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What is a L-function?

1 A Dirichlet series with Euler product of degree at
most d ≥ 1 (and degree < d only for a finite number of
factors):

L($,s) =
+∞∑
n=1

λ$(n)n−s

=
∏
p∈P

d∏
j=1

[
1− α$,j(p)

ps

]−1

(α$,j(p) ∈C)

We assume α$,j(p)� 1 hence the series and product
converge absolutely for<s > 1.
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What is a L-function? (cont.)

2 A gamma factor:

γ($,s) = π−ds/2
d∏

j=1

Γ
(s +κj

2

)
with

κj ∈R>−1 or

∣∣∣∣∣∣∣∣
κj ∈C
∃j′ : κj′ = κj
<κj > −1.

hence γ($,s) has no zeros in C and no pole in
<s ≥ 1.
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What is a L-function? (cont.)

3 A positive integer q($) ≥ 1: the conductor of L($,s)
such that:

p - q($) =⇒ α$,j(p) , 0.

4 A complete L-function:

Λ($,s) = q($)s/2γ($,s)L($,s)

that is holomorphic in<s > 1 and is required to
admit analytic continuation to a meromorphic
function (of order 1) on C with at most poles at s = 0
and s = 1.

Emmanuel Royer Random matrix theory and L-functions



What is a L-function? (cont.)

5 A functional equation

Λ($,s) = ε($)Λ($,1− s)

where ε($) is a complex number of norm 1 and
L($,s) is the “dual” of L($,s):

λ$(n) = λ$(n)
γ($,s) = γ($,s)
q($,s) = q($,s).
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Family of L-functions.

This notion is not well defined in full generalities
hence we shall use it only in particular cases where it
appears “natural”.
In general, at least one parameter is to be taken in
account, the conductor: a family FQ has a parameter
Q such that:

L($,s) ∈ FQ =⇒ q($) = Q.
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Random matrix theory and L-functions:
general view

FQ: family
L($,s) ∈ FQ⇒ q($) = Q

statistical properties
associated to the zeros
of L ∈ FQ

asymptotic behavior
Q→∞

subgroup of U(N)
with measure G(N) ⊂
U(N)

statistical proper-
ties associated to
the eigenangles of
A ∈ G(N)

N→∞
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Parabolic forms

Let k ≥ 2 be an even integer and N ≥ 1 a squarefree
integer.
A parabolic (modular) form of weight k and level N is a
holomorphic function f on the Poincaré upper half-plane
H = {z ∈C : =z > 0} such that

1 For any
(
a b
c d

)
∈ Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) : c |N

}
,

(cz + d)−kf
(

az + b
cz + d

)
= f (z)

2 the function z 7→ (=z)k/2 |f (z)| is bounded on H .
We get a finite dimensional vector space over C.
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Dirichlet series of parabolic forms

If f is a parabolic form of weight k and level N, it is
periodic of period 1 and admits a Fourier expansion

f (z) =
+∞∑
n=1

f̂ (n)e2πinz.

We define its Dirichlet series and completed Dirichlet
series by

D(f ,s) =
+∞∑
n=1

f̂ (n)n−s

∆(f ,s) =
( N
4π2

)s/2
Γ (s)D(f ,s).
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Dirichlet series of parabolic forms (cont.)

Let WN =
(

0 −1
N 0

)
and define

f |WN(z) = (detWN)k/2(Nz)−kf
(−1
Nz

)
.

