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Introduction

Appearing in the late 1950s in the study of modular forms, Rankin–Cohen brackets have under-
gone considerable development in many related fields, giving rise to a very abundant literature
in recent decades. The initial problem was to construct bi-differential operators in two variables
in such a way that their evaluation at modular forms is still a modular form. The preservation of
this property of SL(2,Z)-equivariance was the main objective of the generalizations proposed for
other algebras of functions of arithmetic origin (such as quasimodular forms and Jacobi forms,
see for example [3, 4, 13, 20]) with respect to the appropriate arithmetical parameters (weight,
depth, index). It was also considered in various contexts related to Lie theory, representation the-
ory or differential geometry, see for instance [7,10,11,17]). But there is a second fundamental as-
pect of the families of Rankin–Cohen brackets, namely the fact that they define formal associative
deformations of the algebras considered and thus appear as alternative versions of the families of
transvectants in the classical theory of invariants. This specific global property of Rankin–Cohen
brackets is the focus of this paper. Number theory is the main framework of this work: both the
motivations of the algebraization of the problem and the applications are related to modular,
quasimodular and Jacobi forms.

The fact that Rankin–Cohen brackets define a formal deformation on modular forms is men-
tioned as a final remark by Eholzer in Zagier’s article [23]. This fact encodes a large set of rela-
tions between the arithmetic functions build from the Fourier coefficients of the modular forms.
Understanding this set of relations is indeed the very first motivation of the seminal work by Za-
gier [23] (see also [18]). This property and the resulting links between Rankin–Cohen brackets
and quantization procedures have given rise to many significant articles, among which we can
cite Unterberger and Unterberger [21], Cohen, Manin and Zagier [5], Connes and Moscovici [6],
Bieliavsky, Tang and Yao [1], with in Pevzner [19] an enlightening perspective on their different
points of view. It is impossible to give here complete references on such a vast subject, but it is
necessary for our study to mention that the article [6] gives as a corollary of more general results
an explicit method to construct from any homogeneous derivation D on a graded algebra A for-
mal Rankin–Cohen brackets which give a deformation on A; this type of brackets correspond to
the notion of standard RC algebra in [23]. This general process cannot be applied directly to the
algebra M of modular forms because it is not stable by the complex derivative. That’s why Zagier
introduced in [23] (see also [24]) a more subtle argument to define formal Rankin–Cohen brackets
on the algebra M≤∞ of quasimodular forms whose restriction to M gives precisely the classical
Rankin–Cohen brackets. We give in this paper a formalisation of this extension-restriction argu-
ment to the general framework of abstract differential algebras and use it to extend the classical
Rankin–Cohen brackets on M into a deformation of the algebra of weak Jacobi forms.

The text is organized in five sections. The first is devoted to recalling the basic notions and
results on formal deformations and to formulate some of their corollaries in terms adapted to
our study; we specify in particular in Propositions 3 and 5 the notion of formal Rankin–Cohen
brackets associated with a homogeneous derivation of a graded or bigraded algebra.

In the second section, we give two possible strategies to construct significant formal defor-
mations on a graded algebra A. The most direct one is to start with an homogeneous derivation
D of A and to consider the associated formal Rankin–Cohen brackets. The second strategy is to
embed A into an algebra R and consider a suitable derivation D of R which is not a derivation
of A, so that the formal Rankin–Cohen brackets on R associated to D restrict into a deformation
of A. This is the contents of Theorem 6. In the particular case where A = M we apply the first
strategy taking for D the Serre derivative, and the second one with R =M≤∞ and D the complex
derivative. We prove in Proposition 10 that the two formal deformations of A obtained by these
two approaches are not isomorphic. We develop these two strategies for weak Jacobi forms in the
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rest of the paper.
The third section gathers useful notions on the weak Jacobi forms for the full modular group,

according to [9]. The algebra of weak Jacobi forms J is a polynomial algebra in four variables
E4,E6,A and B over C, bigraded by the weight and the index, containing M = C[E4,E6] as a
subalgebra.

We define in the fourth section a family of derivations of J extending the Serre derivation on
M from which we deduce in Theorem 11 a family parameterized by C3 of formal Rankin–Cohen
brackets on J . We classify in Theorem 14 these deformations of J up to modular isomorphism.

The last section deals with the natural problem of extending the classical Rankin–Cohen
brackets on M to a deformation of J . To do this, we implement the extension-restriction method
based on the Theorem 6. Here the considered extension is not a polynomial extension as in
the case of the embedding of M in M≤∞, but an extension by localization. More precisely we
introduce the Laurent polynomial algebra K = C[E4,E6,A±1,B] which contains J and also a
copy Q = C[E4,E6,F2] of M≤∞, where F2 = BA−1 is a scalar multiple of the Weierstraß function.
We define in Theorem 15 a family parameterized by C2 of formal Rankin–Cohen brackets on
K whose restriction to M are the classical Rankin–Cohen brackets on M , and determine in
Theorem 18 the values of the parameters for which these brackets give deformations of J .

1. Algebraic results on formal deformations

1.1. Formal deformations

In this section, we recall the basic properties of formal deformations and their isomorphisms.
Our main reference on this subject is [12, Chapter 13].

1.1.1. Definition and first properties

For any commutative C-algebra A, let A[[ħ]] be the commutative algebra of formal power
series in one variable ħ with coefficients in A. A formal deformation of A is a family (µ j ) j≥0 of
bilinear mapsµ j : A×A → A such thatµ0 is the product of A and such that the (non commutative)
product on A[[ħ]] defined by extension of

∀ ( f , g ) ∈ A2 f ? g = ∑
j≥0

µ j ( f , g )ħ j (1)

is associative. This associativity is reflected in

∀ n ≥ 0 ∀ ( f , g ,h) ∈ A3
n∑

r=0
µn−r (µr ( f , g ),h) =

n∑
r=0

µn−r ( f ,µr (g ,h)). (2)

If (µ j ) j≥0 is a formal deformation of A, if µ1 is skew-symmetric and µ2 is symmetric, then µ1 is a
Poisson bracket on A.

