convolution inverse of $\eta \circ \varepsilon-h=f$, and it is graded since each $h^{\star n}$ is graded.
$>$ Now consider the antipode S of H_{0}. Let $\bar{S}: H \rightarrow H$ be any graded k-linear extension of S to H. Then $\operatorname{id}_{H} \star \bar{S}$ and $\mathrm{id}_{H} \star \bar{S}$ restrict to $\eta \circ \varepsilon$ on H_{0}, hence are convolution invertible with graded inverse. Therefore id_{H} has a graded convolution inverse.

Theorem III. 8 (Nichols). Let R be a Hopf algebra and M a Hopf bimodule. Then $T_{R}(M)$ is a bialgebra.
Proof. Denote by $\rho_{\ell}: M \rightarrow R \otimes M$ and $\rho_{r}: M \rightarrow M \otimes R$ the R-bicomodule structures on M.
Consider the graded algebra $T_{R}(M) \otimes T_{R}(M)$, where $\left(T_{R}(M) \otimes T_{R}(M)\right)_{n}=\bigoplus_{i=0}^{n} T_{R}^{i}(M) \otimes T_{R}^{n-i}(M)$. The comultiplication $\Delta_{R}: R \rightarrow R \otimes R$ of R is a morphism of algebras whose image is contained in $\left(T_{R}(M) \otimes T_{R}(M)\right)_{0}$ and the map $\Delta_{1}: M \rightarrow T_{R}(M) \otimes T_{R}(M)$ defined by $\Delta_{1}=\rho_{\ell}+\rho_{r}$ is a morphism of R-bimodules whose image is contained in $\left(T_{R}(M) \otimes T_{R}(M)\right)_{1}$. Therefore they induce a graded algebra morphism $\Delta: T_{R}(M) \rightarrow T_{R}(M) \otimes T_{R}(M)$.

The field k may be viewed as a graded algebra, concentrated in degree 0 . The counit $\varepsilon_{R}: R \rightarrow k$ is a morphism of algebras whose image is contained in the degree 0 part of k and the map $\varepsilon: M \rightarrow k$ defined by $\varepsilon=0$ is a morphism of R-bimodules whose image is contained in the degree 1 part of k. Therefore they induce a graded algebra morphism $\varepsilon: T_{R}(M) \rightarrow k$.

Moreover, the R-bimodule maps $(\Delta \otimes \mathrm{id}) \circ \Delta$ and $(\mathrm{id} \otimes \Delta) \circ \Delta$ are equal on M :

$$
\begin{aligned}
(\Delta \otimes \mathrm{id}) \circ \Delta(m) & =(\Delta \otimes \mathrm{id}) \circ \rho_{\ell}(m)+(\Delta \otimes \mathrm{id}) \circ \rho_{r}(m) \\
& =\left(\mathrm{id} \otimes \rho_{\ell}\right) \circ \rho_{\ell}(m)+\left(\rho_{\ell} \otimes \mathrm{id}\right) \circ \rho_{r}(m)+\left(\rho_{r} \otimes \mathrm{id}\right) \circ \rho_{r}(m) \\
& =\left(\mathrm{id} \otimes \rho_{\ell}\right) \circ \rho_{\ell}(m)+\left(\mathrm{id} \otimes \rho_{r}\right) \circ \rho_{\ell}(m)+(\mathrm{id} \otimes \Delta) \circ \rho_{r}(m) \\
& =(\mathrm{id} \otimes \Delta) \circ \rho_{\ell}(m)+(\mathrm{id} \otimes \Delta) \circ \rho_{r}(m)=(\mathrm{id} \otimes \Delta) \circ \Delta(m) .
\end{aligned}
$$

Therefore $(\Delta \otimes \mathrm{id}) \circ \Delta$ and $(\mathrm{id} \otimes \Delta) \circ \Delta$ are equal on $T_{R}(M)$ by the uniqueness in the universal property. The R-bimodule maps $(\varepsilon \otimes \mathrm{id}) \circ \Delta$, id and $(\mathrm{id} \otimes \varepsilon) \circ \Delta$ are equal on $M(e g .(\varepsilon \otimes \mathrm{id}) \circ \Delta(m)=(\varepsilon \otimes \mathrm{id}) \circ$ $\left.\rho_{\ell}(m)+(\varepsilon \otimes \mathrm{id}) \circ \rho_{r}(m)=m+0=m\right)$, hence equal on $T_{R}(M)$ by uniqueness.

Therefore $T_{R}(M)$ is a graded bialgebra.

Corollary III.9. Let R be a Hopf algebra and M a Hopf bimodule. Then $T_{R}(M)$ is a graded Hopf algebra.
Proof. By Nichols' theorem, $T_{R}(M)$ is a graded bialgebra. Since $T_{R}^{0}(M)=R$ is a Hopf algebra, by Takeuchi's theorem, $T_{R}(M)$ is a graded Hopf algebra.

IV. CONDItions for a path algebra to be a graded Hopf algebra.

We follow essentially the paper [GS], and explain at the end of this section how [CR] ties in with this.
First assume that $k \Gamma$ is a graded Hopf algebra. Then $k \Gamma_{0}$ (the degree 0 part) is a Hopf algebra. Since it is isomorphic to k^{n} with $n=\# \Gamma_{0}$ as an algebra, it is isomorphic to k^{G} for a group G with $\# G=\# \Gamma$ by Theorem I.31. Therefore we may set $\Gamma_{0}=\left\{v_{g} ; g \in G\right\}$ and the structure maps of $k \Gamma_{0}$ are given by

$$
\begin{align*}
& \Delta\left(v_{g}\right)=\sum_{h \in G} v_{h} \otimes v_{h^{-1} g}
\end{align*} \quad v_{g} v_{h}=\left\{\begin{array}{ll}
v_{g} & \text { if } g=h \\
0 & \text { otherwise } \tag{1}
\end{array}\right\}
$$

Now set $R=k \Gamma_{0}$ and $M=k \Gamma_{1}$. There is a projection $k \Gamma \rightarrow k \Gamma_{0}=R \cong k^{G} \cong(k G)^{*}$ of Hopf algebras so that dualising gives an algebra embedding $k G \cong(k G)^{* *} \hookrightarrow(k \Gamma)^{*}$. Since $k \Gamma$ is a $(k \Gamma)^{*}$-bimodule by Proposition I.17, it is also a $k G$-bimodule via this embedding.

We have $g \rightharpoonup v_{h}=\sum_{k \in G} g\left(v_{k^{-1} h}\right) v_{k}=v_{h g^{-1}}$ and $v_{h} \leftharpoonup g=\sum_{k \in G} g\left(v_{k}\right) v_{k^{-1} h}=v_{g^{-1} h}$ (view G as the dual basis of $\left\{v_{g} ; g \in G\right\}$).

Since M is a Hopf bimodule over R by Proposition III.6, we have $\Delta(M) \subseteq(R \otimes M) \oplus(M \otimes R)$. Therefore, for $x \in M$ we can write $\Delta(x)=\sum_{g \in G}\left(v_{g} \otimes y_{g}+z_{g} \otimes v_{g}\right)$. Therefore,

$$
\begin{aligned}
& g \rightharpoonup x=\sum_{h \in G}\left(g\left(y_{h}\right) v_{h}+g\left(v_{h}\right) z_{h}\right)=z_{g} \\
& x \leftharpoonup g=\sum_{h \in G}\left(g\left(v_{h}\right) y_{h}+g\left(z_{h}\right) v_{h}\right)=y_{g}
\end{aligned}
$$

so that $\Delta(x)=\sum_{g \in G}\left(v_{g} \otimes(x \leftharpoonup g)+(g \rightharpoonup x) \otimes v_{g}\right)$.
For d, f in G, set ${ }_{d} M_{f}:=v_{d} M v_{f}$ (this is the notation used in [CR], it is denoted by V_{f}^{d} in [GS]). Then $M=\bigoplus_{d, f \in G}{ }_{d} M_{f}$. Now take $x \in{ }_{d} M_{f}$. we have $x=v_{d} x v_{f}$ so that

$$
\begin{aligned}
\Delta(x) & =\Delta\left(v_{d}\right) \Delta(x) \Delta\left(v_{f}\right) \\
& =\sum_{h, k, \ell \in G}\left(v_{h} \otimes v_{h^{-1} d}\right)\left(v_{k} \otimes x \leftharpoonup k+k \rightharpoonup x \otimes v_{k}\right)\left(v_{\ell} \otimes v_{\ell^{-1} f}\right) \\
& =\sum_{h \in G} v_{h} \otimes v_{h^{-1} d}(x \leftharpoonup h) v_{h^{-1} f}+\sum_{k \in G} v_{d k^{-1}}(k \rightharpoonup x) v_{f k^{-1}} \otimes v_{k} \\
& =\sum_{g \in G}\left(v_{g} \otimes(x \leftharpoonup g)+(g \rightharpoonup x) \otimes v_{g}\right) .
\end{aligned}
$$

Identifying the terms in $R \otimes M$ and applying $g \otimes \operatorname{id}_{M}$ gives $x \leftharpoonup g=v_{g^{-1} d}(x \leftharpoonup g) v_{g^{-1} f}$ so that $x \leftharpoonup g \in$ $g^{-1} d M_{g^{-1} f}$. Similarly, $g \rightharpoonup x \in{ }_{d g^{-1}} M_{f g^{-1}}$.

Therefore, the left action of $k G$ on $k \Gamma$ induces k-linear maps

$$
{ }_{d} L_{f}(g):{ }_{d} M_{f} \rightarrow{ }_{d g^{-1}} M_{f g^{-1}}
$$

for $g, f, d \in G$. They are isomorphisms, with ${ }_{d} L_{f}(g)^{-1}={ }_{d g^{-1}} L_{f g^{-1}}\left(g^{-1}\right)$.
Now fix a basis of ${ }_{1} M_{h}$ for each $h \in G$ (eg. the set of arrows from 1 to $\left.h\right)$. Since ${ }_{d} M_{f}={ }_{1} L_{f d^{-1}}\left(d^{-1}\right)\left({ }_{1} M_{f d^{-1}}\right)$, we can choose a basis of ${ }_{d} M_{f}$ such that the matrix of ${ }_{d} L_{f}(g)$ is the identity matrix for all d, f, g.

In particular, the left action of G on $k \Gamma$ induces an action of G on Γ : it sends arrow to arrow and, if $p=a_{1} \ldots a_{n}$ is a path, then $g \rightharpoonup p=\left(g \rightharpoonup a_{1}\right) \cdots\left(g \rightharpoonup a_{n}\right)$. Indeed,

$$
\begin{aligned}
g \rightharpoonup(a b) & =\sum_{(a),(b)} g\left(a_{(2)} b_{(2)}\right) a_{(1)} b_{(1)} \\
& =\sum_{(a),(b),(g)} g_{(1)}\left(a_{(2)}\right) g_{(2)}\left(a_{(2)}\right) a_{(1)} b_{(1)} \\
& =\sum_{(a),(b)} g\left(a_{(1)}\right) g\left(a_{(2)}\right) a_{(1)} a_{(2)}=(g \rightharpoonup a)(g \rightharpoonup b)
\end{aligned}
$$

and conclude by induction. Note that $g \rightharpoonup p$ is a path from $v_{\mathfrak{s}\left(a_{1}\right) g^{-1}}$ to $v_{\mathfrak{t}\left(a_{n}\right) g^{-1}}$.
Similarly, the right action of $k G$ on $k \Gamma$ induces k-linear isomorphisms

$$
{ }_{d} R_{f}(g):_{d} M_{f} \rightarrow{ }_{g^{-1} d} M_{g^{-1} f}
$$

for $g, f, d \in G$ (whose matrices are not the identity in general).
These isomorphisms satisfy the following relations:

$$
\begin{align*}
& d g^{-1} R_{f g^{-1}}(h)_{d} L_{f}(g)={ }_{h^{-1} d} L_{h^{-1} f}(g){ }_{d} R_{f}(h) \tag{2}\\
& g^{-1} d R_{g^{-1} f}(h)_{d} R_{f}(g)={ }_{d} R_{f}(g h) \tag{3}
\end{align*}
$$

Definition IV. 1 ([GS]). Let Γ be a quiver with $\Gamma_{0}=\left\{v_{g} ; g \in G\right\}$ for some group G. Set $M=k \Gamma_{1}$ and for d, f in G set ${ }_{d} M_{f}=v_{d} M v_{f}$. A kG-bimodule structure on $k \Gamma$ is allowable if
$>G$ acts on the vertices via $g \rightharpoonup v_{h}=v_{h g^{-1}}$ and $v_{h} \leftharpoonup g=v_{g^{-1} h}$,
$>G$ acts on the left on Γ (that is, if $\alpha \in \Gamma_{1}$ is an arrow from d to f, then $g \rightharpoonup \alpha$ is an arrow from $d g^{-1}$ to $f_{g}{ }^{-1}$ and if $p=a_{1} \cdots a_{n}$ is a path then $\left.g \rightharpoonup p=\left(g \rightharpoonup a_{1}\right) \cdots\left(g \rightharpoonup a_{n}\right)\right)$; this induces isomorphisms ${ }_{d} L_{f}(g):{ }_{d} M_{f} \rightarrow{ }_{d g^{-1}} M_{f g^{-1}}$,
$>$ the right action induces isomorphisms ${ }_{d} R_{f}(g):{ }_{d} M_{f} \rightarrow{ }_{g^{-1} d} M_{g^{-1} f}$,
$>$ Equations (2) and (3) are satisfied.
Remark IV.2. Note that the left action of G on Γ is free.
Theorem IV. 3 ([GS]). Let Γ be a quiver with $\Gamma_{0}=\left\{v_{g} ; g \in G\right\}$ for some group G. Then $k \Gamma$ is a Hopf algebra if and only if there is an allowable $k G$-bimodule structure on $k \Gamma$.

Proof. We have already proved that if $k \Gamma$ is a Hopf algebra then there is an allowable $k G$-bimodule structure on $k \Gamma$.

Conversely, assume that there is an allowable $k G$-bimodule structure on $k \Gamma$. Then the formulas (1) define a Hopf algebra structure on $R=k \Gamma_{0}$. Moreover, $M=k \Gamma_{1}$ is a Hopf bimodule for the actions given by the multiplication in $k \Gamma$ and coactions

$$
\rho_{\ell}(x)=\sum_{g \in G} v_{g} \otimes(x \leftharpoonup g) \quad \text { and } \quad \rho_{r}(x)=\sum_{g \in G}(g \rightharpoonup x) \otimes v_{g}
$$

for $x \in M$. Therefore $k \Gamma \cong T_{R}(M)$ is a Hopf algebra by Corollary III.9.

Proposition IV.4. [GS, Proposition 3.5] Let Γ be a quiver whose vertex set is indexed by a finite group G and assume that there is an allowable $k G$-bimodule structure on $k \Gamma$. Then
(i) $k \Gamma \otimes k \Gamma$ is a $k G$-bimodule via $g \rightharpoonup(x \otimes y)=x \otimes(g \rightharpoonup y)$ and $(x \otimes y) \leftharpoonup g=(x \leftharpoonup g) \otimes y$ for $g \in G$ and $x, y \in k \Gamma$;
(ii) the comultiplication $\Delta: k \Gamma \rightarrow k \Gamma \otimes k \Gamma$ is a $k G$-bimodule morphism;
(iii) the antipode $S: k \Gamma \rightarrow k \Gamma$ is determined by

$$
\begin{gathered}
\forall x \in_{d}\left(k \Gamma_{1}\right)_{f}, S(x)=-d \rightharpoonup x \leftharpoonup f \\
\text { and satisfies } S(x \leftharpoonup g)=g^{-1} \rightharpoonup S(x) \text { and } S(g \rightharpoonup x)=S(x) \leftharpoonup g^{-1} \text { for } g \in G \text { and } x \in k \Gamma .
\end{gathered}
$$

Proof. (i) Straightforward verification.
(ii) Note that $k \Gamma$ is a Hopf algebra. Since Δ is an algebra map, we need only prove the result on the vertices and arrows. Take $h \in G$ and let a be an arrow in Γ.

$$
\begin{aligned}
\Delta\left(g \rightharpoonup v_{h}\right) & =\Delta\left(v_{h g^{-1}}\right)=\sum_{t \in G} v_{t} \otimes v_{t^{-1} h g^{-1}}=\sum_{t \in G} v_{t} \otimes g \rightharpoonup v_{t^{-1} h}=g \rightharpoonup\left(\sum_{t \in G} v_{t} \otimes v_{t^{-1} h}\right) \\
& =g \rightharpoonup \Delta\left(v_{h}\right) \\
\Delta\left(v_{h} \leftharpoonup g\right) & =\Delta\left(v_{g^{-1} h}\right)=\sum_{t \in G} v_{g^{-1} h t^{-1}} \otimes v_{t}=\sum_{t \in G} v_{h t^{-1}} \leftharpoonup g \otimes v_{t}=\left(\sum_{t \in G} v_{h t^{-1}} \otimes v_{t}\right) \leftharpoonup g \\
& =\Delta\left(v_{h}\right) \leftharpoonup g \\
\Delta(g \rightharpoonup a) & =\sum_{t \in G}\left(t g \rightharpoonup a \otimes v_{t}+v_{t} \otimes g \rightharpoonup a \leftharpoonup t\right)=\sum_{t \in G}\left(t g \rightharpoonup a \otimes v_{t g g^{-1}}+v_{t} \otimes g \rightharpoonup a \leftharpoonup t\right) \\
& =\sum_{t \in G}\left(g \rightharpoonup\left(t g \rightharpoonup a \otimes v_{t g}\right)+g \rightharpoonup\left(v_{t} \otimes a \leftharpoonup t\right)\right) \\
& =g \rightharpoonup\left(\sum_{s \in G}\left(s \rightharpoonup a \otimes v_{s}+v_{s} \otimes a \leftharpoonup s\right)\right)=g \rightharpoonup \Delta(a) \\
\Delta(a \leftharpoonup g) & =\sum_{t \in G}\left(t \rightharpoonup a \leftharpoonup g \otimes v_{t}+v_{t} \otimes a \leftharpoonup g t\right)=\sum_{t \in G}\left(t \rightharpoonup a \leftharpoonup g \otimes v_{t}+v_{g^{-1} g t} \otimes a \leftharpoonup g t\right) \\
& =\sum_{s \in G}\left(\left(a \otimes v_{t}\right) \leftharpoonup g+\left(v_{s} \otimes a \leftharpoonup s\right) \leftharpoonup g\right)=\Delta(a) \leftharpoonup g .
\end{aligned}
$$

(iii) Recall that $S: k \Gamma \rightarrow k \Gamma^{o p}$ is an algebra map. Set $M=k \Gamma_{1}$ and let x be an element in ${ }_{d} M_{f}$. Then $S(x)=S\left(v_{d} x v_{f}\right)=S\left(v_{f}\right) S(x) S\left(v_{d}\right)=v_{f^{-1}} S(x) v_{d^{-1}}$ so that $S(x) \in{ }_{f^{-1}} M_{d^{-1}}$.

