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Abstract In this paper, we show that half of non-zero coefficients of the spinor zeta
function of a Siegel cusp form of genus 2 are positive and half are negative. We also
prove results concerning the non-vanishing in short intervals and strong cancellation
among the coefficients evaluated at powers of a fixed prime. Our results rest on a
Serre’s type density result established by Kowalski and Saha in the Appendix.
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180 E. Royer et al.

1 Introduction

Let Sk be the space of Siegel cusp forms of integral weight k on the group Sp4(Z) ⊂
GL4(Q), and let F be a non-zero eigenfunction of all the Hecke operators T (n)
(n ∈ N). As usual denote by λF (n) the n-th normalized Hecke eigenvalue of F . Let
α0,p,α1,p,α2,p be the Satake p-parameters attached to F normalized by

α2
0,pα1,pα2,p = 1.

Let P be the set of prime numbers. Denote by ZF the spinor zeta function of F :

ZF (s) :=
∏

p∈P
ZF,p(p−s)−1 =:

∑

n!1

aF (n)n−s (Re s > 1),

with

ZF,p(t)−1 := (1 − α0,pt)(1 − α0,pα1,pt)(1 − α0,pα2,pt)(1 − α0,pα1,pα2,pt).

A Siegel form is in the Maass subspace SMk of Sk if it is a linear combination of
Siegel forms F that are eigenvectors of all the Hecke operators and for which there
exists a primitive modular form f of weight 2k − 2 such that

ZF (s) = ζ
(
s − 1

2

)
ζ

(
s + 1

2

)
L( f, s).

Here L( f, s) is the L-function of f (note that we normalize all the L-functions so that
the critical strip is 0 ! Re s ! 1 and the functional equation relates the value at s to the
value at 1−s). This happens only if k is even. The bijective linear application between
SMk and the space of modular forms of weight 2k − 2 is called the Saito–Kurokawa
lifting [29]. The Ramanujan–Petersson conjecture asserts that

|α j,p| = 1 for j = 0, 1, 2 and all primes p. (1)

It is not true for Siegel–Hecke eigenforms in SMk . But, if k is odd or, if k is even
and the form is in the orthogonal complement of SMk , then it has been established by
Weissauer [26]. It is well known that

∑

n!1

λF (n)
ns

= ZF (s)
ζ(2s + 1)

.

From this, it is easy to see that

λF (n) =
∑

d2m=n

µ(d)
d

aF (m), (2)
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Non-vanishing and sign changes of Hecke eigenvalues 181

where µ is the Möbius function. Clearly (1) and (2) imply that

|aF (n)| ! d4(n), (3)

and

|λF (n)| ! d5(n) (4)

for all integers n " 1, where d$(n) is the number of way of writing n as a product of
$ positive integers.

We are interested in non-vanishing and sign changes of λF (n).We denote by H∗
k the

set of Siegel cuspidal Hecke eigenforms of weight k and genus 2 that, if k is even, are
in the orthogonal complement of SMk . The formswe consider in this paper all belong to
H∗
k . According to Breulmann [4], a Siegel–Hecke eigenform F is in the Maass space

SMk if and only if λF (n) > 0 for all n; see [4]. On the other hand, Kohnen [13] has
proved that if F is not in theMaass space, then the sequence (λF (n))n∈N has infinitely
many sign changes. Further Das [5] showed that there is a positive proportion of prime
numbers p such that λF (p) > 0 (respectively λF (p) < 0).

Define

N ∗
F (x) :=

∑

n"x
λF (n) %=0

1, N +
F (x) :=

∑

n"x
λF (n)>0

1, N −
F (x) :=

∑

n"x
λF (n)<0

1.

We are interested in asymptotic behaviour of these functions as x → ∞. One of our
principal tools is a recent result of Kowalski and Saha (see Theorem 4 in “Appendix”).
Let F be a Siegel cusp form of genus 2 and level 1 which is a Hecke eigenform. Then,
for any δ ∈ (0, 1

10 ), the inequality

#{p ! x : λF (p) = 0} (F,δ
x

(log x)1+δ
(5)

holds for all x " 2.
The first aim of this paper is to prove the following result using the method of

Matomäki and Radziwill [16] based on multiplicative function theory.

Theorem 1 Let F be a non-zero Siegel–Hecke eigenform in Sk, and suppose that
either k is odd or k is even and F is in the orthogonal complement of SMk .