1.1.2. Isomorphic formal deformations

Let (µ j ) j≥0 and (µ′
j ) j≥0 be two formal deformations of A. They are isomorphic if there exists a

C-linear bijective map φ : A → A such that

∀ j ≥ 0 ∀ ( f , g ) ∈ A2 φ(µ j ( f , g )) =µ′
j (φ( f ),φ(g )). (3)

Assume that µ1 is skew-symmetric and µ2 is symmetric. Formula (3) for j = 0 and j = 1 implies,
in particular, that φ is an automorphism of the Poisson algebra (A,µ1). We denote by ? and # the
products on A[[ħ]] respectively associated to the formal deformations (µ j ) j≥0 and (µ′

j ) j≥0. The
C[[ħ]]-linear extension φ : A[[ħ]] → A[[ħ]] satisfies

∀ ( f , g ) ∈ A2 φ( f ? g ) =φ( f ) #φ(g ). (4)
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1.1.3. Example

It is well known that, if d and δ are two C-derivations of A satisfying δd = dδ, then the
sequence (Td ,δ

n )n≥0 of formal transvectants Td ,δ
n : A× A → A defined for any f , g ∈ A by

Td ,δ
n ( f , g ) =

n∑
r=0

(−1)r

r !(n − r )!
d n−rδr ( f )d rδn−r (g ) (5)

is a formal deformation of A. The next paragraph is devoted to the more complicated situation
where the two derivations don’t commute but generate the two dimensional non abelian Lie
algebra.

1.2. Connes–Moscovici deformations

We recall in the following proposition a particular case of a theorem due to Connes & Moscovici
which provides a general method for constructing formal deformations.

Definition 1. Let A a commutative C-algebra, and ∆ and D two C-derivations of A satisfying

∆D −D∆= D. (6)

The Connes–Moscovici deformation on A associated to (D,∆) is the sequence (CMD,∆
n )n≥0 of bilin-

ear maps A× A → A defined for any f , g ∈ A by

CMD,∆
n ( f , g ) =

n∑
r=0

(−1)r

r !(n − r )!
Dr (2∆+ r )〈n−r 〉( f )Dn−r (2∆+n − r )〈r 〉(g ), (7)

with convention 1 = IdA and for any function F : A → A the Pochhammer notation:

F 〈0〉 = 1 and F 〈m〉 = F (F +1) · · · (F +m −1) for any m ≥ 1. (8)

Proposition 2. Let D and ∆ be two derivations on A such that ∆D −D∆= D. Then, (CMD,∆
n )n≥0 is

a formal deformation of A.

Proof. See [6, eq. (1.5)], also [22] and [1]. �

The relationship between Connes–Moscovici deformations and transvectants has been exam-
ined in different works, see for example [22, Section II.2.C], [1, Section 3], [16] and [15].

1.3. Formal Rankin–Cohen brackets

Applying the above general result to graded situations gives rise to the following notion of formal
Rankin–Cohen brackets.

Proposition 3. Let A = ⊕
k∈N Ak be a graded commutative C-algebra, and D a derivation of A

such that D(Ak ) ⊂ Ak+2 for any k ≥ 0. Let us consider the sequence (FRCD
n )n≥0 of bilinear maps

A× A → A defined by bilinear extension of

FRCD
n ( f , g ) =

n∑
r=0

(−1)r

(
k +n −1

n − r

)(
`+n −1

r

)
Dr ( f )Dn−r (g ), (9)

for any f ∈ Ak , g ∈ A`. Then,

(1) (FRCD
n )n≥0 is a formal deformation of A.

(2) FRCD
n (Ak , A`) ⊂ Ak+`+2n for all n,k,`≥ 0.

(3) The associated Poisson bracket is defined by bilinear extension of

FRCD
1 ( f , g ) = k f D(g )−`g D( f ) for all f ∈ Ak , g ∈ A`.
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Proof. The linear map ∆ : A → A defined on each homogeneous component by ∆( f ) = 1
2 k f for

any f ∈ Ak is a derivation of A which satisfies ∆D − D∆ = D . We compute (2∆+ r )〈n−r 〉( f ) =
(k+n−1)!
(k+r−1)! f and (2∆+n − r )〈r 〉(g ) = (`+n−1)!

(`+n−r−1)! g . So

∀ n ≥ 0, CMD,∆
n =FRCD

n (10)

and (1) follows from Proposition 2. Points (2) and (3) are obvious by construction. �

Definition 4. The deformation (FRCD
n )n≥0 of A defined in Proposition 3 is called the sequence of

formal Rankin–Cohen brackets on A associated to D.

The construction corresponding to Definition 4 appears in [23, Section 5]; the same article
mentions (in a note added in proof) a remark by Eholzer on the fact that it defines a formal
deformation. We will need in Section 3 the following result, which is a parameterized version
of the Proposition 3 for bigraded algebras.

Proposition 5. Let A =⊕
k,p∈Z Ak,p be a bigraded commutativeC-algebra, and D a derivation of A

such that D(Ak,p ) ⊂ Ak+2,p for any k, p ∈Z. For any µ ∈C, let us consider the sequence (FRCD,µ
n )n≥0

of bilinear maps A× A → A defined by bilinear extension of

FRCD,µ
n ( f , g ) =

n∑
r=0

(−1)r

(
k +µp +n −1

n − r

)(
`+µq +n −1

r

)
Dr ( f )Dn−r (g ), (11)

for any f ∈ Ak,p , g ∈ A`,q . Then,

(1) (FRCD,µ
n )n≥0 is a formal deformation of A.

(2) FRCD,µ
n (Ak,p , A`,q ) ⊂ Ak+`+2n,p+q for all n ∈N, k,`, p, q ∈Z.

(3) The associated Poisson bracket is defined by bilinear extension of

FRCD,µ
1 ( f , g ) = (k +µp) f D(g )− (`+µq)g D( f ) for all f ∈ Ak,p , g ∈ A`,q .

