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On a Conjecture of Montgomery-Vaughan on Extreme
Values of Automorphic L-Functions at 1
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ABSTRACT. In this paper, we prove a weaker form of a conjecture of Montgomery—
Vaughan on extreme values of automorphic L-functions at 1.

1. Introduction

The automorphic L-functions constitute a powerful tool for studying arith-
metic, algebraic or geometric objects. For squarefree integer N and even integer k,
denote by Hj(N) the set of all newforms of level N and of weight k. It is known
that

k—1

(L1) (V)] =~

P(N) +O((kN)*?),
where ¢(N) is the Euler function and the implied constant is absolute. Let m > 1
be an integer and let L(s,sym™ f) be the symmetric mth power L-function of
f € Hj(N) normalized so that the critical strip is given by 0 < Res < 1. The
values of these functions at the edge of the critical strip contain information of
great interest. For example, Serre [17] showed that the Sato—Tate conjecture is
equivalent to L(1 + it,sym™ f) # 0 for all m € N and 7 € R. The distribution of
the values L(1,sym™ f) has received attention of many authors, including Goldfeld,
Hoffstein & Lieman [6, Appendix], Hoffstein & Lockhart [6], Luo [11], Royer [13,14],
Royer & Wu [15,16], Cogdell & Michel [1], Habsieger & Royer [4] and Lau & Wu
[9,10]. In particular, Lau & Wu [9,10] proved the following results:

(i) For every fixed integer m > 1, there are four positive constants A% and
B such that for any newform f € Hj(1), under the Great Riemann Hypothesis
(GRH) for L(s,sym™ f), we have, for k — oo,

(12) {1+ 0(1)}(2B; logy k)= < L(Lsym™ ) < {1+ o(1)}(2B} logy k)%
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Here (and in the sequel) log; denotes the j-fold iterated logarithm. For most values
of m, the constants A and B can be explicitly evaluated, for example,

Al =m+1, B} =¢" (m e N),
A =m+1, B, =¢(2)"! (odd m),

Ay =1, By =e((2)72,

- _ 5 7_,)//7
A7 =3, By =¢By,

where ((s) is the Riemann zeta-function, v denotes the Euler constant and B}~ is
a positive constant given by a rather complicated Euler product [9, Theorem 3].

(ii) In the opposite direction, it was shown unconditionally that for m €
,2,3,4} there are newiorms € such that for k — oo |9, eorem 2|,
1,2,3,4} th f + € Hj(1) such that for k 9, Th 2

L(1,sym™ f£) > {14 o(1)}(B;}, log, Ic)“m7
L(1,sym™ fr) < {1+ o(1)}(B;, logy k)~ 4m.

(iii) In the aim of removing GRH and closing up the gap coming from the
factor 2 in (1.2) (comparing it with (1.3)), an almost all result was established. Let
e > 0 be an arbitrarily small positive number, m € {1,2,3,4} and 2 | k. Then
there is a subset Ej of Hj (1) such that |Ej| < H};(l)e_(logk)l/z*g
f € H;(1) \ E;, we have, for k — oo,

(1.4) {1+ 0(ex)}(By, logy k) ~*m < L(1,sym™ f) < {1+ O(ex) }(By), logy k),

where ¢, := (log k)¢ and the implied constants depend on € only [10, Corollary 2].
By comparing (1.3) with (1.4), the extreme values of L(1,sym™ f) seem to be given
by (1.3). Clearly it is interesting to investigate further the size of exceptional set
E;. In the case of quadratic characters L-functions, Montgomery & Vaughan [12]
proposed, based on a probabilistic model, three conjectures on the size of excep-
tional set. The first one has been proved recently by Granville & Soundararajan
[3]. As Cogdell & Michel indicated in [1], it would be interesting to try to get,
as close as possible, the analogues of the conjectures of Montgomery—Vaughan for
automorphic L-functions. The analogue of Montgomery—Vaughan’s first conjecture
for the automorphic symmetric power L-functions can be stated as follows.

(1.3)

and for each

Conjecture. Let m > 1 be a fized integer and

1
Fi(t,sym™) == ——— Z 1,
| H.(1)] P

L(1,sym™ f)>(Bt)Ah

1
Gi(t,sym™) := ——— Z 1.
[ Hy (D] Pty

L(Lsym™ [)<(Bpt)~"m
Then there are positive constants ¢; = c;(m) (i = 1,2) such that for k — oo,
{e—cl(log k)/logs k < F, (10g2 k, Symm) < e—cz(log k)/log, Ic7

(15) e—c1 (logk)/ logs k < Gy (10g2 k, symm) < e 2 (log k)/ logy k.

The aim of this paper is to prove a weaker form of this conjecture for m = 1.
In this case, we write, for simplification of notation,

L(s, f) = L(s,sym"' f), Fg(t) = Fp(t,sym"), Gp(t) = Gp(t,sym?).
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In view of the trace formula of Petersson [7, Theorem 3.6], it is more convenient to
consider the weighted arithmetic distribution function. As usual, denote by

b T-1)
T )= £

the harmonic weight in modular forms theory and define the weighted arithmetic
distribution functions

Fy(1) ==( > wf)_l >

FEH(D) feH; (1)
L(1,£)>(e"t)?

-1
Ga(t) ;:( ) wf) Y
feH; (1) feHR(1)

L,f)<(6m2e7t) "2

By using (1.1), the classical estimate

(1.6) Y wp=140k°)
feHZ (1)
and the bound of Goldfeld, Hoffstein & Lieman [6, Appendix]:
(1.7) 1/(klogk) < wy < (logk)/k,
we easily see that
(18) Fp(t)/logk < Fi(t) < Fy(t)logk,
‘ Gr(t)/logk < Gi(t) < Gi(t)logk.

This shows that in order to prove (1.5) it is sufficient to establish corresponding

estimates of the same quality for Fy(t) and Gy(t).
Our main result is the following one.

Theorem 1.1. For any A > 1 there are two positive constants ¢ = ¢(A) and
C = C(A) such that the estimate

(1.9) ﬁk(t) ={1+ Ak(t)}exp{ — et;’yo <1 + O(i)) }

holds uniformly for k > 16,2 | k and t < T'(k), where g is given by (1.26) below,
6] <1 and

(1.10) Ag(t) = 0et=TR=C (1/T (k) ? 4 O 4 (e + (log k) ~4),
' T(k) := logy k — 2 logy k — log, k — 3C.

In particular there are two positive constants ¢; and co such that

(111) e*CI(Ing)/{(10g2 k)7/2 log, k} < F, (T(k)) < e*CQ(logk)/{(log2 k)2 log, k}

The similar estimates for Gy, (t) and Gy, (T(k)) hold also.

Remark 1.1. The estimates (1.11) of Theorem 1.1 can be considered as a
weaker form of Montgomery—Vaughan’s conjecture (1.5) for m = 1, since T'(k) ~
log, k as k — oco. Moreover, if we could take T(k) = log, k in (1.11) then (1.9)
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would lead to the Montgomery—Vaughan’s conjecture (1.5). Hence we fail from a
shift

Slogs k + log, k + 3C.
It seems however to be rather difficult to resolve completely this conjecture. One
of the main difficulties is that there are no analogues of the quadratic reciprocity
law and Graham —Ringrose’s estimates for short characters sums of friable moduli
[2], which have been exploited by Granville & Soundararajan [3].