Since WNΓ0(N)W−1
N = Γ0(N) this is also a parabolic form of

weight k and level N. It is easy seen that

∆(f ,s) = ik
∫ +∞

1
f |WN

(
it√
N

)
tk−s dt

t
+
∫ +∞

1
f
(

it√
N

)
ts dt

t

hence
∆(f ,s) = ik∆ (f |WN ,k− s) .
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Wanted: Euler product

However these Dirichlet series lack an Euler product
(multiplicativity properties for the Fourier coefficients) to
be L-functions! To enter the world of L-functions, we
need the theory of Atkin & Lehner. It will be possible
only on a subspace of parabolic forms, called the
subspace of newforms.
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Scalar product

On the space of modular forms, we have the Petersson
scalar product:

(f ,g) =
∫
Γ0(N)\H

f (x + iy)g(x + iy)yk dxdy
y2

where Γ0(N)\H is any representative set of the
homographic action of Γ0(N) on H :

M.z ∼ z⇔M ∈ Γ0(N).
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Hecke operators

For any integer n, the nth Hecke operator Tn defined by:

Tnf (z) =
1
n

∑
ad=n

(a,N)=1

ak
d−1∑
b=0

f
(

az + b
cz + d

)

acts on parabolic forms of weight k and level N. The
Hecke operators commute, more precisely they enjoy the
following multiplicativity relation:

TmTn =
∑

d|(m,n)
(d,N)=1

dk−1Tmn/d2 .
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Hecke operators (cont.)

Nearly all Hecke operators are selfadjoint: if f and g are
parabolic forms of weight k and level N and if n is
coprime to N then

(Tnf ,g) = (f ,Tng).

Therefore, we can find an orthogonal basis of the space of
parabolic forms of weight k and level N,of eigenvectors of
{Tn, (n,N) = 1}.
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Hecke operators (cont.)

The mth Fourier coefficient of Tnf is given in terms of the
Fourier coefficients of f by:

T̂nf (m) =
∑

d|(m,n)
(d,N)=1

dk−1̂f
(mn

d2

)

hence, if f is an eigenvector of any Tn with (n,N) = 1 the
eigenvalue tf (n) satisfies

f̂ (n) = f̂ (1)tf (n).

Since we can build parabolic forms f , 0 with f̂ (1) = 0 that
are eigenvectors of {Tn, (n,N) = 1} this is not an
interesting information.
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Atkin-Lehner theory

Define the space of old forms of level N:

Oldk(N) = Vect{z 7→ f (Lz) : LM |N,M ,N, f of level M}
and the space of newforms:

Newk(N) = Oldk(N)⊥.

Atkin & Lehner theory provides an orthogonal basis of
Newk(N) made of eigenvectors of all the Hecke operators.
We can normalize these eigenvectors to have first Fourier
coefficient equal to 1. This basis is denoted by H∗k(N) and
its member are called primitive forms
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Primitive forms

If f ∈H∗k(N) then
f is an eigenvector of Tn with eigenvalue its nth
Fourier coefficient (hence this coefficient is real) for
any n
the Fourier coefficients enjoy the same
multiplicativity relation as the Hecke operators
Deligne’s theorem

|̂f (n)| ≤ σ0(n)n(k−1)/2

there exists εf (N) ∈ {−1,1} such that f |WN = εf (N)f .

We normalize the Fourier coefficients λf (n) = f̂ (n)
n(k−1)/2 .
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L-functions of primitive forms

Let f ∈H∗k(N) and define its L-function by

L(f ,s) =
+∞∑
n=1

λf (n)n−s.

Euler product:

L(f ,s) =
∏
p∈P

(
1− αf (p)

ps

)−1 (
1− βf (p)

ps

)−1

where αf (p) + βf (p) = λf (p), αf (p) = βf (p)−1 = βf (p) if
(p,N) = 1 and βf (p) = 0 if p |N.
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L-functions of primitive forms (cont)

gamma factor

γ(f ,s) = π−sΓ

(
s + (k− 1)/2

2

)
Γ

(
s + (k + 1)/2

2

)
conductor N
the completed L function admits an entire
continuation
functional equation: Λ(f ,s) = ikεf (N)Λ(f ,1− s).
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L-functions of primitive forms: zeros

The zeros of Λ(f ,s) – that is the zeros of L(f ,s) that do not
compensate the poles of the gamma factor – are inside the
critical strip:

0 ≤<s ≤ 1

and if ρ is a zero, then ρ, 1− ρ and 1− ρ also are. To avoid
technicalities we assume the Riemann hypothesis for
L-functions of primitive forms:

Λ(f ,s) = 0⇒<s =
1
2
.