Therefore, given an element $g \in G$ we have $g \rightharpoonup x \in{ }_{d g^{-1}} M_{f g^{-1}}, a \leftharpoonup g \in{ }_{g^{-1} d} M_{g^{-1} f}, S(g \rightharpoonup$ $x) \in{ }_{g f^{-1}} M_{g^{-1}}$ and $S(a \leftharpoonup g) \in{ }_{f^{-1} g} M_{d^{-1} g}$. Now consider $y=d \rightharpoonup x \in{ }_{1} M_{f d^{-1}}$. Since $\Delta(y)=$ $\sum_{g \in G}\left(g \rightharpoonup y \otimes v_{g}+v_{g} \otimes y \leftharpoonup g\right)$ we have

$$
\begin{aligned}
0=\varepsilon(y) 1 & =\sum_{g \in G}\left(S(g \rightharpoonup y) v_{g}+S\left(v_{g}\right)(y \leftharpoonup g)\right)=\sum_{g \in G}\left(S(g \rightharpoonup y) v_{g}+v_{g}-1(y \leftharpoonup g)\right) \\
& =\sum_{g \in G}(S(g \rightharpoonup y)+(y \leftharpoonup g))=\sum_{g \in G}\left(S(g \rightharpoonup y)+y \leftharpoonup f d^{-1} g^{-1}\right) \in \bigoplus_{g \in G} g d f^{-1} M_{g}
\end{aligned}
$$

so that $S(g \rightharpoonup y)=-y \leftharpoonup f d^{-1} g^{-1}$.
Now $x=d^{-1} \rightharpoonup y$, so $S(x)=S\left(d^{-1} \rightharpoonup y\right)=-y \leftharpoonup f d^{-1} d=-y \leftharpoonup f=-d \rightharpoonup x \leftharpoonup f$ and therefore $S(g \rightharpoonup x)=S\left(g d^{-1} \rightharpoonup y\right)=-y \leftharpoonup f g^{-1}=S(x) g^{-1}$.
Moreover, $x \leftharpoonup g \in g_{g^{-1} d} M_{g^{-1} f}$ so that $S(x \leftharpoonup g)=-g^{-1} d \rightharpoonup(x \leftharpoonup g) \leftharpoonup g^{-1} f=g^{-1} \rightharpoonup(-d \rightharpoonup$ $x \leftharpoonup f)=g^{-1} \rightharpoonup S(x)$.
To conclude, we need only prove that the required property is true on vertices:

$$
\begin{aligned}
& S\left(g \rightharpoonup v_{h}\right)=S\left(v_{h g^{-1}}\right)=v_{g h^{-1}}=v_{h^{-1}} \leftharpoonup g^{-1}=S\left(v_{h}\right) \leftharpoonup g^{-1} \\
& S\left(v_{h} \leftharpoonup g\right)=S\left(v_{g^{-1} h}\right)=v_{h^{-1} g}=g^{-1} \rightharpoonup v_{h^{-1}}=g^{-1} \rightharpoonup S\left(v_{h}\right)
\end{aligned}
$$

Definition IV. 5 ([GS]). Let G be a finite group and let $W=\left\{w_{1}, \ldots, w_{n}\right\}$ be a sequence of elements of G (there may be repetitions). Define a quiver $\Gamma_{G}(W)$, called covering quiver, whose vertices are $\left\{v_{g} ; g \in G\right\}$ indexed by G and whose arrows are

$$
\left\{\left(a_{i}, g\right): v_{g^{-1}} \rightarrow v_{w_{i} g^{-1}} ; i=1, \ldots, n ; g \in G\right\} .
$$

Remark IV.6. The covering quiver $\Gamma_{G}(W)$ is endowed with a left action of G given by $g \rightharpoonup v_{h}=v_{h g^{-1}}$ and $g \rightharpoonup\left(a_{i}, h\right)=\left(a_{i}, g h\right)$.

Indeed, we have

$$
\begin{array}{ll}
1 \rightharpoonup v_{g}=v_{g}, & g \rightharpoonup\left(h \rightharpoonup v_{k}\right)=g \rightharpoonup v_{k h^{-1}}=v_{k h^{-1} g^{-1}}=v_{k(g h)^{-1}}=(g h) \rightharpoonup v_{k} \\
1 \rightharpoonup\left(a_{i}, g\right)=\left(a_{i}, g\right), & g \rightharpoonup\left(h \rightharpoonup\left(a_{i}, k\right)\right)=g \rightharpoonup\left(a_{i}, h k\right)=\left(a_{i}, g h k\right)=(g h) \rightharpoonup\left(a_{i}, k\right) .
\end{array}
$$

The aim of the rest of this section is to prove that $k \Gamma$ is a Hopf algebra if and only if Γ is G-isomorphic to $\Gamma_{G}(W)$ for some finite group G and some specific type of W.

Definition IV.7. Let $a \in \Gamma_{1}$ be an arrow from v_{d} to v_{f}. Set $\ell(a)=f d^{-1}$ and $r(a)=d^{-1} f$.
Lemma IV.8. [GS, Proposition 4.1] Let G be a finite group and $W=\left\{w_{1}, \ldots, w_{n}\right\}$ a sequence of elements of G. Then there is an allowable $k G$-bimodule structure on $k \Gamma_{G}(W)$ extending the left action of G on $\Gamma_{G}(W)$ above if and only if W is a weight sequence, that is, for all $g \in G$ the set $\left\{g w_{1} g^{-1}, \ldots, g w_{n} g^{-1}\right\}$ is equal to W up to permutation.

Proof. $>$ First assume that there is an allowable $k G$-bimodule structure on $k \Gamma$. Then, for any $f \in G$, let \mathcal{B}_{f} be a k-basis of ${ }_{f} M_{1}$ and let $\mathcal{B}=\cup_{f \in G} \mathcal{B}_{f}$. Note that since ${ }_{f g^{-1}} R_{1}\left(g^{-1}\right) \circ{ }_{f} L_{1}(g):{ }_{f} M_{1} \rightarrow$ $g f g^{-1} M_{1}$ is an isomorphism, we have $\# \mathcal{B}_{g f g^{-1}}=\# B_{f}$ for all $f, g \in G$.
Set $W=\{\ell(b) ; b \in \mathcal{B}\}$ in some order (with repetitions, that is, $\# W=\# \mathcal{B}$). Then W is a weight sequence. Indeed, we have

$$
\begin{aligned}
\{\ell(b) ; b \in \mathcal{B}\} & =\bigcup_{f \in G ; ;_{f} M_{1} \neq 0} \amalg_{\left[\# \mathcal{B}_{f}\right]}\{f\}=\bigcup_{f \in G ;{ }_{g f g^{-1}} M_{1} \neq 0} \amalg_{\left[\# \mathcal{B}_{g f g^{-1}}\right]}\left\{g f g^{-1}\right\} \\
& =\bigcup_{f \in G ;{ }_{f} M_{1} \neq 0} \amalg_{\left[\# \mathcal{B}_{f}\right]}\left\{g f g^{-1}\right\}=\left\{g \ell(b) g^{-1} ; b \in \mathcal{B}\right\} .
\end{aligned}
$$

Conversely, assume that $W=\left\{w_{1}, \ldots, w_{n}\right\}$ is a weight sequence. Then, for any $g \in G$ there is a permutation $\sigma_{g} \in \mathfrak{S}_{n}$ such that $g w_{i} g^{-1}=w_{\sigma_{g}(i)}$ for all i. This induces a group morphism $\theta: G^{o p} \rightarrow \mathfrak{S}_{n}$ defined by $\theta(g)=\sigma_{g^{-1}}$. Then $w_{\theta(g)(i)}=g^{-1} w_{i} g$ for all i.
Define a right action of $k G$ on $k \Gamma$ as follows: $v_{h} \leftharpoonup g=v_{g^{-1} h}$ and $\left(a_{i}, h\right) \leftharpoonup g=\left(a_{\theta(g)(i)}, h g\right)$. Then we have an allowable $k G$-bimodule structure on $k \Gamma$, as shown in Example IV. 9 below (with the f_{i} identically equal to 1).

Example IV.9. [GS, Theorem 5.6.(a)] Let G be a finite group and let $W=\left\{w_{1}, \ldots, w_{n}\right\}$ be a non-empty weight sequence. Choose a group morphism $\Theta: G^{o p} \rightarrow \mathfrak{S}_{n}$ such that $w_{\Theta(g)(i)}=g^{-1} w_{i} g$ and choose group morphisms $f_{i}=f_{\Theta(g)(i)}: G \rightarrow k^{\times}$, for all $i=1, \ldots, n$ and $g \in G$.

Then the formulas

$$
\begin{array}{ll}
g \rightharpoonup v_{h}=v_{h g^{-1}} & g \rightharpoonup\left(a_{i}, h\right)=\left(a_{i}, g h\right) \\
v_{h} \leftharpoonup g=v_{g^{-1} h} & \left(a_{i}, h\right) \leftharpoonup g=f_{i}(g)\left(a_{\Theta(g)(i)}, h g\right)
\end{array}
$$

define an allowable $k G$-bimodule structure on $k \Gamma$.
Proof. We have already seen that the left action is indeed a left action on the graph $\Gamma_{G}(W)$. It is easy to check that $1 \in G$ acts trivially on the right. Moreover,

$$
\begin{aligned}
\left(v_{k}\right) \leftharpoonup h \leftharpoonup g & =v_{h^{-1} k} \leftharpoonup g=v_{g^{-1} h^{-1} k}=v_{(h g)^{-1} k}=v_{k} \leftharpoonup(h g) \\
g \rightharpoonup\left(v_{k} \leftharpoonup h\right) & =g \rightharpoonup v_{h^{-1} k}=v_{h^{-1} k g^{-1}}=v_{k g^{-1}} \leftharpoonup h=\left(g \rightharpoonup v_{k}\right) \leftharpoonup h \\
\left(\left(a_{i}, t\right) \leftharpoonup h\right) \leftharpoonup g & =f_{i}(h)\left(a_{\Theta(h)(i)}, t h\right) \leftharpoonup g=f_{i}(h) f_{\Theta(h)(i)}(g)\left(a_{\Theta(g)(\Theta(h)(i))}, t h g\right) \\
& =f_{i}(h) f_{i}(g)\left(a_{\Theta(h g)(i)}, t h g\right)=f_{i}(h g)\left(a_{\Theta(h g)(i)}, t h g\right)=\left(a_{i}, t\right) \leftharpoonup(h g) \\
g \rightharpoonup\left(\left(a_{i}, t\right) \leftharpoonup h\right) & =f_{i}(h) g \rightharpoonup\left(a_{\Theta(h)(i)}, t h\right)=f_{i}(h)\left(a_{\Theta(h)(i)}, g t h\right)=\left(a_{i}, g t\right) \leftharpoonup h=\left(g \rightharpoonup\left(a_{i}, t\right)\right) \leftharpoonup h . l
\end{aligned}
$$

Definition IV. 10 ([GS]). We say that two quivers Γ and Γ^{\prime}, endowed with free left G-actions, are G-isomorphic if there is an isomorphism $\varphi: \Gamma \rightarrow \Gamma^{\prime}$ of quivers such that, for all $g \in G$ and all $x \in \Gamma_{0} \cup \Gamma_{1}$, we have $\varphi(g \rightharpoonup x)=g \rightharpoonup \varphi(x)$.

Proposition IV.11. [GS, Proposition 4.2] Let Γ be a quiver with vertex set indexed by a finite group G and on which G acts freely on the left. Let $*$ denote this action and assume that the action on vertices is given by $g * v_{h}=v_{h g^{-1}}$. Then there is a sequence of elements W of G such that Γ is G-isomorphic to $\Gamma_{G}(W)$.

Proof. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be the set of arrows in Γ starting at v_{1}. Let W be defined as in the proof of Lemma IV.8, that is, $W=\left\{\ell\left(a_{i}\right) ; i=1, \ldots, n\right\}$. Define $\phi: \Gamma \rightarrow \Gamma_{G}(W)$ on vertices by $\phi\left(v_{g}\right)=v_{g}$. Now let $a: v_{d} \rightarrow v_{f}$ be an arrow in Γ. Then $d * a: v_{1} \rightarrow v_{f d^{-1}}$ so that there exists i such that $d * a=a_{i}$. Therefore $a=d^{-1} * a_{i}$. Define $\phi(a)=\left(a_{i}, d^{-1}\right) \in \Gamma_{G}(W)$. Then ϕ is a G-isomorphism of graphs:
$>$ The maps ϕ defined on vertices and on arrows are compatible: if a is an arrow from v_{g} to v_{f}, then $a_{i}=d * a$ is an arrow from v_{1} to $v_{f d^{-1}}$ so that $w_{i}=f d^{-1}$, therefore $\phi(a)=\left(a_{i}, d^{-1}\right)$ goes from $v_{d}=\phi\left(v_{d}\right)$ to $v_{w_{i} d}=v_{f}=\phi\left(v_{f}\right)$ as required.
$>\phi\left(g * v_{h}\right)=\phi\left(v_{h g^{-1}}\right)=v_{h g^{-1}}=g \rightharpoonup v_{h}$.
$>$ Take $g \in G$ and $a: v_{d} \rightarrow v_{f}$ an arrow in Γ. Then $d * a=a_{i}$ for some i and $a=d^{-1} * a_{i}$, therefore $g * a=g d^{-1} * a_{i}$, so that $\phi(g * a)=\left(a_{i}, g d^{-1}\right)=g \rightharpoonup\left(a_{i}, d^{-1}\right)=g \rightharpoonup \phi(a)$.
$>$ Define $\psi: \Gamma_{G}(W) \rightarrow \Gamma$ by $\psi\left(v_{g}\right)=v_{g}$ and $\psi\left(a_{i}, h\right)=h * a_{i}$. Then ψ and ϕ are inverse isomorphisms.

Corollary IV. 12 ([GS]). The path algebra $k \Gamma$ is a Hopf algebra if and only if there exist a finite group G and a weight sequence W such that Γ is G-isomorphic to $\Gamma_{G}(W)$.

Proof. Assume that $k \Gamma$ is a Hopf algebra. Then we know that the vertex set of Γ is indexed by a finite group G and that there is an allowable $k G$-bimodule structure on $k \Gamma$. In particular, there is a free left G-action on Γ. Therefore there is a sequence of elements W of G such that Γ is G-isomorphic to $\Gamma_{G}(W)$. Moreover, since there is an allowable $k G$-bimodule structure on $k \Gamma$ extending the free left G-action, W is a weight sequence.

Conversely, it follows from the proof of Lemma IV. 8 that there is an allowable $k G$-bimodule structure on $k \Gamma_{G}(W)$ when W is a weight sequence.

In their paper [CR], C. Cibils and M. Rosso consider the same problem (among other things), which they prove in terms of category theory.

The diagram below summarises the results in [GS] and [CR] related to the question of when $k \Gamma$ is a Hopf algebra. If H is a Hopf algebra, $b(H)$ denotes the category of Hopf bimodules over H that are finite dimensional over k. Moreover, \mathscr{C} is the set of conjugacy classes in $G, u(C) \in G$ is a representative of the
conjugacy class $C \in \mathscr{C}$, the group $Z_{u(C)}$ is the centraliser of $u(C)$ in G and $\mathcal{W}: b(k G) \rightarrow \underset{C \in \mathscr{C}}{\times} k Z_{u(C)}-\bmod$ is a functor (equivalence of categories).

