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Formal deformations: definition

Let A be a commutative algebra. The commutative algebra
of formal power series is A[[#]].

Definition

Let 4 = (un)nen b€ a sequence of bilinear applications
A x A — A such that yg is the product on A. Define a
product on A[[A]] by extension of

frag=) mf.9f"  (Ff.geA.

neN

The sequence u is a formal deformation of A if this non
commutative product is associative.



Poisson brackets: an observation

Let (un)nen be a formal deformation of a commutative
algebra A. If u, is skew-symmetric and u, is symmetric,
then u, is a Poisson bracket on A.

Definition

Let A be a commutative algebraand y: AxA—> Aa
skew-symmetric bilinear application, then (A, u) is a
Poisson algebra if for all a, b and c in A,

u(ab, ¢) = au(b, c) + bu(a, c) (Leibniz)

p(a, u(b, €)) +pu (b, u(c,a)) + u(c,u(a, b)) =o (Jacobi).



Poisson brackets on polynomial algebras

Let A be the commutative algebra C[x,, ..., x,]. Consider
a Poisson bracket[ , ]JonA. Itis entirely determined by
the values [x;, xj] for1 <i<j < n:

) oP3Q 0QoP\
[P, Q] B Z (OX,' an - dX,' OX]' [XI’X]]

1<i<j<n



Poisson brackets on polynomial algebras

» A = C[x]: the unique Poisson bracket on A is the zero
one.

» A = CJx,y]: for any P € A there exists a Poisson
bracket on A defined by [x,y] = P.

» A=C[x,y,z]: forany P,Q and R in A, there exists a
Poisson bracket on A defined by

[Xx,y]=R, [v.z]=P, [z,x]=Q

if and only if
(P,Q,R) - curl(P,Q,R) =0
where
url(P. Q. R) = OR 0Q oP OJR 4Q oP

dy 0z 3z Ix dox oy’



Bidifferential Poisson bracket : solvable case

Let d and § be two derivations of a commutative algebra
A. We assume thatdo § — § o d = 26.

Theorem (Connes & Moscovici, 2004)
The sequence (unp)neny Of maps un: Ax A — A defined by

,Un(f, g) =

n e ® ((d+rid)™ () - 6™ ((d + (n - n)id)” (g))

r=0
IS a formal deformation of A.

Notation: ¢ =g o (¢ +id)o(¢p +2id)o---0o(¢ + (n —1)id)

Corollary: [f,g] = u1(f,g) = d(f)6(g) — 6(f)d(g) defines a
Poisson bracket on A.



Formal deformation of graded algebras

Let A = P, A be a graded commutative algebra. Let d
be any derivation of A satisfying d(A.,) C Ap.».

Theorem (Zagier, 1994)
The sequence (up)neny Of maps un: Ax A — A defined by

n k B B
pnf. 9) = Z(—nf( o 1)(“’r7 1

(f € Ak, g € Ag) is a formal deformation of A.

)d’(f)d”‘r(g)






Modular forms: definition

A modular form of weight k is a holomorphic function on
H = {z € C: Imz > 0} satisfying

az+b
cz+d

(cz + d)""f( ) =f(z) V(¢ 3) e SL(2,Z)

and having a Fourier expansion
+00 R )
f@)= ) f(me>™.
n=0

The set of modular forms of weight R is a finite dimensional
vector space. If is non zero if and only if R € 2N, R # 2.



Modular forms: Eisenstein series

For any R € 2N, let

R! 1
Er(2) = —— E :
RIm)Br (n)c27 0,01y (M2 + )"

This series is absolutely convergent if R > 4 and admits a
Fourier expansion:

2R & -
Ex@) = 1= 5 ) Oka(me™™
n=1

where

Opa(n) = ) d* .

din
It defines a modular form of weight k.



Modular forms: structure

The set of modular forms of weight R is a finite dimensional
vector space M. For any k and ¢, we have MM, C M.,
and, M, N M, = {0} if R # £. The weight defines a gradu-
ation over the algebra M of all modular forms.