In order to prove Theorem 1.1, we need to introduce a probabilistic model as
in [1]. Consider a probability space (£, 1), with measure p. Let SU(2)% be the set
of conjugacy classes of SU(2). The group SU(2) is endowed with its Haar measure

py and ‘
SU(2)" = {(e; eﬂg) L0 € [o,n]}/N

is endowed with the Sato— Tate measure dug () := (2/7)sin? 0 d#, i.e., the direct
image of py by the canonical projection SU(2) — SU(2)%. On the space (2, u),
define the sequence indexed by the prime numbers, g%(w) = {gg(w)}p of random
matrices taking values in SU(2)f, given by

oiPp (@) 0o\’
gf,(w) = ( 0 emp(w)> :

We assume that each function gg(w) is distributed according to the Sato —Tate mea-

sure. This means that, for each integrable function ¢: SU(2)? — R, the expected
value of ¢ o gg is

E(¢ogl) = /Qcﬁogi(w)du(w)z/oﬂaﬁ((e;e e9i9)> - (2/7) sin? 0 d6.

Moreover, we assume that the sequence g%(w) is made of independent random vari-
ables. This means that, for any sequence of integrable functions {G,: SU(2)* —
R},, we have

12 E(T[606) = [ TIGrogie)ant) =] [ 60 gite)ante

“11 /O i Gp<<eg) e%)) - (2/7) sin? 8 df.

Let I be the identity matrix. Then for Res > %, the random Euler product
s -1
(1.13) L(s,¢*(w)) = Hdet([ —p ‘gﬁ(w)) =: HLp(s,gh(w))
P P

turns out to be absolutely convergent a.s.
Now we define our probabilistic distribution functions

{@(t) .= Prob({L(1,4%() > (e7t)%}),
U(t) :=Prob({L(1,¢%(-)) < (67~ 2e7t)~2}).

We shall prove Theorem 1.1 in two steps. The first one is to compare ﬁk (t)
with ®(t) (resp. Gi(t) with U(¢)).
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Theorem 1.2. For any A > 1 there are two positive constants ¢ = ¢(A) and
C = C(A) such that the asymptotic formulas

(1.14) Fe(t) = () {1+ Ar(t)} and Gi(t) = U(){1 + Ak(t)}

hold uniformly for k > 16,2 | k and t < T(k), where Ak(t) and T(k) are defined by
(1.10).

The second step of the proof of Theorem 1.1 is the evaluation of ®(t) (resp.
U(t)). For this, we consider a truncated random Euler product

(1.15) L(s,g"(w);y) = || Lo (s, ¢*(w)
and the corresponding distribution functior;s
{cb( ) = Probl(L(L ()50) 2 (71))
U(t,y) := Prob({L(1,¢*(w);y) < (67 2e7t)7?}).
We have
(1.16) O(t) = D(t,00) and V() = ¥(¢,00).

We shall use the saddle-point method (introduced by Hildebrand & Tenenbaum
[5]) to evaluate ®(t,y) and ¥(¢,y). For this, we need to introduce some notation.
For s € C and y > 2, define

(1.17) E(s,y) == E(L(1,¢*(w);iy)) and E(s) = E(s,00),
where E(-) denotes the expected value. We define also

a’ﬂ
(1L18)  o(s,) =108 Bls,y), duls,9) = 5 2 (s5,y) (0> 0)

According to Lemmas 2.3 and 8.1 below, there is an absolute constant ¢ > 2
such that for ¢t > 4logc and y > cef, the equation

(1.19) ¢1(r,y) = 2(logt +7)

has a unique positive solution k = k(t,y) and for each integer J > 1, there are
computable constants g, 71, ..., such that the asymptotic formula

(1.20) K(ty) =7 {1+Z +O"(t‘f+1+ett>}

ylogy

holds uniformly for ¢t > 1 and y > 2e?, the constant g being given by (1.26) below.
Finally write o, := ¢, (k,y).

Theorem 1.3. We have

X O)

uniformly for t > 1 and y > 2¢t.

Theorem 1.4. For each integer J > 1, we have

(1.21) O(t,y) = exp{— [Z @ + Oy (Ry(k, y))] }
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uniformly for t > 1 and y > 2e*, where the error term Rj(k,y) is given by

K
1.22 Rj(k,y) =
(1.22) 7(%3) (log r)7+1 - ylogy
and
oo h / .
. a; = —u) logu)’~t du
(1.23) i ( g
0 u
with
2 ™
log f/ eZucestgin? 9 de if0<u<l,
(1.24) h(u) == 570
= 2ucosf ;2 o .
log / e sin“ 6 d6 2u  ifu > 1.
T Jo

As a corollary of Theorem 1.4, we can obtain an asymptotic development for
log ®(¢,y) in t~1. In particular we see that the probabilistic distribution function
®(t) decays double exponentially as t — oo.

Corollary 1.5. For each integer J > 1, there are computable constants aj,
.,a% such that the asymptotic formula

ij; +0s(Ry(e, ))]}

(1.25) O(t,y) = exp{ —ef™0
j=1

holds uniformly for t > 1 and y > 2et. Further we have

1 [N 2 < h
(1.26) o := 5/ ﬂdu, ai =1, a}:=y — i) —/ (u )(logu)d
0 u 0

In particular for each integer J > 1, we have

(1.27) @()_exp{—et o lz 7+ J(tilﬂ}

uniformly fort > 1.

Remark 1.2. (i) The same results hold also for U(¢,y).

(ii) Takingt =logy k and J = 1 in (1.27) of Corollary 1.5, we see that the prob-
abilistic distribution function ®(¢) (resp. ¥(t)) verifies Montgomery—Vaughan’s
conjecture (1.5). But (1.14) is too weak to derive this conjecture for Fy(t) (resp.
G(t)). This means that we must take T (k) = log, k in Theorem 1.2, which seems
to be rather difficult.

(iii) Our method can be generalized (with a little extra effort) to prove that
Theorems 1.1 and 1.2 hold for L(1,sym™ f) for m > 1 (unconditionally when m =
1,2,3,4 and under Cogdell - Michel’s hypothesis Sym™ (f) and LSZ™(1) [1] when
m > 5) and that Theorems 1.3, 1.4 and Corollary 1.5 are true for
L(1,sym™ g*(w);y) when m > 1.
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ing the visit of the first author to I'Institut Elie Cartan de Nancy, and finished in
January 2006 when the third author visited School of Mathematics and System Sci-
ences of Shandong University. We are indebted to both institutions for invitations
and support. The second and third authors want to thank the CRM at Montréal
for its invitation. Finally we would express our sincere gratitude to Y.-K. Lau of
the University of Hong Kong for valuable discussion.
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2. Expression of E(s,y) and Existence of Saddle-point

The aim of this section is to prove the existence of the saddle-point x(t,y),
defined by equation (1.19). The first step is to give an explicit expression of E(s, y),
which is [1, (1.24)]. For the convenience of readers, we state it here as a lemma.

Lemma 2.1. For prime p, real 0 and complex number s, we define
(2.1) Dy(9) := H (1- ei(1*2j)9p*1)71 and E,( / D,(0)%sin* 0 d6.
0<j<1

Then for all s € C and y > 2, we have

(2.2) E(s,y) = [] Eols)

p<y

Proor. Taking
det(I —p=*' M*) = if p <
Gp(Mh) — e ( p ) op= y
1 otherwise
in (1.12), we get
B @)0)") = [T B (0 @)) = T [ det (1 =07 g80) ™" dute)
p<y

P<y

= H / (1—-2p~ s' cosf +p~ 25/)*Ssin29d0.

