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The Spiegelungssatz is an inequality between the 4-ranks of the narrow ideal class groups
of the quadratic fields �(

√
D) and �(

√−D). We provide a combinatorial proof of this
inequality. Our interpretation gives an affine system of equations that allows to describe
precisely some equality cases.
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1. Introduction

Let � be a quadratic field. Let I� be the multiplicative group of fractional nonzero
ideals of the ring of integers of � and P� be the subgroup of principal fractional
ideals. We consider the subgroup P+

�
of P�, whose elements are the ones generated

by an element with positive norm. The narrow class group C�+
�

of � is the quotient
I�/P+

�
. If � is imaginary, this is the usual class group C�� := I�/P� whereas if

� is real, the group C�� is a quotient of C�+
�
. We have C�+

�
= C�� if and only if
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the fundamental unit of � has norm −1. Otherwise, the cardinalities of these two
groups differ by a factor 2. For more details about the relations between C�� and
C�+
�

we refer to [3, Sec. 4.1]. The narrow class-group being finite, we can define its
pk-rank for any power of a prime number pk by

Rankpk(�) := dim�p

(C�+
�

)pk−1

/
(C�+

�

)pk

.

In other words, Rankpk(�) is the number of elementary divisors of C�+
�

divisible by pk.
If � = �(

√
∆), the reflection of � is the quadratic field �# := �(

√−∆).
Assume that � is totally real, in [1, Théorèmes II.9 and II.10], Damey and Payan
proved the following inequality (the so-called Spiegelungssatz for the 4-rank, see [7]):

Rank4(�) ≤ Rank4(�#) ≤ Rank4(�) + 1.

In this paper, we provide a combinatorial proof of this Spiegelungssatz using ex-
pressions involving character sums due to Fouvry and Klüners [2]. The letter D will
always denote a positive, odd, squarefree integer.

Let d� be the discriminant of the real quadratic field � and d#
�

be the discrimi-
nant of the imaginary quadratic field�#. The usual computation of the discriminant
allows to consider three families of quadratic fields. This families are described in
Table 1.

We introduce for any integers u and v coprime with D the cardinality

ED(u, v) := #{(a, b) ∈ �2 : D = ab, ua ≡ � (mod b), vb ≡ � (mod a)},
where x ≡ � (mod y) means that x is the square of an integer modulo y. Using
Table 1, we find in [2] (where what the authors note D is what we note d� or d#

�
)

the following expressions for the 4-rank of � and �#.

(1) If d� ≡ 1 (mod 4), then

2Rank4(�) =
1
2
ED(−1, 1)

[2, Lemma 27] and

2Rank4(�#) =
1
2

(ED(1, 1) + ED(2, 2))

[2, Lemma 40] with D ≡ 1 (mod 4).

Table 1. Link between D, d� and their reflections.

d� 1 (mod 4) 0 (mod 8) 4 (mod 8)

d� D 8D 4D

d#
�

−4D −8D −D

d#
�

4 (mod 8) 0 (mod 8) 1 (mod 4)

D 1 (mod 4) −1 (mod 4)

� �(
√

D) �(
√

2D) �(
√

D)
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(2) If d� ≡ 0 (mod 8), then

2Rank4(�) =
1
2

(ED(−2, 1) + ED(−1, 2))

[2, Lemma 38] and

2Rank4(�
#) = ED(2, 1)

[2, Lemma 33].
(3) If d� ≡ 4 (mod 8), then

2Rank4(�) =
1
2

(ED(−1, 1) + ED(−2, 2))

[2, Lemma 42] and

2Rank4(�
#) =

1
2
ED(1, 1)

[2, Lemma 16] with D ≡ 3 (mod 4).

Remark. These expressions of 2Rank4(�) and 2Rank4(�#) either have one term or
are a sum of two terms. In case they have one term, it cannot be zero and this term
is a power of 2. In case they are sum of two terms, we will show that each of these
terms is either zero or a power of two; then considering the solutions of the equation
2a = 2b + 2c, we see that either one term (and only one) is zero or the two terms
are equal.

To prove Damey and Payan Spiegelungssatz, we have then to prove the three
following inequalities.