Definition IV.13. [CR] The Cayley graph of a group G with respect to a marking map $m: G \rightarrow \mathbb{N}$ is an oriented graph Γ whose vertices are indexed by the elements of the group, $\Gamma_{0}=\left\{v_{g} ; g \in G\right\}$, and such that the number of arrows from v_{d} to v_{f} is $m\left(f d^{-1}\right)$.

Proposition IV.14. Γ is the Cayley graph of G with respect to $m: G \rightarrow \mathbb{N}$ constant on conjugacy classes if and only if $\Gamma=\Gamma_{G}(W)$ for some weight sequence W.

Proof. $>$ Assume that Γ is the Cayley graph of G with respect to $m: G \rightarrow \mathbb{N}$ constant on conjugacy classes. By definition, $\Gamma_{0}=\left\{v_{g} ; g \in G\right\}$ is indexed by the elements of G and for any $(g, h) \in G^{2}$ we have $\operatorname{dim}_{k} v_{d}\left(k \Gamma_{1}\right) v_{f}=m\left(f d^{-1}\right)$.
Define $W=\amalg_{g \in G, m(g \neq 0)}\left(\amalg_{m(g)}\{g\}\right)=:\left\{w_{1}, \ldots, w_{n}\right\}$. In other words, an element $g \in G$ occurs exactly $m(g)$ times in W. Hence $m(g)=\#\left\{i ; w_{i}=g\right\}$. Note that $m(g)$ is also the number of arrows in Γ from v_{1} to v_{g}.
The number of w_{i} such that $h^{-1}=w_{i} g^{-1}$ is $m\left(h^{-1} g\right)$, that is, the number of arrows from $v_{g^{-1}}$ to $v_{h^{-1}}$. Therefore the arrows are the $\left(a_{i}, g\right): v_{g^{-1}} \rightarrow v_{w_{i} g^{-1}}$ for $g \in G$ and $w_{i} \in W$.
Therefore $\Gamma=\Gamma_{G}(W)$.
Moreover, since m is constant on conjugacy classes, we have $W=\amalg_{C \in \mathscr{C}, m(C) \neq 0} \amalg_{m(C)} C$. Therefore $\left\{g w_{i} g^{-1} ; i=1, \ldots, n\right\}=\amalg_{C \in \mathscr{C}, m(C) \neq 0} \amalg_{m(C)} g C g^{-1}=\amalg_{C \in \mathscr{C}, m(C) \neq 0} \amalg_{m(C)} C=W$, so that W is a weight sequence.
$>$ Assume that $\Gamma=\Gamma_{G}(W)$ where $W=\left\{w_{1}, \ldots, w_{n}\right\}$ is a weight sequence. By definition, $\Gamma_{0}=$ $\left\{v_{g} ; g \in G\right\}$ is indexed by the elements of G and $\Gamma_{1}=\left\{\left(a_{i}, g\right): v_{g^{-1}} \rightarrow v_{w_{i} g^{-1}} ; 1 \leqslant i \leqslant n, g \in G\right\}$.
Define $m(g)=\operatorname{dim}_{k} v_{1}\left(k \Gamma_{1}\right) v_{g}=\#\left\{i ; w_{i}=g\right\}$. Then, for any $h \in G$, we have $m\left(h g h^{-1}\right)=$ $\#\left\{i ; w_{i}=h g h^{-1}\right\}=\#\left\{i ; h^{-1} w_{i} h=g\right\}$. Since $\varphi_{h}: W \rightarrow W$ defined by $\varphi_{h}(w)=h^{-1} w h$ is a bijection, $m\left(h g h^{-1}\right)=\#\left\{i ; \varphi_{h}\left(w_{i}\right)=g\right\}=\#\left\{i ; w_{i}=g\right\}=m(g)$. Therefore m is constant on conjugacy classes.
Finally, the number of arrows from v_{g} to v_{h} is $\#\left\{\left(a_{i}, k\right) ; k^{-1}=g, w_{i} k^{-1}=h\right\}=\#\left\{i ; w_{i}=h g^{-1}\right\}=$ $m\left(h g^{-1}\right)$.
Therefore, Γ is the Cayley graph of G with respect to m, and m is constant on conjugacy classes.
The appendix gives some details on the results in [CR] related to the question of when $k \Gamma$ is a Hopf algebra.

1. Quiver of a finite dimensional basic Hopf algebra

In [GS], the authors consider a finite dimensional Hopf algebra H such that $H \cong k \Gamma / I$, where I is an admissible ideal in the path algebra $k \Gamma$. Let \mathfrak{r} denote the Jacobson radical of H. They prove that \mathfrak{r} is a Hopf ideal in H, so that H / \mathfrak{r} is a Hopf algebra isomorphic to k^{n} for some $n \geqslant 1$. Therefore, there is a group G such that $H / r \cong k^{G}$.

They then describe the Hopf algebra structure of H modulo \mathfrak{r}^{2}.
Their final result on finite dimensional basic Hopf algebras is [GS, Theorem 2.3], which states that there is an admissible sequence W such that $\Gamma \cong \Gamma_{G}(W)$.

We shall now turn to the end of their paper.

2. Construction of finite dimensional Hopf algebras

In the last section of the paper [GS], given a Hopf algebra $k \Gamma_{G}(W)$, the authors construct explicit ideals I in $k \Gamma_{G}(W)$ such that $k \Gamma_{G}(W) / I$ is finite dimensional, and give necessary and sufficient conditions for this ideal I to be a Hopf ideal.

a) The ideal I_{q}

Definition V.1. [GS] For a and b two distinct arrows in $\Gamma_{G}(W)$ with the same source, set

$$
q(a, b)=a\left(r(a)^{-1} \rightharpoonup b\right)-b\left(a \leftharpoonup \ell(b)^{-1}\right) .
$$

The ideal I_{q} in $k \Gamma_{G}(W)$ is the ideal generated by the $q(a, b) \leftharpoonup g$ where (a, b) are pairs of distinct arrows with same source and $g \in G$.

Lemma V.2. [GS, Lemma 5.1] The ideal I_{q} is a Hopf ideal if, and only if, both conditions below are satisfied.
(i) The subgroup of G generated by W is abelian.
(ii) For any pair (a, b) of distinct arrows with the same source, there exists a scalar $c_{b}(a) \in k^{\times}$such that $a \leftharpoonup \ell(b)=c_{b}(a) r(b) \rightharpoonup a$ satisfying $c_{a}(b)=c_{b}(a)^{-1}$.

Remark V.3. Note that if we have an admissible $k G$-bimodule structure on $k \Gamma$ in general, the right action does not necessarily send an arrow to a scalar multiple of an arrow (there is an example illustrating this at the end of the paper [GS]). However, if I_{q} is a Hopf ideal, then the right action of $\ell(b)$ on a, where a and b are two distinct arrows with same source, is a scalar multiple of an arrow.
Proof of Lemma V.2. $>$ Let $a: v_{d} \rightarrow v_{f}$ and $b: v_{d} \rightarrow v_{h}$ be two distinct arrows in $\Gamma_{G}(W)$ with the same source. Then $\varepsilon(q(a, b) \leftharpoonup g)=0$ for all $g \in G$. Moreover,

$$
\begin{aligned}
\Delta(q(a, b))= & \Delta(a) \Delta\left(r(a)^{-1} \rightharpoonup b\right)-\Delta(b) \Delta\left(a \leftharpoonup \ell(b)^{-1}\right) \\
= & \Delta(a)\left(\Delta(b) \leftharpoonup r(a)^{-1}\right)-\Delta(b)\left(\ell(b)^{-1} \rightharpoonup \Delta(a)\right) \\
= & \left(\sum_{t \in G} t \rightharpoonup a \otimes v_{t}+v_{t} \otimes a \leftharpoonup t\right)\left(\sum_{g \in G}\left(g \rightharpoonup b \otimes r(a)^{-1} v_{g}+v_{g} \otimes r(a)^{-1} \rightharpoonup b \leftharpoonup g\right)\right) \\
- & \left(\sum_{t \in G} t \rightharpoonup b \otimes v_{t}+v_{t} \otimes b \leftharpoonup t\right)\left(\sum_{g \in G}\left(g \rightharpoonup a \leftharpoonup \ell(b)^{-1} \otimes v_{g}+v_{g} \leftharpoonup \ell(b)^{-1} \otimes a \leftharpoonup g\right)\right) \\
= & \sum_{g \in G}\left[(g r(a) \rightharpoonup a)(g \rightharpoonup b) \otimes v_{g r(a)}+(g \rightharpoonup b) \otimes\left(a \leftharpoonup d g^{-1}\right)\right. \\
& \quad+\left(g^{-1} f \rightharpoonup a\right) \otimes\left(r(a)^{-1} \rightharpoonup b \leftharpoonup g\right)+v_{g} \otimes(a \leftharpoonup g)\left(r(a)^{-1} \rightharpoonup b \leftharpoonup g\right) \\
& \quad-(g \rightharpoonup b)\left(g \rightharpoonup a \leftharpoonup \ell(b)^{-1}\right) \otimes v_{g}-\left(g \rightharpoonup a \leftharpoonup \ell(b)^{-1}\right) \otimes\left(b \leftharpoonup h g^{-1}\right) \\
& \left.\quad-\left(g^{-1} d \rightharpoonup b\right) \otimes(a \leftharpoonup g)-\left(v_{g} \leftharpoonup \ell(b)^{-1}\right) \otimes(b \leftharpoonup \ell(b) g)(a \leftharpoonup g)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{g \in G}\left[(g \rightharpoonup a)\left(g r(a)^{-1} \rightharpoonup b\right) \otimes v_{g}+(g \rightharpoonup b) \otimes\left(a \leftharpoonup d g^{-1}\right)\right. \\
& +\left(g^{-1} f \rightharpoonup a\right) \otimes\left(r(a)^{-1} \rightharpoonup b \leftharpoonup g\right)+v_{g} \otimes(a \leftharpoonup g)\left(r(a)^{-1} \rightharpoonup b \leftharpoonup g\right) \\
& -(g \rightharpoonup b)\left(g \rightharpoonup a \leftharpoonup \ell(b)^{-1}\right) \otimes v_{g}-\left(g \rightharpoonup a \leftharpoonup \ell(b)^{-1}\right) \otimes\left(b \leftharpoonup h g^{-1}\right) \\
& \left.-(g \rightharpoonup b) \otimes\left(a \leftharpoonup d g^{-1}\right)-v_{g} \otimes(b \leftharpoonup g)\left(a \leftharpoonup \ell(b)^{-1} g\right)\right] \\
& =\sum_{g \in G}\left(q(g \rightharpoonup a, g \rightharpoonup b) \otimes v_{g}+v_{g} \otimes q(a, b) \leftharpoonup g\right)+X
\end{aligned}
$$

where

$$
\begin{aligned}
X= & \sum_{g \in G}\left(g^{-1} f \rightharpoonup a\right) \otimes\left(f^{-1} d \rightharpoonup b \leftharpoonup g\right)-\sum_{g \in G}\left(g \rightharpoonup a \leftharpoonup d h^{-1}\right) \otimes\left(b \leftharpoonup h g^{-1}\right) \\
= & \sum_{g \in G}\left(g^{-1} f \rightharpoonup a\right) v_{g} \otimes\left(f^{-1} d \rightharpoonup b \leftharpoonup g\right) v_{g^{-1} h d^{-1} f} \\
& \quad-\sum_{g \in G}\left(g^{-1} h d^{-1} f \rightharpoonup a \leftharpoonup d h^{-1}\right) v_{g} \otimes\left(b \leftharpoonup h f^{-1} d h^{-1} g\right) v_{g^{-1} h d^{-1} f} .
\end{aligned}
$$

We have $\Delta(q(a, b))-X \in I_{q} \otimes k \Gamma_{G}(W)+k \Gamma_{G}(W) \otimes I_{q}$ and, for all $g \in G, \Delta(q(a, b) \leftharpoonup g)=$ $\Delta(q(a, b)) \leftharpoonup g$. Therefore, if $X=0$ for all distinct arrows a, b with same source, then I_{q} is a bi-ideal. Conversely, since $X \in k \Gamma_{G}(W)_{1} \otimes k \Gamma_{G}(W)_{1}$ and $I_{q} \in k \Gamma_{G}(W)_{\geqslant 2}$, if I_{q} is a bi-ideal then $X=0$.
Hence I_{q} is a bi-ideal if and only if $X=0$ for all distinct arrows a, b with same source. Now $X=0$ if, and only if, for all $g \in G$, we have

$$
\left(g^{-1} f \rightharpoonup a\right) \otimes\left(f^{-1} d \rightharpoonup b \leftharpoonup g\right)-\left(g^{-1} h d^{-1} f \rightharpoonup a \leftharpoonup d h^{-1}\right) \otimes\left(b \leftharpoonup h f^{-1} d h^{-1} g\right)=0
$$

(multiply on the right by $v_{g} \otimes v_{g^{-1} h d^{-1} f}$ for each $g \in G$). Now multiplying on the left by $v_{d f^{-1} g} \otimes$ $v_{g^{-1} f}$ shows that we must have $d f^{-1}=h f^{-1} d h^{-1}$, that is, $\ell(b) f=f r(b)$.
Therefore, if I_{q} is a bi-ideal, then we must have $\ell(b) \mathfrak{t}(a)=\mathfrak{t}(a) r(b)$ for every pair of distinct arrows a, b with same source.
$>$ We now prove that $\ell(b) \mathfrak{t}(a)=\mathfrak{t}(a) r(b)$ for every distinct arrows a, b with same source if, and only if, the subgroup of G generated by W is abelian.
Assume that the subgroup of G generated by W is abelian. Let a and b be two distinct arrows in $\Gamma_{G}(W)$ with same source v_{d}. Then there exist distinct i and j such that $a=\left(a_{i}, d^{-1}\right)$ and $b=$ $\left(a_{j}, d^{-1}\right)$ so that $f=w_{i} d$ and $h=w_{j} d$. Hence $\ell(a)=f d^{-1}=w_{i} \in W$ and $\ell(b)=h d^{-1}=w_{j} \in W$ commute. Therefore

$$
\ell(b) f=\ell(b) f d^{-1} d=\ell(b) \ell(a) d=\ell(a) \ell(b) d=f d^{-1} h d^{-1} d=f r(b)
$$

Conversely, let w_{i} and w_{j} be distinct elements in W. Then $a=\left(a_{i}, 1\right)$ and $b=\left(a_{j}, 1\right)$ are two distinct arrows with same source v_{1}. Therefore $w_{j} w_{i}=\ell(b) \mathfrak{t}(a)=\mathfrak{t}(a) r(b)=w_{i} w_{j}$. All elements in W commute, therefore they generate an abelian subgroup of G.
Therefore, if I_{q} is a bi-ideal, then W generates an abelian subgroup of G.
$>$ Now assume that (i) and (ii) hold. Then

$$
\begin{aligned}
h d^{-1} f \rightharpoonup a \leftharpoonup d h^{-1} \otimes b \leftharpoonup h f^{-1} d h^{-1} & =\ell(b) f \rightharpoonup a \leftharpoonup \ell(b)^{-1} \otimes b \leftharpoonup h f^{-1} \ell(b)^{-1} \\
& =f r(b) \rightharpoonup a \leftharpoonup \ell(b)^{-1} \otimes b \leftharpoonup h r(b)^{-1} f^{-1} \\
& =f \rightharpoonup c_{b}(a)^{-1} a \otimes b \leftharpoonup d f^{-1} \\
& =c_{a}(b) f \rightharpoonup a \otimes c_{b}(a) r(a)^{-1} \rightharpoonup b \\
& =f \rightharpoonup a \otimes f^{-1} d \rightharpoonup b .
\end{aligned}
$$

Therefore, for any $g \in G$, we have

$$
g^{-1} f \rightharpoonup a \otimes f^{-1} d \rightharpoonup b \leftharpoonup g=g^{-1} h d^{-1} d \rightharpoonup a \leftharpoonup d h^{-1} \otimes b \leftharpoonup h f^{-1} d h^{-1} g
$$

so that $X=0$.
Therefore, if (i) and (ii) hold, then I_{q} is a bi-ideal.