Py
Taking s’ = 1 and noticing (1.17) and (2.1), we get the desired result. O
Lemma 2.2. For all p and o0 > 0, we have
E)(0)Ey(0) — EZI)(O')Q > 0.
In particular for all 0 > 0 and y > 2, we have ¢2(0,y) > 0.
PRrROOF. By using the definition (2.1) of E,(0), it is easy to see that

Ey(0)Ey(0) — Ey(0)?

= 2/ D, (0)7 log® D,(6) sin® 9d0/ D,(0)7 sin* 6 do
77

2
( / Dy( 1ogD,,(0)sin20d0>

4 s s
== / / Dy (61)° Dpy(62)7 (log® Dy (61) — log Dpy(61) log D,y (62))
0 0
X sin2 91 sin2 92 d91 d92

In view of the symmetry in 6; and 65, the same formula holds if we exchange the
roles of 0; and 0. Thus it follows that

By (0)Ep(0) —

2 (T[T o Dp(01)\ . 2, . o
= — D, (0)°D,(05)° 1 P 0 0o d6; dbs.
772/0 /0 p(01)7 Dp(62)° log (Dp(92> sin® 0y sin” 0 df); d

This proves the first assertion and the second follows immediately. (I
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Lemma 2.3. There is an absolute constant ¢ > 2 such that for t > 4logc and
y > cel, the equation ¢1(o,y) = 2(logt + ) has a unique positive solution in o.
Denoting by r(t,y) this solution, we have r(t,y) < e’ uniformly for t > 4logc and
y > cel.

PROOF. According to Lemma 4.3 below with the choice of J = 1, we have

¢1(0,y) = 2(logy 0 +) + O(1/log o)
for y > o > 2. Thus

#(ce',y) = 2log(t +logec) + 2y + O > > 2logt + 2

1
t+logc
and

1
p(c el y) = 2log(t — logc) + 2y + O(tc) < 2logt + 27,

log

provided that c is a large constant and ¢t > 4logc. On the other hand, in view of

Lemma 2.2, we know that for any y > 2, ¢1(0,y) is an increasing function of o in

(0,00). Hence the equation ¢1(o,y) = 2(logt + 7) has a unique positive solution

k(t,y) and c~te! < k(t,y) < cet for t > 4loge and y > cet. This completes the

proof. O
3. Preliminary Lemmas

This section is devoted to establish some preliminary lemmas, which will be
useful later.

Lemma 3.1. Let j > 0 be a fized real number. Then we have
(3.1) / e?1os0(1 — cosf)7 sin® 0 df <, e*u~UT2 (y > 1).
0

The implied constant depends on j only.

PROOF. First we write

/ e?ucos9(1 — cosf)7 sin? 0 d
0
/2 ) )
= / (e?vcos9(1 — cos 0) + e~ 24<9(1 4 cos 0)7) sin® A df
0
1
_ / (25 (1 — £)7 1 =29 (1 4 £)7)(1 — 2)1/2 dt
0

1 1
x/ et (1 — ¢)7+1/2 dt+/ e 2ut(1 — )12 de.
0 0

By the change of variables u(1 —t) = v, it follows that

1 u
/ e2ut(1 _ t)j+1/2 dt = eQuu—(j+3/2) / e—2v,Uj+1/2 dv = eQuu—(j+3/2)7
0 0

1 1
/ e"2ut (1 — )2 dt < / e v dt < ut.
0 0

We obtain the desired result by insertion of these estimates into the preceding
relation. ]
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Lemma 3.2. Let j > 0 be an integer and
2 (7 A
(3.2) E, (o) := 7/ D,(0)° (1 — cos 0) sin® 6 do.
T Jo

(In particular E, o(c) = Ey(0).) Then we have

L) e
E, (o) = 1--) +— WTY2(1 —w)V2 du
o) = [(1-3) +3 (1)

and the estimate

(3.3) Eyi(0)/Eylo) < (po)

holds uniformly for all primes p and o > 0. Further if p > o > 0, we have

(3.4) E,(o) <1

The implied constant in (3.3) depends on j only and the one in (3.4) is absolute.

PROOF. By the change of variables u = sin?(6/2), a simple computation shows
that the first assertion is true. Obviously (3.3) holds for j = 0.
Now assume that it is true for j. An integration by parts leads to

o\’ [t 1\N? 4u]°
E,(0) > <> / {(1—) —|—} w21 — )2 du
p(0) >; v) » » ( )
"\p/) Jo p pl p  2(1-u)
1\ | 4], 1+1/2 1/2
x{(1-=) + =] /21 —w)/?du.
p p
On the other hand, we have

1N?  4u] 4o 1 1\ %40 _ 160
O<u<l = l——] +—| —F+ 721+~ > —.
P P p 2(1—u) 2

Inserting it into the preceding estimate, we see that

AR 1\? 4u]”7 .
E, (o) > () / {(1—) —&-} w21 — )2y
p(0) > ’ ; » ) ( )
. j+1
=j () By jv1(0).

p

Thus (3.3) holds also for j + 1.
Since (1+1/p)=2 < D,(0) < (1 —1/p)~2 for all primes p and any 6 € R, we
have D,(6)? < 1 uniformly for p > ¢ > 0 and ¢ € R. This implies (3.4). O

Introduce the function

(3.5) g(u) := log<2 / eZucost gip? 0d9) (u>0)
T Jo
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and let h(u) be defined as in (1.24). Clearly we have

(3.6) h(u) = {g(u) if0<u<1,
(

g(u) —2u fu>1,

g (u) fo<wu<1,
3.7 B (u) =
(3.7) @) g (u)—2 ifu>1,
(3.8) W) = g"(w), (u>0,u# 1),
Lemma 3.3. We have

(3.9) h(u) < u? if0<u<1,

. log(2u) ifu>1,
(3.10) W (u) = {" fosu<l,

’ u™l oifu>1,
(3.11) W=t Y0su<l

’ w2 ifu>1,
(3.12) Wy = {4 0su<l,

' ™ ifu> 1.

PrOOF. When 0 < u < 1, we have
sucosd o (2ucosf)"
e2ucost _ Z S )
n=0
From this we deduce that
_ 2 o~ (2u)" [T n g2 _ - 1 20

(3.13)  h(u) =log (7";_:0 " /0 (cos 0)™ sin ¢9d9> = log; mu

where we have used the following facts:
/ (cos )%t sin?9dh = 0
0

and

2 ™
- / (cos §)* sin® 0 df =
0

s

(20)!
2000+ 1)1
Now we easily deduce, from (3.13), the desired results (3.9)—(3.12) in the case of
0<u<l

The estimates of (3.9)—(3.12) for v > 1 are simple consequences of (3.1), by
noticing the following relations

W) = _2wa e2u i’sg(l - CO.S g) sin? 0d9’
Jy €*vcosfsin® 0 do

o e eos?(1 — cos 6)? sin® 6 df A <f07r e?ueost(] — cos f) sin® 0 d0> 2

[ e2ucosbsin® 0 do [ e2ucossin® 0 do '

h" (u) = 4

This completes the proof. (I
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4. Estimates of ¢, (o, y)
The aim of this section is to prove some estimates of ¢, (o, y) forn =0, 1,2, 3,4.