(1) If D ≡ 1 (mod 4) then

ED(−1, 1) ≤ ED(1, 1) + ED(2, 2) ≤ 2ED(−1, 1). (1)

(2) For any D,

ED(−2, 1) + ED(−1, 2) ≤ 2ED(2, 1) ≤ 2ED(−2, 1) + 2ED(−1, 2). (2)

(3) If D ≡ 3 (mod 4) then

ED(−1, 1) + ED(−2, 2) ≤ ED(1, 1) ≤ 2ED(−1, 1) + 2ED(−2, 2). (3)

In Sec. 2, we establish a formula for ED(u, v) involving Jacobi characters. We
average this formula over a group of order 8 generated by three permutations. We
deduce properties for ED(u, v) from this formula. In Sec. 3, we give an interpretation
of ED(u, v) in terms of the cardinality of an affine space. In particular, this shows
that ED(u, v) is either 0 or a power of 2. Finally, in Sec. 4, we combine the character
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sum interpretation with the affine interpretation to deduce the Spiegelungssatz. We
also prove the equality cases found by Uehara [9, Theorem 2] and give a new one.

2. A Character Sum

Denote by
(

m
n

)
the Jacobi symbol of m and n, for any coprime odd integers m and

n. The letter p will always denote a prime number. For any integers s, t, u and v

coprime with D, we introduce the sum

σD(s, t, u, v) =
∑

ab=D

∏
p|b

((
s

p

)
+

(
ua

p

)) ∏
p|a

((
t

p

)
+

(
vb

p

))
.

We have

σD(1, 1, u, v) =
∑

ab=D

∏
p|b

(
1 +

(
ua

p

)) ∏
p|a

(
1 +

(
vb

p

))
=: SD(u, v).

This last sum is non-negative and related to our problem by the easy equality

ED(u, v) = 2−ω(D)SD(u, v), (4)

where ω(D) stands for the number of prime divisors of D. The aim of this section
is to establish some properties of σD.

We note the symmetry relation

σD(s, t, u, v) = σD(t, s, v, u)

which gives SD(u, v) = SD(v, u). The factorization

σD(s, t, u, v) =
∑

ab=D

(s

b

)(
t

a

) ∏
p|b

(
1 +

(
sua

p

)) ∏
p|a

(
1 +

(
tvb

p

))
(5)

implies the upper bound

|σD(s, t, u, v)| ≤ SD(su, tv). (6)

Finally, we shall use the elementary formula

2(−1)xy+yz+zx = (−1)x + (−1)y + (−1)z − (−1)x+y+z (7)

valid for any integers x, y and z.
We introduce the element β(n) ∈ �2 by(−1

n

)
= (−1)β(n).

If m and n are coprime, the multiplicativity of the Jacobi symbol gives β(m) +
β(n) = β(mn). With this notation the quadratic reciprocity law reads(m

n

)( n

m

)
= (−1)β(m)β(n). (8)
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We shall combine (7) and (8) to get the linearization formula

2
(

x

y

) (y

z

) ( z

x

)(x

z

)(
z

y

) ( y

x

)
=

(−1
x

)
+

(−1
y

)
+

(−1
z

)
−

( −1
xyz

)
.

Lemma 1. For any integers s, t, u, v coprime with D, the following equality

σD(s, t, u, v) =
∑

abcd=D

(−1)β(c)β(d)
(a

d

) (
b

c

) (s

b

)(
t

a

) (u

d

) (v

c

)
holds.

Proof. By bimultiplicativity of the Jacobi symbol, Eq. (5) gives

σD(s, t, u, v) =
∑

ab=D

(s

b

)(
t

a

) ∑
d|b

(usa

d

) ∑
c|a

(
tvb

c

)
.

By the change of variables (a, b, c, d) = (αγ, βδ, γ, δ), we get

σD(s, t, u, v) =
∑

D=αβγδ

(
s

β

) (u

δ

)(
v

γ

) (
t

α

) (γ

δ

) (
δ

γ

)(α

δ

) (
β

γ

)
and we conclude using the quadratic reciprocity law (8) to

(
γ
δ

)(
δ
γ

)
.

To build symmetry, we average the formula in Lemma 1 over an order 8 group,
namely the group generated by three permutations: the permutation (a, d), the
permutation (b, c) and the permutation ((a, b), (d, c)). The quadratic reciprocity
law allows to factorize the term (−1)β(c)β(d)

(
a
d

) (
b
c

)
in every transformed sum and

then to see u and v as describing the action of each permutation.