Now assume that I_{q} is a bi-ideal, that is, $X=0$ for any pair of distinct arrows a, b with same source. We then know that (i) holds. Replacing g by $f g^{-1}$ in X and using (i) gives, for all $g \in G$,

$$
\begin{aligned}
g \rightharpoonup a \otimes r(a)^{-1} \rightharpoonup b \leftharpoonup f g^{-1} & =g f^{-1} \ell(b) f \rightharpoonup a \leftharpoonup \ell(b)^{-1} \otimes b \leftharpoonup h f^{-1} \ell(b)^{-1} f g^{-1} \\
& =g f^{-1} f r(b) \rightharpoonup a \leftharpoonup \ell(b)^{-1} \otimes b \leftharpoonup h r(b)^{-1} f^{-1} f g^{-1} \\
& =g r(b) \rightharpoonup a \leftharpoonup \ell(b)^{-1} \otimes b \leftharpoonup h h^{-1} d g^{-1} \\
& =g r(b) \rightharpoonup a \leftharpoonup \ell(b)^{-1} \otimes b \leftharpoonup d g^{-1} .
\end{aligned}
$$

For $g=d$ this gives

$$
d \rightharpoonup a \otimes r(a)^{-1} \rightharpoonup b \leftharpoonup \ell(a)=d r(b) \rightharpoonup a \leftharpoonup \ell(b)^{-1} \otimes b
$$

Since $a \leftharpoonup \ell(b)^{-1} \in{ }_{\ell(b) d} M_{\ell(b) f}$ we can write $a \leftharpoonup \ell(b)^{-1}=\sum_{i=1}^{s} \alpha_{i} a_{i}$ for some scalars α_{i} where $\left\{a_{1}, \ldots, a_{s}\right\}$ is part of a basis of arrows of $\ell(b) d M_{\ell(b) f}$. Similarly, $b \leftharpoonup \ell(a)=\sum_{i=1}^{t} \beta_{i} b_{i}$ for some scalars β_{i} where $\left\{b_{1}, \ldots, b_{t}\right\}$ is part of a basis of arrows of ${\ell(a)^{-1} d} M_{\ell(a)^{-1} h}$. Hence equation (\dagger) is equivalent to

$$
\sum_{i=1}^{t} \beta_{i}\left(d \rightharpoonup a \otimes r(a)^{-1} \rightharpoonup b_{i}\right)=\sum_{i=1}^{s} \alpha_{i}\left(d r(b) \rightharpoonup a_{i} \otimes b\right)
$$

Since $d \rightharpoonup a, r(a)^{-1} b_{i}, d r(b) \rightharpoonup a_{i}$ and b are all arrows (using the running assumption on the left action of G), they can be chosen as part of a basis of $k \Gamma_{G}(W)$. This implies that for all i we have $r(a)^{-1} \rightharpoonup b_{i}=b$ so that $b_{i}=r(a) \rightharpoonup b$ and therefore, up to reordering, $b_{1}=r(a) \rightharpoonup b$ and $\beta_{i}=0$ for $i>1$. Similarly, $a_{1}=r(b)^{-1} \rightharpoonup a$ and $\alpha_{j}=0$ for $j>1$. Replacing in equation (\ddagger) gives $\beta_{1} d \rightharpoonup a \otimes b=\alpha_{1} d \rightharpoonup a \otimes b$ so that $\alpha_{1}=\beta_{1}$. It then follows that $b \leftharpoonup \ell(a)=\alpha_{1} b_{1}=\alpha_{1}(r(a) \rightharpoonup b)$ so that we may set $c_{a}(b)=\alpha_{1}$, and $a \leftharpoonup \ell(b)^{-1}=\alpha_{1} a_{1}=c_{a}(b) r(b)^{-1} \rightharpoonup a$ hence $c_{a}(b)=c_{b}(a)^{-1}$ as required.
Therefore (ii) is satisfied.
$>$ We have now proved that I_{q} is a bi-ideal if and only if (i) and (ii) hold. It remains to be shown that, assuming (i) and (ii) are satisfied, I_{q} is a Hopf ideal, that is, $S\left(I_{q}\right) \subseteq I_{q}$. Let a and b be two distinct arrows with the same source as before. We have

$$
\begin{aligned}
d^{-1} \rightharpoonup S(q(a, b)) \leftharpoonup f^{-1} \ell(b)^{-1}= & d^{-1} \rightharpoonup((S(b) \leftharpoonup \ell(a)) S(a)-(\ell(b) \rightharpoonup S(a)) S(b)) \leftharpoonup f^{-1} \ell(b)^{-1} \\
= & d^{-1} \rightharpoonup((-d \rightharpoonup b \leftharpoonup h r(a))(-d \rightharpoonup a \leftharpoonup f) \\
& -(-\ell(b) d \rightharpoonup a \leftharpoonup f)(-d \rightharpoonup b \leftharpoonup h)) \leftharpoonup f^{-1} \ell(b)^{-1} \\
= & \left(b \leftharpoonup h r(a) f^{-1} \ell(b)^{-1}\right)\left(a \leftharpoonup \ell(b)^{-1}\right) \\
& -\left(d^{-1} \ell(b) d \rightharpoonup a \leftharpoonup \ell(b)^{-1}\right)\left(b \leftharpoonup h f^{-1} \ell(b)^{-1}\right) \\
= & b\left(a \leftharpoonup \ell(b)^{-1}\right)-\left(r(b) \rightharpoonup a \leftharpoonup \ell(b)^{-1}\right)\left(b \leftharpoonup h r(b)^{-1} f^{-1}\right) \\
= & b\left(a \leftharpoonup \ell(b)^{-1}\right)-c_{a}(b) a\left(b \leftharpoonup \ell(a)^{-1}\right) \\
= & b\left(a \leftharpoonup \ell(b)^{-1}\right)-a\left(r(a)^{-1} \rightharpoonup b\right) \\
= & -q(a, b) .
\end{aligned}
$$

Therefore $S(q(a, b) \leftharpoonup g)=g^{-1} \rightharpoonup S(q(a, b))=-g^{-1} d \rightharpoonup q(a, b) \leftharpoonup \ell(b) f=-q\left(g^{-1} d \rightharpoonup\right.$ $\left.a, g^{-1} d \rightharpoonup b\right) \leftharpoonup \ell(b) f \in I_{q}$ for all $g \in G$, so that $S\left(I_{q}\right) \subseteq I_{q}$ as required.

Remark V.4. Note that once we know that I_{q} is a Hopf ideal, then using (ii) we have $q(b, a)=-c_{b}(a) q(a, b)$.

b) The ideal I_{p}

Definition V.5. For every arrow a in $\Gamma_{G}(W)$, choose an integer $m_{a} \geqslant 2$, in such a way that $m_{a}=m_{g \rightarrow a}$ for all $g \in G$.
$>$ If a is not a loop, $\operatorname{set} p(a)=a\left(r(a)^{-1} \rightharpoonup a\right) \cdots\left(r(a)^{-m_{a}+1} \rightharpoonup a\right)=\prod_{i=0}^{m_{a}-1}\left(r(a)^{-i} \rightharpoonup a\right)$.
If a is a loop, $\operatorname{set} p(a)=a^{m_{a}}$.
The ideal I_{p} in $k \Gamma_{G}(W)$ is the ideal generated by the $p(a) \leftharpoonup g$ where a is an arrow and $g \in G$.

Remark V.6. Note that $a(g \rightharpoonup a)$ is a non-zero path if, and only if, $g=r(a)^{-1}$. Indeed, if the arrow a goes from v_{d} to v_{f}, then $g \rightharpoonup a$ starts at $v_{d g^{-1}}$, so that we require $d g^{-1}=f$, that is, $g^{-1}=d^{-1} f=r(a)$.

Note also that if a is a loop then $r(a)=1$.
Therefore $p(a)$ is the non-zero path of length m_{a} starting with a which is the product of successive arrows in the - -orbit of a.

In particular, any product of m_{a} arrows in the orbit of a is either 0 or an element of I_{p}.
Let $T_{s}(n)$ denote the set of all subsets of $\{0,1, \ldots, n-1\}$ consisting of s elements.
Lemma V.7. [GS, Lemma 5.3] Assume that $a \leftharpoonup \ell(a)=c_{a}(a) r(a) \rightharpoonup a$ for some $c_{a}(a) \in k^{\times}$and all arrows a in $\Gamma_{G}(W)$. Then I_{p} is a Hopf ideal in $k \Gamma_{G}(W)$ if, and only if,
(i) for all arrows a in $\Gamma_{G}(W)$ that are not loops, and for any $s \in\left\{1,2, \ldots, n_{a}-1\right\}$ where n_{a} is the order of $\ell(a)$ in G, we have

$$
\sum_{\sigma \in T_{s}\left(m_{a}\right)} \prod_{i \notin \sigma} c_{a}(a)^{i}=0
$$

(ii) for all loops a in $\Gamma_{G}(W)$ and all $i \in\left\{1,2, \ldots, m_{a}-1\right\}$, the number $\binom{m_{a}}{i}$ is zero in k.

Proof. Clearly, $\varepsilon\left(I_{p}\right) \subseteq \varepsilon(\mathfrak{r})=0$.
Let $a \in{ }_{d} M_{f}$ be an arrow that is not a loop. Note that for any integer i, we have $r(a)^{-i} \rightharpoonup a=$ $c_{a}(a)^{i} a \leftharpoonup \ell(a)^{-i}$ by assumption. We then have

$$
p(a)=\prod_{i=0}^{m_{a}-1}\left(r(a)^{-i} \rightharpoonup a\right)=\prod_{i=0}^{m_{a}-1} c_{a}(a)^{i}\left(a \leftharpoonup \ell(a)^{-i}\right)
$$

so that

$$
\begin{aligned}
S(p(a)) & =\prod_{i=0}^{m_{a}-1} c_{a}(a)^{i} S\left(a \leftharpoonup \ell(a)^{-i}\right) \\
& =\prod_{i=0}^{m_{a}-1} c_{a}(a)^{i} \ell(a)^{i} \rightharpoonup S(a) \\
& =(-1)^{m_{a}} c_{a}(a)^{-m_{a}\left(m_{a}-1\right) / 2} \prod_{i=0}^{m_{a}-1} \ell(a)^{i} \rightharpoonup(d \rightharpoonup a \leftharpoonup f) \\
& =(-1)^{m_{a}} c_{a}(a)^{-m_{a}\left(m_{a}-1\right) / 2} \prod_{i=0}^{m_{a}-1} \ell(a)^{i-m_{a}+1} \ell(a)^{m_{a}-1} d \rightharpoonup a \leftharpoonup f \\
& =(-1)^{m_{a}} c_{a}(a)^{-m_{a}\left(m_{a}-1\right) / 2} \prod_{m_{a}-1}^{j=0} \ell(a)^{-j} \rightharpoonup\left(\ell(a)^{m_{a}-1} d \rightharpoonup a\right) \leftharpoonup f \\
& =(-1)^{m_{a}} c_{a}(a)^{-m_{a}\left(m_{a}-1\right) / 2}\left(\prod_{m_{a}-1}^{j=0} r\left(a^{\prime}\right)^{-j} \rightharpoonup a^{\prime}\right) \leftharpoonup f \\
& =(-1)^{m_{a}} c_{a}(a)^{-m_{a}\left(m_{a}-1\right) / 2} p\left(a^{\prime}\right) \leftharpoonup f \in I_{p}
\end{aligned}
$$

where $a^{\prime}=\ell(a)^{m_{a}-1} d \rightharpoonup a$. If a is a loop at v_{d}, then

$$
S(p(a))=S(a)^{m_{a}}=(-1)^{m_{a}}(d \rightharpoonup a \leftharpoonup d)^{m_{a}}=(-1)^{m_{a}}(d \rightharpoonup a)^{m_{a}} \leftharpoonup d=(-1)^{m_{a}} p(d \rightharpoonup a) \leftharpoonup d \in I_{p}
$$

Moreover, for $g \in G, S(x \leftharpoonup g)=g^{-1} \rightharpoonup S(x)$ and $g^{-1} \rightharpoonup p(b)=p\left(g^{-1} \rightharpoonup b\right)$ for any arrow b, we have $S\left(I_{p}\right) \subseteq I_{p}$.

We now consider $\Delta\left(I_{p}\right)$. Let $a \in{ }_{d} M_{f}$ be an arrow that is not a loop. Then

$$
\begin{aligned}
\Delta(p(a)) & =\prod_{i=0}^{m_{a}-1} r(a)^{-i} \rightharpoonup \Delta(a) \\
& =\prod_{i=0}^{m_{a}-1} r(a)^{-i} \rightharpoonup \sum_{g_{i} \in G}\left(\left(g_{i} \rightharpoonup a\right) \otimes v_{g_{i}}+v_{g_{i}} \otimes\left(a \leftharpoonup g_{i}\right)\right) \\
& =\prod_{i=0}^{m_{a}-1} \sum_{g_{i} \in G}\left(\left(g_{i} \rightharpoonup a\right) \otimes\left(r(a)^{-i} \rightharpoonup v_{g_{i}}\right)+v_{g_{i}} \otimes\left(r(a)^{-i} \rightharpoonup\left(a \leftharpoonup g_{i}\right)\right)\right) \\
& =\prod_{i=0}^{m_{a}-1} \sum_{g_{i} \in G}\left(\left(g_{i} \rightharpoonup a\right) \otimes\left(v_{g_{i} r(a)^{i}}\right)+v_{g_{i}} \otimes\left(r(a)^{-i} \rightharpoonup a \leftharpoonup g_{i}\right)\right)
\end{aligned}
$$

The product above can be written as a sum of elements of the form $x_{0} x_{1} \cdots x_{m_{a}-1} \otimes y_{0} y_{1} \cdots y_{m_{a}-1}$, where $x_{i} \otimes y_{i}=g_{i} \rightharpoonup a \otimes v_{g_{i} r(a)^{i}}\left(\right.$ type (I)) or $x_{i} \otimes y_{i}=v_{g_{i}} \otimes\left(r(a)^{-i} \rightharpoonup a\right) \leftharpoonup g_{i}$ (type (II)) for all $i=0,1, \ldots, m_{a}-1$.

Now given an element $x_{i} \otimes y_{i}$ of type (I), then
$>$ if $x_{i+1} \otimes y_{i+1}$ is also of type (I) we have $v_{g^{i+1} r(a)^{i+1}}=y_{i+1}=y_{i}=v_{g_{i} r(a)^{i}}$ so that $g_{i+1}=g_{i} r(a)^{-1}$ is uniquely determined; note that $\mathfrak{s}\left(x_{i+1}\right)=v_{d g_{i+1}^{-1}}=v_{d r(a) g_{i}^{-1}}=v_{f g_{i}^{-1}}=\mathfrak{t}\left(x_{i}\right)$ so that the product $\left(x_{i} \otimes y_{i}\right)\left(x_{i+1} \otimes y_{i+1}\right)$ is well defined.
$>$ if $x_{i+1} \otimes y_{i+1}$ is of type (II) we have $x_{i+1}=v_{g_{i+1}}=\mathfrak{t}\left(x_{i}\right)=v_{f g_{i}^{-1}}$ so that $g_{i+1}=f g_{i}^{-1}$; note that $\mathfrak{s}\left(y_{i+1}\right)=v_{g_{i+1}^{-1} d r(a)^{i+1}}=v_{g_{i} r(a)^{i}}=y_{i}$ so that the product $\left(x_{i} \otimes y_{i}\right)\left(x_{i+1} \otimes y_{i+1}\right)$ is well defined.

Given an element $x_{i} \otimes y_{i}$ of type (II), then
$>$ if $x_{i+1} \otimes y_{i+1}$ is also of type (II) we have $x_{i+1}=v_{g_{i+1}}=x_{i}=v_{g_{i}}$ so that $g_{i+1}=g_{i}$; note that $\mathfrak{s}\left(y_{i+1}\right)=v_{g_{i+1}^{-1} d r(a)^{i+1}}=v_{g_{i}^{-1} f r(a)^{i}}=\mathfrak{t}\left(y_{i}\right)$ so that the product $\left(x_{i} \otimes y_{i}\right)\left(x_{i+1} \otimes y_{i+1}\right)$ is well defined.
$>$ if $x_{i+1} \otimes y_{i+1}$ is of type (I) we have $\mathfrak{s}\left(x_{i+1}\right)=v_{d g_{i+1}^{-} 1}=x_{i}=v_{g_{i}}$ so that $g_{i+1}=g_{i}^{-1} f$; note that $y_{i+1}=v_{g_{i+1} r(a)^{i+1}}=v_{g_{i}^{-1} f r(a)^{i}}=\mathfrak{t}\left(y_{i}\right)$ so that the product $\left(x_{i} \otimes y_{i}\right)\left(x_{i+1} \otimes y_{i+1}\right)$ is well defined.

Assume that $y_{0} y_{1} \cdots y_{m_{a}-1}$ starts at v_{g}. Then $\mathfrak{s}\left(y_{0}\right)=v_{g}$. If $x_{0} \otimes y_{0}$ is of type (I), then $y_{0}=v_{g_{0}}$ so that $g_{0}=g$ and $x_{0}=g_{0} \rightharpoonup a=g \rightharpoonup a$ starts at $v_{d g^{-1}}$. If $x_{0} \otimes y_{0}$ is of type (II), then $y_{0}=a \leftharpoonup g_{0}$ starts at $v_{g_{0}^{-1} d}$ so that $g_{0}=d g^{-1}$ and $x_{0}=v_{g_{0}}=v_{d g^{-1}}$ starts at $v_{d g^{-1}}$. In both cases, the source of $x_{0} x_{1} \cdots x_{m_{a}-1}$ is $v_{d g^{-1}}$.

Therefore, given a subset σ of $\left\{0,1, \cdots, m_{a}-1\right\}$ and an element g in G, there is a uniquely determined element in the product above, namely $x_{0} x_{1} \cdots x_{m_{a}-1} \otimes y_{0} y_{1} \cdots y_{m_{a}-1}$, where the path $x_{0} x_{1} \cdots x_{m_{a}-1}$ starts in vertex $v_{d g^{-1}}, y_{0} y_{1} \cdots y_{m_{a}-1}$ starts in vertex $v_{g}, x_{i} \otimes y_{i}$ is of type (I) for $i \in \sigma$, and $x_{i} \otimes y_{i}$ is of type (II) for $i \notin \sigma$.