Lemma 4.1. For any fized integer J > 1, we have

J
bio
4.1 =012l 2 2=+ 0,(R
(4.1) ¢o(0,y) 0{ 08y 0 + v+; g0y + J( J(my))}
uniformly for y > o > 3, where Ry(o,y) is defined as in (1.22) and
(4.2) bjo = / (Z) (logu)?~* du.
0 u

PrROOF. By the definition (2.1) of D, () and the one of E,(0), it is easy to see
that for p > 0!/2, we have

(4.3) D,(0)7 = (/7 6089{1 +0 <"2> }
p
o 2 " 2(c/p)cosO ;. 2
(4.4) Ep(o) =41+0( =) ¢= g=lo/P sin® 6 df.
p T Jo
From these, we deduce that
(4.5) Z log E,(0) = Z g(o/p) +O(c*/?/log o)
ol/2<p<y ol/2<p<y

where g(u) is defined as in (3.5).
In order to treat the sum over p < o, we write

Ep(0) = (1= 1/p)"*" E;(0),

2 [T 2(1 — cos 1\ )7
E;(a)::f/ {1+(C°S)<1—) } sin® 4 d.
™ Jo p p

By using the change of variables u = sin®(#/2), we have

Ei(o) = > /OW{1 + 4(1 - ;) _Qsin2(9/2)}_gsin2(9/2) cos2(6/2) 6

where

™ p
p/20 4 1IN"2 Y7
Z§/ {1—|—(1—) u} Vu(l —wu)du
™ Jo p p
—0o p/20 3/2
28<1+8> Mu(lu)duEC(p) ,
T o 0 o

where C' > 0 is a constant. On the other hand, we have trivially £ (o) <1 for all
p and o > 0. Thus |log E;(0)| < log(o/p) for p < ol/2 and

(4.6) Z |log E;(0)| < Z log(c/p) < o/2.
pgal/z pS01/2
Combining (4.5) and (4.6), we can write
ZlOng(O') =20 Z log(1 —1/p)~ ! + Z glo/p) + O(c'/?).

Py p<ol/2 ol/2<p<y
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In view of (3.6) and the following estimate
Z (20log(1 —1/p)~t = 20/p) < Z o/p* < ot/?/loga,
ol/2<p<c ol/2<p<c
the preceding estimate can be written as
(4.7) > log Ep(0) =20 Y log(1—1/p)~" > h(o/p)+O(c/?).
p<y p<o ol/2<p<y
By using the prime number theorem in the form

(4.8) =1 / ot (te=5VIoET),

p<t

it follows that

o Y h(o/t)
4.9 E h| — :/ dt+ O
9 o1/2<p<y <p> o172 logt (Fo).
where

Y
Ry = h<a>ye_8\/@ +h(c/?)o!/ 2emtVIoET 4 / (o/t)|W (o /t)|e~BVIoeT dt
y 2

[eg
Y e—S\/logt

2
< ie—Sx/logy +0,1/26—2\/log0 +/U e—2\/10gtdt+02/ dt
Yy o1/2 - t2

< Uefx/loga

by use of Lemma 3.3.
In order to evaluate the integral of (4.9), we use the change of variables u = o/t

to write
1/2

1/2
Yoh(o/t) o /U h(u) _ /U h(u) /
/auz logt dt=o oy u?log(o/u) du=o o—1/2 u?log(o/u) du+O(Fo)

where

|h(w)] )] or ol

aly o
R = —————d :
0 0/0 u?log(o/u) ut 0/0 u?log(o/u) v ylogy + logo
On the other hand, we have

o1/2 1/2

/ h(u) - 1 /” h(u)
o172 u2log(o/u) logo J,-1/2 u?(1 — (logu)/log o)

1/2

du

L 7% h(w) i 1
=2 Togoy [ R et o i)

—1/2
)

Extending the interval of integration [0 o'/?] to (0,00) and bounding the con-
tributions of (0,0~1/2] and [¢/2, 00) by using (3.9) of Lemma (3.3), we have

1/2

7 h(u) (log o)?
/H/z (logu)’ ™" du = LO*O(UW :

u?

Combining these estimates, we find that

(4.10) 3 h(") = 0{2_]:1 (lfgj’g)j +0,(Ry(o, y))}.

ol/2<p<y b




ON A CONJECTURE OF MONTGOMERY-VAUGHAN 13

Now the desired result follows from (4.7), (4.10) and the prime number theorem in
the form

(4.11) > log(1—1/p)"" =logyo + 7 + O (e >V1%67),
p<o
This completes the proof. 0

Remark 4.1. In view of (1.3), we can write (4.1) as

L+ 0s(Ra(o) |

J
.

po(0,y) = U{log(Bf logo)™t +3

j=1

uniformly for y > o > 3. In the case o < 0, a similar asymptotic formula (with

A7, By and corresponding b;, in place of AT, B and bjo) can be established

uniformly for y > —o > 3. As indicated in the introduction, Lemma 4.1 can be

easily generalized to the general case m > 1. Thus we give an improvement and

generalization of [4, Theorem B; 14, Corollaries A and C], and an improvement of

[1, Theorem 1.12]. It is worthy to indicate that our method seems to be simpler
and more natural.

Lemma 4.2. We have
E! (o) log D,,(0) + O(%) for allp and o > 0,
(4.12) LA
Epo) | 39/(2)10gDy(0) + O( & + &) ifp =02,

p

where g(u) is defined as in (3.5).

PRrOOF. First we write

(4.13) E,(0) = %/0 D,(0)7 log D,(0)sin® §d0 = E,(c) log D,,(0) + R',

Zlhf: R = % /0 ’ Dp(9)"log<gzgg§) sin? 6 d6.
Since
x| - e )| < G < T

it follows from (3.3) of Lemma 3.2 with j = 1 that
R/ Ep 1(0’) 1
< ’ < =
Ep (o) pEp(0) g
for all p and o > 0. This implies, via (4.13), the first estimate of (4.12).
We have
log Dy (6) = (cos0)(2/p) + O(1/p*) = (cos 0) log D, (0) + O(1/p?).
Inserting it and (4.3) into the first relation of (4.13) and in view of (4.4), we can

write, for p > ¢1/2,

E (o) = {1 + O(Z) }2/ 62(‘7/”)'3059{(0089) log D, (0) + 0(12) } sin? 6 df
p T Jo p

= {1—1—0(02)}2/ ez("/p)cose(cosﬁ)sin20d010gDp(())—|—O<Ep(20)>,
p 0

s D
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From this and (4.4), we deduce

s~ {1 0(3)}a7 (5) w0 +o(3).

which implies the second estimate of (4.12). This completes the proof. ([l

Lemma 4.3. Let J > 1 be a fized integer. Then we have

J
$1(0,y) =2logy o+ 2y + Y +0;(R;(0,y))
j=1

b]71
(logo)
uniformly for y > o > 3, where the constant b; 1 is given by

h/
(4.15) bj1 :z/ (u )(1 gu)?~tdu
O u
and Rj(o,y) is defined as in (1.22).