Proof. For any µ ∈ C, we introduce the weighted Euler derivation ∆µ of A defined by linear
extension of ∆µ( f ) = 1

2 (k +µp) f for all (k, p) ∈Z2 and f ∈ Ak,p . It satisfies ∆µD −D∆µ = D . Next,
we apply Proposition 2 and similar calculations to those in the proof of Proposition 3 prove that

CMD,∆µ
n =FRCD,µ

n and give the results. �

2. An extension-restriction method on formal deformations and Rankin–Cohen
brackets on modular forms revisited

2.1. Original problem

The classical Rankin–Cohen brackets were originally developed for modular forms and have since
been used in a wide range of literature and applications. We refer for example to [24] as a primary
reference. Recall that, if f and g are modular forms of respective weights k and `, the differential
polynomial

RCn( f , g ) =
n∑

r=0
(−1)r

(
k +n −1

n − r

)(
`+n −1

r

)
Dr

z ( f )Dn−r
z (g ) (12)

is a modular form of weight k +`+2n. Here Dz is the usual normalized derivation 1
2iπ∂z related

to the complex variable z.
It is important to observe that, since the algebra M of modular forms is not stable by this

derivation (the derivative of a modular form is not a modular form), the property of the sequence
of classical Rankin–Cohen brackets defined by (12) to be a formal deformation of M cannot be
obtained by direct application of Proposition 3. Zagier has developed in [23] an argument to
overcome this difficulty (see Paragraph 2.3 below). We extend it in the following theorem to the
general formal framework of Connes–Moscovici deformations.

C. R. Mathématique — 2021, 359, n 4, 505-521



510 YoungJu Choie, François Dumas, François Martin and Emmanuel Royer

2.2. A general argument about the restriction of some formal deformations

Our goal is to prove the following theorem.

Theorem 6. Consider a commutative C-algebra R and a subalgebra A of R. Let ∆ and θ be two
C-derivations of R such that ∆θ−θ∆= θ. We assume that

(1) ∆(A) ⊆ A and θ(A) ⊆ A;
(2) there exists h ∈ A such as ∆(h) = 2h;
(3) there exists x ∈ R, x ∉ A such that ∆(x) = x and θ(x) =−x2 +h.

Then, the derivation D := θ+2x∆ of R satisfies ∆D −D∆= D and the Connes–Moscovici deforma-
tion (CMD,∆

n )n≥0 of R defines by restriction to A a formal deformation of A.

An obvious calculation shows that ∆D − D∆ = D . We consider in R the Connes–Moscovici
deformation (CMD,∆

n )n≥0 defined by (7). The proof of the theorem is based on the following two
lemmas.

Lemma 7. The assumptions and notations are those of Theorem 6. We introduce for any integer
n ≥ 0 the linear map θ[n] : R → R defined by

θ[n] =
n∑
`=0

(−1)n−`
(

n

`

)
xn−`D`(2∆+`)〈n−`〉. (13)

Then, for all n ≥ 1, we have,

(1) θ[n+1] = θθ[n] +nhθ[n−1](2∆+n −1).
(2) θ[n](A) ⊆ A.

Proof. We directly check that θ[1] = θ and θ[2] = θ2 + 2h∆ which shows (1) for n = 1. We then
proceed by induction. It follows from θ(x) =−x2 +h that

θθ[n] = I+ II+h · III

with notations 
I =∑

`(−1)n+1−`(n
`

)
(n −`)xn−`+1D`(2∆+`)〈n−`〉,

II =∑
`(−1)n−`(n

`

)
xn−`θD`(2∆+`)〈n−`〉,

III =∑
`(−1)n−`(n

`

)
(n −`)xn−`−1D`(2∆+`)〈n−`〉.

We have

III =−n
∑
`

(−1)n−1−`
(

n −1

`

)
xn−1−`D`(2∆+`)〈n−1−`〉(2∆+n −1)

so
θθ[n] +nhθ[n−1](2∆+n −1) = I+ II.

We replace θ by D −2x∆ in II to obtain II = II1 + II2 with{
II1 =−∑

`(−1)n−`( n
`−1

)
xn+1−`D`(2∆+`−1)〈n+1−`〉

II2 =−2
∑
`(−1)n−`(n

`

)
xn+1−`∆D`(2∆+`)〈n−`〉.

We replace ∆D` by D`∆+`D` to write II2 = II21 + II22 with{
II22 =−2

∑
`(−1)n−`(n

`

)
`xn+1−`D`(2∆+`)〈n−`〉

II21 =−2
∑
`(−1)n−`(n

`

)
xn+1−`D`∆(2∆+`)〈n−`〉.

By 2∆= 2∆+ (`−1)− (`−1) we finally find II21 = II211 + II212 with{
II211 =−∑

`(−1)n−`(n
`

)
xn+1−`D`(2∆+`−1)〈n+1−`〉

II212 =∑
`(−1)n−`(n

`

)
(`−1)xn+1−`D`(2∆+`)〈n−`〉.
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So we obtain

II1 + II211 =
∑
`

(−1)n+1−`
(

n +1

`

)
xn+1−`D`(2∆+`−1)〈n+1−`〉

and

I+ II22 + II212 =
∑
`

(−1)n+1−`
(

n +1

`

)
(n +1−`)xn+1−`D`(2∆+`)〈n−`〉.

Then, we compute

(2∆+`−1)〈n+1−`〉+ (n +1−`)(2∆+`)〈n−`〉

= (2∆+`−1)(2∆+`)〈n−`〉+ (n +1−`)(2∆+`)〈n−`〉

= (2∆+n)(2∆+`)〈n−`〉

= (2∆+`)〈n+1−`〉.

We conclude

I+ II =∑
`

(−1)n+1−`
(

n +1

`

)
xn+1−`D`(2∆+`)〈n+1−`〉,

which completes the proof of (1) of the lemma. As a consequence, we get (2). �

Lemma 8. The assumptions and notations are those of Theorem 6. We introduce, for any integer
n ≥ 0, the bilinear map Θn : R ×R → R defined by

Θn( f , g ) =
n∑

r=0

(−1)r

r !(n − r )!

(
θ[r ](2∆+ r )〈n−r 〉) ( f )

(
θ[n−r ](2∆+n − r )〈r 〉

)
(g ) (14)

for all ( f , g ) ∈ R2. Then, we have (CMD,∆
n )n≥0 = (Θn)n≥0.

Proof. We express Θn depending on D using (13), (14) and Lemma 7. We find

Θn( f , g ) = ∑
r,`,t

(−1)n+r−t−`

r !(n − r )!

(
r

`

)(
n − r

t

)
xn−t−`

×D`(2∆+`)〈r−`〉(2∆+ r )〈n−r 〉( f )D t (2∆+ t )〈n−r−t〉(2∆+n − r )〈r 〉(g ).