If Λ(f ,1/2 + iγf ) = 0, we associate a normalised zero:

γ̃f =
log(k2N)

2π
γf .
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Mean spacing

Let Z (f ) the set imaginary parts of normalised zeros of
Λ(f ,s) (repeated with multiplicities). If γ ∈Z (f ) is
nonnegative, we define the spacing:

E(γ) = min{γ−γ′ : γ′ ∈Z (f )\{γ}, 0 ≤ γ′ ≤ γ} (min(∅) = 0).

The normalisation of the zeros is chosen as to obtain a
unit mean spacing:

lim
T→+∞

1
#{γ ∈Z (f ) : 0 ≤ γ ≤ T}

∑
γ∈Z (f )
0≤γ≤T

E(γ) = 1.
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One-level density

Let Φ be a Schwartz function whose Fourier transform

Φ̂(ξ) =
∫
R
Φ(x)exp(−2πixξ)dx

has Fourier compact support. We define the one-level
density of L(f ,s) by:

D1[Φ](f ) =
∑
γ∈Z (f )

Φ(γ).

Since Φ is of fast decreasing, this evaluates the number of
zeros of Λ(f ,s) in bounded intervals. Due to the
normalisation (mean spacing 1) this is expected to be
bounded, regardless of the value of N.
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One-level density (cont.)

Analysis is not able to catch only a finite number of zeros
of a single L-function. Hence, we study the one-level
density on average.

Theorem (Iwaniec, Luo & Sarnak, 2000)

Assume that Φ̂ has support in (−2,2). Then

lim
N→∞

1
#H∗k(N)

∑
f∈H∗k(N)

D1[Φ](f ) =
∫
R
Φ(x)W[O](x)dx

with
W[O](x) = 1 +

1
2

Dirac0(x).
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One-level density on RMT side

Let A ∈U(N). Its spectrum is{
eiϕj(A) : 1 ≤ j ≤N

}
for some choice of angles {ϕj(A) : 1 ≤ j ≤N}. We define its
“full anglespectrum”:

Fas(A) =
⋃
`∈Z
{ϕj(A) + 2`π : 1 ≤ j ≤N}

which becomes independant on any choice.
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One-level density on RMT side (cont.)

The one level density of A ∈U(N) is

D1[Φ](A) =
∑

ϕ∈Fas(A)

Φ
( N
2π
ϕ
)
.

Theorem (Katz & Sarnak, 1999)

We have

lim
N→∞

∫
O(N)

D1[Φ](A)dHaarO(N)(A) =
∫
R
Φ(x)W[O](x)dx

with
W[O](x) = 1 +

1
2

Dirac0(x).
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One-level density: smaller families

We can split the set of primitive forms into two smaller
sets:

the set of “even primitive forms”:

H+
k (N) = {f ∈H∗k(N) : ikεf (N) = 1}

the set of “odd primitive forms”:

H−k (N) = {f ∈H∗k(N) : ikεf (N) = −1}

These two sets have (asymptotically in N) the same size:
half the one of H∗k(N). Note that, thanks to functional
equation:

f ∈H−k (N)⇒ L
(
f ,

1
2

)
= 0.
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One-level density: smaller families (cont.)

Theorem (Iwaniec, Luo & Sarnak, 2000)

Assume that Φ̂ has support in (−2,2). Then

lim
N→∞

1
#H+

k (N)

∑
f∈H+

k (N)

D1[Φ](f ) =
∫
R
Φ(x)W[SO+](x)dx

with

W[SO+](x) = 1 +
sin(2πx)

2πx
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One-level density: smaller families (cont.)