Moreover, if $i_{0}=0$ then $y_{0}=v_{g_{0}}=v_{g}$ so that $g_{i_{0}}=g_{0}=g$, and if $i_{0}>0$, the $x_{i} \otimes y_{i}$ with $i<i_{0}$ are of type (II) so that $v_{d g^{-1}}=x_{0}=x_{i_{0}-1}=\mathfrak{s}\left(x_{i_{0}}\right)=v_{d g_{i_{0}}}$ and $g_{i_{0}}=g$. Next, the $x_{i} \otimes y_{i}$ with $i_{0}<i<i_{1}$ are of type (II) so that $v_{f g^{-1}}=\mathfrak{t}\left(x_{i_{0}}\right)=x_{i_{0}+1}=x_{i_{1}-1}=\mathfrak{s}\left(x_{i_{1}}\right)=v_{d g_{i_{1}}}$ and $g_{1}=g r(a)^{-1}$. Inductively, we have $g_{i_{j}}=g r(a)^{-j}$ for $j=0, \ldots, s-1$.

Similarly, for each $t=0, \ldots, m_{a}-s-1$ we have $g_{j_{t}}=\ell(a)^{j_{t}-t} d g^{-1}$.
Therefore,

$$
\begin{aligned}
\Delta(p(a)) & =\sum_{g \in G} \sum_{s=0}^{m_{a}-1} \sum_{\sigma \in T_{s}\left(m_{a}\right)}\left(\prod_{j=0}^{s-1}\left(g r(a)^{-j} \rightharpoonup a\right) \otimes \prod_{t=0}^{m_{a}-s-1}\left(r(a)^{-j_{t}} \rightharpoonup a \leftharpoonup \ell(a)^{j_{t}-t} d g^{-1}\right)\right) \\
& =\sum_{s=0}^{m_{a}-1} \sum_{g \in G} \sum_{\sigma \in T_{s}\left(m_{a}\right)}\left(\prod_{u \notin \sigma} c_{a}(a)^{u}\right)\left(\prod_{t=0}^{s-1}\left(g r(a)^{-t} \rightharpoonup a\right) \otimes \prod_{t=0}^{m_{a}-s-1}\left(a \leftharpoonup \ell(a)^{-t} d g^{-1}\right)\right)
\end{aligned}
$$

since $r(a)^{-j} \rightharpoonup a=c_{a}(a)^{j} a \leftharpoonup \ell(a)^{-j}$.
If a is a loop, we have $d=f$ and $r(a)=1=\ell(a)$, and a similar argument shows that

$$
\begin{aligned}
\Delta(p(a))=\Delta\left(a^{m_{a}}\right) & =\sum_{g \in G} \sum_{s=0}^{m_{a}-1} \sum_{\sigma \in T_{s}\left(m_{a}\right)}\left(\prod_{j=0}^{s-1}(g \rightharpoonup a) \otimes \prod_{t=0}^{m_{a}-s-1}\left(a \leftharpoonup d g^{-1}\right)\right) \\
& =\sum_{s=0}^{m_{a}-1} \sum_{g \in G}\binom{m_{a}}{s}\left((g \rightharpoonup a)^{s} \otimes\left(a \leftharpoonup d g^{-1}\right)^{m_{a}-s}\right) .
\end{aligned}
$$

For each $s=0, \ldots, m_{a}$, the term $X_{s, g}:=\prod_{t=0}^{s-1}\left(g r(a)^{-t} \rightharpoonup a\right)$, or $X_{s, g}:=(g \rightharpoonup a)^{s}$ in the case of a loop, is a sub-path of length s of $p(g \rightharpoonup a)$ starting at $v_{d g^{-1}}$, and the term $Y_{s, g}:=\prod_{t=0}^{m_{a}-s-1}\left(a \leftharpoonup \ell(a)^{-t} d g^{-1}\right)$, or $Y_{s, g}:=\left(a \leftharpoonup d g^{-1}\right)^{m_{a}-s}$ in the case of a loop, is a (non-zero scalar multiple of a) sub-path of length $m_{a}-s$ of $p\left(a \leftharpoonup d g^{-1}\right)$ starting at v_{g}.

Multiplying by $v_{d g^{-1}} \otimes v_{g}$ shows that $\Delta(p(a)) \in I_{p} \otimes k \Gamma_{G}(W)+k \Gamma_{G}(W) \otimes I_{p}$ if, and only if, for any $g \in G$ the term $\sum_{s=1}^{m_{a}-1} \sum_{\sigma \in T_{s}\left(m_{a}\right)}\left(\prod_{u \notin \sigma} c_{a}(a)^{u}\right) X_{s, g} \otimes Y_{s, g}$ is in $I_{p} \otimes k \Gamma_{G}(W)+k \Gamma_{G}(W) \otimes I_{p}$.

Now for $s=0$ and $s=m_{a}$ and for all $g \in G$, we have $\sum_{\sigma \in T_{s}\left(m_{a}\right)}\left(\prod_{u \notin \sigma} c_{a}(a)^{u}\right) X_{s, g} \otimes Y_{s, g} \in$ $I_{p} \otimes k \Gamma_{G}(W)+k \Gamma_{G}(W) \otimes I_{p}$. Recall that $k \Gamma_{G}(W) \otimes k \Gamma_{G}(W)=\bigoplus_{t, u} k\left(\Gamma_{G}(W)\right)_{t} \otimes k\left(\Gamma_{G}(W)\right)_{u}$, therefore $\sum_{s=1}^{m_{a}-1} \sum_{g \in G} \sum_{\sigma \in T_{s}\left(m_{a}\right)}\left(\prod_{u \notin \sigma} c_{a}(a)^{u}\right) X_{s, g} \otimes Y_{s, g}$ is not in $I_{p} \otimes k \Gamma_{G}(W)+k \Gamma_{G}(W) \otimes I_{p}$ unless it is zero.

Each $X_{s, g} \otimes Y_{s, g}$ is in $k\left(\Gamma_{G}(W)\right)_{s} \otimes k(g w)_{m_{a}-s}$ so that $\sum_{s=1}^{m_{a}-1} \sum_{g \in G} \sum_{\sigma \in T_{s}\left(m_{a}\right)}\left(\prod_{u \notin \sigma} c_{a}(a)^{u}\right) X_{s, g} \otimes Y_{s, g}$ vanishes if and only if for each $1 \leqslant s \leqslant m_{a}-1$ we have $\sum_{\sigma \in T_{s}\left(m_{a}\right)}\left(\prod_{u \notin \sigma} c_{a}(a)^{u}\right) X_{s, g} \otimes Y_{s, g}=0$, that is,

$$
\begin{cases}\prod_{u \notin \sigma} c_{a}(a)^{u}=0 & \text { if } a \text { is not a loop } \\ \binom{m_{a} a}{s}=0 & \text { if } a \text { is a loop. }\end{cases}
$$

c) The quotient $k \Gamma_{G}(W) /\left(I_{q}, I_{p}\right)$

Theorem V.8. [GS, Theorem 5.6(b)] Let G be a finite group and let $W=\left\{w_{1}, \ldots, w_{n}\right\}$ be a non-empty weight sequence generating an abelian subgroup of G. Let I_{q} and I_{p} be the ideals defined above for some choices of integers m_{a} associated to the arrows a in $\Gamma_{G}(W)$. Assume that the allowable $k G$-bimodule structure on $k \Gamma_{G}(W)$ is given by group homomorphisms $\Theta: G^{o p} \rightarrow \mathfrak{S}_{n}$ and $f_{i}=f_{\Theta(g)(i)}: G \rightarrow k^{\times}$for $i=1, \ldots, n$ as in Example IV.9. Assume moreover that
$>f_{i}\left(w_{j}\right)=f_{j}\left(w_{i}\right)^{-1}$ for all i and j with $i \neq j$,
$>$ for any arrow a that is not a loop and for all $s=1, \ldots, m_{a}-1, \sum_{\sigma \in T_{s}\left(m_{a}\right)} \prod_{j \notin \sigma} f_{i}\left(w_{i}\right)^{j}=0$,
$>$ if there is a loop in $\Gamma_{G}(W)$, then char $(k)=p>0$ and for any loop a and any $s=1, \ldots, m_{a}-1, p$ divides $\binom{m_{a}}{s}$.

Then the algebra $k \Gamma_{G}(W) /\left(I_{p}, I_{q}\right)$ is a finite dimensional Hopf algebra.
Proof. $>$ We first show that I_{q} is a Hopf ideal using Lemma V.2. Since W generates an abelian subgroup of G by assumption, we need only show that condition (ii) is satisfied.
Let $\left(a_{i}, h\right)$ and $\left(a_{j}, h\right)$ be two arrows with the same source $v_{h^{-1}}$. Then

$$
\begin{aligned}
& r\left(\left(a_{j}, h\right)\right) \rightharpoonup\left(a_{i}, h\right)=h w_{j} h^{-1} \rightharpoonup\left(a_{i}, h\right)=\left(a_{i}, h w_{j}\right) \\
& \left(a_{i}, h\right) \leftharpoonup \ell\left(\left(a_{j}, h\right)\right)=\left(a_{i}, h\right) \leftharpoonup w_{j}=f_{i}\left(w_{j}\right)\left(a_{\Theta\left(w_{j}\right)(i)}, h w_{j}\right)=f_{i}\left(w_{j}\right)\left(a_{i}, h w_{j}\right)
\end{aligned}
$$

since $w_{\Theta\left(w_{j}\right)(i)}=w_{j}^{-1} w_{i} w_{j}=w_{i}$ because the elements of W commute. Therefore $c_{\left(a_{j}, h\right)}\left(\left(a_{i}, h\right)\right)=$ $f_{i}\left(w_{j}\right)$ and by assumption, if $i \neq j$, we have $c_{\left(a_{i}, h\right)}\left(\left(a_{j}, h\right)\right)=c_{\left(a_{j}, h\right)}\left(\left(a_{i}, h\right)\right)^{-1}$. Therefore (ii) in Lemma V. 2 is satisfied.
$>$ From the above, we have $c_{\left(a_{i}, h\right)}\left(\left(a_{i}, h\right)\right)=f_{i}\left(w_{i}\right)$ and conditions (i) and (ii) in Lemma V. 7 are satisfied by assumption. Therefore I_{p} is also a Hopf ideal, and so is $\left(I_{p}, I_{q}\right)$. Hence $H:=k \Gamma_{G}(W) /\left(I_{p}, I_{q}\right)$ is a Hopf algebra.
$>$ It remains to be shown that H is finite dimensional.
Let a and b be arrows such that $\mathfrak{t}(a)=\mathfrak{s}(b)$. Then a and $r(a) \rightharpoonup b$ are arrows with the same source. Assume that they are different, that is, that $b \neq r(a)^{-1} \rightharpoonup b$. Then, in H, we have

$$
\begin{aligned}
0=q(a, r(a) \rightharpoonup b) & =a\left(r(a)^{-1} \rightharpoonup(r(a) \rightharpoonup b)\right)-(r(a) \rightharpoonup b)\left(a \leftharpoonup \ell(r(a) \rightharpoonup b)^{-1}\right) \\
& =a b-(r(a) \rightharpoonup b)\left(a \leftharpoonup \ell(b)^{-1}\right) \\
& =a b-c_{b}(a)(r(a) \rightharpoonup b)\left(r(b)^{-1} \rightharpoonup a\right)
\end{aligned}
$$

so that, in H, we have $a b=c b^{\prime} a^{\prime}$ where $c \in k^{\times}, a^{\prime}$ is an arrow in the left G-orbit of a and b^{\prime} is an arrow in the left G-orbit of b.
Note that there are n left G-orbits in $\left(k \Gamma_{G}(W)\right)_{1}$, one for each $w_{i} \in W$ (the orbits of the $\left(a_{i}, 1\right)$).
Set $N=\max \left\{m_{a} ; a \in k\left(\Gamma_{G}(W)\right)_{1}\right\}=\max \left\{m_{\left(a_{i}, 1\right)} ; i=1, \ldots, n\right\}$. We prove that any path of length at least $n N$ vanishes in H.
Let $z=b_{1} b_{2} \cdots b_{t}$ be a path of length $t \geqslant n N$. Then at least N of the arrows b_{i} are in the same left G-orbit. By the first part of the proof that H is finite dimensional, there is a scalar c such that $z=b_{1} \cdots b_{r} b_{r+1}^{\prime} \cdots b_{r+N}^{\prime} b_{r+N+1}^{\prime} \cdots b_{t}^{\prime}+z^{\prime}$ with $b_{r+1}^{\prime}, \ldots, b_{r+N}^{\prime}$ in the same G-orbit and $z^{\prime} \in I_{q}$. Therefore $b_{r+1}^{\prime} \cdots b_{r+N}^{\prime}$ is in I_{p} by Remark V. 6 so that $z \in\left(I_{p}, I_{q}\right)$ as required.

Remark V.9. Green and Solberg also give, in [GS, Theorem 5.6], the order of the antipode (2. $\left.\operatorname{lcm}\left\{\left|f_{i}\left(w_{i}\right)\right| ; i=1, \ldots, n\right\}\right)$ as well as necessary and sufficient conditions for $k \Gamma_{G}(W) /\left(I_{q}, I_{p}\right)$ to be commutative ($w_{i}=1$ for all i) or cocommutative (G abelian and $f_{i} \equiv 1$ for all i).

Moreover, in Corollary 5.4, they do the case of a general allowable $k G$-bimodule structure on $k \Gamma_{G}(W)$.

In Examples V.10, V. 12 and V.13, we check separately that I_{q} and I_{p} are Hopf ideals using Lemmas V. 2 and V.7, although we do not need to in order to apply Theorem V.8.

Example V.10. Let $G=\mathbb{Z} / n \mathbb{Z}$ be the cyclic group of order n, generated by γ. The subset $W=\{\gamma\}$ is a weight sequence (G is abelian).

The quiver $\Gamma_{G}(W)$ is then an oriented cycle with n vertices (and arrows): the arrows are the (a, g) from $v_{g^{-1}}$ to $v_{\gamma g^{-1}}$ for all $g \in G$ that is, $\alpha_{t}:=\left(a, \gamma^{t}\right)$ is the arrow from $v_{\gamma^{-t}}$ to $v_{\gamma^{-t+1}}$. Set $e_{t}=v_{\gamma^{-t}}$.

Take $\Theta \equiv$ id and let $f: G \rightarrow k^{\times}$be defined by $f(\gamma)=\zeta$ with $\zeta^{n}=1$. These determine an allowable $k G$-bimodule structure on $k \Gamma_{G}(W)$ as in Example IV.9. The corresponding Hopf algebra structure on $k \Gamma_{G}(W)$ is determined by:

$$
\begin{aligned}
\varepsilon\left(e_{t}\right) & =\left\{\begin{array}{ll}
1 & \text { if } t=0 \\
0 & \text { if } t \neq 0,
\end{array} \quad \varepsilon\left(\alpha_{t}\right)=0,\right. \\
\Delta\left(e_{t}\right) & =\sum_{s=0}^{n-1} e_{s} \otimes e_{t-s}, \quad S\left(e_{t}\right)=e_{-t} \\
\Delta\left(\alpha_{t}\right) & =\sum_{s=0}^{n-1}\left(\gamma^{s} \rightharpoonup \alpha_{t} \otimes v_{\gamma^{s}}+v_{\gamma^{s}} \otimes \alpha_{t} \leftharpoonup \gamma^{s}\right) \\
& =\sum_{s=0}^{n-1}\left(\alpha_{t+s} \otimes e_{-s}+\zeta^{s} e_{-s} \otimes \alpha_{t+s}\right) \\
& =\sum_{s+u=t}\left(\alpha_{s} \otimes e_{u}+\zeta^{-u} e_{u} \otimes \alpha_{s}\right), \\
S\left(\alpha_{t}\right) & =-\gamma^{-t} \rightharpoonup \alpha_{t} \leftharpoonup \gamma^{1-t} \\
& =-\zeta^{1-t} \alpha_{1-t}
\end{aligned}
$$

where the indices are taken modulo n.
Finally let $d \geqslant 2$ be the order of ζ and set $m_{a}=d$ for all arrows $a \in\left(\Gamma_{G}(W)\right)_{1}$. Note that d divides n. We now determine the quotient $k \Gamma_{G}(W) /\left(I_{p}, I_{q}\right)$. Clearly, $I_{q}=0$ since no two arrows have the same source.

Now consider I_{p}. For all t we have $\alpha_{t} \leftharpoonup \ell\left(\alpha_{t}\right)=\alpha_{t} \leftharpoonup \gamma=\zeta \gamma \rightharpoonup \alpha_{t}=\zeta r\left(\alpha_{t}\right) \rightharpoonup \alpha_{t}$ so that $c_{\alpha_{t}}\left(\alpha_{t}\right)=\zeta$ for all α_{t}. Since there are no loops in the quiver, we need only check that for all $s=1, \ldots, d-1$, we have $\sum_{\sigma \in T_{s}(d)} \prod_{i \notin \sigma} \zeta^{i}=0$. This follows immediately from Lemma V. 11 below applied to the cyclic group G, using that $f\left(\gamma^{s}\right)=\zeta^{s} \neq 1$.

Since $\gamma \rightharpoonup \alpha_{t}=\alpha_{t+1}$, the path $p\left(\alpha_{t}\right)$ is the unique path of length d starting at α_{t}. Note that $p\left(\alpha_{t}\right) \leftharpoonup$ $\gamma^{s}=\zeta^{d s} p\left(\alpha_{t+s}\right)=p\left(\alpha_{t+s}\right)$. Hence I_{p} is the ideal generated by all paths of length d.