(i) We have

N ∗
F (x) = ρF x

{
1+ OF

(
1

(log x)δ

)}
(6)

for x → ∞, where δ is given by (5) and

ρF :=
∏

p∈P

(
1 − 1

p

) ∑

ν!0

δF (pν)

pν
> 0.

Here δF (n) is the characteristic function of n such that λF (n) %= 0.
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182 E. Royer et al.

(ii) We have

N ±
F (x) = 1

2ρF x
{
1+ OF

(
1

(log x)K/16

)}

for x → ∞, where K = 0.32867 . . . = − cosφ0 and φ0 is the unique root in
(0,π) of the equation sin φ − φ cosφ = 1

2π .

Remark 1 The same proof shows that the results of Theorem 1 also hold if we replace
λF (n) by aF (n). A related short interval result has been obtained by Royer, Sengupta
and Wu [21].

Remark 2 Theorem 1 establishes that half of non-zero coefficients of the spinor zeta
function of a Siegel cusp form of genus 2 are positive and half are negative. The same
result in the framework of modular forms has been established (independently) by
Elliott and Kish [8] and by Matomäki and Radziwill [16].

Pitale and Schmidt [19] proved that if F is not in the Maass subspace, there exists
an infinite set of prime numbers p so that there are infinitely many ν with λF (pν) > 0
and infinitely many ν with λF (pν) < 0. Define the parameters a and b by

a := α0,p, a−1 := α0,pα1,pα2,p, b := α0,pα1,p, b−1 := α0,pα2,p. (7)

We also use the notation

ta := a + a−1 and tb := b + b−1. (8)

The following theorem gives a quantitative description of the result given by Pitale
and Schmidt.

Theorem 2 Let F be a non-zero Siegel–Hecke eigenform in Sk, and suppose that
either k is odd or k is even and F is in the orthogonal complement of SMk .

(i) Let p be a prime number such that 1, a2, a−2, b2, b−2, ab, (ab)−1, ab−1, a−1b
are different. We have

∑

ν : pν"x

λF (pν)2 log
(

x
pν

)
= CF,p

log p
(log x)2 + OF,p(log x) (9)

for all x " 2, where

CF,p := 2
(ta − tb)2

{(
1

4 − t2a
+ 1

4 − t2b

)(
1 − 1

p

)2

+ 2
p

}
> 0.

(ii) Let p be a prime number such that 1, a, a−1, b, b−1 are different. We have

∑

ν : pν"x

λF (pν) log
(

x
pν

)
(F,p log x (10)

for all x " 2.
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Non-vanishing and sign changes of Hecke eigenvalues 183

Remark 3 (i) Theorem2 shows that there is a very strong cancellation amongλF (pν)

and there are few ν such that λF (pν) is large.
(ii) Our approach allows us to establish a similar result for aF (pν) (evenmore easily).

In order to measure the non-vanishing of λF (n), we introduce, as in [22],

iF (n) := max{ j " 1 : λF (n + i) = 0 for 0 < i ! j}

with the convention that max ∅ = 0. We hope to get non-trivial bound of type

iF (n) (F nθ

for some θ < 1 and all n " 1. Clearly a stronger form of the problem is to find y as
small as possible (as a function of x , say y = xθ with θ < 1) such that

#{x < n ! x + y : λF (n) %= 0} * y,

where the implied constant can depend on F .
We can prove the following result using B-free number theory as in [14,28].

Theorem 3 Let F be a Siegel cusp form of genus 2 and level 1 which is a Hecke
eigenform.

(i) For every ε > 0, x " x0(F, ε) and y " x7/17+ε, we have

#{x < n ! x + y : µ(n)2 = 1 and λF (n) %= 0} *F,ε y.

In particular for any ε > 0 and all n " 1, we have

iF (n) (F,ε n7/17+ε.

(ii) For every ε > 0, x " x0(F, ε), y " x17/38+100ε and1 ! a ! q ! xε with
(a, q) = 1, we have

#{x < n ! x + y : µ(n)2 = 1, n ≡ a (mod q) and λF (n) %= 0} *F,ε y/q.

Remark 4 According to (2), we have λF (n) = aF (n) for all square-free integers n.
The results of Theorem 3 also hold if we replace λF (n) by aF (n).

Remark 5 Theorem 3(i) improves considerably a recent result of Das, Kohnen and
Sengupta [6, Corollary 1.5], which requires 31

32 in place of 7
17 .

2 Proof of Theorem 1

Firstly we state two results on mean values of multiplicative functions. The first one
is a particular case of [10, Theorem]. In the following, p stands always for a prime
number.
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184 E. Royer et al.