Theorem

The Eisenstein series E, and Eg are algebraically
independent and generate M.

M=ClE, El= P Mewith M= ( CE|, =

Re2N, R#2 Li+6j=R



Modular forms: derivatives

Let D(f) = ﬁf’(z). Let f be a modular form of weight k.
Then

(CZ n d)—(k’+2m) Dm(f) (

Zm:(m) (R+m—1)! (1 )ij—](f)(z)( ¢ )j. (1)

s JJ(R+m—j—1) \2ix cz+d

az+b
cz+d

The derivative of a modular form is not a modular form.



Quasimodular forms: definition

Definition

A quasimodular form of weight Rk and depth s is a
holomorphic function f on H such that there exist
holomorphic functions fo, . . ., fs with fs # 0 satisfying

(cz + d)"*f(a“ b) S (55

cz+d cz+d

and such that each f, has a Fourier expansion with only
positive indices.

We define M the algebra of all quasimodular forms. The
function f, is necessarily f and hence a quasimodular form
of depth o is a modular form. If f is a quasimodular form
of weight k and depth s, then D(f) is a quasimodular form
of weight kR + 2 and depth s + 1.



Quasimodular forms: from Eisenstein series

The algebra M = C[E,, Eg] is not stable by complex deriv-
ation since

D(E,) = %<E4 E, - Eo)

1
D(Ee) = - (Es E2—E}).

However,

D(Ey) = % (E3 - Es)

hence the algebra C[E,, E,, Eg] is stable by derivation.



Quasimodular forms: structure

—~—

M = C[E,, E,, E6]

S
A <R/2 <s _ j
M=EDM? MPE =D MesyB.
J=0

Re2N

An element in M>* is a polynomial in E, with coefficients
in M. The degree in E, is the depth of this element, kR is
its weight.

R/2
M= P M, Mp=Meask
keaN s=0 = P CEEE

(i.j)eN?
4i+6j+25=R



Rankin-Cohen brackets: modular forms

I’=The derivative of a modular form is in general not a
modular form. Can we find combinations of derivatives
preserving the modularity?

In the seventies, Henri Cohen constructed bi-differential
operators that send modular forms to modular forms. Let
n € N, the n-th Rankin-Cohen bracket is defined by bilinear
extension of the following definition on homogeneous
components: if f € My and g € M, then

k+n—1)(€+n—1

RCn(f,g)=Z(—1)’( i~ ; )W'(f)D”—f(g).
j=0

We have
RCh (Mg, Me) € Miypion-



Rankin-Cohen brackets: modular forms

In the nineties, Don Zagier begun to study the algebraic
properties of Rankin-Cohen brackets. With Paula Cohen
and Yuri Manin, using a combinatorial equality proved
later by Yi-Jun Yao, he proved that the sequence (RCp)nen
is a formal deformation of the algebra M.

In particular, M is a Poisson algebra for the bracket[ , | =
RC, defined by [E,, Es] = —2(E] — EZ) = —2A.



Rankin-Cohen brackets on quasimodular
forms?

, let us define

Fora(n,R, ¢,s,t) = (aj(n, R, ¢, s, t))
JeN

n
RCYH454(F, 9) = > aj(n. k. £,5,H) D)(f) D" (g)

J=0

for f € M? and g € M. In general, we have

R+¢€+2n

Rcz,k,f,s,t (Mz, Mg) - MSS+t+n

In order to mimic Rankin-Cohen brackets on modular
forms, can we find a(n, R, ¢, s, t) such that:

ch,k,e,s,t (MZ’ ME’) c MSStt 9

R+€+2n"



Rankin-Cohen brackets on quasimodular
forms?

With Francois Martin, | proved that the only (up to multi-
plicative constant) possibility is to define

ch(f’g):
S (R=s+n=a\(e—ten—1\ ;i
j:ZO< w( n ] )( ; )D(f)D ().

iff e My and g € M., Does this define a formal deforma-
tion on M?