Proposition 2. For any integers s, t, u, v coprime with D, the following equality

8SD(u, v)

=
∑

abcd=D

(−1)β(c)β(d)
(a

d

)(
b

c

)

×
[
2

(u

d

)(v

c

)
+

(u

a

) (v

c

) ((−1
a

)
+

(−1
c

)
+

(−1
d

)
−

( −1
acd

))
+

(u

d

)(v

b

)((−1
b

)
+

(−1
c

)
+

(−1
d

)
−

(−1
bcd

))

+
(u

a

)(v

b

)(
1 +

(−1
ac

)
+

(−1
bd

)
−

(−1
D

)) ]
.

holds.

Proof. From Lemma 1 follows

SD(u, v) =
∑

abcd=D

(−1)β(c)β(d)
(a

d

)(
b

c

) (u

d

) (v

c

)
. (9)
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We permute a and d and use the quadratic reciprocity law (8) to obtain

SD(u, v) =
∑

abcd=D

(−1)β(c)β(d)
(a

d

) (
b

c

) (u

a

)(v

c

)
× (−1)β(c)β(d)+β(d)β(a)+β(a)β(c).

Formula (7) gives

2SD(u, v) =
∑

abcd=D

(−1)β(c)β(d)
(a

d

)(
b

c

) (u

a

) (v

c

)

×
((−1

a

)
+

(−1
c

)
+

(−1
d

)
−

( −1
acd

))
. (10)

Similarly, we permute b and c, then use the quadratic reciprocity law (8) and
formula (7) to get

2SD(u, v) =
∑

abcd=D

(−1)β(c)β(d)
(a

d

)(
b

c

) (u

d

) (v

b

)

×
((−1

b

)
+

(−1
c

)
+

(−1
d

)
−

(−1
bcd

))
. (11)

Finally, we permute (a, b) and (b, c), apply twice the quadratic reciprocity law (8)
to get

2SD(u, v) =
∑

abcd=D

(−1)β(c)β(d)
(a

d

)(
b

c

) (u

a

)(v

b

)
×(−1)β(c)β(d)+β(b)β(a)+β(a)β(d)+β(b)β(c).

Since β(c)β(d) + β(b)β(a) + β(a)β(d) + β(b)β(c) = β(ac)β(bd), using formula (7)
with z = 0 we get

2SD(u, v) =
∑

abcd=D

(−1)β(c)β(d)
(a

d

)(
b

c

) (u

a

) (v

b

)

×
(

1 +
(−1

ac

)
+

(−1
bd

)
−

(−1
D

))
. (12)

We obtain the result by adding twice (9) with the sum of (10)–(12).

When two expressions are equivalent under the action of the symmetry group,
we get an identity. We give two such formulas in the next two corollaries.

Corollary 3. If D ≡ 1 (mod 4) then SD(−1, 1) = SD(1, 1).
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Proof. For any D, we obtain from Proposition 2 the formula

8(SD(1, 1) − SD(−1, 1)) =
∑

abcd=D

(−1)β(c)β(d)
(a

d

) (
b

c

)

×
(

1 −
(−1

D

)) (
1 +

(−1
b

)) (
1 +

(−1
c

))
. (13)

This gives the result since
(−1

D

)
= 1 if D ≡ 1 (mod 4).

Corollary 4. If D ≡ 3 (mod 4) then SD(1, 1) = 2SD(−1, 1).

Proof. For any D, Proposition 2 gives

8SD(1,−1) =
∑

abcd=D

(−1)β(c)β(d)
(a

d

)(
b

c

) [
2 +

(−1
b

)
+ 2

(−1
c

)
+

(−1
d

)

+
(−1

ac

)
+

(−1
bd

)
+

(−1
bc

)
−

(−1
ad

)
+

(−1
abc

)
−

( −1
acd

) ]
.

By (13), we deduce for any D the equality

−8 (SD(1, 1) − SD(−1, 1) − SD(1,−1))

=
∑

abcd=D

(−1)β(c)β(d)
(a

d

) (
b

c

)

×
[
1 +

(−1
c

)
+

(−1
d

)
+

(−1
ac

)
+

(−1
bd

)
+

(−1
abc

)
+

( −1
abd

)
+

(−1
D

) ]
.