Theorem (Iwaniec, Luo & Sarnak, 2000)

Assume that Φ̂ has support in (−2,2). Then

lim
N→∞

1
#H−k (N)

∑
f∈H−k (N)

D1[Φ](f ) =
∫
R
Φ(x)W[SO−](x)dx

with

W[SO−](x) = 1− sin(2πx)
2πx

+ Dirac0(x).
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One-level density on RMT side: smaller
subgroups

Theorem (Katz & Sarnak, 1999)

We have

lim
N→∞

∫
SO(2N)

D1[Φ](A)dHaarSO(2N)(A)

=
∫
R
Φ(x)W[SO+](x)dx

with

W[SO+](x) = 1 +
sin(2πx)

2πx
.
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One-level density on RMT side: smaller
subgroups

Theorem (Katz & Sarnak, 1999)

We have

lim
N→∞

∫
SO(2N+1)

D1[Φ](A)dHaarSO(2N+1)(A)

=
∫
R
Φ(x)W[SO−](x)dx

with

W[SO−](x) = 1− sin(2πx)
2πx

+ Dirac0(x).
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Importance of the support of Φ̂

The model for a family of L-function is provided by one
of the three integrals∫

R
ΦW[O],

∫
R
ΦW[SO+],

∫
R
ΦW[SO−]

However these integrals equal∫
R
Φ̂Ŵ[O],

∫
R
Φ̂Ŵ[SO+],

∫
R
Φ̂Ŵ[SO−]

and

Ŵ[O]|(−1,1) = Ŵ[SO−]|(−1,1) = Ŵ[SO+]|(−1,1).

Emmanuel Royer Random matrix theory and L-functions



Even smaller families

If N is squarefree, write N = p1 · · ·p` with p1 < · · · < p` its
prime decomposition. We have defined an operator
WN : f 7→ f |WN . Actually, we have WN = Wp1

· · ·Wp` where:

f |Wp(z) = pk/2(Nz + pd)−kf
(

paz + b
Nz + pd

)
with

(a,b,d) ∈Z3,d ≡ 1 (mod N/p),p2ad− bN = p.

If f ∈H∗k(N) then f |Wpj
= εf (pj)f where εf (pj) = ±1.
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Even smaller families (cont.)

Let σ ∈ {−1,1}`. We define

Hσk (N) =
{
f ∈H∗k(N) :

(
εf (p1), . . . , εf (p`)

)
= σ

}
.

It can be shown that

#Hσk (N) ∼ 1
2`

#H∗k(N) (N→ +∞,ω(N) = `)

The one-level density of the zeros of L-functions of forms
in Hσk (N) only depends of the sign of the functional
equation.
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Even smaller families (cont.)

Theorem (Royer, 2001)

Let ` a fixed positive integer and κ ∈ (0,1/`). Let σ ∈ {−1,1}`
and Φ whose Fourier transform has compact support in
(−2,2). Consider an infinite sequence N of squarefree
integers having ` prime divisors and such that
Nκ <min(p |N). Then

lim
N→∞
N∈N

1
#Hσk (N)

∑
f∈Hσk (N)

D1[Φ](f ) =
∫
R

W[SOε]Φ(x)dx

where ε = ikσ1 · · ·σ`.
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Higher moments

To simplify notations, we define three expectation
operators for X : H∗k(N)→C:

E[X] =
1

H∗k(N)

∑
f∈H∗k(N)

X(f )

E+[X] =
1

H+
k (N)

∑
f∈H+

k (N)

X(f )

E−[X] =
1

H−k (N)

∑
f∈H−k (N)

X(f )
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Higher moments (cont.)