Using (2∆+`)〈r−`〉(2∆+r )〈n−r 〉 = (2∆+`)〈n−`〉and (2∆+ t )〈n−r−t〉(2∆+n−r )〈r 〉 = (2∆+ t )〈n−t〉, we
obtain

Θn( f , g ) =∑
`,t

(−1)n−t

(n − t −`)!`!t !
D`(2∆+`)〈n−`〉( f )D t (2∆+ t )〈n−t〉(g )xn−t−`∑

r
(−1)r−`

(
n − t −`

r −`

)
.

The inner sum indexed by r is equal to (1−1)n−t−`, so we obtain

Θn( f , g ) =∑
`

(−1)`

`!(n −`)!
D`(2∆+`)〈n−`〉( f )Dn−`(2∆+n −`)〈`〉(g ) =CMD,∆

n ( f , g ),

and the proof is complete. �

Proof of Theorem 6. We know from Proposition 2 that (CMD,∆
n )n≥0 is a formal deformation

of R but it is not clear that CMD,∆
n ( f , g ) ∈ A for f , g ∈ A. The sequence (Θn)n≥0 satisfies, by

construction, that Θn( f , g ) ∈ A for f , g ∈ A but it is not clear from its definition that it is a formal
deformation of R. Thus, Theorem 6 follows from the equality CMD,∆

n =Θn proved in Lemma 8. Let
us observe that the subalgebra A of R is stable by∆, is not necessarily stable by D , but is stable by
any bilinear application CMD,∆

n . �

Theorem 6 is formulated in terms of restriction from an algebra R to a subalgebra A. In the
following number-theoretical applications, it will be applied in terms of extension from A to R
either by polynomial extension (see Paragraph 2.3.2 for modular forms) or by localization (see
Section 5 for weak Jacobi forms).

C. R. Mathématique — 2021, 359, n 4, 505-521
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2.3. Application to modular forms

A reference for details on this section is [13].

2.3.1. Basic facts and notations on modular and quasimodular forms

It is well known that the C-algebra of holomorphic modular forms M associated to the full
modular group SL(2,Z) is the weight-graded polynomial algebra

M =C[E4,E6] = ⊕
k∈2Z≥0

k 6=2

Mk with Mk = ⊕
4i+6 j=k

CEi
4 E j

6 (15)

where E4 and E6 are the Eisenstein series of respective weights 4 and 6. The Eisenstein series E2

is not a modular form but a quasimodular form (of weight 2 and depth 1) and the algebra M≤∞

of quasimodular forms can be described as the polynomial algebra

M≤∞ =M [E2] =C[E4,E6,E2] = ⊕
k∈2Z≥0

k/2⊕
s=0

Mk−2s Es
2 (16)

graded by the weight k and filtered by the depth s (corresponding to the degree in E2).
We denote by Dz the normalized complex derivative Dz = 1

2iπ∂z . Ramanujan relations are

Dz (E4) =−1

3
(E6−E4 E2), Dz (E6) =−1

2
(E2

4−E6 E2), Dz (E2) =− 1

12
(E4−E2

2) (17)

In particular the subalgebra M of M≤∞ is not stable by the derivation Dz of M≤∞. We introduce
the Serre derivative, which is the derivation Se of M≤∞ defined by linear extension of

Se( f ) = Dz ( f )− k

12
E2 f for any f ∈M≤∞ of weight k. (18)

We have
Se(E4) =−1

3
E6, Se(E6) =−1

2
E2

4, Se(E2) =− 1

12
(E2

2+E4). (19)

In particular M is stable by Se and the restriction of Se to M = C[E4,E6] is the derivative
θ =− 1

3 E6∂E4 − 1
2 E2

4∂E6 .

2.3.2. Application of the extension-restriction method to modular forms

We apply here the general result of Theorem 6 to give another proof of the following well-
known result.

Proposition 9. The sequence of classical Rankin–Cohen brackets (12) defines a formal deforma-
tion of the algebra M .

Proof. We choose for A the algebra of modular forms M =C[E4,E6], for θ the restriction to M of
the Serre derivative Se and for ∆ the weight-derivative defined by ∆( f ) = k

2 f for any f ∈ Mk . We
have ∆θ−θ∆= θ. We introduce

h =− 1

144
E4 ∈M and x = 1

12
E2 ∈M≤∞.

We consider the polynomial extension R = M [x], which is, by (16), the algebra of quasimodular
forms M≤∞. We extend ∆ and θ to M≤∞ by ∆(x) = x and θ(x) =−x2 +h. In other words

∆(E2) = E2 and θ (E2) =− 1

12
E2

2−
1

12
E4 .

Then, the extensions ∆ and θ are the derivations of M≤∞ such that

∆( f ) = k

2
f for any f ∈M≤∞ of weight k, and θ = Se on M≤∞,

and they also satisfy ∆θ−θ∆= θ. By (18) the derivation θ+2x∆ of M≤∞ is equal to the derivative
Dz . Applying Theorem 6, we deduce that the formal deformation (CMDz ,∆)n≥0 of M≤∞ defines
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by restriction a formal deformation of M . On the one hand CMDz ,∆
n =FRCDz

n on M≤∞ by (10). On
the other hand, the restriction of FRCDz

n to M is the classical Rankin–Cohen bracket RCn defined
by (12). So we get a proof of the property that (RCn)n≥0 is a formal deformation of M . �

As observed at the end of the proof of Theorem 6, the algebra M is stable by ∆, is not stable by
Dz , but is stable by any Rankin–Cohen brackets FRCDz

n =CMDz ,∆
n .

2.3.3. Serre Rankin–Cohen brackets

Another strategy to overcome the fact that M is not stable by the derivation Dz is to change
the derivation and apply directly Proposition 3 to a weight 2 homogeneous derivation of M , for
instance the Serre derivation Se on M . So we define with (9) the Serre–Rankin–Cohen brackets
(SRCn)n≥0 = (FRCSe

n )n≥0 on M by bilinear extension of

SRCn( f , g ) =
n∑

r=0
(−1)r

(
k +n −1

n − r

)(
`+n −1

r

)
Ser ( f )Sen−r (g ) (20)

for ( f , g ) ∈Mk ×M`. This is by Proposition 3 a formal deformation of M satisfying

∀ n ≥ 0 SRCn(Mk ,M`) ⊂Mk+`+2n . (21)

It follows from the definition that SRC0 =RC0 and SRC1 =RC1 on M . The following proposition
clarifies the relationship between the Serre–Rankin–Cohen brackets and the usual Rankin–Cohen
brackets (12).

