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80026, F-63171 Aubière Cedex, France.
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1. Introduction

Let Sk be the space of Siegel cusp forms of integral weight k on the group Sp4(Z) ⊂
GL4(Q) and let F ∈ Sk be an eigenfunction of all the Hecke operators. Let

ZF(s) :=
∏
p∈P

ZF,p(p−s) (Res > 1)

be the spinor zeta function of F. Here P is the set of prime numbers and if
α0,p, α1,p, α2,p are the Satake p-parameters attached to F then

ZF,p(t)−1 := (1 − α0,pt)(1 − α0,pα1,pt)(1 − α0,pα2,pt)(1 − α0,pα1,pα2,pt).

They satisfy

α2
0,pα1,pα2,p = 1

for all p. A Siegel form is in the Maass subspace SM
k of Sk if it is a linear combination

of Siegel forms F that are eigenvectors of all the Hecke operators and for which there
exists a primitive modular form f of weight 2k − 2 such that

ZF(s) = ζ

(
s − 1

2

)
ζ

(
s +

1
2

)
L(f, s).

Here L(f, s) is the L-function of f (note that we normalize all the L-functions so
that the critical strip is 0 ≤ Res ≤ 1 and the functional equation relates the value
at s to the value at 1 − s). This happens only if k is even. The bijective linear
application between SM

k and the space of modular forms of weight 2k − 2 is called
the Saito–Kurokawa lifting [20]. The Ramanujan–Petersson conjecture says that

|αj,p| = 1 for j = 0, 1, 2 and all primes p. (1)

It is not true for Siegel Hecke-eigenforms in SM
k . But, if k is odd or, if k is even

and the form is in the orthogonal complement of SM
k , then it has been established

by Weissauer [19]. We denote by H∗
k the set of Siegel cuspidal Hecke-eigenforms of

weight k and genus 2 that, if k is even, are in the orthogonal complement of SM
k .

The forms we consider in this paper all belong to H∗
k. According to Breulmann [3], a

Siegel Hecke-eigenform is in SM
k if and only if all its Hecke eigenvalues are positive.

According to [1, 7], the function

ΛF(s) := (2π)−sΓ
(

s + k − 3
2

)
Γ
(

s +
1
2

)
ZF(s)

has an entire continuation to C since F ∈ H∗
k. Further it satisfies the functional

equation

ΛF(s) = (−1)kΛF(1 − s) (2)

on C. The spinor zeta function of F has the Dirichlet expansion:

ZF(s) =
∑
n≥1

aF(n)n−s
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for Res > 1. By using (1), one sees that

|aF(n)| ≤ d4(n) (3)

for all n ≥ 1, where d4(n) is the number of solutions in positive integers a, b, c, d of
n = abcd.

In this paper, we investigate the problem of sign changes for the sequence
(aF(n))n≥1 in short intervals. Define

N +
F (x) :=

∑
n≤x

aF(n)>0

1 and N −
F (x) :=

∑
n≤x

aF(n)<0

1.

We apply a method due to Lau and Tsang [12] to establish the following theorem.
Convergence issues however appear and we have to deal with them.

Theorem. Let F be in H∗
k and ε > 0. There are constants c > 0 absolute and x0(F)

depending only on F such that for all x ≥ x0(F), we have

N +
F (x + cx3/4) − N +

F (x) � x3/8−ε,

and

N −
F (x + cx3/4) − N −

F (x) � x3/8−ε,

where the implied constants in � depend only on ε.

Remark. An ingredient of our proof is the inequality∑
n≤x

aF(n) �F,ε x3/5+ε (x ≥ 2) (4)

(see Lemma 1). We also prove, and use an Omega-result:∑
n≤x

aF(n) = Ω±(x3/8)

(see Lemma 2).

Two related problems have already been studied. Denote by λF(n) the nth
normalized Hecke eigenvalue of F. Then we have

∞∑
n=1

λF(n)
ns

=
ZF(s)

ζ(2s + 1)
(Res > 1). (5)

In [9], Kohnen proved that

#{n ≤ x : λF(n) > 0} → ∞ (x → ∞)

and

#{n ≤ x : λF(n) < 0} → ∞ (x → ∞).