0,y) =Y Ey(0)/Ey(0)

p<y

ProOOF. We have

Using the first relation of (4.12) for p < 0?/% and the second for 02/3 < p <y, we

obtain
3 logDp(0)+% > g’(Z)logD (0 )+0( 11/3>

p<o2/3 o2/3<p<y
In view of (3.7), the preceding formula can be written as
o 1\ 1
!
(4.16)  ¢1(o,y) = > log Dy(0 > h(p)log(l—p) +O< 1/3)
p<o 0'2/3<p§y
Similarly to (4.10), we can prove that

(4.17) 3 h’(Z) 10g<1 - ;) e XJ; (Ifg o7 + 0a(Balow),

02/3<p<y

using (3.10), (3.11) and (4.11) instead of (3.9), (3.10) and (4.8). Now the desired

result follows from (4.16), (4.10) and (4.17). O
Lemma 4.4. We have
g BB - Ber  [06) fp<a?,
Ep(0)? p%g”(%)—&-O(min{U%p,ﬁ}) ifp>ot/?,

where g(u) is defined as in (3.5).
ProOOF. First we write
(419)  EJ(o / D,(6)7 log? D, (0) sin? 8 = E,(c)log® D,(0) + R",

where
/ D, (0)° (log® D,y (8) — log® D,(0)) sin® 6 d6.
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Using (4.13) and (4.19), we can deduce
E}(0)Ey(0) = Ej(0)* _ R"—2R'log Dy(0) < R )2
Ep(0)? Ey(0) Ep(o))

where R’ is defined as in (4.14).
From the definitions of R and R”, a simple calculation shows that

2 [T D, (6
R’ — 2R log D, (0) = ;/O Dp(e)ﬂog?( b )>sin20d9.

(4.20)

Dy(0)
Since
D,(0) 2p(1 — cos ) 4(1 — cos )? (1 — cosf)?
102< P >—lo 2<1+ = + 0| ————— |,
*\D,0) ¢ (p—1)? p? p?
we have

4 E
R" —2R'log D,(0) = PEP’Z(U) + O(p;g(a)>7
where E, ;(0) is defined as in (3.2). By using (3.3) with the choice of j = 2 and
the trivial estimate E, 2(0) < 4E,(0), we deduce

) EED A5 ool 4 11)

Similarly we have

1og<gi%) _ —10g(1—|— W) 20 —pcose) +()((1 —pczosﬁ))

and therefore
2
RI ) ( )
P pyl( )
<

Now (3.3) with j = 1 and the trivial estimate £, (
(422 (5@ > - (3 ) JE e >
-5 () ol )
Inserting (4.21) and (4.22) into (4.20) and in view of (4.14), we deduce
(4.23) Eg(U)Egi(i)Q p(0)” %h (o )+O(min{171}>
for all p and ¢ > 0, where
o= i (7).

When p < 0'/2, the inequality (3.3) of Lemma 3.2 implies that h, () < (p/o)?.
From this and (4.23) we deduce the first estimate of (4.18).
If p > 0'/2, we can use (4.3), (3.11) and (3.8) to write

= (0 0(2)}-4(G) ofon(z )
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Inserting it into (4.23) and in view of Lemma 3.1, we get, for p > o/2,

BB (3ol 55)

This completes the proof. (I

Lemma 4.5. Let J > 1 be a fized integer. Then we have

J

¢2(0,y)=1{2 b2 +OJ(RJ(07y))}

o = (log o)

uniformly for y > o > 2, where
bjo:i= /00 R (w)(logu)? ! du.
0
In particular by o = 2.
PROOF. From Lemma 4.4 and (3.8), we deduce easily that

d)Q(Uv y) = Z

<y

9"(o/p) 1
Z p? o o3/2log o

ol/2<p<y

_ h"(a/p) 1
B Z p? +0 03/2logo )’

ol/2<p<y

El(0)Eylo) - El(o)?
Ey(0)?

Similarly to (4.10), we can prove that

"o J .
v h(2/P)1{Z b, +0J(RJ(g,y))},

J
sy, P ol (log o)

by using (3.11), (3.12) and (4.8). Now the desired result follows from the preceding
two estimates.
Finally

1 0o
b2 = / R (u) du+/ B'(u)du =+ (1-)=h(1+) =1 (1-) - (K (1-)-2)=2.
0 1
This completes the proof. O

Similarly (even more easily, since we only need an upper bound instead of an
asymptotic formula), we can prove the following result.

Lemma 4.6. We have
(4.24) bn(o,y) < 1/(c" tloga) (n=3,4)

uniformly for y > o > 3.
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5. Estimate of |E(k + iT,y)|

Lemma 5.1. For any d € (0, i), there are two absolute positive constants c1, co
and a positive constant cs = c3(8) such that for all y > o > 3 we have

1 if || < crot/?logo or 1| > y'/?,
< e_CZTz/[U(IOg ‘7)2] Zf 010'1/2 logo' S ‘Tl S o,

° if o < |7| < y'/o.

&) ‘E<a+17, y)‘

E(o,y) e—cslT
PROOF. First we write
2

_2 [T —1) 78 g2 2" sin” 0 yl-s
E,,(s)_ﬂ/o (D,(0)™) Gdﬁ—ﬁ/o e RO

Since (D,(0)71) = 2p~!sin, after a simplification and an integration by parts it
follows that

Ep(s) = ﬁ
p

B m/o {Dp(0)*~" — Dy(m — 0)*' } cos 0 do.

This implies that

/ D,(0)* " cos6do
0
w/2

(5.2)

01‘ ‘E;(s)
s—1]|E} (o)

with P
Ey(s) = / {D,(0)*~" — Dy(m — 0)* '} cos 0 do.
0

(1) Case of o/% < |7| < y'/?
Write
w/2
Ei(s) = /O Dy(0)* M1 — A,(0)* '} cos 6 db

with
1—2p~tcosf+p?
 142p~Llcosf+p=2
It is clear that for all p, the function 6 — A, () is increasing on [0, 7/2]. It follows
that

A,(0) :

/4
Ei0) > /0 D,(6)" {1 — A, (6)" '} cosf

/4
>{1- Ap(7r/4)‘7_1}/0 D, (8)7 ! cos 6 do

for all p and ¢ > 1. This implies that

(53) ] L !
5.3 7/ D, (0)°~" cosfdo
Ex(o) Jo b

Similarly since the function 6 — D, (6)° ! cosf is decreasing on [0,7/2] for all p
and o > 2, we can deduce, via (5.3), that
’ 1 1

/2 o1
(5.4) (o) /7T/4 D, (9) cos&d@' < T A (/)1




18 J.-Y. LIU ETAL

From (5.3) and (5.4), we deduce that

‘ By (s)
E; (o)

2
=T A (/471

It is easy to verify that for all p > o > 2, we have

o—1 o—1
2 1 -1
A,,(D <<1—\[+p2) <1-2-1

p 4p
Combining these estimates with (5.2), we obtain

‘ Ey(s)
Ey(0)

4
3p <P

“s =17 7

(p>o0).

By multiplying this inequality for o < p < |7]° (< y) and the trivial inequality
|Ep(s)| < |Ep(o)| for the others p, we deduce, via the prime number theorem, that

E
‘E(S’y)léexp{‘ > loglrl+4 Y] logp}Se“/“*O“”'”.
(:9) o<p<|7|® o<p<|T|?