These algebras are called the generalised Taft algebras. They were studied in detail by Cibils in [C] and also in [CHYZ]. They are neither commutative nor cocommutative.

Lemma V.11. [GS, Lemma 5.5] Let G be a finite group of order n and let k be a field. Suppose that $f: G \rightarrow k^{\times}$ is a group morphism. Let s be an integer with $1 \leqslant s<n$. Assume that there exists an element $g \in G$ such that $f\left(g^{s}\right) \neq 1$. Let $T_{s}(G)$ be the set of all subsets of G consisting of s elements. Then

$$
\sum_{\sigma \in T_{s}(G)} \prod_{g \notin \sigma} f(g)=0
$$

Proof. For $\sigma \in T_{s}(G)$, set $f(\sigma)=\prod_{g \notin \sigma} f(g)$ For $\sigma \in T_{S}(G)$ and $g \in G$, set $g \sigma:=\{g h ; h \in \sigma\}$. Then $\tau_{g}: T_{s}(G) \rightarrow T_{s}(G)$ defined by $\tau_{g}(\sigma)=g \sigma$ is a bijection, with inverse $\tau_{g^{-1}}$. Moreover,

$$
f(g \sigma)=\prod_{h \notin \sigma} f(g h)=f(g)^{s} \prod_{h \notin \sigma} f(h)=f(g)^{s} f(\sigma) .
$$

Therefore

$$
\sum_{\sigma \in T_{s}(G)} f(\sigma)=\sum_{\sigma \in T_{s}(G)} f(g \sigma)=f\left(g^{s}\right) \sum_{\sigma \in T_{s}(G)} f(\sigma) .
$$

Since $f\left(g^{s}\right) \neq 1$, we have $\sum_{\sigma \in T_{s}(G)} f(\sigma)=0$.

Example V.12. Let $G=\mathbb{Z} / n \mathbb{Z}$ be the cyclic group of order n, generated by γ. The subset $W=$ $\left\{w_{1}=\gamma, w_{2}=\gamma^{-1}\right\}$ is a weight sequence (G is abelian). The quiver $\Gamma_{G}(W)$ is then of the form

with n vertices and $2 n$ arrows: if we set $e_{t}=v_{\gamma^{-t}}$ for $0 \leqslant t<n$, the $\alpha_{t}:=\left(a_{1}, \gamma^{t}\right)$ go from $e_{t}=v_{\gamma^{-t}}$ to $v_{\gamma \gamma^{-t}}=e_{t-1}$ and the $\bar{\alpha}_{t}:=\left(a_{2}, \gamma^{t}\right)$ go from e_{t} to $v_{\gamma^{-1} \gamma^{-t}}=e_{t+1}$ for all t considered modulo n.

Take $\Theta \equiv$ id and let $f_{i}: G \rightarrow k^{\times}$for $i=1,2$ be defined by $f_{i}(\gamma)=\zeta$ with $\zeta^{n}=1$. These determine an allowable $k G$-bimodule structure on $k \Gamma_{G}(W)$ as in Example IV.9. The corresponding Hopf algebra structure on $k \Gamma_{G}(W)$ is determined by the formulas in the previous example for the e_{t} and the α_{t} and by:

$$
\begin{aligned}
\varepsilon\left(\bar{\alpha}_{t}\right) & =0 \\
\Delta\left(\bar{\alpha}_{t}\right) & =\sum_{s=0}^{n-1}\left(\gamma^{s} \rightharpoonup \bar{\alpha}_{t} \otimes v_{\gamma^{s}}+v_{\gamma^{s}} \otimes \bar{\alpha}_{t} \leftharpoonup \gamma^{s}\right) \\
& =\sum_{s=0}^{n-1}\left(\bar{\alpha}_{t+s} \otimes e_{-s}+\zeta^{s} e_{-s} \otimes \bar{\alpha}_{t+s}\right) \\
& =\sum_{s+u=t}\left(\bar{\alpha}_{s} \otimes e_{u}+\zeta^{-u} e_{u} \otimes \bar{\alpha}_{s}\right) \\
S\left(\bar{\alpha}_{t}\right) & =-\gamma^{-t} \rightharpoonup \bar{\alpha}_{t} \leftharpoonup \gamma^{-t-1} \\
& =-\zeta^{-1-t} \bar{\alpha}_{-t+1}
\end{aligned}
$$

where the indices are taken modulo n.
Finally let $d \geqslant 2$ be the order of ζ and set $m_{a}=d$ for all arrows $a \in k\left(\Gamma_{G}(W)\right)_{1}$. Note that d divides n. We now determine the quotient $k \Gamma_{G}(W) /\left(I_{p}, I_{q}\right)$.

The arrows α_{t} and $\bar{\alpha}_{t}$ are distinct and have the same source e_{t}. We have

$$
q\left(\alpha_{t}, \bar{\alpha}_{t}\right)=\alpha_{t}\left(r\left(\alpha_{t}\right)^{-1} \rightharpoonup \bar{\alpha}_{t}\right)-\bar{\alpha}_{t}\left(\alpha_{t} \leftharpoonup \ell\left(\bar{\alpha}_{t}\right)^{-1}\right)=\alpha_{t}\left(\gamma^{-1} \rightharpoonup \bar{\alpha}_{t}\right)-\bar{\alpha}_{t}\left(\alpha_{t} \leftharpoonup \gamma\right)=\alpha_{t} \bar{\alpha}_{t-1}-\zeta \bar{\alpha}_{t} \alpha_{t+1} .
$$

Moreover, $q\left(\alpha_{t}, \bar{\alpha}_{t}\right) \leftharpoonup \gamma^{s}=\zeta^{2 s} q\left(\alpha_{t+s}, \bar{\alpha}_{t+s}\right)$.
The subgroup generated by W is G which is abelian, and

$$
\begin{array}{ll}
\alpha_{t} \leftharpoonup \ell\left(\bar{\alpha}_{t}\right)=\alpha_{t} \leftharpoonup \gamma^{-1}=\zeta^{-1} \alpha_{t-1} & r\left(\bar{\alpha}_{t}\right) \rightharpoonup \alpha_{t}=\gamma^{-1} \rightharpoonup \alpha_{t}=\alpha_{t-1} \\
\bar{\alpha}_{t} \leftharpoonup \ell\left(\alpha_{t}\right)=\bar{\alpha}_{t} \leftharpoonup \gamma=\zeta \bar{\alpha}_{t+1} & r\left(\alpha_{t}\right) \rightharpoonup \bar{\alpha}_{t}=\gamma \rightharpoonup \bar{\alpha}_{t}=\bar{\alpha}_{t+1}
\end{array}
$$

so that $c_{\alpha_{t}}\left(\bar{\alpha}_{t}\right)=\zeta=c_{\bar{\alpha}_{t}}\left(\alpha_{t}\right)^{-1}$ and the conditions in Lemma V. 2 are satisfied. Therefore I_{q} is a Hopf ideal, generated by all elements of the form $\alpha_{t} \bar{\alpha}_{t-1}-\zeta \bar{\alpha}_{t} \alpha_{t+1}$ for $0 \leqslant t<n$ considered $\bmod n$.

Now consider I_{p}. As in the previous example, we have $c_{\alpha_{t}}\left(\alpha_{t}\right)=\zeta$ for all t. We also have ${\overline{\bar{\alpha}_{t}}}\left(\bar{\alpha}_{t}\right)=$ ζ^{-1}. Moreover, $p\left(\alpha_{t}\right)=\alpha_{t} \alpha_{t-1} \cdots \alpha_{t-d+1}$ and $p\left(\bar{\alpha}_{t}\right)=\bar{\alpha}_{t} \bar{\alpha}_{t+1} \cdots \bar{\alpha}_{t+d-1}$, and we have $p\left(\alpha_{t}\right) \leftharpoonup \gamma^{s}=$ $\zeta^{s d} p\left(\alpha_{t+s}\right)=p\left(\alpha_{t+s}\right)$ and $p\left(\bar{\alpha}_{t}\right) \leftharpoonup \gamma^{s}=p\left(\bar{\alpha}_{t+s}\right)$. Hence I_{p} is the ideal generated by all paths of length d going in the same direction around the circular quiver.

These Hopf algebras are neither commutative nor cocommutative.
In the case where $d=2$, that is, $\zeta=-1$ (and n even), the Hopf algebras $k \Gamma_{G}(W) /\left(I_{q}, I_{p}\right)$ are isomorphic as algebras to some algebras Λ that occur in the study of the representation theory of the Drinfeld doubles of the generalised Taft algebras, see [EGST]. These algebra isomorphisms allow us to define Hopf algebra structures on the algebras Λ. However, unless char $(k)=2$,they are not Hopf algebras of the form $k \Gamma_{G}(W) /\left(I_{p}, I_{q}\right)$.

Example V.13. Let $G=\mathfrak{S}_{3}$ be the symmetric group of order 6; we denote its elements by id, $\sigma_{1}=$ $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right), \sigma_{2}=\sigma_{1}^{2}$, and τ_{i} the transposition that fixes i for $i=1,2,3$. The subset $W=\left\{w_{1}=\sigma_{1}, w_{2}=\sigma_{2}\right\}$ is a weight sequence (conjugation by $g \in G$ either fixes both σ_{i} or exchanges them).

The quiver $\Gamma_{G}(W)$ is then

where $\alpha_{i}=\left(a_{1}, \sigma_{1}^{i}\right), \beta_{i}=\left(a_{1}, \tau_{i+1}\right), \bar{\alpha}_{i}=\left(a_{2}, \sigma_{1}^{i-1}\right)$ and $\bar{\beta}_{i}=\left(a_{2}, \tau_{i-1}\right)$ for $i=0,1,2$ (indices considered $\bmod 3$ where necessary).

Take $\Theta: G=\mathfrak{S}_{3} \rightarrow \mathfrak{S}_{2} \cong \mathbb{Z} / 2 \mathbb{Z}=\langle\gamma\rangle$ be defined by $\Theta\left(\sigma_{i}\right)=$ id and $\Theta\left(\tau_{i}\right)=\gamma$ and let $f_{i}: G \rightarrow k^{\times}$ for $i=1,2$ be identically 1. Clearly, $\Theta(g)$ fixes each of the w_{i} for any $g \in G$. These determine an allowable $k G$-bimodule structure on $k \Gamma_{G}(W)$ as in Example IV.9. The left and right actions on arrows are given in the following table.

\rightharpoonup	α_{0}	α_{1}	α_{2}	β_{0}	β_{1}	β_{2}	$\bar{\alpha}_{0}$	$\bar{\alpha}_{1}$	$\bar{\alpha}_{2}$	$\bar{\beta}_{0}$	$\bar{\beta}_{1}$	$\bar{\beta}_{2}$
σ_{1}	α_{1}	α_{2}	α_{0}	β_{1}	β_{2}	β_{0}	$\bar{\alpha}_{1}$	$\bar{\alpha}_{2}$	$\bar{\alpha}_{0}$	$\bar{\beta}_{1}$	$\bar{\beta}_{2}$	$\bar{\beta}_{0}$
σ_{2}	α_{2}	α_{0}	α_{1}	β_{2}	β_{0}	β_{1}	$\bar{\alpha}_{2}$	$\bar{\alpha}_{0}$	$\bar{\alpha}_{1}$	$\bar{\beta}_{2}$	$\bar{\beta}_{0}$	$\bar{\beta}_{1}$
τ_{1}	β_{0}	β_{2}	β_{1}	α_{0}	α_{2}	α_{1}	$\bar{\beta}_{0}$	$\bar{\beta}_{2}$	$\bar{\beta}_{1}$	$\bar{\alpha}_{0}$	$\bar{\alpha}_{2}$	$\bar{\alpha}_{1}$
τ_{2}	β_{1}	β_{0}	β_{2}	α_{1}	α_{0}	α_{2}	$\bar{\beta}_{1}$	$\bar{\beta}_{0}$	$\bar{\beta}_{2}$	$\bar{\alpha}_{1}$	$\bar{\alpha}_{0}$	$\bar{\alpha}_{2}$
τ_{3}	β_{2}	β_{1}	β_{0}	α_{2}	α_{1}	α_{0}	$\bar{\beta}_{2}$	$\bar{\beta}_{1}$	$\bar{\beta}_{0}$	$\bar{\alpha}_{2}$	$\bar{\alpha}_{1}$	$\bar{\alpha}_{0}$
\leftharpoonup	α_{0}	α_{1}	α_{2}	β_{0}	β_{1}	β_{2}	$\bar{\alpha}_{0}$	$\bar{\alpha}_{1}$	$\bar{\alpha}_{2}$	$\bar{\beta}_{0}$	$\bar{\beta}_{1}$	$\bar{\beta}_{2}$
σ_{1}	α_{1}	α_{2}	α_{0}	β_{2}	β_{0}	β_{1}	$\bar{\alpha}_{1}$	$\bar{\alpha}_{2}$	$\bar{\alpha}_{0}$	$\bar{\beta}_{2}$	$\bar{\beta}_{0}$	$\bar{\beta}_{1}$
σ_{2}	α_{2}	α_{0}	α_{1}	β_{1}	β_{2}	β_{0}	$\bar{\alpha}_{2}$	$\bar{\alpha}_{0}$	$\bar{\alpha}_{1}$	$\bar{\beta}_{1}$	$\bar{\beta}_{2}$	$\bar{\beta}_{0}$
τ_{1}	$\bar{\beta}_{2}$	$\bar{\beta}_{0}$	$\bar{\beta}_{1}$	$\bar{\alpha}_{1}$	$\bar{\alpha}_{2}$	$\bar{\alpha}_{0}$	β_{2}	β_{0}	β_{1}	α_{1}	α_{2}	α_{0}
τ_{2}	$\bar{\beta}_{0}$	$\bar{\beta}_{1}$	$\bar{\beta}_{2}$	$\bar{\alpha}_{0}$	$\bar{\alpha}_{1}$	$\bar{\alpha}_{2}$	β_{0}	β_{1}	β_{2}	α_{0}	α_{1}	α_{2}
τ_{3}	$\bar{\beta}_{1}$	$\bar{\beta}_{2}$	$\bar{\beta}_{0}$	$\bar{\alpha}_{2}$	$\bar{\alpha}_{0}$	$\bar{\alpha}_{1}$	β_{1}	β_{2}	β_{0}	α_{2}	α_{0}	α_{1}

(note that $\left(a_{1}, g\right) \leftharpoonup \tau_{i}=\left(a_{2}, g \tau_{i}\right)$ and $\left(a_{2}, g\right) \leftharpoonup \tau_{i}=\left(a_{1}, g \tau_{i}\right)$.
The corresponding Hopf algebra structure on $k \Gamma_{G}(W)$ is determined as before by the actions above.
We get

$$
\begin{array}{ll}
S\left(\beta_{i}\right)=\bar{\beta}_{i} & S(\alpha)=-\alpha \text { if } \alpha \in\left\{\alpha_{2}, \bar{\alpha}_{2}\right\} \\
S\left(\bar{\beta}_{i}\right)=\beta_{i} & S(\alpha)=-\alpha^{\prime} \text { if }\left\{\alpha, \alpha^{\prime}\right\}=\left\{\alpha_{0}, \alpha_{1}\right\} \text { or }\left\{\alpha, \alpha^{\prime}\right\}=\left\{\bar{\alpha}_{0}, \bar{\alpha}_{1}\right\}
\end{array}
$$

and, for instance,

$$
\begin{aligned}
\Delta\left(\alpha_{0}\right)= & \sum_{g \in G}\left(g \rightharpoonup \alpha_{0} \otimes v_{g}+v_{g} \otimes \alpha_{0} \leftharpoonup g\right) \\
= & \alpha_{0} \otimes v_{\mathrm{id}}+\alpha_{1} \otimes v_{\sigma_{1}}+\alpha_{2} \otimes v_{\sigma_{2}}+\beta_{0} \otimes v_{\tau_{1}}+\beta_{1} \otimes v_{\tau_{2}}+\beta_{2} \otimes v_{\tau_{3}} \\
& +v_{\mathrm{id}} \otimes \alpha_{0}+v_{\sigma_{1}} \otimes \alpha_{1}+v_{\sigma_{2}} \otimes \alpha_{2}+v_{\tau_{1}} \otimes \bar{\beta}_{2}+v_{\tau_{2}} \otimes \bar{\beta}_{0}+v_{\tau_{2}} \otimes \bar{\beta}_{1} \\
\Delta\left(\bar{\beta}_{1}\right)= & \bar{\beta}_{1} \otimes v_{\mathrm{id}}+\bar{\beta}_{2} \otimes v_{\sigma_{1}}+\bar{\beta}_{0} \otimes v_{\sigma_{2}}+\bar{\alpha}_{2} \otimes v_{\tau_{1}}+\bar{\alpha}_{0} \otimes v_{\tau_{2}}+\bar{\alpha}_{1} \otimes v_{\tau_{3}} \\
& +v_{\mathrm{id}} \otimes \bar{\beta}_{1}+v_{\sigma_{1}} \otimes \bar{\beta}_{0}+v_{\sigma_{2}} \otimes \bar{\beta}_{2}+v_{\tau_{1}} \otimes \alpha_{2}+v_{\tau_{2}} \otimes \alpha_{1}+v_{\tau_{2}} \otimes \alpha_{0}
\end{aligned}
$$

Note that $\ell\left(\alpha_{i}\right)=r\left(\alpha_{i}\right)=\ell\left(\beta_{i}\right)=r\left(\bar{\beta}_{i}\right)=\sigma_{1}$ and that $\ell\left(\bar{\alpha}_{i}\right)=r\left(\bar{\alpha}_{i}\right)=r\left(\beta_{i}\right)=\ell\left(\bar{\beta}_{i}\right)=\sigma_{2}$. It is then easy, using the table above, to check that Condition (ii) in Lemma V. 2 is satisfied. Since W generates an abelian subgroup of G, I_{q} is a Hopf ideal. It is the ideal generated by

$$
\left\{\alpha_{i} \bar{\alpha}_{i}-\bar{\alpha}_{i+1} \alpha_{i+1}, \beta_{i} \bar{\beta}_{i}-\bar{\beta}_{i-1} \beta_{i-1} ; i=0,1,2 \quad(\bmod 3)\right\} .
$$

Set $m_{a}=3$ for all arrows $a \in\left(\Gamma_{G}(W)\right)_{1}$. Using the table above, it is easy to see that $c_{a}(a)=1$ for every arrow a. Assume that $\operatorname{char}(k)=3$. Then Condition (i) in Lemma V. 7 is satisfied. Since there are no loops in $\Gamma_{G}(W), I_{p}$ is a Hopf ideal. The left action of σ_{i} on the set of arrows for $i=1,2$ has four orbits, $\left\{\alpha_{i} ; i=0,1,2\right\},\left\{\beta_{i} ; i=0,1,2\right\},\left\{\bar{\alpha}_{i} ; i=0,1,2\right\},\left\{\bar{\beta}_{i} ; i=0,1,2\right\}$. Therefore $p\left(\alpha_{i}\right)$ is the path of length 3 starting at α_{i} and going in one direction, and similarly for the other arrows. The right action of elements of G permutes these paths. Therefore I_{p} is generated by all paths of length 3 going in one direction:

$$
\left\{\alpha_{i} \alpha_{i-1} \alpha_{i-2}, \beta_{i} \beta_{i+1} \beta_{i+2}, \bar{\alpha}_{i} \bar{\alpha}_{i+1} \bar{\alpha}_{i+2}, \bar{\beta}_{i} \bar{\beta}_{i-1} \bar{\beta}_{i-2} ; i=0,1,2 \quad(\bmod 3)\right\} .
$$

This Hopf algebra is neither commutative nor cocommutative. It is also clear that the antipode has order 2.