Then, Das [6] proved that, as x tends to +∞, the quantities

1
#{p ∈ P : p ≤ x}#{p ∈ P ∩ [1, x] : λF(p) > 0}
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and
1

#{p ∈ P : p ≤ x}#{p ∈ P ∩ [1, x] : λF(p) < 0}

are bounded from below (and naturally also bounded from above). In [10], Kohnen
and Sengupta proved that under the same assumption there is an integer n �
k2(log k)20 such that λF(n) < 0. Their result has been generalized to higher lev-
els by Brown [4]. An interesting study of sign changes is also due to Pitale and
Schmidt [16]. They prove that if F is not in the Maass subspace, there exists an
infinite set of prime numbers p not dividing the level so that there are infinitely
many r with λF(pr) > 0 and infinitely many r with λF(pr) < 0.

Remark. Das’ result is on the counting function of the Hecke eigenvalues. It implies
that, as x tends to +∞, the quantities

1
#{p ∈ P : p ≤ x}#{p ∈ P ∩ [1, x] : aF(p) > 0}

and
1

#{p ∈ P : p ≤ x}#{p ∈ P ∩ [1, x] : aF(p) < 0}

are bounded from below. The reason is that (5) implies

aF(n) =
∑

(d,m)∈N
2

d2m=n

λF(m)
d

.

Thus aF(n) = λF(n) for n squarefree and in particular for n a prime. Moreover,
the proof of Kohnen and Sengupta can be adapted to prove that there is an integer
n � k2(log k)20 such that aF(n) < 0.

To end this introduction, we give a very short amount on what is known in the
case of classical modular forms, referring to [11] for a more complete survey. Let f

be a primitive modular form of weight k on the congruence subgroup Γ0(N). Lau
and Wu [13] proved that, as x tends to +∞, the quantities

1
#{n ∈ N∗ : n ≤ x}#{n ∈ N ∩ [1, x] : λf (n) > 0} (6)

and
1

#{n ∈ N∗ : n ≤ x}#{n ∈ N ∩ [1, x] : λf (n) < 0}

are bounded from below. Even though we know by the Sato–Tate theorem [2] that

lim
x→∞

1
#{p ∈ P : p ≤ x}#{p ∈ P ∩ [1, x] : λf (p) > 0} =

1
2

it does not seem easy to deduce a similar limit for (6). Lau and Wu proved also
the following result on intervals. There exists C > 0 such that, for any ε > 0, there
exists K > 0 such that for any even integer k ≥ 4, for any integer N ≥ 1 we have

#{n ∈ [x, x + CENx1/2] : λf (n) > 0} ≥ K(Nx)1/4−ε
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as soon as x ≥ N2x0(k) where x0(k) is a positive real number only depending on k.
Here,

EN = N1/2


∑

d|N
d−1/2 log(2d)




3

.

An important ingredient used by Lau and Wu is the following result by Serre [17].
Let f be a primitive modular form of weight k on the congruence subgroup Γ0(N).
Let δ < 1

2 . There exists C > 0 such that, for any x ≥ 2, we have

1
#{p ∈ P : p ≤ x}#{p ∈ P ∩ [1, x] : λf (p) = 0} ≤ C

log(x)δ
.

Such an inequality is missing in the case of Siegel modular forms.

2. Truncated Voronoi Formula

The aim of this section is to establish the following truncated Voronoi formula,
which will be needed in the proof of the theorem.