(2) Case of ¢;o'/?logo < |7| < o/?
For p > ol/2 > 2, we can write

/2
B2 (s)] < / (D,(8)° " + Dy(r — 6)" "} cos 0o
0

/2
_ {1 + O(;) } / (62[(0'—1)/p] cos 0 + e—2[(o’—1)/p] cos@) cos0do
0

and

w/2

|E;(0)] = /0 {D,(0)"" = Dy(r —0)° '} cosfdf
o w/2
— {1 + O(pg) }/ (62[(0—1)/]9] cosf e—Q[(U—l)/p] cosG) cos 6 d.
0
From these, we deduce that
E*(s 1

(5.5) ‘Ef((a)) <{1+O<;2+e0/19>} 2<o/2<p<o)

P

where we have used the following facts
/2 /2
/ 2le=1)/plcos ;450 46 > /P and / e 2lle=1)/plcost 50 40 <« 1.
0 0

Inserting (5.5) into (5.2), for 2 < ¢'/2 < p < & we obtain

E,(s) s—1 o 1
< —log| —— Cl—=+—
‘Ep(o) = OP T O\ e
6_72/(202)+Cg/p2+cc*0/17 if3< |7'| <o,
- e—log(1+72/02)/2+Ca/p2+C’e*“/p ifo < |T| < 0.1/5’

where C' > 0 is an absolute constant.
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Now by multiplying these inequalities for o/(4logo) < p < o/(2logo) and the
trivial inequality |Ep(s)| < Ep(o) for the other p, we get

E(s,y) 2  Co C
< _ S X =
’E(U, y)‘ - exp{ o/ 2 (202 P2 elp

4logo)<p<o/(2logo)

72 10C CoT?
< (— _100- < 2
- exp{ (160(log 0)? o aloga) } - exp{ o(logo)? }

if ci0'/?logo < |7| < o, and

(5.6) ’gg‘z;‘ < exp{—g 3 )B log(1+ Z_Z) - % — egc;p”

/(4logo)<p<o/(2loga

2 1
< expy — d log| 1+ )= 10C — ¢
8logo o? clogo

< exp{703\7|5}

if o < |7| < o'/%. This completes the proof. O

6. Proof of Theorem 1.3

We follow the argument of Granville & Soundararajan [3] to prove Theorem 1.3.
We shall divide the proof in several steps which are embodied in the following
lemmas.

The first one is a classic integration formula (see [3, p. 1019]).

Lemma 6.1. Let ¢ >0, A >0 and N € N. Then we have

, 0 f0<y<e M

(6 1) 1 c+ioco . e)\s_l Nds E[O 1] Z.; _/\J\:I[J<e<1

' 271 J o ioo 4 As s ’ Z ¢ =¥s4
1 ify > 1.

The second one is an analogue for [3, (3.6) and (3.7)] (see also [19, Lemma 3.1]).

Lemma 6.2. Lett > 1, y > 2e! and 0 < XA <e™!. Then we have

1 K+ioco E(S,y) e)\s —1ds N
6.2 P(t < — — < O(t
( ) ( ’y) 27 /nfioo (e’yt)Zs As s ( ¢ 7y)’
1 K+ioco E(S y) e)\s 1 ds
6.3 dte ™, y) — d(t,y) < — d 22s _ g-22s) 48
( ) ( (§] y) ( 7y) = 27_” A_im (e‘Yt)QS AS ( e ) .

PROOF. Denote by 1x(w) the characteristic function of the set X C Q. Then
by Lemma 6.1 with N =1 and ¢ = &, we have

(L g W)iy) ) e 1
(e7t)? As2 '

Integrating over {2 and interchanging the order of integrations yield

o« [ (o [T (ALY

1 R B, y) et — 1
Co2mi Sl (e78)25 As2

Liwen:L(1,g5(w)m)>(evt)2} (W) < 127Ti/

K—ioco
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This proves the first inequality of (6.2). The second can be treated by noticing that

L{weL (1.9t @)i)>(er -2} (W)
= Lwea:L(1Lg4@)w)> (02} (@) + Luea: (@2 > L(1,g8@)m)> (202} (@)

K+ioco b . S As _
> i L(1,¢*(w);y)\ e 1ds.
2mi (e7t)? As?

From (6.2), we can deduce
(I)(teikv y) - cb(ta y)
1 [ E(s,y) e —1 1 [T E(s,y) e —1

<o - 5= d
T 27 J i (677AE)25 0 As2 *7 om hico  (€7TAE)25 g2 g
1 e E(S, y) eAS -1 2\s —2Xs
T omi /,i,ioo (e7t)25  \s2 (7 —e7) ds.
This completes the proof. (I

Lemma 6.3. Lett > 1, y > 2¢! and 0 < kX < 1. Then we have

1 [ B(s,y)e* —1 E(k,y) log k
— ds = —————<14+ 0| &\ .
271 J_s (€76)25 0 As? s K\ 2mog(eVt)2s TOAT K

PROOF. First in view of (4.24) we write, for s = k + i7 and |7] < &,

E(s,y) = eXP{Uo +io1m — %72 — 1%73 + 0(0474)}

A1 1 i 72
C o th ol 2L
As? /1{ ,%TJF <H Jrf#)}

Since o1 = logt + v, we have

E(s,y)e* —1 E(k,y) —(02)2)7? i .03 5
— g2 T 1 . 1
(@)% As? K(eyt)zme U O(R(7))

and

with
R(T) := kA + k277 + 047t + 0370,
Now we integrate the last expression over |7| < k to obtain

6 1 /n—i-irc E(s,y)e* —1 s — _E(ky) /_ﬂ e_(02/2)7—2{1+0(R(T)>} dr,

27 J, . (€71)25 As2 - 2mk(ent)2e

where we have used the fact that the integrals involving (i/x)7 and (io3/6)72 vanish.
On the other hand, using Lemmas 4.5 and 4.6 we have

[ e ar = P ottt
—K 2

k+ik 2
—(02/2)7 Ry d 1 A 1 93 L 04 1 A log k
L e (1) T<<\/6 K +l€202+0§+g§ <<\/0>2 KA+ pal E

—1K

Inserting these into (6.4), we obtain the desired result. O
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Lemma 6.4. Let § and c3 be two constants determined by Lemma 5.1. Then
we have

ktioco As
E(svy)e —1 E(’ivy)
) ds « —2\BY)
(6.5) -/miin (e7t)2s  \s2 §< K\/oo(e7t)28 b
e E(s,y) M —1 2\ 2\ E(k,y)
) ) 5 o—2Xs) g )
(00 /H,O i e ) e

uniformly fort > 1, y > 2et, kK > 2 and 0 < Ak < 1, where
Ry = A lemear’ + A (k/log n)1/2y71/5,
Ry := Ak(log "i)l/2 te(ea/Dr’ A Y(k/ log /<;)1/2y_1/‘5,

PrOOF. We split the integral in (6.5) into two parts according to x < |7| < y/?
or |7| > 4'/%. Using Lemma 5.1 with ¢ = & and the inequality (e** —1)/s®> <« 1/72,

the integral in (6.5) is
E(k,y) ecan’ 1
< (e'yt)Qn)\( K + yl/é ’

which implies (6.5), in view of Lemma 4.5 with J = 1.
Similarly we split the integral in (6.6) into four parts according to

7| < 162 logk, a1kt ?logr < |7| <k, K <|7| <YYo, |r| > Yo,
By Lemma 5.1 with ¢ = k and the inequalities
(e* —1)/Xs < min{1,1/(A|7])}, (e*** —e2*)/s < min{\, 1/|7|},
the integral in (6.6) is, as before,

E(x,y)
(e’yt)Qn

which implies (6.6), as before. O

<<5 ()\Kl/Q 1Ogﬁ+e—03né +)\—1y—1/5)’