Proposition 10. The two formal deformations (RCn)n≥0 and (SRCn)n≥0 of M are not isomorphic.

Proof. Ifϕ is an isomorphism between the formal deformations (M , (SRC)n≥0) and (M , (RC)n≥0)
then it is a Poisson automorphism of (M ,RC1) since SRC1 =RC1. Thenϕ= IdM by Proposition 7
of [8]. This is contradicted by

SRC2( f , g ) =RC2( f , g )+ 1

288
k`(k +`+2) f g E4 for ( f , g ) ∈Mk ×M`. (22)

�

2.3.4. Formal deformations on quasimodular forms

Using (19), the formal Rankin–Cohen brackets (SRCn)n≥0 on M defined by (20) extend canon-
ically to M≤∞. Many other formal deformations of M≤∞ can be constructed using Proposition 2
and the systematic study of such analogues of Rankin–Cohen brackets on M≤∞ is the subject of
the article [8] under the additional arithmetical assumption of depth conservation. It is not sat-
isfied by (SRCn)n≥0 because for instance SRC1(E2,E4) = 1

3 (E4 E2
2−2E6 E2+E2

4) is of depth 2. How-
ever, the deformations of M≤∞ appearing in Theorems B and D of [8] will play some role in the
study of the deformations on the Jacobi forms in the following section.

3. The algebra of weak Jacobi forms

3.1. The notion of weak Jacobi form

The aim of this part is to gather the notions we shall need on weak Jacobi forms. The main
reference is [9]. Let H be the upper half plane, k an integer and m a nonnegative integer. The
Jacobi group SL(2,Z)J = SL(2,Z)nZ2 acts on functions f : H ×C→ C as follows: if γ = (

a b
c d

) ∈
SL(2,Z) and (λ,µ) ∈Z2, then

f ‖
k,m

(
(
γ, (λ,µ)

)
)(τ, z) =

(cτ+d)−k exp

(
2πim

(
−c(z +λτ+µ)2

cτ+d
+λ2τ+2λz +λµ

))
f

(
aτ+b

cτ+d
,

z +λτ+µ
cτ+d

)
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for all (τ, z) ∈H ×C.
A weak Jacobi form of weight k and index m is a holomorphic functionΦ : H ×C→C invariant

by the action ‖
k,m

of the Jacobi group and whose Fourier expansion has the shape

Φ(τ, z) =
+∞∑
n=0

∑
r∈Z

r 2≤4nm+m2

c(n,r )e2πi(nτ+r z). (23)

The vector space Jk,m of such functions is finite dimensional. We identify functions on H ×C that
are not depending on the second variable with functions on H . On this subspace, the action ‖

k,0

of SL(2,Z)J induces the classical modular action of SL(2,Z) denoted by |
k

. The space Jk,0 = Mk

is the space of holomorphic modular forms of weight k on SL(2,Z) defined in 2.3.
The principal object of our study is the bigraded algebra of weak Jacobi forms

J = ⊕
k∈2Z
m≥0

Jk,m . (24)

3.2. Generators of the algebra of the weak Jacobi forms

The algebra J is a polynomial algebra on two generators over the algebra M of modular forms.
We describe these two generators.

For m = 0, we already mentioned in (15) that the Eisenstein series E4 and E6 generate the
algebra of modular forms: M = C[E4,E6]. If m 6= 0, the Eisenstein series Ek,m of Jk,m of even
weight k ≥ 4 and index m is

Ek,m(τ, z) = 1

2

∑
(c,d)∈Z2

(c,d)=1

∑
λ∈Z

(cτ+d)−k exp

(
2iπm

(
λ2 aτ+b

cτ+d
+2

λz − cz2

cτ+d

))
.

Let us define

Φ10,1 = 1
144 (E6 E4,1−E4 E6,1) ∈J10,1, Φ12,1 = 1

144 (E2
4 E4,1−E6 E6,1) ∈J12,1,

and

∆= 1

1728
(E3

4−E2
6) ∈M12.

We define in J the elements

A = Φ10,1

∆
∈J−2,1 and B = Φ12,1

∆
∈J0,1. (25)

By [9, Theorem 9.3], we have

J =M [A,B] =C[E4,E6,A,B].

Using the algorithm proven in [9, p. 39], we can compute the Fourier expansion ofΦ10,1 andΦ12,1

and deduce the ones of A and B.

3.3. A localization of the algebra of the weak Jacobi forms

We introduce the algebra

K =C[E4,E6,A±1,B] ⊃J . (26)

This is the localization of J with respect to the powers of A. The notions of weight and index
naturally extend to K defining a bigraduation

K = ⊕
k∈2Z
m∈Z

Kk,m . (27)
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We set

F2 = BA−1, (28)

which satisfies

K =C[E4,E6,F2,A±1] =C[E4,E6,F2][A±1]

and leads to introduce the subalgebra

Q =C[E4,E6,F2].

The elements of Q appear as the elements in K of index zero. The following table summarizes
the weights and indices attached to these different generators.

E4 E6 A B F2

weight 4 6 -2 0 2
index 0 0 1 1 0

3.4. Number-theoretic interpretation, relationship with quasimodular forms

The function F2 has a number-theoretic meaning since

F2 =− 3

π2℘ (29)

where ℘ is the Weierstraß function [9, Theorem 3.6] and hence Q is the subalgebra generated by
modular forms and the Weierstraß function

Q =M [℘]. (30)

Another arithmetical point of view consists in seeing Q as a formal analogue to the algebra
M≤∞ =M [E2] of quasimodular forms. The algebra isomorphism involved is

ω : Q →M≤∞, P (E4,E6,F2) 7→ P (E4,E6,E2). (31)

The degree related to F2 of any f ∈Q is the depth of the quasimodular form ω( f ) and we have

M ⊂M≤∞ 'Q ⊂K .

The isomorphism ω and (30) emphasize that, from an algebraic point of view, the Weierstraß
function ℘ is similar to the Eisenstein series E2.