Lemma 1. Let F be in H∗
k. Then for any A > 0 and ε > 0, we have

∑
n≤x

aF(n) =
x3/8

(2π)3/4

∑
n≤M

aF(n)
n5/8

cos
(
4
√

2π(nx)1/4 +
π

4

)

+ OA,F,ε((x3M−1)1/4+ε + (xM)1/4+ε) (7)

uniformly for x ≥ 2 and 1 ≤ M ≤ xA, where the implied constant depends on A, F
and ε only. In particular∑

n≤x

aF(n) �F,ε x3/5+ε (x ≥ 2). (8)

Proof. Without loss of generality, we assume that M ∈ N. Let κ := 1 + ε and

T4 = 4π2

(
M +

1
2

)
x. (9)

By the Perron formula (see [18, Corollary II.2.4]) we have

∑
n≤x

aF(n) =
1

2πi

∫ κ+iT

κ−iT

ZF(s)
xs

s
ds + OF,ε(x3/4+εM−1/4 + xε). (10)

We shift the line of integration horizontally to Res = −ε, the main term gives

1
2πi

∫ κ+iT

κ−iT

ZF(s)
xs

s
ds = ZF(0) +

1
2πi

∫
L

ZF(s)
xs

s
ds,

where L is the contour joining the points κ± iT and −ε± iT. Using the convexity
bound [14, Sec. 1.3]

ZF(σ + it) �F,ε (|t| + 1)max{2(1−σ),0}+ε (−ε ≤ σ ≤ κ),
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the integrals over the horizontal segments and the term ZF(0) can be absorbed in
OF,ε((Tx)ε(T + T−1x)) = OF,ε(x1/4+εM1/4 + x3/4+εM−1/4).

To handle the integral over the vertical segment Lv := [−ε − iT,−ε + iT], we
invoke the functional equation (2). We deduce that

1
2πi

∫
Lv

ZF(s)
xs

s
ds = (−1)k

∑
n≥1

aF(n)
n

ILv(nx), (11)

where

ILv(y) :=
1

2πi

∫
Lv

(2π)2s−1

Γ
(

k − 1
2
− s

)
Γ
(

3
2
− s

)

Γ
(

s + k − 3
2

)
Γ
(

s +
1
2

) ys

s
ds.

By using the Stirling formula

Γ(σ + it) =
√

2π|t|σ−1/2e−π|t|/2+i(t log|t|−t)+i sgn(t)(π/2)(σ−1/2){1 + O(t−1)}
uniformly for σ1 ≤ σ ≤ σ2 and |t| ≥ 1, the quotient of the four gamma factors is

|t|2−4σe−4i(t log|t|−t)+i sgn(t)π(1−k){1 + O(t−1)} (12)

for bounded σ and any |t| ≥ 1, where the implied constant depends on σ and k.
Together with the second mean value theorem for integrals [18, Theorem I.0.3], we
obtain

ILv(nx) � (nx)−ε

(∣∣∣∣∣
∫ T

1

t1+4εe−ig(t) dt

∣∣∣∣∣+ T1+4ε

)

� T
(

T4

nx

)ε
(∣∣∣∣∣
∫ T

a

e−ig(t) dt

∣∣∣∣∣+ 1

)
(13)

for some 1 ≤ a ≤ T, where g(t) := t log(t4/(4π2nx)) − 4t. In view of (9), we have

g′(t) = −log(4π2nx/t4) < 0 and |g′(t)| ≥
∣∣∣∣log

(
n

/(
M +

1
2

))∣∣∣∣
for n ≥ M + 1 and 1 ≤ t ≤ T. Using (3) and [18, Theorem I.6.2], we infer that

∑
n>M

aF(n)
n

ILv(nx) � T
(

T4

x

)ε ∑
n>M

d4(n)
n1+ε



∣∣∣∣∣log n

M +
1
2

∣∣∣∣∣
−1

+ 1




� T
(

T4

x

)ε




∑
M<n≤2M

d4(n)
(

M +
1
2

)

n1+ε

∣∣∣∣n − M − 1
2

∣∣∣∣
+

1
Mε/2




� T
(

T4

√
Mx

)ε

� Txε. (14)
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For n ≤ M, we extend the segment of integration Lv to an infinite line L ∗
v in

order to apply Lemma 1 in [5]. Write

L ±
v :=

[
1
2

+ ε ± iT,
1
2

+ ε ± i∞
)

, L ±
h :=

[
−ε ± iT,

1
2

+ ε ± iT
]

and define L ∗
v to be the positively oriented contour consisting of Lv, L ±

v and L ±
h .