Now we are ready to complete the proof of Theorem 1.3. Lemma 6.3 and (6.5)
of Lemma 6.4 give

ktico As
(6.7) 2% m iii)f) ¢ = s = W%’{Zitw{l +O(R)}
where

R log & R e—csr’ 4 (H/i\og/{)lﬂy’l/‘;.
Taking A = x~2 and noticing y > 2e! < x and 1/§ > 4, we deduce
(6.8) R < t/e'.
Combining (6.7) and (6.8) with (6.2), we obtain
(6.9) P(t,y) < m/%(eyzt)%{l + O(é)} < (te™,y)

uniformly for t > 1, y > 2e? and 0 < A < e,
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On the other hand, (6.3) of Lemma 6.2 and (6.6) of Lemma 6.4 imply

_ E(x,y) (5/logw)'/> | (r/logr)"/?
N _ E(ky) 1/2
D(te ™, y) — D(t,y) < PN ()\n(log k)74 aCr? =+ Ayl/o

E(k,y) 1/2 (/log “)1/2
_\Wd) 1 WP
< /o) (/\n( ogK)°+ gy

when y= /(29 5=1/2(log k) =1 < A < kL. Since ®(te *,y) — (¢, y) is a nondecreas-
ing function of A, we deduce

(610) (I)(tei)\a y) - (D(ta y)

E(x,y) 12, (5/logr)'2  k(logrk)'/?
< PN OO (M(logm) STy V6T

uniformly for ¢ > 1, y > 2e’ and 0 < A < e~*. Obviously the estimates (6.9) and
(6.10) imply the desired result. This completes the proof of Theorem 1.3. O

7. Proof of Theorem 1.4

Using Lemmas 4.1 and 4.5, we can write

m/%’(zzt)% = exp{@(r,y) = 2(7 + log?) + O(log )}

J
bio
= exps k| 2log f<;—2logt—|—2 2 1+ O05(Rs(k,y )}

On the other hand, Lemma 4.3 and (1.19) imply that

J

b

2log, k + 27 + Z (logflﬁ)j + Oy (RJ(K/, y)) =2(logt + 7).
j=1

Combining these estimates, we can obtain

W%Héj)t) _ exp{_,e [i b0, (Rm,y))} }

j=1
In view of (1.23), (4.2) and (4.15), we have b;1 — b0 = a;. This completes the
proof. O

8. Proof of Corollary 1.5
We first prove an asymptotic development of x(¢,y) in ¢.

Lemma 8.1. For each integer J > 1, there are computable constants -,
Y1 ..., such that the asymptotic formula

J .
(8.1) K(t,y) =70 {1 + Z Z—j + 0, (Ry(t, y))}

holds uniformly for t > 1 and y > 2et, where

N 1
Ry (t,y) == N +e'tylogy.

Further ~o is given by (1.26) and v = —gb, — $ba1.
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PRrOOF. By Lemma 4.3 and (1.19), we have

J+1

(8.2) 2logt = 2log, k + Z + 0 (Ry41(K,y)),

)

where Rj(k,y) is defined as in (1.22). From (8.2), we easily deduce that

J+1
= (log k) H exp{ }GXP{OI(RJH(H y))}

JH1 (T4 _ m;
= (log k) H{ > mlj,<2(£]‘glﬁ)]> JFOJ(RJ—H(“;?J))}'

j=1 \{m;=0

Developing the product, we get

J+1 b/'
= (log “){Z Wjﬁ)j + 0 (Rys1(k,y)) }1
i=0

where
y bV

m12>0,...,mj412>0
mi+2mo+-+(J+1)myp1=j
mq m
B by b
B Z 2m ) - - (2m )N
my20,m, >0 (BTN (2m)
mat2mattjms=j

Since by = 1 and b} = b1,1/2 = 7y, the preceding asymptotic formula can be written
as

(8.3) t=logk + o + Z ”1) + 0, (R (t,y)),

where we have used the fact that x(¢,y) < e* (see Lemma 2.3) and (log k)R 11 (k,y)
= RY%(t,y).

With the help of (8.3), a simple recurrence argument shows that there are
constants «y,, such that

J /

o i}
(8.4) t:logn+zt—j. + 0,4 (Ry(t,y))-
=0

In fact taking J = 0 in (8.3), we see that (8.4) holds for J = 0. Suppose that it
holds for 0,...,J — 1, i.e.,

t =logk + Z f+o (Ry_;_1(ty)) (j=0,....J—1),

which is equivalent to

(8.5) log K _t{l - JZJ Vi +O(R3‘j‘1(t’y)>} (Gj=0,...,0—1).

t
=1
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This holds also for j = J if we use the convention:
—1
Z =0 and R*(t,y):=1,
i=0
since log k = t 4+ O(1). Inserting it into (8.3), we easily see that (8.4) holds also for
J. In particular we have
o=ty = gbiy + gbai.

Now (8.1) is an immediate consequence of (8.4) with

Z R I
v = (—aymatm T
my >0, m >0 e
mi1+2mao+--+Jmy=j
This completes the proof. ([
Now we are ready to prove Corollary 1.5.
Using (8.5), we have
J J J=3 * -7
a; a; Yi-1 7_i1(ty)
8.6 1 _ = 21— = Oy | —1—~
(86) Z (log k)7 Z i { Z tt TON t
J=1 j=1 =1
- Pj R?{]—Q(ta y)
=SB0, (B,

where the p,, are constants. In particular we have p; = a; = 1 and ps = vy + as.
Now Theorem 1.4, (8.1) and (8.6) imply the result of corollary with

j—1
aj=p1=1, a;=p;+ Z%‘iji (j > 2).
i=1
This completes the proof of Corollary 1.5. (]

9. Proof of Theorem 1.2
For each n € (0, 3), define
H (L) = {f € Hi(1) : L(s, /) #0,s € S},
where S:={s:=o+ir:0>1—n,|7| <100k"}U{s:=c+ir:0 > 1,7 € R}, and
Hy; (13m) »= Hy (1) \ H (15m).
Then we have (see [9, (1.11)])
(9.1) [H, (1;m)] <, K°17.

Our starting point in the proof of Theorem 1.2 is the evaluation of the moments
of L(1, f). For this, we recall a particular case of [9, Proposition 6.1].

Lemma 9.1. Let n € (0,1/31) be fized. There are two positive constants
ci = ¢i(n) (i =4,5) such that
(9.2) > wiL(1, f)* = E(s) + Oy (e~ 1o8k/ a2 k)
feH} (15m)
uniformly for

(9.3) k>16, 2|k and |s] <2T}
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with
Ty := c5log k/(logy klogs k).
Here E(s) is defined by (1.17).

Let (t,y) be the saddle-point determined by (1.19) and k; := k(t,00). For
k>16,2|k, A>0, N € Nand ¢ > 0, introduce the two integrals

1 [retieo L(L,HN [ers =1\ ds
Lk, 62 N) o= 27 ; Z wf<(67t)2)( As ) s

Kt —100
¢ FEHF (1;m)

and

Lk, ; \,N) =

1t B(s) (oM —1\*Vds

27 (e7t)2s As s
Lemma 9.2. Letn € (0,1/200] be fizred. Then we have

(9.4) F(t) + 0, (k7%%) < I (k,t; \, N) < Fy(te™N) + 0, (k75/9),

(9.5) ®(t) < Iy(k, t; \, N) < ®(te™ )

uniformly fork > 16,2 |k, A >0, N € N and t > 0. The implied constants depend
on n only.

K¢—ioc0o

PRrROOF. By exchanging the order of summation and by using Lemma 6.1 with
¢ = K¢, We obtain

wf e Fioo s — 1\ N ds
L(kHEAN) = > / (m >< " ) —= ) wrn

feH(1; ) vioo FEH] (15m)
L(1,f)>(e7)?