3.5. Summary

We can summarize the relationships between the different function algebras under consideration
by the following diagram:

J =C[E4,E6,A,B] �
� // K =C[E4,E6,F2,A±1]

M =C[E4,E6] �
� //

?�

OO

Q =C[E4,E6,F2] 'M≤∞
?�

OO

This is the framework for our study of formal deformations of J .
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3.6. Problem

Our goal is to construct families of Rankin–Cohen brackets on weak Jacobi forms,

(1) which are deformations of the algebra J (this was not the case for some other construc-
tion, appearing in the literature),

(2) which extend Rankin–Cohen brackets on modular forms,
(3) which are coherent with the weight and the index (that is preserve the index and increase

the weight by two).

Two main methods can be used following the two points of view illustrated above in the case of
modular forms.

(1) The first strategy is to start from a derivation of J and to use the canonical construction
of Proposition 5. This method gives rise in Section 4 to a family of deformations of J

extending the Serre–Rankin–Cohen brackets on M (defined in Section 2.3.3).
(2) The second one is to apply the extension-restriction process of Theorem 6. So we start

from a suitable derivation D of the extension K of J which doesn’t stabilize J . We thus
construct in Section 5 a family of deformations stabilizing J and extending the classical
Rankin–Cohen brackets on M (defined in Section 2.1).

4. A first family of Rankin–Cohen deformations on weak Jacobi forms

In this section, we define and study a family of Rankin–Cohen deformations on J whose
restriction to M is the sequence of Serre–Rankin–Cohen brackets.

4.1. Construction of the deformations

We first define an extension of the Serre derivative to the weak Jacobi forms. For any a,b ∈ C we
denote by Sea,b the derivation of J =C[E4,E6,A,B] defined by

Sea,b(E4) =−1

3
E6, Sea,b(E6) =−1

2
E2

4, Sea,b(A) = a B, Sea,b(B) = b E4 A. (32)

This is by (19) the only way to extend the Serre derivation Se on M into a derivation of J

preserving the index and increasing the weight by two.
We use the general process described in Section 1.3 to construct formal Rankin–Cohen brack-

ets on J .

Theorem 11. For all (a,b,c) ∈ C3, for any n ≥ 0, let { · , · }[a,b,c]
n be the bilinear map from J ×J to

J defined by bilinear extension of

{ f , g }[a,b,c]
n =

n∑
r=0

(−1)r

(
k + cp +n −1

n − r

)(
`+ cq +n −1

r

)
Ser

a,b( f )Sen−r
a,b (g ) (33)

for all f ∈Jk,p and g ∈J`,q . Then,

(1) The sequence
(
{ · , · }[a,b,c]

n

)
n≥0

is a formal deformation of J .

(2) We have {Jk,p ,J`,q }[a,b,c]
n ⊂Jk+`+2n,p+q for all k,` ∈ 2Z, p, q,n ≥ 0.

(3) The subalgebra of modular forms M is stable by { · , · }[a,b,c]
n and its restriction to M ×M is

the Serre–Rankin–Cohen bracket SRCn .

Proof. For any (a,b) ∈ C2, the derivation Sea,b of J satisfies Sea,b(Jk,m) ⊂ Jk+2,m . Then, (1)

and (2) follow from Proposition 5 since { · , · }[a,b,c]
n = FRCSea,b ,c

n . If f , g are modular forms of
respective weights k,`, we have p = q = 0 in formula (33) which doesn’t depend on c in this
case. Moreover Sea,b( f ) = Se( f ) and Sea,b(g ) = Se(g ) by (32) and (19). Hence { f , g }[a,b,c]

n does not
depend on (a,b) and is by (20) equal to SRCn( f , g ). �
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4.2. Classification and separation results

The formal deformations ({ · , · }[a,b,c]
n )n≥0 depend on three parameters. We can classify them, up

to a suitable specialization of the notion of isomorphic deformations (see paragraph 1.1.2) with
respect to the arithmetical context.

Definition 12. Two formal deformations
(
{ · , · }[a,b,c]

n

)
n≥0

and
(
{ · , · }[a′,b′,c ′]

n

)
n≥0

of J are modular-
isomorphic if there exists a C-linear bijective map φ : J →J such that

(1) φ({ f , g }[a,b,c]
j ) = {φ( f ),φ(g )}[a′,b′,c ′]

j for all j ≥ 0 and f , g ∈J .
(2) φ preserves the index and the weight of homogeneous weak Jacobi forms

In particular φ is a C-algebra automorphism of J and a Poisson isomorphism from
(J , { · , · }[a,b,c]

1 ) to (J , { · , · }[a′,b′,c ′]
1 ).

Lemma 13. If two formal deformations ({ · , · }[a,b,c]
n )n≥0 and ({ · , · }[a′,b′,c ′]

n )n≥0 are modular-
isomorphic, then c = c ′, and there exists ξ ∈C∗ such that a′ = ξa and b′ = ξ−1b.

Proof. Let φ : J → J be as in Definition 12. It induces a Poisson isomorphism from(
J , { · , · }[a,b,c]

1 )
)

to
(
J , { · , · }[a′,b′,c ′]

1

)
. We haveφ (M ) ⊂M by (2) and RC1 = SRC1 = { · , · }[a,b,c]

1 on M .
Then, the restriction of φ to M is a Poisson modular automorphism of (M ,RC1). By [8, Proposi-
tion 7], this is the identity of M .

Let f ∈ Jk,p . Then, φ( f ) ∈ Jk,p . The restriction of Sea,b to M is Se. The kernel of Se is C[∆]
(see, for example, [8, Proposition 8]) and φ(∆) =∆. We deduce that

φ
(
{ f ,∆}[a,b,c]

1

)
=−12∆φ

(
Sea,b( f )

)
and {φ( f ),φ(∆)}[a′,b′,c ′]

1 =−12∆Sea′,b′
(
φ( f )

)
and hence

φ◦Sea,b = Sea′,b′ ◦φ. (34)

It follows that, for all f ∈Jk,p and g ∈J`,q , we have

{φ( f ),φ(g )}[a′,b′,c ′]
1 =φ(

(k + c ′p) f Sea,b(g )− (`+ c ′q)g Sea,b( f )
)

and (1) leads to
(c ′− c)

(
p f Sea,b(g )−qg Sea,b( f )

)= 0.