It follows that

−8 (SD(1, 1)− SD(−1, 1)− SD(1,−1))

=
∑

abcd=D

(−1)β(c)β(d)
(a

d

)(
b

c

)

×
(

1 +
(−1

D

)) (
1 +

(−1
c

)
+

(−1
d

)
+

(−1
ac

))
.

This finishes the proof since
(−1

D

)
= −1 if D ≡ 3 (mod 4).

Finally, after having dealt with equalities, we shall need the following
inequalities.
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Lemma 5. For any D, for any u coprime with D, the following inequalities

SD(u, 1) ≤ SD(−u, 1) + SD(u,−1) ≤ 2SD(u, 1)

hold.

Proof. We prove first the inequality

SD(−u, 1) + SD(u,−1) ≤ 2SD(u, 1). (14)

With Proposition 2, we write

8 (SD(−u, 1) + SD(u,−1))

=
∑

abcd=D

(−1)β(c)β(d)
(a

d

)(
b

c

)

×
[
2

(u

d

)(
1 +

(−1
c

)
+

(−1
d

)
+

(−1
bd

))

+
(u

a

)(
2 +

(−1
a

)
+

(−1
b

)
+

(−1
c

)
+

(−1
d

)
+ 2

(−1
ac

)

+
( −1

abd

)
+

(−1
abc

)
−

( −1
acd

)
−

(−1
bcd

))]
.

Using ( −1
xyz

)
=

(−1
D

) (−1
t

)
(15)

for any {x, y, z, t} = {a, b, c, d} together with (9) and Lemma 1 we deduce

8 (SD(−u, 1) + SD(u,−1))

= 2 (SD(u, 1) + SD(u,−1) + SD(−u, 1))

+ 2 (σD(−1, 1,−u, 1) + σD(1, u, 1, 1) + σD(1,−u, 1,−1))

+
(

1 −
(−1

D

))
(σD(1,−u, 1, 1) + σD(−1, u, 1, 1))

+
(

1 +
(−1

D

))
(σD(1, u, 1,−1) + σD(1, u,−1, 1)) .

Since 1 − (−1
D

)
and 1 +

(−1
D

)
are nonnegative, the upper bound (6) gives

8 (SD(−u, 1) + SD(u,−1)) ≤ 4 (2SD(u, 1) + SD(u,−1) + SD(−u, 1))

hence (14). We prove next the inequality

SD(u, 1) ≤ SD(−u, 1) + SD(u,−1). (16)
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As for (14), we use Eq. (15), Proposition 2, Eq. (9) and Lemma 1 to get

8SD(u, 1) = 2SD(u, 1) + SD(u,−1) + SD(−u, 1)

+ σD(1,−u, 1, 1) + σD(1, u, 1,−1) + σD(1, u,−1, 1) + σD(−1, 1, u, 1)

+
(

1 +
(−1

D

))
σD(1,−u, 1,−1) +

(
1 −

(−1
D

))
σD(1, u, 1, 1)

−
(−1

D

) (
σD(−1, u, 1, 1) + σD(1,−1, u, 1)

)
.

Then (6) leads to

8SD(u, 1) ≤ 4 (SD(u, 1) + SD(u,−1) + SD(−u, 1))

hence (16).

3. An Affine Interpretation

We write p1 < · · · < pω(D) for the prime divisors of D and define a bijection between
the set of divisors a of D and the set of sequences (xi)1≤i≤ω(D) in �ω(D)

2 by

xi =

{
1 if pi | a,

0 otherwise.

Let a and b satisfy D = ab and u and v two integers coprime with D. We extend
the notation of the previous section writing(a

b

)
= (−1)α(a,b) = (−1)βa(b)

with α(a, b) = βa(b) ∈ �2. The condition that vb is a square modulo a is equivalent
to

(
vb
p

)
= 1 for any prime divisor p of a, that is(

v

pi

) ∏
j : xj=0

(
pj

pi

)
= 1

for any i such that xi = 1. With our notation, this gives

∀ i, xi = 1 ⇒ (−1)βv(pi)(−1)
P

j : xj=0 α(pj ,pi) = 1.