Lemma 1 Let g be a real multiplicative function such that |g(n)| ! 1. Then we have

∑

n"x

g(n) ( x exp
{

− K
∑

p"x

1 − g(p)
p

}
,

where K = 0.32867 . . . = − cosφ0 and φ0 is the unique root in (0,π) of the equation
sin φ − φ cosφ = 1

2π .

The second lemma is an unpublished result of Halberstam. A complete proof has
been given by Song [23, Theorem A]. A more general result has been proved by Liu
and Wu [15, Theorem 2].

Lemma 2 Let g be a non-negative multiplicative function satisfying the following
conditions:

∑

p"z

g(p) log p = κz + O
(

z
(log z)δ

)
(z " 2), (11)

∑

p, ν!2

g(pν)

pν
log pν ! A, (12)

where A > 0, κ > 0 and δ > 0 are constants. Then we have

∑

n"x

g(n) = Cgx(log x)κ−1
{
1+ Og,δ

(
log2 x
log x

+ 1
(log x)δ

)}
,

where

Cg :=
∏

p

(
1 − 1

p

)κ ∑

ν!0

g(pν)

pν
.

Lemma 3 Let F be a non-zero Siegel–Hecke eigenform in Sk, and suppose that either
k is odd or k is even and F is in the orthogonal complement of SM

k . Then there are
two positive constants cF > 0 and x0(F) > 0 depending on F only such that

∑

p"x
λF (p)>0

log p " 1
32 x + OF

(
xe−cF

√
log x) (13)

and
∑

p"x
λF (p)<0

log p " 1
32 x + OF

(
xe−cF

√
log x)

for all x " x0(F).
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Non-vanishing and sign changes of Hecke eigenvalues 185

Proof According to [18, Theorem 5.1.2], the transfer of F is an irreducible unitary
cuspidal and self-contragredient automorphic representation of GL4(Q). Thus, we can
apply [27, Theorem 3] to write

∑

p"x

λF (p)2 log p = x + OF
(
xe−cF

√
log x) (14)

and
∑

p"x

λF (p) log p (F xe−cF
√
log x (15)

for all x " 2. In view of (3) and the fact that d4(p) = 4, it is clear that |λF (p)| "
λF (p)2/4. Thus (14) implies immediately

∑

p"x

|λF (p)| log p " 1
4 x + OF

(
xe−cF

√
log x) (x " x0(F)). (16)

Defining

λ±F (p) =
|λF (p)| ± λF (p)

2
,

the relations (16) and (15) imply that

∑

p"x

λ±F (p) log p " 1
8 x + OF

(
xe−cF

√
log x) (x " x0(F)).

This implies (13) since 0 ! λ±F (p) ! 4 and

λ+F (p) %= 0 ⇔ λF (p) > 0 and λ−
F (p) %= 0 ⇔ λF (p) < 0.

./
Now we are ready to prove Theorem 1. Define

gF (n) :=
{
sgn(λF (n)) if λF (n) %= 0,
0 otherwise.

By the prime number theorem and (5), we have

∑

p"x

|gF (p)| log p =
∑

p"x

log p −
∑

p"x
λF (p)=0

log p

= x + O
(

x
(log x)δ

)
.
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186 E. Royer et al.

This shows that the function |gF | satisfies condition (11) of Lemma 2 with κ = 1.
Condition (12) is satisfied trivially. We obtain

∑

n"x

|gF (n)| = ρF x
{
1+ O

(
1

(log x)δ

)}
. (17)

This proves (6), since |gF (n)| = δF (n).
On the other hand, (13) of Lemma 3 allows us to deduce

∑
p"x

gF (p)=−1

1
p =

∫ x
2−

1
t log t d

( ∑
p"t

λF (p)<0
log p

)

" 1
32 log2 x + OF (1) (x → ∞).

(18)

From Lemma 1 and (18), we can deduce that

∑
n"x gF (n) ( x exp

{
− K

∑
p"x

1−gF (p)
p

}

( x exp
{

− 2K
∑

p"x
gF (p)=−1

1
p

}

( x
(log x)K/16 .

(19)

Clearly (17) and (19) imply the required result, since |gF (n)| = δF (n) and

|gF (n)| + gF (n)
2

=
{
1 if λF (n) " 0,
0 otherwise,

and

|gF (n)| − gF (n)
2

=
{
1 if λF (n) ! 0,
0 otherwise.