Theorem (Hughes & Miller, 2007)

Let n ≥ 2 and assume that Φ̂ has compact support in(
− 1

n−1 ,
1

n−1

)
. Then

lim
N→∞
N∈P

E±
[(

D1[Φ]−E± [D1[Φ]]
)n]

= α(n)±Rn(Φ)

where α(2m) = (2m− 1)!!σ2m
Φ and α(2m + 1) = 0,

σ2
Φ = 2

∫ 1

−1
|y|Φ̂(y)2 dy,

Rn(Φ) = (−2)n−1
∫
R
Φ(x)n

[
sin(2πx)

2πx
− 1

2
Dirac0(x)

]
dx.
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Higher moments: RMT settings

Exactly the same result holds for subgroups of U(N) when
defining for X : U(N)→C:

E+[X] =
∫

SO(2N)
X(A)dHaarSO(2N)(A)

E−[X] =
∫

SO(2N+1)
X(A)dHaarSO(2N+1)(A).
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Mock Gaussian behavior

We have:

1
(−2)n−1 Rn(Φ) =

∫
R
ΦnS− 1

2
Φ(0)n =

∫
R
Φ̂nŜ− 1

2
Φ(0)n

with S(x) = sin(2πx)
2πx . Assume that the support of Φ̂ is in(

−1
n ,

1
n

)
so that the one of Φ̂n is in (−1,1). Then,∫

R
Φ̂nŜ =

∫ 1

−1
Φ̂nŜ =

1
2

∫ 1

−1
Φ̂n =

1
2
Φ(0)n

so that
Rn(Φ) = 0.
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Mock Gaussian behavior (cont.)

We deduce that the first moments (comparing to the
support of Φ̂ are Gaussian, but that this does not remain
for highest moments. This phenomenon, first discovered
by Hughes & Rudnick for L-functions of Dirichlet
characters is called Mock Gaussian behavior.
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Symmetric power L-functions

For any natural integer r ≥ 1, the symmetric power rth
function of associated to f ∈H∗k(N) is the following Euler
product:

L(Symr f ,s) =
∏
p∈P

r∏
j=0

1− αf (p)iβf (p)r−i

ps

−1

.
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Symmetric power L-functions: gamma factor

If r is odd, the gamma factor is

γ(Symr f ,s) = π−(r+1)s/2×
(r−1)/2∏
`=0

Γ

(
s + (2`+ 1)(k− 1)/2

2

)
Γ

(
s + 1 + (2`+ 1)(k− 1)/2

2

)
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Symmetric power L-functions: gamma factor

If r is even, the gamma factor is

γ(Symr f ,s) = π−(r+1)s/2×

Γ
(s +µk,r

2

) r/2∏
`=1

Γ

(
s + `(k− 1)

2

)
Γ

(
s + 1 + `(k− 1)

2

)
with

µk,r =

1 if r(k− 1)/2 is odd
0 otherwise.

Emmanuel Royer Random matrix theory and L-functions



Symmetric power L-functions: functional
equation

The conductor is Nr and the functional equation is

Λ(Symr f ,s) = εSymr f (N)Λ(Symr f ,s)

where εSymr f (N) is εf (N) up to a sign depending only on
the fixed variables k and r. This symmetric power
L-function admits an entire continuation.
The functional equation and continuation are known if
1 ≤ r ≤ 4 (Hecke, Gelbart & Jacquet, Kim & Shahidi) and
conjectural for r > 4. This is a consequence of the
Langlands modularity conjecture.
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Symmetric power L-functions: symmetry
type

We want to determine which subgroup of U(N) can be
used to modelise the zeros of symmetric power
L-functions. We assume Riemann hypothesis for these
L-functions and define the one-level density by

D1[Φ;r](f ) =
∑

γ,Λ(Symr f ,1/2+iγ)=0

Φ

(
log(Nr)

2π
γ

)
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Symmetric power L-functions: symmetry
type

Theorem (Ricotta & Royer, 2007)

Assume Φ̂ has support in (−ν,ν). Let θ = 7/64 and

ν1,max(r,κ,θ)B
(
1− 1

2(κ− 2θ)

)
2
r2 .

If ν < ν1,max(r,κ,θ) then the asymptotic expectation of the
one-level density is

Φ̂(0) +
(−1)r+1

2
Φ(0).
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Symmetric power L-functions: symmetry
type

It follows that:
if r is even, the zeros are modelised by matrices in Sp
if r = 1 the zeros are modelised by matrices in O
if r ≥ 3 is odd, the zeros are modelised by matrices in
O or SO+ or SO−.