In view of (12), the contribution over the horizontal segments L ±
h is

IL ±
h

(nx) �
∫ 1/2−ε

−ε

(2π)2σ−1T2−4σ (nx)σ

T
dσ

� T
∫ 1/2−ε

−ε

(nx

T4

)σ

dσ

� Txε.

As in (13), for n ≤ M we get that

IL ±
v

(nx) � (nx)1/2+ε

(∫ ∞

T

t−1−4εe−ig(t) dt +
1

T1+4ε

)

� T
(nx

T4

)1/2+ε



∣∣∣∣∣log

M +
1
2

n

∣∣∣∣∣
−1

+ 1




� T



∣∣∣∣∣log

M +
1
2

n

∣∣∣∣∣
−1

+ 1


 .

So

∑
n≤M

aF(n)
n

(IL ±
v

(nx) + IL ±
h

(nx)) � Txε/2
∑
n≤M

d4(n)
n



∣∣∣∣∣log

M +
1
2

n

∣∣∣∣∣
−1

+ 1




� Txε/2
∑
n≤M

d4(n)
(

M +
1
2

)

n

∣∣∣∣n − M − 1
2

∣∣∣∣
+ Txε

� Txε. (15)

Define

IL ∗
v
(y) =

1
4π2i

∫
L ∗

v

Γ
(

k − 1
2
− s

)
Γ
(

3
2
− s

)
Γ(s)

Γ
(

s + k − 3
2

)
Γ
(

s +
1
2

)
Γ(1 + s)

(4π2y)s ds.

After a change of variable s into 1 − s, we see that

IL ∗
v
(y) =

I0(4π2y)
2π

,
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with

I0(t) :=
1

2πi

∫
Lε

Γ
(

s + k − 3
2

)
Γ
(

s +
1
2

)
Γ(1 − s)

Γ
(

k − 1
2
− s

)
Γ
(

3
2
− s

)
Γ(2 − s)

t1−s ds.

Here Lε consists of the line s = 1
2 − ε + iτ with |τ | ≥ T, together with three sides

of the rectangle whose vertices are 1
2 − ε− iT, 1 + ε− iT, 1 + ε + iT and 1

2 − ε + iT.
Note that all the poles of the integrand in I0(t) lie on the left of the line Lε.

Using a result due to Chandrasekharan and Narasimhan [5, Lemma 1] general-
ized by Lau and Tsang [12, Lemma 2.2] we obtain (note that a factor

√
2 is missing

for the definition of e0 in both references)

I0(t) =
(−1)k

√
2π

t3/8 cos
(
4t1/4 +

π

4

)
+ O(t1/8).

It hence follows that

IL ∗
v
(nx) = (−1)k (nx)3/8

(2i)3/4
cos
(
4
√

2π(nx)1/4 +
π

4

)
+ O((nx)1/8). (16)

We obtain∑
n≤M

aF(n)
n

ILv(nx) =
(−1)k

(2π)3/4
x3/8

∑
n≤M

aF(n)
n5/8

cos
(
4
√

2π(nx)1/4 +
π

4

)

+ O(x1/4+εM1/4) (17)

from (15) and (16). Finally we have the asymptotic formula (7) by (10)–(11), (14)
and (17).

Since

x3/8
∑
n≤M

aF(n)
n5/8

cos
(
4
√

2π(nx)1/4 +
π

4

)
� (xM)3/8+ε,

the choice of M = x3/5 in (7) gives (8).

3. Proof of the Theorem

We establish a lemma that has a similar statement as a one due to Lau and Wu [13,
Lemma 3.2]. However, due to convergence issue, the proof is more delicate.

Lemma 2. Let F be in H∗
k. Define

SF(x) :=
∑
n≤x

aF(n).