Quasimodular algebra is not Poisson for RC,!

Let us compute
p = RCy(E4, Eg) = —2(E; - E)
1 1
q — RC1(E67 E2) = 5 E2 EZ _5 E4 E6

1 1
r=RCi(Ez, By) =~ Eo B+ E2 .

We obtain
1
curl(p,q,n).(p,q,r) = 5 E4P #0.

It follows that RC, cannot be extended to give M a struc-
ture of Poisson algebra and that (RCy)n>0 does not define
a formal deformation of M.






Strategy

To construct formal deformations of M, | used with Francois
Dumas the following strategy.
» Construction of ‘all’ the Poisson structures on M that
extend the one given to M by RC,.

» Classification of these structures up to Poisson
iIsomorphism.

» Construction of differential expressions of these
structures to build some formal deformations.



Isomorphisms

Definition

Let b be a Poisson bracket on M. An algebra isomorphism
@ on M is a Poisson modular isomorphism if

@ (b(f,9)) = b(e(f),v(9))

and
p(M) c M.

Indeed we have the following Poisson rigidity result: the
restriction to M of a Poisson modular isomorphism is the
identity.

Notation: A = B.



First family

Proposition

For any A € C¥, there exists an admissible Poisson bracket
{, }.0n M defined by: {E,,Eg}» = —2A and

1
{E2,Ex}a = 3 (2E6 E> —A EZ)
1
{E2, E6}/\ — —5 (2 Ez E2 —A E4 E6) .

Moreover,

V(A N) € C2 (/\7,{, }A)”f(/ﬁ,{, }A,).



Second family

Proposition
For any a € C, there exists an admissible Poisson bracket
(, )a On M defined by: (E,, Eg)q = —2A and

(Ez, E4)a = E6 E2

3
(E2, Eg)a = 50’ Ez E,.

Moreover,

(/\7,( , )a) = (/\7,( , )a’) Sa=da.



Third family

Proposition
For any u € C, there exists an admissible Poisson bracket
( , Yuon M defined by (E,, E¢), = —2A and:

(E2, Ep)y = 4Eg Ex +pu Ez
<E2, E6>/J =6 EZ_ E2 —2l1 E4 E6 .

Moreover,

Vi) eC? (M, ) (M ).



Classification

Our classification is complete in the following sense.

Theorem

Up to Poisson modular isomorphism, the only distinct
admissible Poisson brackets on M are { , };, (, ), and
the family ( , )q for any a € C.

I'slfa=4wehave(, ),=(, )o.



Differential expressions

A strategy to define formal deformations is to find deriva-
tions d on M and maps «: N? — C such that the Poisson
brackets we constructed have the form:

b(f,g) = k(R,S)f3(g) — k(£,t)go(f) (f € My, g € M)

and to define

bn(f g) —

Z( )I(K(I’\’ ,S)+n-— 1) (K(e, t);u n— 1)61-(]()0”_]-(9).

We shall restrict to derivations o that act on depth and

weight like the complex derivation: OM;* ¢ M >



Differential expressions: first family

Let us define a derivation w on M by setting

W(f) — {Aaf}1

12A

For f € M? and g € M}, we have

{f. g} = Rf w(g) — £g w(f).

The set of derivations 8 on M such that aM,fS C M/ff;1

and kfa(g) — £ga(f) = o for all f e M and g € M, for all
R, ¢,s,t is a one-dimensional vector space generated by x
defined by

n(f) = KfEs  (f € ME™).

Fora e C, letdg = ar +w.



Formal deformation from the first family

Theorem

For any a € C, the brackets defined for any integer n > 0
by

Gla,n = Z( >f(k -ne 1)(3 e 1) d5(f) d3" ()

;
for f € M>= and g € M;* satisfy

[leoo,M?oo] C M<oo

dg,n R+€+2n
and define a formal deformation of M.
Moreover, [MES,M?L c M=t foralln,s,t,R, ¢ if

R+¢€+2n
and only if a = o.