We apply this equality to f = AE4 and g = E6 to obtain c ′ = c. Let λ and µ be defined in C∗ by
φ(A) = λA and φ(B) = µB. Equation (34) applied to A and B gives aµ = a′λ and b′µ = bλ. The
proof is complete setting ξ=µ/λ. �

Theorem 14. Let (a,b,c) ∈ C3. The formal deformation ({ · , · }[a,b,c]
n )n≥0 of J is modular-

isomorphic to one of the following formal deformations,

(1) The formal deformation ({ · , · }[1,b′,c ′]
n )n≥0 for some (b′,c ′) ∈C2.

(2) The formal deformation ({ · , · }[0,1,c ′]
n )n≥0 for some c ′ ∈C.

(3) The formal deformation ({ · , · }[0,0,c ′]
n )n≥0 for some c ′ ∈C.

These deformations are pairwise non modular-isomorphic for different values of the parameters.

Proof. For any (λ,µ) ∈ C∗2, denote by φλ,µ the C-algebra automorphism of J fixing E4 and E6

and such that φλ,µ(A) = λA and φλ,µ(B) = µB. By the same calculations as in proof of Lemma 13
we have, for any (a,b, a′,b′) ∈C4,

(φλ,µ ◦Sea,b = Sea′,b′ ◦φλ,µ) if and only if (aµ= a′λ and bλ= b′µ). (35)

By (33), if one of the equivalent conditions of (35) is satisfied, then the formal deformations
{ · , · }[a,b,c] and { · , · }[a′,b′,c ′] are isomorphic. Since it follows from (35) that φa,1 ◦Sea,b = Se1,ab ◦φa,1

for any a 6= 0, and φ1,b ◦Se0,b = Se0,1 ◦φ1,b for any b 6= 0, the proof that ({ · , · }[a,b,c]
n )n≥0 is modular-

isomorphic to one of given formal deformations is complete. The separation of the different cases
up to modular isomorphism follows from a direct application of Lemma 13. �
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4.3. Oberdieck’s derivation and a new way to build Jacobi forms

The extended Serre derivation Sea,b is a generalization of an already known derivation of the
algebra of weak Jacobi forms that preserves the index, increases the weight by 2, and has an
analytic expression: the Oberdieck derivation [14]. For the convenience of the reader, we only
briefly describe this derivation here. The interested reader will find details in the unpublished
note [2].

For all τ ∈H , let Λτ =Z⊕τZ. The ζ function associated to Λτ is defined by

∀ z ∈C−Λτ ζ(τ, z) = 1

z
+ ∑
ω∈Λτ
ω6=0

(
1

z −ω + 1

ω
+ z

ω2

)
. (36)

Let J1 and J2 be the two functions defined by

∀ τ ∈H , ∀ z ∈C, z ∉Z+τZ J1(τ, z) = 1

2πi
ζ(τ, z)+ πi

6
z E2(τ),

and

J2 = 1

2πi
∂z J1− 1

12
E2+ J2

1

where ∂z is the derivative with respect to the second variable.
We define an application on J by

Ob( f ) = 1

2πi
∂τ( f )− k

12
E2 f − 1

2πi
J1∂z ( f )+m J2 f

for any f in the space Jk,m . It can be shown that this application is a derivation of J satisfying
Ob

(
Jk,m

)⊂Jk+2,m . Computing the values of Ob at E4, E6, A and B, we see that Ob = Se−1/6,−1/3.
The existence of an analytic expression for Ob provides an explicit way to build new Jacobi

forms from old ones. For examples, E6 is obtained from E4 by Ob and B is obtained from A by Ob.

4.4. Relationship with deformations on quasimodular forms

The deformations we have built on the algebra of weak Jacobi forms produce deformations on
the algebra of quasimodular forms. More precisely they extend from J to K and then, restrict to
Q =C[E4,E6,F2]. For any a,b ∈C, the derivation Sea,b extends canonically to K by

Sea,b(A−1) =−A−2 Sea,b(A) =−a A−2 B.

This implies by (28)
Sea,b(F2) = b E4−a F2

2 .

It follows that the algebra Q is stable by Sea,b . Hence { f , g }[a,b,c]
n ∈ Q for all n ≥ 0 and f , g ∈ Q.

These expressions do not depend on c since the functions of Q have index 0. We denote simply

{ f , g }[a,b]
n =

n∑
r=0

(−1)r

(
k +n −1

n − r

)(
`+n −1

r

)
Ser

a,b( f )Sen−r
a,b (g ) (37)

for all homogeneous f , g ∈Q of respective weights k and `. This defines a deformation of Q. We
consider three cases,

(1) If a = b = 0, the deformation ({ f , g }[0,0]
n )n≥0 of Q corresponds up the isomorphism

ω defined in (31) between Q and M≤∞ to the deformation of M≤∞ studied in [8,
Theorem D] for the particular case b = 0 and α = − 2

3 of the parameters used in this
theorem.

(2) If a = 0 and b 6= 0, we can by Theorem 14 reduce to the deformation ({ f , g }[0,−1/12]
n )n≥0 of

Q which corresponds up the isomorphism ω to the deformation of M≤∞ studied in [8,
Theorem B] for the particular case a = 0 of the parameter used in this theorem.
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(3) If a 6= 0, the deformation of M≤∞ obtained from ({ f , g }[a,b]
n )n≥0 through the isomorphism

ω does not correspond to any bracket defined in [8]. The reason is that the study of [8] was
devoted to deformations preserving the depth of the quasimodular forms. This is not the
case here since for instance

{E4,F2}[a,b]
1 = 4b E2

4+
2

3
E6 F2−4a E4 F2

2

is of F2-degree two whereas E4 and E2 are of respective depth 0 and 1 in M≤∞.

5. A second family of Rankin–Cohen deformations on weak Jacobi forms

In this section, we define and study a family of Rankin–Cohen deformations on J whose
restriction to M is the sequence of classical Rankin–Cohen brackets. The method consists in
applying the extension-restriction principle described at the end of Section 2.2 to some family
of formal deformations of K .