There exist positive absolute constants C, c1, c2 and X0(F) depending only on F such
that for all X ≥ X0(F), we can find x1, x2 ∈ [X, X + CX3/4] for which

SF(x1) > c1X3/8 and SF(x2) < −c2X3/8.
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Proof. We begin the proof with Theorem C of Hafner [8]. In order to use this
result, it is more convenient to introduce the notion of (C, 
)-summability and to
present related simple facts (see [15] for more details). Let {gn(t)}n≥0 be a sequence
of functions. We write

s(g; n) :=
∑

0≤ν≤n

gν(t), σ(g; n) :=
1

C(�+1)
n

n∑
ν=0

C(�)
n−νs(g; ν),

where C(�)
n :=

(
�+n−1

n

)
. We say that the series of general term gn(t) is uniformly

(C, 
)-summable to the sum G(t) if σ(g; n) converges uniformly to G(t) as n → ∞.
We have C(�)

0 + · · · + C(�)
n = C(�+1)

n and if the series
∑

n

∫
gn(t) dt converges then

the series of general term
∫

gn(t) dt is also (C, 
)-summable and their limits are
the same.

As in [8, p. 151], for ρ > −1 and x /∈ 2πN, define

Aρ(x) :=
1

Γ(ρ + 1)

∑
2πn≤x

aF(n)(x − 2πn)ρ.

Now let C be the rectangle with vertices c ± iR and 1 − b ± iR (taken in the
counter-clockwise direction), where b > c > max{1, |k − 3

2 |} and R >
∣∣k − 3

2

∣∣ are
real numbers. Let

Qρ(x) :=
1

2πi

∫
C

Γ(s)(2π)−sZF(s)
Γ(s + ρ + 1)

xρ+s ds.

Denote by C0,b the oriented polygonal path with vertices −i∞, −iR, b− iR, b + iR,
iR and +i∞. Let

fρ(x) :=
1

2πi

∫
C0,b

Γ(1 − s)∆(s)
Γ(2 + ρ − s)∆(1 − s)

x1+ρ−s ds

where

∆(s) = Γ
(

s + k − 3
2

)
Γ
(

s +
1
2

)
.

By [8, Theorem C], the series of general term (−1)k(2πn)−1−ρaF(n)fρ(2πnx) is
uniformly (C, 
)-summable for 
 > max{ 1

2 − ρ, 0} on any finite closed interval in
(0,∞) only under the condition ρ > −1 and the sum is Aρ(x)−Qρ(x). In particular,
we can fix 
 = 1 and ρ = 0. We shall say C-summable for (C, 1)-summable.

The only pole of the integrand of Q0(x) is 0, it is encircled by C hence

Q0(x) �F 1 (x ≥ 1).

To estimate f0(x), we use again the result by Lau and Tsang [12, Lemma 2.2]
already used to establish Voronoi formula. We get

f0(y) =
(−1)k

√
2π

y3/8 cos
(
4y1/4 +

π

4

)

+ (−1)ke1y
1/8 cos

(
4y1/4 +

3π

4

)
+ O

(
1

y1/8

)
, (18)

where e1 is a absolute constant.
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Let

Φ(v) := (2π)3/4 A0(2πv4)
v3/2

,

gn(v) :=
aF(n)
n5/8

cos
(
4
√

2πn1/4v +
π

4

)
,

g∗n(v) :=
e1

v

aF(n)
n7/8

sin
(
4
√

2πn1/4v +
π

4

)
.

Then the series of general term gn(v) − g∗n(v) is uniformly C-summable on any
finite closed interval in (0,∞) and the sum is Φ(v) + O(v−3/2) (here the term
O(v−3/2) comes from Q0(2πv4) and the O-term of (18)). In view of (4), a simple
partial integration shows that the series of general term g∗n(v) converges to the sum∑

n g∗n(v) uniformly on any finite closed interval in (0,∞). Thus the series of general
term gn(v) is uniformly C-summable on any finite closed interval in (0,∞) and the
sum is Φ(v) +

∑
n g∗n(v) + O(v−3/2).