This completes the proof. ./

3 Dirichlet series associated to λF( pν)2 and aF( pν)2

As before, let F be a non-zero eigenfunction of all the Hecke operators T (n), (n ∈ N),
and let a, a−1, b, b−1 be defined as in (7). We introduce

DF :=
{
1, a2, a−2, b2, b−2, ab, (ab)−1, ab−1, a−1b

}
.

In view of (4), the Dirichlet series

Fp(s) :=
∞∑

ν=0

λF (pν)2

pνs
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Non-vanishing and sign changes of Hecke eigenvalues 187

is absolutely convergent for Re s > 0 and any prime number p. The aim of this section
is to give an explicit expression for this Dirichlet series.

Proposition 1 Under the previous notation, we have

Fp(s) = (1+ p−s)
∏

η∈DF

(1 − ηp−s)−1
∑

0"i"6

qi p−is

for Re s > 0, where ta, tb are defined as in (8) and

q0 := 1,

q1 := tatb + 2,

q2 := 2 − (ta + tb)2 − 2(t2a + t2b + tatb − 2)p−1 + p−2,

q3 := tatb + 2+ 2
[
(ta + tb)2 + (t2a − 2)(t2b − 2)

]
p−1 + (tatb + 2)p−2,

q4 := 1 − 2(t2a + t2b + tatb − 2)p−1 −
[
(ta + tb)2 − 2

]
p−2,

q5 := (tatb + 2)p−2,

q6 := p−2.

Remark 6 Let p be a prime number such that 1, a2, a−2, b2, b−2, ab, (ab)−1,

ab−1, a−1b are different. The residue at 0 ofFp is

Re s
(
Fp(s), 0

)
= CF,p

log p
,

where

CF,p = 2
∏

η∈DF
η %=1

(1 − η)−1
∑

0"i"6

qi .

This can be simplified in

CF,p = 2
(ta − tb)2

{(
1

4 − t2a
+ 1

4 − t2b

)(
1 − 1

p

)2

+ 2
p

}
.

This last expression is clearly positive. In particularFp has a simple pole at 0.

Remark 7 The expressions of q0, . . . , q6 are symmetric in (ta, tb). We can then make
the change of variable

u = ta + tb = a + 1
a
+ b + 1

b

v = tatb + 2 =
(
a + 1

a

)(
b + 1

b

)
+ 2.
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188 E. Royer et al.

We obtain

q0 = 1,

q1 = v,

q2 = 2 − u2 − 2(u2 − v)p−1 + p−2,

q3 = v − 2(u + v)(u − v)p−1 + vp−2,

q4 = 1 − 2(u2 − v)p−1 + (2 − u2)p−2,

q5 = vp−2,

q6 = p−2.

Proposition 1 is an immediate consequence of (22) and Lemmas 5–7 given below.
According to [1, Proposition 3.35], the generating series of the sequence of Hecke

eigenvalues (λF (pν))ν!0 is

∑

ν!0

λF (pν)Xν = 1 − p−1X2

(1 − aX)(1 − a−1X)(1 − bX)(1 − b−1X)
.

From this identity, Pitale and Schmidt proved [20, Proposition 4.1] that

λF (pν) = A(ν)+ (1 − p−1)
∑

1" j"0ν/21
A(ν − 2 j), (20)

where
A(ν) :=

∑

0"i"ν

aν−i bi
∑

0" j"ν

(ab)− j . (21)

From (20), we have

λF
(
pν

)2 = A(ν)2 + 2
(
1 − p−1

)
B(ν)+

(
1 − p−1

)2
C(ν), (22)

where

B(ν) := A(ν)
0ν/21∑

j=1

A(ν − 2 j), C(ν) :=




0ν/21∑

j=1

A(ν − 2 j)




2

.

Lemma 4 Let ν " 1, and let a and b be complex numbers of norm 1 such that

(a − b)(a2 − 1)(b2 − 1)(ab − 1) %= 0.

We have

A(ν) = D(a, b)
(
aν+1 + a−ν−1 − bν+1 − b−ν−1) (23)
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Non-vanishing and sign changes of Hecke eigenvalues 189

and

0ν/21∑

j=1

A(ν − 2 j) = D(a, b)
(
aν − a−ν

a − a−1 − bν − b−ν

b − b−1

)
, (24)

where

D(a, b) := ab
(a − b)(ab − 1)

.

Proof By summing the geometric series in (21), we find that

A(ν) = aν+1 − bν+1

a − b
· 1 − (ab)−ν−1

1 − (ab)−1 .