We conclude with another example which shows that W need not be a subset of G.
Example V.14. Let $G=\mathbb{Z} / n \mathbb{Z}$ be the cyclic group of order n, generated by γ. The subset $W=$ $\left\{w_{1}=1, w_{2}=1\right\}$ is a weight sequence (G is abelian). The quiver $\Gamma_{G}(W)$ is then of the form

with n vertices and $2 n$ arrows: if we set $e_{t}=v_{\gamma^{-t}}$ for $0 \leqslant t<n$, the $\alpha_{t}:=\left(a_{1}, \gamma^{t}\right)$ go from $e_{t}=v_{\gamma^{-t}}$ to $v_{1 \gamma^{-t}}=e_{t}$ and the $\beta_{t}:=\left(a_{2}, \gamma^{t}\right)$ go from e_{t} to $v_{1 \gamma^{-t}}=e_{t}$ for all $t=0,1, \ldots, n-1$.

Take $\Theta \equiv$ id and let $f_{i}: G \rightarrow k^{\times}$for $i=1,2$ be defined by $f_{i}(\gamma)=\zeta_{i}$ with $\zeta_{i}^{n}=1$ for $i=1,2$. These determine an allowable $k G$-bimodule structure on $k \Gamma_{G}(W)$ as in Example IV.9. Since $\gamma \rightharpoonup \alpha_{t}=\alpha_{t+1}$, $\gamma \rightharpoonup \beta_{t}=\beta_{t+1}$ and

$$
\begin{aligned}
& \alpha_{t} \leftharpoonup \gamma=\left(a_{1}, \gamma^{t}\right) \leftharpoonup \gamma=f_{1}(\gamma)\left(a_{\Theta(\gamma)(1)}, \gamma^{t} \gamma\right)=\zeta_{1}\left(a_{1}, \gamma^{t+1}\right)=\zeta_{1} \alpha_{t+1} \\
& \beta_{t} \leftharpoonup \gamma=\left(a_{2}, \gamma^{t}\right) \leftharpoonup \gamma=f_{2}(\gamma)\left(a_{\Theta(\gamma)(2)}, \gamma^{t} \gamma\right)=\zeta_{2}\left(a_{2}, \gamma^{t+1}\right)=\zeta_{2} \beta_{t+1}
\end{aligned}
$$

the corresponding Hopf algebra structure on $k \Gamma_{G}(W)$ is determined by the formulas in the first two examples for the e_{t} and by:

$$
\begin{aligned}
& \varepsilon\left(\alpha_{t}\right)=0, \\
& \varepsilon\left(\beta_{t}\right)=0, \\
& \Delta\left(\alpha_{t}\right)=\sum_{s+u=t}\left(\alpha_{s} \otimes e_{u}+\zeta_{1}^{-u} e_{u} \otimes \alpha_{s}\right), \\
& \Delta\left(\beta_{t}\right)=\sum_{s+u=t}\left(\beta_{s} \otimes e_{u}+\zeta_{2}^{-u} e_{u} \otimes \beta_{s}\right), \\
& S\left(\alpha_{t}\right)=-\gamma^{-t} \rightharpoonup \alpha_{t} \leftharpoonup \gamma^{-t}=-\zeta_{1}^{-t} \alpha_{-t} \\
& S\left(\beta_{t}\right)=-\gamma^{-t} \rightharpoonup \beta_{t} \leftharpoonup \gamma^{-t}=-\zeta_{2}^{-t} \beta_{-t}
\end{aligned}
$$

where the indices are taken modulo n.
Finally let $\operatorname{char}(k)=p>0$ and set $m_{a}=p$ for all arrows $a \in k\left(\Gamma_{G}(W)\right)_{1}$. Fix $\zeta_{1}=\zeta_{2}=1$. We now determine the quotient $k \Gamma_{G}(W) /\left(I_{p}, I_{q}\right)$.

The arrows α_{t} and β_{t} are distinct and have the same source e_{t}. We have

$$
q\left(\alpha_{t}, \beta_{t}\right)=\alpha_{t}\left(r\left(\alpha_{t}\right)^{-1} \rightharpoonup \beta_{t}\right)-\alpha_{t}\left(\alpha_{t} \leftharpoonup \ell\left(\beta_{t}\right)^{-1}\right)=\alpha_{t} \beta_{t}-\beta_{t} \alpha_{t} .
$$

Moreover, $q\left(\alpha_{t}, \beta_{t}\right) \leftharpoonup \gamma=q\left(\alpha_{t+1}, \beta_{t+1}\right)$. Hence I_{q} is the ideal generated by $\left\{\alpha_{t} \beta_{t}-\beta_{t} \alpha_{t} ; 0 \leqslant t \leqslant n-1\right\}$.
Now consider I_{p}. Since all arrows are loops, we have $p\left(\alpha_{t}\right)=\alpha_{t}^{d}$ and $p\left(\beta_{t}\right)=\beta_{t}^{d}$. Moreover, $p\left(\alpha_{t}\right) \leftharpoonup$ $\gamma=p\left(\alpha_{t+1}\right)$ and $p\left(\beta_{t}\right)=p\left(\beta_{t+1}\right)$ so that I_{p} is the ideal generated by $\left\{\alpha_{t}^{d}, \beta_{t}^{d} ; 0 \leqslant t \leqslant n-1\right\}$.

Since the subgroup generated by W is $\{1\}$ which is abelian, all the conditions in Theorem V. 8 are satisfied and therefore $k \Gamma_{G}(W) /\left(\alpha_{t} \beta_{t}-\beta_{t} \alpha_{t}, \alpha_{t}^{p}, \beta_{t}^{p} ; 0 \leqslant t \leqslant n-1\right)$ is a finite dimensional Hopf algebra. It is commutative and cocommutative.

A. Notes on [CR]

Abstract

This appendix gives some extra details for some of the proofs in [CR] (when k is a field). Moreover, the definition of a Cayley graph has been changed for compatibility with [GS] (Proposition IV.14), with (trivial) consequences on the statement and proof of Proposition 3.3 below. The section titles and the numbered results are those in [CR].

3. Bimodules de Hopf d'un groupe

Lemme 3.2. If H is a finite dimensional Hopf algebra, then the category $b_{k}(H)$ of finite dimensional Hopf bimodules over H is anti-equivalent to $b_{k}\left(H^{*}\right)$.

Proof. Recall that H^{*} is a Hopf algebra whose structure maps are given in Propositions I. 12 and I.28.
Let M be a Hopf bimodule over H, with structure maps $\mu_{\ell}, \mu_{r}, \rho_{\ell}$ and ρ_{r}. Then M^{*} is a Hopf bimodule over H^{*} with structure maps defined similarly to those of H^{*} in Proposition I. 12

$$
\begin{array}{ll}
\rho_{\ell}^{*}: H^{*} \otimes M^{*} \rightarrow M^{*} & \rho_{r}^{*}: M^{*} \otimes H^{*} \rightarrow M^{*} \\
\mu_{\ell}^{*}: M^{*} \rightarrow H^{*} \otimes M^{*} & \mu_{r}^{*}: M^{*} \rightarrow M^{*} \otimes H^{*}
\end{array}
$$

where in each case $V^{*} \otimes W^{*} \cong(V \otimes W)^{*}$ as in Remark I.11. With this same convention, for k-linear maps $f: U_{1} \rightarrow U_{2}$ and $g: V_{1} \rightarrow V_{2}$ we may identify $(f \otimes g)^{*}$ and $f^{*} \otimes g^{*}$ via the following diagram

We then have for instance

$$
\begin{aligned}
& \rho_{\ell}^{*}\left(\mathrm{id} \otimes \rho_{\ell}^{*}\right)=\left[\left(\mathrm{id} \otimes \rho_{\ell}\right) \rho_{\ell}\right]^{*}=\left[(\Delta \otimes \mathrm{id}) \rho_{\ell}\right]=\rho_{\ell}^{*}\left(\Delta^{*} \otimes \mathrm{id}\right) \\
& \rho_{\ell}^{*}\left(\varepsilon^{*} \otimes \mathrm{id}\right)=\left[(\varepsilon \otimes \mathrm{id}) \rho_{\ell}\right]^{*}=\mathrm{id}^{*}=\mathrm{id}
\end{aligned}
$$

so that M^{*} is a left H^{*}-module.
The other properties that need to be checked are similar.
Moreover, it is easy to check that if $f: M \rightarrow N$ is a morphism of Hopf bimodules, then $f^{*}: N^{*} \rightarrow M^{*}$ is a morphism of Hopf bimodules.

Since all spaces are finite dimensional, dualising again gives a Hopf bimodule over $H^{* *}$ canonically isomorphic to the original Hopf bimodule over H.

Lemma. Let M be a right comodule over $k G$. Then $M=\oplus_{g \in G} M^{g}$ where $M^{g}=$ $\{m \in M ; \rho(m)=m \otimes g\}$. Similarly, if M is a left comodule over $k G$ then $M=\oplus_{g \in G}{ }^{g} M$. Consequently, if M is a bicomodule over $k G$ then $M=\oplus_{g \in G, h \in G}{ }^{g} M^{h}$.

Proof. For $m \in M$ we can write $\rho(m)=\sum_{g \in G} m_{g} \otimes g \in M \otimes k G$. We have $(\rho \otimes \mathrm{id})(\rho(m))=$ $(\mathrm{id} \otimes \Delta)(\rho(m))=\sum_{g \in G} m_{g} \otimes g \otimes g$ and $(\rho \otimes \mathrm{id})(\rho(m))=\sum_{g \in G} \rho\left(m_{g}\right) \otimes g$. Since $M \otimes k G \otimes k G=$ $\oplus_{g \in G} M \otimes k G \otimes g$, we have $\rho\left(m_{g}\right)=m_{g} \otimes g$ so that $m_{g} \in M^{g}$. Moreover, $m=(\mathrm{id} \otimes \varepsilon)(\rho(m))=$ $\sum_{g \in \mathrm{G}} m_{g} \in \oplus_{g \in \mathrm{G}} M^{8}$.

When M is a bicomodule, each M^{8} is a left subcomodule of M, therefore $M^{g}=\oplus_{h \in G}{ }^{h} M^{8}$. Finally $M=\oplus_{g \in G, h \in G}{ }^{g} M^{h}$.

Notation. Let \mathscr{C} be the set of conjugacy classes in G and for each conjugacy class $C \in \mathscr{C}$ choose an element $u(\mathrm{C})$. Let $Z_{u(\mathrm{C})}$ denote the centraliser of $u(\mathrm{C})$. Moreover, if $g \in G$, let $\Omega(g)$ be the conjugacy class of g.

Proposition 3.3. The category $\mathscr{B}(k G)$ of all Hopf bimodules over $k G$ is equivalent to the cartesian product $\underset{C \in \mathscr{C}}{\times} \operatorname{Mod}-k Z_{u(C)}$.

Proof. 1) Description of the functor $\mathcal{V}: \underset{C \in \mathscr{C}}{\times} k Z_{u(C)}-\operatorname{Mod} \rightarrow \mathscr{B}(k G)$.
If $M=\{M(C)\}_{C \in \mathscr{C}}$ with $M(C) \in k Z_{u(C)}$-Mod, define $\mathcal{V} M:=\oplus_{d, f \in G}{ }^{d} M^{f}$ with ${ }^{d} M^{f}=$ $M\left(\Omega\left(f d^{-1}\right)\right)$.
If $\phi=\left\{\phi_{C}\right\}_{C \in \mathscr{C}}: M \rightarrow N$ is a morphism in $\underset{C \in \mathscr{C}}{\times} k Z_{u(C)}$-Mod, define $\mathcal{V} \phi=\bigoplus_{d, f \in G} \phi_{\Omega\left(f d^{-1}\right)}$.
$>$ Hopf bimodule structure on $\mathcal{V} M$.
\diamond If $v \in{ }^{d} \mathcal{V} M^{f}$, the coactions are given by $\rho_{\ell}(v)=d \otimes v$ and $\rho_{r}(v)=v \otimes f$.
\diamond If $v \in{ }^{d} \mathcal{V} M^{f}$ and $g \in G$, the right action of g on v sends v to $v \in{ }^{d g} \mathcal{V} M^{f g}=M\left(\Omega\left(f d^{-1}\right)\right)$ (g acts by translation of the co-isotypic components).
\diamond If $z \in C$, there exists $t \in G$ such that $z=t u(C) t^{-1}$. Moreover, $s \in G$ also satisfies $z=s u(C) s^{-1}$ if and only if $\left(t^{-1} s\right) u(C)\left(t^{-1} s\right)^{-1}$, if and only if $t^{-1} s \in Z_{u(C)}$. Hence t is well defined up to multiplication on the right by an element of $Z_{u(C)}$. Therefore there is a bijection

$$
\begin{aligned}
C & \longleftrightarrow\left\{t Z_{u(C)} ; t \in G\right\} \\
z & \mapsto E(z)=t Z_{u(C)} \text { where } z=t u(C) t^{-1} \\
t u(C) t^{-1} & \longleftrightarrow t Z_{u(C)} .
\end{aligned}
$$

The left action of g on $\mathcal{V} M$ may now be defined. The module $M(C)$ is a left $k Z_{u(C)^{-}}$ module by assumption and $k E(z)$ is a free right $Z_{u(C)}$-module of rank 1 so that $M(C) \cong$ $k E(z) \otimes_{k Z_{u(C)}} M(C)$ as k-vector spaces. The left action of g on $\mathcal{V} M$ sends ${ }^{d} \mathcal{V} M^{f}$ to ${ }^{g d} \mathcal{V} M^{g f}$ as follows:

where the middle map sends $t \otimes m$ to $g t \otimes m$.
$\mathcal{V} M$ is obviously a bicomodule and a bimodule. Moreover, these two structures are compatible. Fix $v \in{ }^{d} \mathcal{V} M^{f}$ and $g \in G$. We have $g v \in g^{d} \mathcal{V} M^{g f}$ and $v g \in{ }^{d g} \mathcal{V} M^{f g}$.
$\diamond \rho_{\ell}(v g)=d g \otimes v g=\rho_{\ell}(v) \cdot g$ (the action is diagonal).
$\diamond \rho_{r}(v g)=v g \otimes f g=\rho_{r}(v) \cdot g$.
$\diamond \rho_{\ell}(g v)=g d \otimes g v=g \cdot(d \otimes v)=g \cdot \rho_{\ell}(v)$.
$\diamond \rho_{r}(g v)=g v \otimes g f=g \cdot(v \otimes f)=g \cdot \rho_{r}(v)$.
$>\mathcal{V} \phi$ is clearly a morphism of bicomodules by construction. Moreover, if $v=t \otimes m \in{ }^{d} \mathcal{V} M^{f}$ and $g \in G$,

```
\(\stackrel{\rightharpoonup}{\mathcal{V}} \phi(v g)=\phi_{\Omega\left(f g(d g)^{-1}\right)}(v g)=\phi_{\Omega\left(f d^{-1}\right)}(v) \in^{d g} \mathcal{V} N^{f g}\) so that \(\mathcal{V} \phi(v g)=\phi_{\Omega\left(f d^{-1}\right)}(v) g=\)
    \(\mathcal{V} \phi(v) g\).
\(\triangleleft \mathcal{V} \phi(g v)=\left(\mathrm{id} \otimes \phi_{\Omega\left(g f(g d)^{-1}\right)}\right)(g t \otimes m)=g t \otimes \phi_{\Omega\left(g f d^{-1} g^{-1}\right)}(m)=g \cdot(t \otimes\)
    \(\left.\phi_{\Omega\left(g f d^{-1} g^{-1}\right)}(m)\right)=g \mathcal{V} \phi(v)\).
```

Therefore $\mathcal{V} \phi$ is a morphism of Hopf bimodules.
2) Description of the functor $\mathcal{W}: \mathscr{B}(k G) \rightarrow \underset{C \in \mathscr{C}}{\times} k Z_{u(C)}$-Mod.