Let t be any large natural number, and κ > 1 be a large parameter that will be
fixed later. Write

Kτ (u) = (1 − |u|)(1 + τ cos(4
√

2πκu))

with τ = ±1. We consider the integral

Jτ =
∫ 1

−1

Φ(t + κu)Kτ (u) du.

We have ∫ 1

−1

gn(t + κu)Kτ (u) du = rβ
aF(n)
n5/8

,

∫ 1

−1

g∗n(t + κu)Kτ (u) du = sβe1
aF(n)
n7/8

,

where

rβ :=
∫ 1

−1

Kτ (u) cos
(
4
√

2πβ(t + κu) +
π

4

)
du,

sβ :=
∫ 1

−1

Kτ (u)
t + κu

sin
(
4
√

2πβ(t + κu) +
π

4

)
du.

As in [13, (3.13)], we have

rβ = δβ=1
τ

2
+ O

(
1

κ2β2
+ δβ �=1

1
κ2(β − 1)2

)
and

sβ � (tβκ)−1.

It follows that ∫ 1

−1

g1(t + κu)Kτ (u) du =
τ

2
+ O

(
1
κ2

)
,
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∫ 1

−1

gn(t + κu)Kτ (u) du � d4(n)
κ2n9/8

(n ≥ 2),

∫ 1

−1

g∗n(t + κu)Kτ (u) du � d4(n)
κtn9/8

,

where all the implied constants are absolute. These estimates show that∑
n≥1

∫ 1

−1

gn(t + κu)Kτ (u) du =
τ

2
+ O

(
1
κ2

)
,

∑
n≥1

∫ 1

−1

g∗n(t + κu)Kτ (u) du � 1
κt

.

In view of the remark about C-summability, we obtain

Jτ =
τ

2
+ O

(
1
κt

+
1

t3/2

)
.

We fix κ large enough. When X ≥ κ4, we take t =
⌊
X1/4

⌋
. So t > 2κ and the

O-term in Jτ is � κ−2, so the main term dominates if κ has been chosen sufficiently
large. Therefore

J−1 < −1
4

and J1 >
1
4
.

Since SF(x) = A0(2πx), we rewrite this as∫ 1

−1

SF(t + κu)
(t + κu)3/2

K−1(u) du < − 1
4(2π)3/4

and

∫ 1

−1

SF(t + κu)
(t + κu)3/2

K1(u) du >
1

4(2π)3/4
.

The kernel function Kτ (u) is nonnegative and satisfies

1 − (3πκ)−2 ≤
∫ 1

−1

Kτ (u) du ≤ 2 (τ = ±1).

As a consequence, we have

SF((t + κη+)4)
(t + κη+)3/2

≥ 1
2(2π)3/4

and
SF((t + κη−)4)
(t + κη−)3/2

≤ − 1
4(1 − (3πκ)−2)(2π)3/4

for some η± ∈ [−1, 1]. These two points deviate from X by a distance � X3/4, since
the difference between (t ± κ)4 is � κt3 � X3/4.

This implies the result of Lemma 2.

Now we are ready to prove the theorem.
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By Lemma 2, for any x ≥ X0(F) we can pick three points x < x1 < x2 < x3 <

x + 3Cx3/4 such that SF(xi) < −cx3/8 (i = 1, 3) and SF(x2) > cx3/8 for some
absolute constant c > 0. (Note that y + Cy3/4 ≤ x + 3Cx3/4 for y = x + Cx3/4.)
Hence we deduce that∑

x1<n<x2
aF(n)>0

aF(n) ≥ SF(x2) − SF(x1) > 2cx3/8

and ∑
x2<n<x3
aF(n)<0

(−aF(n)) ≥ −(SF(x3) − SF(x2)) > 2cx3/8.

Thus, the theorem follows as each term in the two sums are positive and �ε nε.
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