After simplification, we get (23).
From this it is easy to see that, with the notation w := 0ν/21,

1
D(a, b)

w∑

j=1

A(ν − 2 j) =
w∑

j=1

(
aν−2 j+1 + a−ν+2 j−1 − bν−2 j+1 − b−ν+2 j−1);

hence

1
D(a, b)

w∑

j=1

A(ν − 2 j)

= aν − a−ν

a − a−1 − bν − b−ν

b − b−1 − aν−2w − a−ν+2w

a − a−1 + bν−2w − b−ν+2w

b − b−1 .

This implies (24) since

aν−2w − a−ν+2w

a − a−1 − bν−2w − b−ν+2w

b − b−1 ≡ 0.

./

Lemma 5 Let a and b be complex numbers of norm 1 such that

(a − b)(a2 − 1)(b2 − 1)(ab − 1) %= 0.

For |t | < 1, we have

∞∑

ν=0

A(ν)2

D(a, b)2
tν = 4

1 − t
+ a2

1 − a2t
+ a−2

1 − a−2t
+ b2

1 − b2t
+ b−2

1 − b−2t

− 2ab
1 − abt

− 2(ab)−1

1 − (ab)−1t
− 2ab−1

1 − ab−1t
− 2a−1b

1 − a−1bt
.
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190 E. Royer et al.

Proof With the help of (23) of Lemma 4, we have

D(a, b)−2A(ν)2 =
(
aν+1 + a−ν−1 − bν+1 − b−ν−1)2

= 4+ a2(ν+1) + a−2(ν+1) + b2(ν+1) + b−2(ν+1)

− 2(ab)ν+1 − 2(ab)−ν−1 − 2(ab−1)ν+1 − 2(a−1b)ν+1.

This implies the required formula. ./

Lemma 6 Let a and b be complex numbers of norm 1 such that

(a − b)(a2 − 1)(b2 − 1)(ab − 1) %= 0.

For |t | < 1, we have

∞∑

ν=0

B(ν)
D(a, b)2

tν = − 2
1 − t

+ a2

a2 − 1
× 1

1 − a2t
− 1

a2 − 1
× 1

1 − a−2t

+ b2

b2 − 1
× 1

1 − b2t
− 1

b2 − 1
× 1

1 − b−2t

− a3b + ab3 − 2ab
(a2 − 1)(b2 − 1)

× 1
1 − abt

− ab−1 + a−1b − 2ab
(a2 − 1)(b2 − 1)

× 1
1 − (ab)−1t

+ a3b + ab−1 − 2ab
(a2 − 1)(b2 − 1)

× 1
1 − ab−1t

+ ab3 + a−1b − 2ab
(a2 − 1)(b2 − 1)

× 1
1 − a−1bt

.

Proof With the help of (23) and (24) of Lemma 4, we have

B(ν)
D(a, b)2

= (aν+1 + a−ν−1 − bν+1 − b−ν−1)

(
aν − a−ν

a − a−1 − bν − b−ν

b − b−1

)

= a2ν+1 − a−2ν−1 − aνbν+1 + a−νb−ν−1 − aνb−ν−1 + a−νbν+1

a − a−1

+ b2ν+1 − b−2ν−1 − aν+1bν + a−ν−1b−ν − a−ν−1bν + aν+1b−ν

b − b−1 − 2.
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Non-vanishing and sign changes of Hecke eigenvalues 191

From this we deduce, for |t | < 1,

∞∑

ν=0

B(ν)
D(a, b)2

tν

= a
a2 − 1

(
a

1 − a2t
− a−1

1 − a−2t
− b

1 − abt
+ b−1

1 − (ab)−1t

− b−1

1 − ab−1t
+ b

1 − a−1bt

)

+ b
b2 − 1

(
b

1 − b2t
− b−1

1 − b−2t
− a

1 − abt
+ a−1

1 − (ab)−1t

− a−1

1 − a−1bt
+ a

1 − ab−1t

)
− 2

1 − t
·

This implies the required formula. ./
Lemma 7 Let a and b be complex numbers of norm 1 such that

(a − b)(a2 − 1)(b2 − 1)(ab − 1) %= 0.

For |t | < 1, we have

∞∑

ν=0

C(ν)

D(a, b)2
tν = −

(
2a2

(a2 − 1)2
+ 2b2

(b2 − 1)2

)
1

1 − t

+ a2

(a2 − 1)2

(
1

1 − a2t
+ 1

1 − a−2t

)
+ b2

(b2 − 1)2

×
(

1
1 − b2t

+ 1
1 − b−2t

)

− 2ab
(a2 − 1)(b2 − 1)

(
1

1 − abt
+ 1

1 − (ab)−1t

− 1
1 − ab−1t

− 1
1 − a−1bt

)
.