5.1. Construction of the deformations

Recall that ω : Q → M≤∞ is the algebra isomorphism that sends (E4,E6,F2) to (E4,E6,E2). The
usual complex derivative Dz defines a derivation on the algebra M≤∞ of quasimodular forms.
We define a derivation on Q by ∂=ω−1 Dz ω. Ramanujan equations (17) become

∂(E4) =−1

3
(E6−E4 F2), ∂(E6) =−1

2
(E2

4−E6 F2), ∂(F2) =− 1

12
(E4−F2

2). (38)

The unique way to extend ∂ into a derivation ∂u of K preserving the index and increasing the
weight by 2 is to set

∀ f ∈Q ∂u( f ) = ∂( f ) and ∂u(A) = u AF2 (39)

for some u ∈C. We compute

∂u(B) = ∂u(AF2) =
(
u + 1

12

)
BF2− 1

12
E4 A. (40)

For any u ∈C, the derivation ∂u does not restrict into a derivation of M nor into a derivation of J .
Applying the process described Section 1.3, we define, using ∂u , the following deformation of

K .

Theorem 15. For any complex parameters u and v, let
(� · , · �u,v

n
)

n≥0 be the sequence of maps
K ×K →K defined by bilinear extension of

� f , g �u,v
n =

n∑
r=0

(−1)r

(
k + v p +n −1

n − r

)(
`+ vq +n −1

r

)
∂r

u( f )∂n−r
u (g ), (41)

for all homogeneous f ∈Kk,p and g ∈K`,q . Then, for all (u, v) ∈C2,

(1) The sequence
(� · , · �u,v

n
)

n≥0 is a formal deformation of K .
(2) �Kk,p ,K`,q�u,v

n ⊂Kk+`+2n,p+q .
(3) The subalgebra M of modular forms is stable by � · , · �u,v

n , its restriction to M being the
classical Rankin–Cohen bracket RCn .

Proof. For any u ∈ C, the derivation ∂u of K satisfies ∂u
(
Kk,m

) ⊂ Kk+2,m . Then, (1) and (2)
follow from Proposition 5 since � · , · �u,v

n =FRC∂u ,v
n . If f , g are modular forms of respective weights

k,`, we have p = q = 0 in formula (41) which doesn’t depend on v in this case. Moreover
∂u( f ) = ∂( f ) = Dz ( f ) and ∂u(g ) = ∂(g ) = Dz (g ). Hence � f , g �[u,v]

n doesn’t depend on (u, v) and
is by (12) equal to RCn( f , g ), which proves (3). �
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Remark 16 (classification and separation result). Using arguments similar to those in 4.2,
we can show that two formal deformations (� · , · �u,v

n )n≥0 and (� · , · �u′,v ′
n )n≥0 of K are modular

isomorphic if and only if (u, v) = (u′, v ′). The details of the proof are left to the reader.

Remark 17 (relationship with deformations on quasimodular forms). The subalgebra Q is
stable by the brackets � · , · �u,v

n . However, their restrictions to Q do not preserve the degree in
F2 (so up to the isomorphism ω, they do not preserve the depth of quasimodular forms). For
this reason, the restrictions of � · , · �u,v

n to the subalgebra Q can not coincide with the brackets
previously studied in [8].

5.2. Restriction to weak Jacobi forms

Although the subalgebra J is not stable by the derivation ∂u , the question arises whether J can
be stable by

(� · , · �u,v
n

)
n≥0 for some values of the parameters u and v . Since

�B,E4�u,v
1 = 1

3
(v − (12u +1))BE4 F2−1

3
v E6 B+1

3
E2

4 A,

a necessary condition is v = 12u +1. We use the general method of Theorem 6 to prove that this
condition is sufficient.

Theorem 18. For any complex number u, the sequence
(
� · , · �u,12u+1

n

)
n≥0

defines by restriction
a deformation of the algebra J of weak Jacobi forms, whose restriction to the subalgebra M of
modular forms is the sequence of classical Rankin–Cohen brackets.

Proof. We consider the derivation ∆u of J defined by ∆u( f ) = 1
2 (k + (12u +1)p) f for any weak

Jacobi form f of weight k and index p. We have

∆u(E4) = 2E4, ∆u(E6) = 3E6, ∆u(A) =
(
6u − 1

2

)
A, ∆u(B) =

(
6u + 1

2

)
B.

We also denote by ∆u its canonical extension as a derivation of K , which satisfies:

∆u(F2) =∆u(B)A−1−B∆u(A)A−2 = F2 .

We denote θ = Se 1
12 ,− 1

12
in the sense of (32). So we have

θ(E4) =−1

3
E6, θ(E6) =−1

2
E2

4, θ(A) = 1

12
B, θ(B) =− 1

12
E4 A,

and its canonical extension as a derivation of K satisfies:

θ(F2) = θ(B)A−1−Bθ(A)A−2 =− 1

12
F2

2−
1

12
E4 .

The derivations ∆u and θ of K satisfy ∆uθ−θ∆u = θ, and by construction the subalgebra J of
K is stable par ∆u et θ. The element h = − 1

144 E4 of J satisfies ∆u(h) = 2h. Then, the element
x = 1

12 F2 of K satisfies x ∉ J , ∆u(x) = x and θ(x) = −x2 +h. Thus we can apply Theorem 6.
The derivation D := θ+2x∆u of K is such that ∆uD −D∆u = D and J is stable by the Connes–
Moscovici deformation (CMD,∆u

n )n≥0 of K .
On the one hand, D(Kk,p ) ⊂Kk+2,p . Then (CMD,∆u

n )n≥0 = (FRCD,12u+1
n )n≥0 on K by Proposi-

tion 5. Hence we have for any f ∈Jk,p and g ∈J`,q ,

CMD,∆u
n ( f , g ) =

n∑
r=0

(−1)r

(
k + (12u +1)p +n −1

n − r

)(
`+ (12u +1)q +n −1

r

)
Dr ( f )Dn−r (g ).

On the other hand, the calculation of the values of D on the generators of K gives

D(E4) = 1

3
(E4 F2−E6), D(E6) = 1

2
(E6 F2−E2

4), D(A) = u AF2, D(F2) = 1

12
(F2

2−E4).

C. R. Mathématique — 2021, 359, n 4, 505-521



YoungJu Choie, François Dumas, François Martin and Emmanuel Royer 521

We deduce by (38) and (39) that D is equal to the derivation ∂u and then, by (41) that

(CMD,∆u
n )n = ([[ · , · ]]u,12u+1

n )n .

We conclude that J is stable by the formal deformation ([[ · , · ]]u,12u+1
n )n of K .

The fact that the restriction to M of this deformation of J is the sequence of classical Rankin–
Cohen brackets follows from (3) of Theorem 15. �
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