In view of the second estimate of (1.7) and of (9.1), we reintroduce the missing
forms

Lk, t; A\, N) > wa+0< > wf>> > wi+ Ok log k).

feHE (1) FEH: \H{ (15m) fEH(1)
L(1,f)>(e"t)? L(L,f)>(e7t)?

Clearly this implies the first inequality of (9.4), thanks to (1.6) and (1.7).
Similarly, using Lemma 6.1 with ¢ = k;, we find

Li(k,t; A, N) < Z wf+ Z wr = Z wr.

feHT (15m) fEHT (15m) FEHT (1;m)
LNzt (eVte™ N)2<L(1,f)<(e7t)? L(1,f)>(e7te™N)?

As before, we can easily show that the last sum is < Fy (te= M) + 0, (k*5/6).
The estimates (9.5) can be proved in the same way as (6.2).

Lemma 9.3. Let n € (0,1/200] be fized and c4 be the positive constant given
by Lemma 9.1. Then we have

1+ e )2V log Ty,
(e7t)2he

E(Ht)+efc4(logk)/log2k 1_|_e>\nt 2N
N(evt)2e ( VP )

(9.6) |[Li(k,t; A, N) — Ik, t; A, N)| < e~ callogk)/Toe r

_|_
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uniformly for A >0, N € N, k> 16, 2 | k and t < T'(k), where T(k) is given by
(1.10). The implied constant depends on n only.

PROOF. By the definitions of I; and I, we can write
Il(kvt;)‘vN) - I2(k7t; )‘7N)
1 [retieo A — 1\ ds
= — L(1,f)—-F )
27i ( Z wrL (L, f) (S)> ( s > s(evt)?s

Kt —ioco
! ferf (1m)

In order to estimate the last integral, we split it into two parts according to || < Tk
or |1| > Tj.

In view of (1.20), it is easy to see that x; < T}, for ¢ < T'(k). Thus we may apply
(9.2) of Lemma (9.1) for s = k; + ir with |7| < Ty. Note that |(e** — 1)/(\s)| <
1 + et for s = Ky + iT, which is easily seen by looking at the cases |As| < 1 and
|As| > 1. The contribution of |7| < T} to |I1(k,t; A\, N) — Ixy(k,t; A\, N)| is

1 +eMt)2N log T,

9.7 —c4(logk)/log, k (
(9.7) <K e GO

Since x; < Ty for t < T'(k), we can apply (9.2) of Lemma (9.1) to write, for
s = K¢ +i7 with 7 € R,

Y wiL(1, f)* = E(s)

feH! (15m)

< Y wiL(L, )" + E(r)
fEH} (1;m)

< QE(KJt) + 0(6—04(10gk)/10g2 k)
Thus the contribution of |7| > T, to |I1(k,t; A\, N) — Io(k,t; A, N)| is

E —c4(logk)/logs k 1 ke \ 2V d
(9.8) << (K/t) + e oy / (“Fe) l
(e7t)2r e\ AT 7|
E(Ht) 4 e—C4(log k)/logs, k 1+ e)\nt 2N
< N(evi)2n ( T, ) '
Combining (9.7) and (9.8) yields to the required estimate. O

END OF THE PROOF OF THEOREM 1.2. For simplicity of notation, we write
I :=1I(k,t; \N) and I :=L;i(k,te™; X\, N) (j=1,2).
By using Lemma 9.2, we have
(9.9) Fi(t) <L +O(k™%%) = I, + O(|I; — Ix| + k5/°)
< ®(te ™)+ O(|I; — L| + k%)
< B(t) + |B(te M) — ®(t)| + O(|I1 — | + k=)
and

(9.10) Fi(t)

v

IF+ Ok = If +O(|If — I | + k°/%)
> o(te™) + O(|If — I + k5/F)
)

> O(t) — |®(t) — D(te™V)| + O(|I] — I | + k°/9).
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In view of (6.10) and Theorem 1.3, we have
|D(t) — O(te M) | < ®(t){A\Nr(log PARAEE e~ (ca/2m; }
for AN < e t. Take
(9.11) A=¢eT, and N = [logy k].
Since Tj, = eT (k) +3(logg k)/2+2C+loges it is easy to see that
AN < e TR=207(k)=12  and  ky < €',

Inserting these estimates into the preceding inequality, a simple calculation shows
that

(9.12) |<I3(t) - @(tef)‘N)} < d(t {et T(k)— (t/T( ))1/2 + O(efcﬁe“)}v

provided the constant C' is suitably large, where ¢g = cg(7, d) is a positive constant.
Similarly by using (6.10) with te*V in place of ¢, we have

|®(t) — @(te’\N)‘ < Bt ) AN Kyorn (log Kyern )12 + e (e3/ D }.

Since for ¢ < T'(k) we have
te™ =t 4+ O((logy k)*(logs k) /logk) and  kean =< et < et
the preceding estimate can be written as
|@(t) — @(te*)| < 1(te*){e!"TW=C (1/T(k ))1/2 +O(e —“66‘”)}

L) {e! TR =C (¢)T (k ))”2 + 0"}
+Z’(I)t — B(te ,\N Het T(k (t/T( ))1/24_0(6—%6‘”)}7
from which we deduce that
(9.13) (1) — B(teM)| < B(t){e!TW=C (t/T(k))"* + O(e 0" )}.

By using Lemma 9.3 with te*V in place of ¢, we have

<

(logk)/log, k (1 + eMieAN )2N IOg Ty

I - I < e

(efyte)\N)QRteM\l
E(Kyrn) 4 e—calloghk)/logs k /1 | oARiaN 2N
N(e'ylge)\N)QnteAN < AT, ) ’

On the other hand, by using Theorem 1.3 and (1.27), it is easy to see that there is
a positive constant ¢ such that

E(K;t)
Ky 2mog (e1t)2R
for t < T'(k). Thanking to Lemma 4.5, the previous estimate can be written as

1/2 e 2N
1 KiaAN 1 + e?FerN ‘I)(t)
9.14 I —If d(t _ter” _
( ) I 2l <2y <log IiteAN> ( T} ) < (log k)4

d(te™) < B(t) ~ > o8/t 5, g—co(logk)/[(logs k)T/* logs K]

Similarly we can prove (even more easily)
(9.15) I, — I < ®(t)/(log k)™
Inserting (9.12) and (9.6) into (9.9) and (9.13) and (9. 15) into (9.10), we obtain

Fr(t) < ®(t){1 + e T0=C(¢/T(k))"/* + O (=" + (log k) =)}
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and

This implies the first asymptotic formula of (1.14) by taking n = 1/200 and ¢ =

1/2

Fiu(t) > o(6){1 — e TE=C(/T(k))"* + O(e™"" + (log k)~ }.

1
g.
The second can be established similarly. This completes the proof of Theo-

rem 1.2.

10. Proof of Theorem 1.1

The formula (1.9) is an immediate consequence of Theorem 1.2 and (1.27).
Taking ¢t = T'(k) in (1.9), we find that

(101) 6_0/1 (log k)/{(log, k)7/? log, k} < ﬁk (T(k)) < e—clz(log k)/{(logs k)7/? log, k}’

where ¢} and ¢} are two positive constants. Clearly (10.1) and (1.8) imply (1.11).

The related results on Gy (t) and Gy (T'(k)) can be proved similarly. This

completes the proof of Theorem 1.1.
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