The support is too small to determine the symmetry type
in the case of odd r ≥ 3. We shall use the two level density.
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Numbering of the zeros

The set of the zeros of Λ(Symr f ,s) counted with
multiplicities is given by{1

2
+ iγ(j)

f ,r : j ∈ E (f ,r)
}

where

E (f ,r)B

Z if ε(Symr f ) = −1
Z \ {0} if ε(Symr f ) = 1
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Numbering of the zeros (cont.)

We enumerate the zeros such that
1 the sequence j 7→ γ

(j)
f ,r is increasing

2 we have j ≥ 0 if and only if γ(j)
f ,r ≥ 0

3 we have γ(−j)
f ,r = −γ(j)

f ,r.

Remember that if ε(Symr f ) = −1 then the functional
equation of Λ(Symr f ,s) evaluated at the critical point
s = 1/2 provides a zero denoted by 1

2 + iγ(0)
f ,r .
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Numbering of the zeros (cont.)

The set of the zeros of Λ(Symr f ,s) counted with
multiplicities is given by{1

2
+ iγ(j)

f ,r : j ∈ E (f ,r)
}

where

E (f ,r)B

Z if ε(Symr f ) = −1
Z \ {0} if ε(Symr f ) = 1

Remember that if ε(Symr f ) = −1 then the functional
equation of Λ(Symr f ,s) evaluated at the critical point
s = 1/2 provides a zero denoted by 1

2 + iγ(0)
f ,r .
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Numbering of the zeros (cont.)

The set of the zeros of Λ(Symr f ,s) counted with
multiplicities is given by{1

2
+ iγ(j)

f ,r : j ∈ E (f ,r)
}

where

E (f ,r)B

Z if ε(Symr f ) = −1
Z \ {0} if ε(Symr f ) = 1

Remember that if ε(Symr f ) = −1 then the functional
equation of Λ(Symr f ,s) evaluated at the critical point
s = 1/2 provides a zero denoted by 1

2 + iγ(0)
f ,r .
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Two level density

The two-level density of Symr f (relatively to Φ1 and Φ2)
is defined by

D2[Φ1,Φ2;r](f ) =
∑

(j1,j2)∈E (f ,r)2

j1,±j2

Φ1

(
logNr

2π
γ

(j1)
f ,r

)
Φ2

(
logNr

2π
γ

(j2)
f ,r

)
.

It has been shown by Miller that, this statistics for
subgroups of U(N) allow to distinguish the subgroups,
regardless to the support of Φ1 and Φ2. Hence, it should
allow us to determine the symmetry type of our
symmetric L-functions.

Emmanuel Royer Random matrix theory and L-functions



Two level density

Theorem (Ricotta & Royer, 2007)

Assume Φ̂1 and Φ̂2 have support in (−ν,ν). If ν < 1/r2 then
the asymptotic expectation of the two-level density is[
Φ̂1(0) +

(−1)r+1

2
Φ1(0)

][
Φ̂2(0) +

(−1)r+1

2
Φ2(0)

]
+ 2

∫
R
|u|Φ̂1(u)Φ̂2(u)du− 2Φ̂1Φ2(0)

+
(
(−1)r +

χ2N+1(r)
2

)
Φ1(0)Φ2(0).
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Symmetric power L-functions: symmetry
type

It follows that:
if r is even, the zeros are modelised by matrices in Sp
if r is odd, the zeros are modelised by matrices in O.
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Symmetric power L-functions: moments

Finally, we are able to compute the moments of the
one-level density. However, not in a large enough range to
exhibit the Mock Gaussian behavior.

Theorem (Ricotta & Royer, 2007)

Assume Φ̂ has support in (−ν,ν). If mν < 4
/
(r(r + 2)) then

the asymptotic m-th moment of the one-level density is0 if m is odd,(
2
∫
R
|u|Φ̂2(u)du

)m/2 × m!
2m/2(m

2 )!
otherwise.
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