We rewrite it

∀ i, xi = 1 ⇒ (−1)βv(pi)(−1)
P

j �=i(1−xj)α(pj ,pi) = 1

and so

∀ i, xiβv(pi) +
∑
j �=i

xi(1 − xj)α(pj , pi) = 0. (17)

Similarly, the condition that ua is a square modulo b is equivalent to

∀ i, (1 − xi)βu(pi) +
∑
j �=i

(1 − xi)xjα(pj , pi) = 0. (18)
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Since xi is either 0 or 1, Eqs. (17) and (18) are equivalent to their sum. We deduce
the following lemma.

Lemma 6. The cardinality ED(u, v) is the cardinality of the affine space FD(u, v)
in �ω(D)

2 of equationsβu(pi) + βv(pi) +
∑
j �=i

α(pj , pi)

 xi +
∑
j �=i

α(pj , pi)xj = βu(pi)

for all i ∈ {1, . . . , ω(D)}.

Remark. In particular, Lemma 6 shows that ED(u, v) if not zero is a power of 2,
the power being the dimension of the direction of FD(u, v). This is not a priori
obvious.

Remark. This interpretation slightly differs from the one found by Redei [5, 8].
The matrix with coefficients in �2 associated to our affine space is (aij)1≤i,j≤ω(D)

with

aij =


α(pj , pi) if i �= j,

βu(pi) + βv(pi) +
∑
� �=i

α(p�, pi) if i = j,

whereas the matrix considered by Redei is (ãij)1≤i,j≤ω(D) with

ãij =


α(pj , pi) if i �= j,

ω(D) + 1 +
∑
� �=i

α(p�, pi) if i = j.

Corollary 7. For any D, we have SD(1, 1) �= 0 and, either SD(2, 2) = 0 or
SD(2, 2) = SD(1, 1).

Proof. The affine space FD(2, 2) has equations∑
j �=i

α(pj , pi)

 xi +
∑
j �=i

α(pj , pi)xj = β2(pi)

for all i ∈ {1, . . . , ω(D)}. The affine space FD(1, 1) has equations∑
j �=i

α(pj , pi)

xi +
∑
j �=i

α(pj , pi)xj = 0

for all i ∈ {1, . . . , ω(D)}. Hence, both spaces have the same direction, and same
dimension. The space FD(1, 1) is not empty: it contains (1, . . . , 1). Its cardinality is
then 2dim�2 FD(1,1). The affine space FD(2, 2) might be empty and, if it is not, then
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its cardinality is 2dim�2 FD(2,2) = 2dim�2 FD(1,1). It follows that ED(1, 1) �= 0 and,
either ED(2, 2) = 0 or ED(2, 2) = ED(1, 1). We finish the proof thanks to (4).

Corollary 8. For any D, we have SD(−1, 1) �= 0 and, either SD(−2, 2) = 0 or
SD(−2, 2) = SD(−1, 1).

Proof. Since β−2(pi) + β2(pi) = β−1(pi), the affine space FD(−2, 2) has equationsβ−1(pi) +
∑
j �=i

α(pj , pi)

 xi +
∑
j �=i

α(pj , pi)xj = β−2(pi)

for all i ∈ {1, . . . , ω(D)}. The affine space FD(−1, 1) has equationsβ−1(pi) +
∑
j �=i

α(pj , pi)

 xi +
∑
j �=i

α(pj , pi)xj = β−1(pi)

for all i ∈ {1, . . . , ω(D)}. Hence, both spaces have the same direction, and same
dimension. The space FD(−1, 1) is not empty: it contains (1, . . . , 1). It follows that
ED(−1, 1) �= 0 and, either ED(−2, 2) = 0 or ED(−2, 2) = ED(−1, 1). We finish the
proof thanks to (4).

4. Damey–Payan Spiegelungssatz

4.1. Proof of the Spiegelungssatz

We have to prove (1)–(3).
Consider the case d� ≡ 1 (mod 4). Recall that D = d�. By (4), Eq. (1) is

SD(−1, 1) ≤ SD(1, 1) + SD(2, 2) ≤ 2SD(−1, 1)

for any D ≡ 1 (mod 4). By Corollary 3, this inequality is equivalent to SD(2, 2) ≤
SD(1, 1) and this last inequality is implied by Corollary 7.