Differential expressions: second family

Let us define a derivation w, on M by setting

CUNe

For f € M7 and g € M}, we have
(f’ Qa = [R— Ba + 2)5]fWa(g) —[£ - (Ba +2)t]g we (f).

The set of derivations o on M such that OM:° ¢ M2

and [R — 3a + 2)s]fo(g) — [€ — 3a + 2)t] gd(f) =0 for all
feM;andg e M., for all k ¢,s,t1s a one-dimensional

vector space generated by 7, defined by
mo(f) = [R— Ba +2)sIfE, (f € My).

ForbeC,letd,p = by + wq .



Formal deformation from the second family

Theorem
The bracRets defined for any integer n > 0 by

[f’g]da’b,n —
Z":(_1)rk—(3a+2)s+n—1 t—Ba+2)t+n-1
s n—r r

X d(rx,b(f) dg,_br(g),

forany f € M7, g € M., define a formal deformation of M
K
satisfying [M,fs,/\/(ft] c M=5*t ifand only if b = o.

dg .0 R+£€+2n
a,D»






Weak Jacobi forms

Let k be an even integer and m be a non negative integer.
A weak Jacobi form is a holomorphic function &: H — C
such that

» If (g Z) € SL(2,2), T € H and z € C then

(a'r+b Z
(¢))

, =(C +d’?e2i”%¢ . Z
ct+d CT+d) (¢t +0) (.2)
» If (A, u) € 72, then

D(7,Z + AT + ) = @ 2TMA T2 (1 7)

» & has a Fourier expansion

+00

d(1,2) = Z Z c(n, r)e*m(nT+rz),

Nn=0reZ



Bigraded structure

The vector space ﬁ,m is a finite dimensional space. We
consider the algebra of weak Jacobi forms:

57:: <3E>g§knr

kRe27
meN

This is a polynomial algebra that we describe.



Eisenstein series

The Eisenstein series of weight k > 4 and index m is

1 o 2irm(a2aztb  222-c2?
Em(r.2)= 2 Y 3o+ dy ke M)

(c,d)ez? AeZ
(c,d)=1

We have B
Erm € Jrm-



Generators

Let
1 1 5
CID10,1 = E(Efj E4,1 - E4 E6,1), CID12,1 = E(E4 E4,1 — Eg E6,1).

Let

Then
J = C[E,, Ee, A, B] = M[A, B].



Localization

We localize the algebra J with respect to A:

—~

K = C[E,, Eg, A,A™", B]

and set 3
F2 o K
to get N
7( — C[E49 E6a F2][A’ A_1]'
The algebra

is isomorphic to M.



Different algebras

J = C[E,, Ee, A, B] C[E,, Es, A*", B]

T/T .

E4 E6 E4 E6 F2 ~ M



Serre Rankin-Cohen brackets

Serre’s derivation is a derivation on M defined by

R
Vf € M, Se(f):f—Esz.
We use it to build Serre-Rankin-Cohen brackets:

k+n—1)(£+n—1

SRCn(f,g)=Z(—1)’( i~ ; )sémSe”—f(g).
J=0

We get a formal deformation of M.



Extended Serre Rankin-Cohen brackets

J = C[E,, Ee, A, B] C[E,, Es, A*", B]
C[E,, Es] C[E,, Ee, Fa] = M

We define a formal deformation of J that extends (SRC)pen.



Extended Serre Rankin-Cohen brackets

We generalize Serre’s derivation:

Sean(Ey)=—2Bs  Seqp(Es) = =3 EX
Sean(A) = aB Sean(B) = bEAA.
Define
. g =
Z( ),(k +Cp+n-— 1)(€+ qu+ n-— 1) Seg’b(f)SeZ,‘b’(g)

for all homogeneous f € J, and g € Jzq.
The restriction of {-, } [0.0.C1 t6 M is SRC,,.