Proof With the help of (24) of Lemma 4, we have

C(ν)

D(a, b)2
=

(
aν − a−ν

a − a−1

)2

+
(
bν − b−ν

b − b−1

)2

− 2
(aν − a−ν)(bν − b−ν)

(a − a−1)(b − b−1)
;

hence

C(ν)

D(a, b)2
= a2ν − 2+ a−2ν

(a − a−1)2
+ b2ν − 2+ b−2ν

(b − b−1)2

−2
(ab)ν + (ab)−ν − (ab−1)ν − (a−1b)ν

(a − a−1)(b − b−1)
.
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From this we deduce, for |t | < 1,

∞∑

ν=0

C(ν)

D(a, b)2
tν = a2

(a2 − 1)2

(
1

1 − a2t
+ 1

1 − a−2t
− 2

1 − t

)

+ b2

(b2 − 1)2

(
1

1 − b2t
+ 1

1 − b−2t
− 2

1 − t

)

− 2ab
(a2 − 1)(b2 − 1)

(
1

1 − abt
+ 1

1 − (ab)−1t

− 1
1 − ab−1t

− 1
1 − a−1bt

)
.

This implies the required formula. ./
An expanded expression for

∑

ν!0

λF (pν)2tν

is deduced from (22) and Lemmas 5–7. Factoring this expression, we obtain

∑

ν!0

λF (pν)2tν = 1+ t∏
η∈DF

(1 − ηt)

6∑

i=0

qi t i ,

where the ti are given in terms of a and b. It is easy to check that these values are
expressed in terms of ta and tb as in Proposition 1.

Similar to Proposition 1, we can prove the following result.

Proposition 2 For Re s > 0, we have

∑

ν!0

aF (pν)2

pνs =
∏

0" j"8

(1 − η j p−s)−1
∑

0" j"4

r j p− js,

where

r0 = r4 = 1, r1 = r3 = tatb + 2, r2 = −(ta + tb)2 + 2.

4 Proof of Theorem 2

Let DF and η j be defined as at the beginning of Section 3. According to (1), we have
|η j | = 1. Thus, we can write η j = eiθ j with θ j ∈ (−π,π]. We choose a θ∗ ∈ (−π,π]
such that sin(±θ j − θ∗) %= 0 for 0 ! j ! 8. Let ε be an arbitrarily small positive
number and take

T = 2π0log x1 + θ∗
log p

.
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In view of Proposition 1, we can apply the Perron formula ([24, Theorem II.2.5])
to write

∑

pν"x

λF (pν)2 log
(

x
pν

)
= 1

2π i

∫ (log x)−1+i∞

(log x)−1−i∞
Fp(s)

xs

s2
ds. (25)

We truncate the integral at T . Since |1 − η j p−s | " 1 − p−(log x)−1 *p (log x)−1

for s = (log x)−1 + iτ with |τ | " T and 0 ! j ! 8, we have Fp(s) (F,p log x for
these values of s. Thus

1
2π i

∫

s=(log x)−1+iτ
|τ |!T

Fp(s)
xs

s2
ds (F,p

log x
T

. (26)

Now we shift the segment of integration [(log x)−1 − iT, (log x)−1+ iT ] to [−ε −
iT,−ε + iT ]. The poles of F (s) x

s

s2 in the rectangle −ε ! Re s ! (log x)−1 and
|τ | ! T are as follows:

s j,$ :=
θ j + 2π$

log p
i (0 ! j ! 8),

where $ ∈ Z such that |s j,$| < T . Clearly the number of such poles is bounded, up to
multiplicative constant, by T .

With the help of the Cauchy theorem, we can write

1
2π i

∫ (log x)−1+iT

(log x)−1−iT
Fp(s)

xs

s2
ds =

8∑

j=0

∑

$∈Z
|s j,$|<T

Re s
(
Fp(s)

xs

s2
, s j,$

)

+ 1
2π i

∫

Lh∪Lv

Fp(s)
xs

s2
ds, (27)

where Lh := [−ε ± iT, (log x)−1 ± iT ] and Lv := [−ε − iT,−ε + iT ].
Under our assumption on (a, a−1, b, b−1), all poles of Fp(s) x

s

s2 in the rectangle
−ε ! Re s ! (log x)−1 and |τ | ! T are simple except for s = 0 which is of order 3.
The residue ofFp at 0 is given in Remark 6:

Re s
(
Fp(s), 0

)
= CF,p

log p
,

where

CF,p = 2
(ta − tb)2

{(
1

4 − t2a
+ 1

4 − t2b

)(
1 − 1

p

)2

+ 2
p

}
.
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It follows that

{
Re s

(
Fp(s) x

s

s2 , 0
)
= CF,p

log p (log x)
2 + OF,p(log x),

Re s
(
Fp(s) x

s

s2 , s j,$
)

(F,p 1 ( j = 0, $ %= 0or1 ! j ! 8, $ ∈ Z).
(28)

Next we handle the integral over the vertical segmentLv. We have |1− η j p−s | "
pε − 1 for s ∈ Lv and 0 ! j ! 8. This implies that Fp(s) (F,p,ε 1 for s ∈ Lv.
Thus

1
2π i

∫

Lv

Fp(s)
xs

s2
ds (F,p,ε 1. (29)

Finally we estimate the contribution of the integral over the horizontal segments
Lh. For s ∈ Lh and 0 ! j ! 8, we have

|1 − η j p−s | = |1 − p−σ ei(θ j∓θ∗)| " p−(log x)−1 |sin(θ j ∓ θ∗)| *F,p 1.

This implies that Fp(s) (F,p 1 for s ∈ Lh. Thus

1
2π i

∫

Lh

Fp(s)
xs

s2
ds (F,p

1
T 2 . (30)

By combining (26), (27), (28), (29), (30) with (25), we obtain

∑

pν"x

λF (pν)2 log
(

x
pν

)
= CF,p

log p
(log x)2 + OF,p(log x + T ),

which implies the desired asymptotic formula (9) since T 5 log x .
The estimate (10) can be proved similarly.

5 Proof of Theorem 3

The notion ofB-free numbers, as a generalization of square-free numbers, was intro-
duced by Erdős [9]. For a set of integers

B = {bi : 1 < b1 < b2 < · · · }

such that ∑

i!1

1/bi < ∞ and (bi , b j ) = 1 (i %= j), (31)

one says that n " 1 isB-free if it is not divisible by any element inB. Many authors
studied the distribution of B-free integers. A detailed historical description can be
found in [14,28]. In particular, the authors of these two papers proved the following
results (see [14, Corollary 10] and [28, Proposition 2], respectively):
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• For all ε > 0, x " x0(ε) and y " x7/17+ε, we have

#{x < n ! x + y : n is B-free} *B,ε y. (32)

• For all ε > 0, x " x0(ε), y " x17/38+100ε, 1 ! a ! q ! xε with ((a, q), b) = 1
for all b ∈ B, we have

#{x < n ! x + y : n ≡ a (mod q) and n is B-free} *B,ε y/q. (33)

Now take

BF := PF ∪ {p2 : p ∈ P ! PF },

where

PF := {p : λF (p) = 0}.

With the help of (5), it is easy to check thatBF satisfies the condition (31). Clearly if
n isBF -free, then certainly n is square-free. Since λF (n) = aF (n) for all square-free
integers n and they are multiplicative when restricted on these integers, our choice of
BF guarantees that λF (n) = aF (n) %= 0 if n is BF -free. Thus (32) and (33) imply
the first and second assertions of Theorem 3, respectively.

Appendix: Non-vanishing of Hecke eigenvalues for Siegel cusp forms—by
E. Kowalski, ETH Zürich, and A. Saha, University of Bristol

We prove the following result:

Theorem 4 Let F be a Siegel cusp form of genus 2 and level 1 which is a Hecke
eigenform. Let λF (p) denote the normalized p-th Hecke eigenvalue of F. Then we
have

#{p ! x : λF (p) = 0} = o(π(x))

as x → +∞, and in fact there exists δ > 0 such that

#{p ! x : λF (p) = 0} ( x
(log x)1+δ

.

Although the argument is short, it depends on a combination of extremely deep
results. More precisely, we argue along the same lines as Serre’s proof in the case
of classical holomorphic modular forms; we need then to use both results of Weis-
sauer [25] constructing the Galois representations attached to F , as well as those of
Dieulefait [7] studying the images of these representations. Crucially, we use the fact
that some of the conditional statements of Dieulefait are now known unconditionally
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due to the proof of Serre’s conjectures on modular two-dimensional Galois represen-
tations over finite fields [12] and the proof of the functorial transfer of full-level Siegel
eigenforms to GL4 [18].