Consider the case d� ≡ 0 (mod 8). Recall that D = d�/8. By (4), Eq. (2) is

SD(2, 1) ≤ SD(−2, 1) + SD(2,−1) ≤ 2SD(2, 1)

for any D. This is implied by Lemma 5 with u = 2.
Finally, consider the case d� ≡ 4 (mod 8). Recall that D = d�/4. By (4),

Eq. (3) is

SD(−1, 1) + SD(−2, 2) ≤ SD(1, 1) ≤ 2SD(−1, 1) + 2SD(−2, 2)

for any D ≡ 3 (mod 4). By Corollary 4, this inequality is equivalent to SD(−2, 2) ≤
SD(−1, 1) and this last inequality is implied by Corollary 8.
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4.2. Some equality cases

It is clear from our previous computations that

• if d� ≡ 1 (mod 4) then

Rank4(�#) =

{
Rank4(�) if ED(2, 2) = 0,

Rank4(�) + 1 otherwise;

• if d� ≡ 4 (mod 8) then

Rank4(�#) =

{
Rank4(�) + 1 if ED(−2, 2) = 0,

Rank4(�) otherwise.

We do not have such clear criterion in the case d� ≡ 0 (mod 8). The reason is that
our study of the cases d� ≡ 1 (mod 4) and d� ≡ 4 (mod 8) rests on equalities
(Corollaries 3, 4, 7 and 8) whereas, our study of the case d� ≡ 0 (mod 8) rests on
inequalities (Lemma 5 and mainly Eq. (6)). We study more explicitly special cases
in proving the following proposition due to Uehara [9, Theorem 2] (the case c seems
to be new).

Theorem 9. Let � be a real quadratic field of discriminant d� and D be described
in Table 1. Suppose that every prime divisors of D is congruent to ±1 (mod 8).

(a) If d� ≡ 1 (mod 4), then Rank4(�#) = Rank4(�) + 1.
(b) If d� ≡ 0 (mod 8) and D ≡ −1 (mod 4), then Rank4(�#) = Rank4(�) + 1.
(c) If d� ≡ 0 (mod 8) and D ≡ 1 (mod 4), then Rank4(�#) = Rank4(�).
(d) If d� ≡ 4 (mod 8), then Rank4(�) = Rank4(�#).

Proof. Since every prime divisors of D is congruent to ±1 (mod 8), we have
β2(pi) = 0 for any i.

• If d� ≡ 1 (mod 4), then D ≡ 1 (mod 4). By Lemma 6, we know that ED(2, 2) is
the cardinality of an affine space having equations∑

j �=i

α(pj , pi)(xi + xj) = 0 (1 ≤ i ≤ ω(D))

hence it is nonzero (xi = 1 for any i gives a solution).
• If d� ≡ 0 (mod 8), then

2Rank4(�
#)−Rank4(�) =

2ED(2, 1)
ED(−2, 1) + ED(−1, 2)

.

Since β−2(pi) = β−1(pi) for any i, Lemma 6 shows that ED(−2, 1) = ED(−1, 2) =
ED(−1, 1). Lemma 6 also shows that ED(2, 1) = ED(1, 1), hence

2Rank4(�#)−Rank4(�) =
ED(1, 1)
ED(−1, 1)

.
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If D ≡ −1 (mod 4), Corollary 4 implies that

2Rank4(�
#)−Rank4(�) = 2

whereas, if D ≡ 1 (mod 4), Corollary 3 implies that

2Rank4(�#)−Rank4(�) = 1.

• If d� ≡ 4 (mod 8), then D ≡ −1 (mod 4). By Lemma 6, we know that ED(−2, 2)
is the cardinality of an affine space having equations

β−1(pi)xi +
∑
j �=i

α(pj , pi)(xi + xj) = β−1(pi) (1 ≤ i ≤ ω(D))

hence it is nonzero (xi = 1 for any i gives a solution).

Remark. Probabilistic results have been given by Gerth [6] and, for a more natural
probability by Fouvry and Klüners in [4]. Among other results, Fouvry and Klüners
prove that

lim
X→+∞

#
{
d� ∈ D(X) : Rank4(�#) = s | Rank4(�) = r

}
#D(X)

=


1 − 2−r−1 if r = s,

2−r−1 if r = s − 1,

0 otherwise.

where D(X) is the set of fundamental discriminants in ]0, X ].

Acknowledgment

This research was partially supported by ANR grant Modunombres. We would like
to thank Étienne Fouvry for having introduced us to this problem.

References

[1] P. Damey and J.-J. Payan, Existence et construction des extensions galoisiennes et
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