If B is a Hopf bimodule over $k G$, then ${ }^{1} B^{u(C)}$ is a left $k Z_{u(C)}$-module, where $Z_{u(C)}$ acts by conjugation: if $g \in Z_{u(C)}$, then

$$
g \cdot{ }^{1} B^{u(C)} \subset{ }^{1} B^{g u(C) g^{-1}}={ }^{1} B^{u(C)}
$$

Define $\mathcal{W} B=\left\{{ }^{1} B^{u(C)}\right\}_{C \in \mathscr{C}} \in \underset{C \in \mathscr{C}}{\times} k Z_{u(C)}$-Mod. Moreover, if $\phi: B \rightarrow B^{\prime}$ is a morphism of Hopf bimodules, then $\phi\left({ }^{1} B^{u(C)}\right) \subseteq{ }^{1} B^{\prime u(C)}$ since ϕ is a morphism of bicomodules, so that $\mathcal{W} \phi$ can be defined by $(\mathcal{W} \phi)_{C}=\phi_{\left.\right|^{1} B^{u(C)}}$ for $C \in \mathscr{C}$. Each $(\mathcal{W} \phi)_{C}$ is a morphism of $k Z_{u(C)}$-modules since ϕ is a morphism of bimodules (if $g \in Z_{u(C)}$ and $b \in{ }^{1} B^{u(C)}$, then $(\mathcal{W} \phi)_{C}(g \cdot b)=\phi\left(g b g^{-1}\right)=$ $\left.g \phi(b) g^{-1}=g \cdot(\mathcal{W} \phi)_{C}(b)\right)$.
3) $\mathcal{V} \mathcal{W} \cong \mathrm{id}$.

Recall that ${ }^{d} \mathcal{V} \mathcal{W} B^{f} \cong k E\left(f d^{-1}\right) \otimes_{k Z_{u\left(\Omega\left(f d^{-1}\right)\right)}} \mathcal{W} B\left(\Omega\left(f d^{-1}\right)\right) \cong k E\left(f d^{-1}\right) \otimes_{k Z_{u\left(\Omega\left(f d^{-1}\right)\right)}} B^{u\left(\Omega\left(f d^{-1}\right)\right)}$.
Moreover, if $b \in{ }^{d} B^{f}$ and $t \in G$ is such that $f d^{-1}=t u\left(\Omega\left(f d^{-1}\right)\right) t^{-1}$, then $t^{-1} b d^{-1} t \in$ $t^{-1} d d^{-1} t B^{t^{-1} f d^{-1} t}={ }^{1} B^{u\left(\Omega\left(f d^{-1}\right)\right)}$.
Define ${ }^{d} \theta_{B}^{f}:{ }^{d} B^{f} \rightarrow k E\left(f d^{-1}\right) \otimes_{k Z_{u\left(\Omega\left(f d^{-1}\right)\right)}}{ }^{1} B u\left(\Omega\left(f d^{-1}\right)\right)$ by ${ }^{d} \theta_{B}^{f}(b)=t \otimes t^{-1} b d^{-1} t$. This is well defined, independently of t : if s is another element in G such that $f d^{-1}=s u\left(\Omega\left(f d^{-1}\right)\right) s^{-1}$, then $s=t z$ for some $z \in Z_{u\left(\Omega\left(f d^{-1}\right)\right)}$ and we have
$s \otimes s^{-1} b d^{-1} s=t z \otimes(t z)^{-1} b d^{-1} t z=t \otimes z \cdot\left(z^{-1} t^{-1} b d^{-1} t z\right)=t \otimes z z^{-1} t^{-1} b d^{-1} t z z^{-1}=t \otimes t^{-1} b d^{-1} t$.
$>{ }^{d} \theta_{B}^{f}$ is a bijection with inverse $t \otimes b \mapsto t b t^{-1} d$.
$>{ }^{d} \theta_{B}^{f}$ is a morphism of bicomodules by construction.
$>$ If $b \in{ }^{d} B^{f}$ and $g \in G$, then $b g \in{ }^{d g} B^{f g}$ and $(f g)(d g)^{-1}=f d^{-1}$ so we can choose the same t. Therefore

$$
{ }^{d} \theta_{B}^{f}(b g)=t \otimes t^{-1} b g(d g)^{-1} t=t \otimes t^{-1} b d^{-1} t={ }^{d} \theta_{B}^{f}(b) g
$$

since the right action is the regular action.
$>$ If $b \in{ }^{d} B^{f}$ and $g \in G$, then $g b \in{ }^{g d} B^{g f}$ and $(g f)(g d)^{-1}=g f d^{-1} g^{-1}$ so we can choose $g t$. Therefore

$$
{ }^{d} \theta_{B}^{f}(g b)=g t \otimes(g t)^{-1} g b(g d)^{-1}(g t)=g t \otimes t^{-1} b d^{-1} t=g^{d} \theta_{B}^{f}(b)
$$

Therefore ${ }^{d} \theta_{B}^{f}$ is an isomorphism of Hopf bimodules.
Now if $\phi: B \rightarrow B^{\prime}$, define $\theta(\phi)$ on ${ }^{d} \mathcal{V} \mathcal{W} B^{f}$ by ${ }^{d} \theta(\phi)^{f}=\mathrm{id} \otimes^{1} \phi^{u\left(\Omega\left(f d^{-1}\right)\right)}$. Clearly $\theta(\phi)$ is a morphism of Hopf bimodules (bicomodules by construction and bimodules easy to check).
Finally, θ is natural:

$$
{ }^{d} \theta(\phi)^{d} \circ{ }^{d} \theta_{B}^{f}(b)=t \otimes{ }^{u\left(\Omega\left(f d^{-1}\right)\right)} \phi^{1}\left(t^{-1} b d^{-1} t\right)=t \otimes t^{-1} \phi(b) d^{-1} t={ }^{d} \theta_{B}^{f}(\phi(b))
$$

so that $\theta(\phi) \circ \theta_{B}=\theta_{B^{\prime}} \circ \phi$.
4) $\mathcal{W V} \cong \mathrm{id}$.

If $M=\{M(C)\}_{C \in \mathscr{C}} \in \underset{C \in \mathscr{C}}{\times} k Z_{u(C)}$-Mod, define
$\Psi_{C}: M(C) \rightarrow \mathcal{W} \mathcal{V} M(C)={ }^{1} \mathcal{V} M^{u(C)}=k E(u(C)) \otimes_{k Z_{u(\Omega(u(C)))}} M(\Omega(u(C)))=k Z_{u(C)} \otimes k Z_{u(C)} M(C)$
which sends m to $m \otimes 1$. Then Ψ_{C} is an isomorphism of left $k Z_{u(C)}$-modules.
If $\phi: M \rightarrow N$ is a morphism, then define $(\Psi \phi)_{C}: \mathcal{W} \mathcal{V} M(C) \rightarrow \mathcal{W} \mathcal{V} N(C)$ by $(\Psi \phi)_{C}=\phi_{C} \otimes \mathrm{id}$, which is a morphism of left $k Z_{u(C)}$-modules.
Moreover, $\Psi: \mathrm{id} \rightarrow \mathcal{W} \mathcal{V}$ is natural: $(\Psi \phi)_{C} \circ \Psi_{C}=\Psi_{C} \circ \phi_{C}: M(C) \rightarrow \mathcal{W} \mathcal{V} M(C)$.
Remark. The functors \mathcal{V} and \mathcal{W} preserve dimensions and therefore induce an equivalence between $b_{k}(k G)$ and $\underset{C \in \mathscr{C}}{\times} k Z_{u(C)}-\bmod$.

Definition. The Cayley graph of a group G with respect to a marking map $m: G \rightarrow \mathbb{N}$ is an oriented graph Γ whose vertices are indexed by the elements of the group, $\Gamma_{0}=\left\{\delta_{g} ; g \in G\right\}$, and such that the number of arrows from δ_{d} to δ_{f} is $m\left(f d^{-1}\right)$.

Théorème 3.1. Let Γ be a quiver. Then $k \Gamma$ is a graded Hopf algebra if and only if Γ is the Cayley graph of a finite group G with respect to to a marking map $m: G \rightarrow \mathbb{N}$ constant on conjugacy classes.

Proof. Recall that $k \Gamma=T_{k \Gamma_{0}}\left(k \Gamma_{1}\right)$.

1) Assume that $k \Gamma$ is a graded Hopf algebra. Then its degree 0 part $k \Gamma_{0}$ is a Hopf subalgebra, isomorphic to a product of $\# \Gamma_{0}$ copies of k so that $k \Gamma_{0} \cong k^{G}$ for some group G of order $\# \Gamma_{0}$. Moreover, $k \Gamma_{1}$ (the degree 1 part) is a Hopf bimodule over k^{G} so that $\left(k \Gamma_{1}\right)^{*}=: B$ is a Hopf bimodule over $k G$. Set ${ }_{d}\left(k \Gamma_{1}\right)_{f}:=\delta_{d}\left(k \Gamma_{1}\right) \delta_{f}$ where d, f are in G and δ_{d}, δ_{f} are the corresponding elements in $k^{G} \cong k \Gamma_{0}$. By construction, $\operatorname{dim}^{d} B^{f}=\operatorname{dim}_{d}\left(k \Gamma_{1}\right)_{f}$ is the number of arrows from δ_{d} to δ_{f}.

We have $B=\mathcal{V} M$ for some $M=\{M(C)\}_{C \in \mathscr{C}}$ and ${ }^{d} B^{f}=M\left(\Omega\left(f d^{-1}\right)\right)$ so that $\operatorname{dim}^{d} B^{f}$ only depends on the conjugacy class of $f d^{-1}$.
Define $m: G \rightarrow \mathbb{N}$ by $m(g)=\operatorname{dim} M(\Omega(g))$. Then m is constant on conjugacy classes by construction and $m\left(f d^{-1}\right)$ is the number of arrows from δ_{d} to δ_{f}.
Therefore Γ is the Cayley graph of G with respect to m.
2) Assume that Γ is the Cayley graph of a finite group G with respect to to a marking map $m: G \rightarrow \mathbb{N}$ constant on conjugacy classes. By definition, $\Gamma_{0}=\left\{v_{g} ; g \in G\right\}$, therefore $k \Gamma_{0} \cong k^{G}$ so that $k \Gamma=$ $T_{k^{G}}\left(k \Gamma_{1}\right)$.
$k \Gamma$ is therefore a Hopf algebra if and only if the k^{G}-bimodule $k \Gamma_{1}$ is a Hopf bimodule over k^{G}, if and only if the $k G$-bicomodule $B:=\left(k \Gamma_{1}\right)^{*}$ is a Hopf bimodule over $k G$. Note that the number of arrows from v_{d} to v_{f} is $m\left(f d^{-1}\right)=\operatorname{dim}_{d}\left(k \Gamma_{1}\right)_{f}$.
For $C \in \mathscr{C}$, let $M(C)$ be a vector space of dimension $m(C)$, endowed with a left $k Z_{u(C)}$-module structure (eg. the trivial one). Then $M=\{M(C)\}_{C \in \mathscr{C}}$ is in $\underset{C \in \mathscr{C}}{\times} k Z_{u(C)}$-Mod so that $\mathcal{V} M \in b_{k}(k G)$. We have $\operatorname{dim}^{d} \mathcal{V} M^{f}=\operatorname{dim} M\left(\Omega\left(f d^{-1}\right)\right)=m\left(f d^{-1}\right)=\operatorname{dim}^{d} B^{f}$ and ${ }^{d} \mathcal{V} M^{f}$ and ${ }^{d} B^{f}$ have the same bicomodule structure so that ${ }^{d} \mathcal{V} M^{f} \cong{ }^{d} B^{f}$ as bicomodules. Therefore B is a Hopf bimodule over $k G$ via this isomorphism, so that $k \Gamma_{1}$ is a Hopf bimodule over k^{G} and $k \Gamma$ is a Hopf algebra.

Remark. Different $k Z_{u(C)}$-module structures on the $M(C)$ yield different Hopf bimodule structures on B and $k \Gamma_{1}$ and hence different Hopf algebra structures on $k \Gamma$.

Explicit description of the comultiplication: link with [GS]. Given a Cayley graph Γ for a group G with respect to m constant on conjugacy classes, what is the comultiplication explicitly on $k \Gamma_{1}$?

We know that $k \Gamma_{1}=B^{*}$ for some Hopf bimodule $B=\mathcal{V} M$ over $k G$ where $M=\{M(C)\}_{C \in \mathscr{C}} \in \underset{C \in \mathscr{C}}{ }$ $k Z_{u(C)}-$ Mod with $\operatorname{dim}_{k} M(C)=m(C)$ for each $C \in \mathscr{C}$. We have $\delta_{d}\left(k \Gamma_{1}\right) \delta_{f}=\left({ }^{d} B^{f}\right)^{*}=\left({ }^{d} \mathcal{V} M^{f}\right)^{*}$.

Given a $k G$-bimodule V, the vector space V^{*} is also a $k G$-bimodule: for $\alpha \in V^{*}$ and $g \in G$, set

$$
g \triangleright \alpha: v \mapsto \alpha(v g) \quad \text { and } \quad \alpha \triangleleft g: v \mapsto \alpha(g v) .
$$

Note that if $\alpha \in\left({ }^{d} \mathcal{V} M^{f}\right)^{*}$ then $g \triangleright \alpha \in\left({ }^{d g^{-1}} \mathcal{V} M^{f g^{-1}}\right)^{*}=\delta_{d g-1}\left(k \Gamma_{1}\right) \delta_{f g^{-1}}$ and $\alpha \triangleleft g \in\left(g^{-1} d \mathcal{V} M^{g^{-1} f}\right)^{*}=$ $\delta_{g^{-1} d}\left(k \Gamma_{1}\right) \delta_{g^{-1} f}$.

The $k G$-bimodule structure on ${ }^{d} \mathcal{V} M^{f}$ (regular on the right and obtained using the left $k Z_{u\left(\Omega\left(f d^{-1}\right)\right)^{-}}$ module structure on $M\left(\Omega\left(f d^{-1}\right)\right)$ on the left) gives a k^{G}-bicomodule structure on $\delta_{d}\left(k \Gamma_{1}\right) \delta_{f}$ as follows:

$$
\rho_{\ell}(\alpha)=\sum_{g \in G}(g \triangleright \alpha) \otimes \delta_{g} \quad \text { and } \quad \rho_{r}(\alpha)=\sum_{g \in G} \delta_{g} \otimes(\alpha \triangleleft g) \quad \text { for } \alpha \in\left({ }^{d} \mathcal{V} M^{f}\right)^{*} .
$$

Therefore $\Delta(\alpha)=\sum_{g \in G}\left((g \triangleright \alpha) \otimes \delta_{g}+\delta_{g} \otimes(\alpha \triangleleft g)\right)$.
Note that since the right action on $\mathcal{V} M$ is regular, the left action on $k \Gamma_{1}$ is regular (or trivial as required /defined in [GS]) and the right action on $k \Gamma_{1}$ satisfies the condition for the $k G$-bimodule structure on $k \Gamma$ to be allowable.

Conversely, given an allowable $k G$-bimodule structure on $k \Gamma$, the reverse construction give an object in $\underset{C \in \mathscr{C}}{\times} k Z_{u(C)}$-Mod .

References

[CHYZ] X.-W. Chen, H.-L. Huang, Y. Ye and P. Zhang, Monomial Hopf algebras, J. Algebra, 2004, 275, p 212-232.
[C] C. Cibils, A quiver quantum group, Comm. Math. Phys. 157 (1993), no. 3, p 459-477.
[CR] C. Cibils and M. Rosso, Algèbres des chemins quantiques, Adv. Math. 125 (1997), p 171-199.
[EGST] K. Erdmann, E. L. Green, N. Snashall and R. Taillefer, Representation theory of the Drinfeld doubles of a family of Hopf algebras, J. Pure Appl. Algebra 204 (2006), no. 2, p 413-454.
[GS] E. L. Green and Ø. Solberg, Basic Hopf algebras and quantum groups, Math. Z. 229 (1998), p 45-76.
[K] C. KASSEL, Quantum groups, Graduate Texts in Mathematics 155, Springer-Verlag, New York, (1995).
[M] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics 82, Amer. Math. Soc. (1993).
[R] D.E. RADFORD, Hopf algebras, Series on Knots and Everything 49, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2012).