Proof Let F be as in the theorem. If F is a Saito–Kurokawa lift, then λF (p) > 0 for
all primes p. So we may assume that F is not a Saito–Kurokawa lift. We denote by
aF (p) = pk−

3
2 λF (p) the unnormalized Hecke eigenvalue of F at p, so that

#{p ! x : λF (p) = 0} = #{p ! x : aF (p) = 0},

and we will bound the latter.
Step 1. It is well known (see [2,17]) that the representation 0F of GSp4(A) gen-

erated by the adelization of F is irreducible1, unitary, cuspidal and belongs to the
discrete series of weight (k, k) at infinity. By work ofWeissauer, there exists a number
field2 E/Q, such that for any prime number l and any extension λ of l to E , there is a
semisimple Galois representation

ρF,λ : Gal(Q̄/Q) → GL4(Eλ)

having the property that at all primes p %= $, ρF,λ is unramified at p and furthermore
we have

Tr(ρF,λ(σ p)) = ap.

Step 2. A key corollary [18, Theorem 5.1.4] of the functorial transfer of full-level
Siegel eigenforms to GL4 is that 0F is weakly equivalent to a generic representation.
It follows from [25, Theorem IV] that the image of ρF,λ is contained in GSp4(Eλ).
Since the image is compact, it follows that up to conjugation, the image of ρF,λ is in
fact contained in GSp4(OEλ).

Step 3. We fix a prime $ > 2k − 2 totally split in E . Henceforth, we fix any place
λ above $ and refer to ρF,λ as ρF,$; its image is contained inside GSp4(Z$). Let ρ̄F,$
be the projective representation

ρ̄F,$ : Gal(Q̄/Q) → PGSp4(Z$)

obtained from ρF,$, and let G be its image. This is an $-adic analytic Lie group. Let

C = G ∩ {g ∈ PGSp4(Z$) : Tr(g) = 0}

(where the trace is computed for any lift in GSp4(Z$), which is well defined), a
conjugacy-invariant analytic subvariety of G of codimension 1.

1 This is not the same as asserting multiplicity one for GSp4, which to the best of our knowledge remains
open.
2 Here, the number field is chosen large enough to ensure that, for all primes λ|l of E , the representation
ρF,λ is defined over Eλ.
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Step 4. By a result of Dieulefait [7, Theorem 4.2] (see below for details), we have
G = PGSp4(Z$) for almost all l, so we assume that our l has this property. Thus
dimG = 10 and dimC = 9. We have therefore

#{p ! x : aF (p) = 0} = #{p ! x, p %= l : ρ̄F,$(σ p) ∈ C} + δaF (l),0,

and by [22, Theorem 10], we obtain

#{p ! x : aF (p) = 0} ( x
(log x)1+δ

for any δ < 1/10. ./

Remark 8 Dieulefait proceeds by considering the residual mod $ reduction of ρ̄F,$,
whose image (in our case) lies inside the finite field PGSp4(F$). If the image is not
the full group, then it can be classified into ten cases (see [7, Sect. 3.1]) of which
cases (9) and (10) cannot occur for us since the finite field is prime. The remaining
cases are eliminated by invoking either the Ramanujan bound or themodularity of two-
dimensional Galois representations over finite fields (Serre’s conjecture); the latter has
been proved byKhare andWintenberger [12]. Note thatwe do not need the “untwisted”
hypothesis of Dieulefait [7, Definition 4.1] since this hypothesis was only used by him
to eliminate cases (9) and (10).

Remark 9 In our main theorem, the words “Hecke eigenform” can be relaxed to
“Hecke eigenform at almost all primes”. Indeed, if F is a Siegel cusp form of genus 2
and level 1 which is a Hecke eigenform at almost all primes, then it is automatically
an eigenform for all Hecke operators, see [17, Corollary 3.4].

Remark 10 The result does not extend to Siegel cusp forms of arbitrary level N " 1
(just as the case of classical cusp forms must exclude the CM forms, which have level
larger than 1). More precisely, given a quadratic field K/Q, and a suitable Hilbert or
Bianchi cusp form (see [11] and [3]) f over K , one can construct a Siegel cusp form
F over Q with spinor L-function given by

L(s, F) = L(s, f ),

where the L-functions are all Langlands-normalized.Note here that L(s, f ) has degree
2 over K and hence degree 4 overQ. In particular, for any prime p such that p is inert
in K , the local L-factor at p is a polynomial in p−2s , thus showing that λF (p) = 0
for at least half the primes.

In fact, one can show that this type of example, as well as certain types of Yoshida
lifts, is the only example of Siegel cusp forms of genus 2 where the spinor L-function
has a positive density of zero coefficients at primes. We will come back to this in a
later paper.
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