Extended Serre Rankin-Cohen brackets

Theorem

For all (a, b, ¢) € C3, the sequence ({-, -},[,,a’b’cl) . is a
ne

formal deformation of J that satisfies

—~

= & la,b.c]
{ﬂ,p, Je.qtn C Jk+e+2,p+q

forall (R,p,¢,q,n) € 2Z x N x2Z x N x N.



Localized version of Rankin-Cohen brackets

J = C[E,, Es, A, B] C[E,, Es, A*", B]
C[E,, Eg] C[E4 Eg.Fal = M

We extend the formal deformation on 7 to % in two ways
and recover, by restriction, the formal deformations of M.



Localized version of Rankin-Cohen brackets:

Let d,, the derivation on K defined by
1 1
da(Es) = —g Ee +t4a E,F2  do(Es) = 5 Ez +60a Eg F»,
1
da(A) = -2a A F2 da(F2) = —E E4 +2a Fg .

Let ([, ]y be defined by

)neN
[f,g]“:
Z( " (k+cp+n_1)(£+Cq.+n_1)dfx(f)dg"'(g),

|

for all homogeneous f € K, and g € Keq-



Localized version of Rankin-Cohen brackets:

Proposition

@ Thesequence ([-,-]5), .y is a formal deformation of
%,

@ [@,p,?@,q]ﬁ’c C 7?I?+€+2n,p+q;

@ the subalgebra Q is stable by ([-,-1¥°), ., and the
formal deformation (5 ([, -]ﬁ’c)n) IS iIsomorphic to
the formal deformation (/\7 ([, ']da,n)n)r

@ if a = o, the subalgebra 7 is stable by ([-,-]>¢
and the restriction of ([-,-19°), . to J is the
deformation ({-, -},Eo’b’c])neN of  forb = ——~(and then
up to equivalence for any b € C).

)neN'



Localized version of Rankin-Cohen brackets:

Let 65 the derivation on K defined by

1 1
5ﬁ(E4) == —g E6 +[|.,B E4 F2 5,3(E6) == —5 Ei +6ﬁ E6 F2,

Let ((-, ~)ﬁ’c) be defined by

neN
<f,g>ﬁ’c =
Z( " (h+cp+n—1)(€+cq.+n—1)5}3@52_[(9)’

|

for all homogeneous f € 7?@ and g € %g,q.



Localized version of Rankin-Cohen brackets:

Proposition

@ The sequence ((-, -)ﬁ’c) . is a formal deformation of
he

—~

X,
S~ ~— ’C —
Q@ (Kip Keg)h® € Kisesanprgr

@ the subalgebra Q is stable by ((-, -)ﬁ’c) , and the

neN
formal deformation (é, ((-, ~>ﬁ’c)n) IS isomorphic to

the formal deformation (/\7 ([-, 152 )n),

5_2/3,0,n
@ ifB = o, the subalgebra 7 is stable by ((-,-)>°)
and the restriction of ({-, )¢, to J is the

deformation ({-, -}E,O’O’C]) . of J.
ne

neN’



From modular to localized version

J = C[E,, Ee, A, B] C[E,, Es, A*", B]
E49 E6 Elp E6’ I:2 M

We extend the formal deformation on M given by the
Rankin-Cohen brackets to K.



From modular to localized version

Let 9, be the derivation of X defined by
1 1
au(Eh) = —g(EG - E, F2) ou(Ee) = E(Ez —Eg F>)
1
O(Fz) — —E(E4 - Fg) du(A) =u A F2 .

For any complex parameters u and v, let ([, -], be

defined by

)neN

[[fg]]“’v—
Z( 2y (k+vp+n—1)(€+vq+n—1)050)0[,,_,@),

r

for all homogeneous f € K, and g € Keq-



From modular to localized version...

Theorem

For all (u,v) € C?,

@ thesequence ([-,-],")
X,

@ [[7A€k+,p,7?€,q]]g’v C 7A(ik+(,’+2n,p+q;

@ the sequence ([-,-1,"), .y restricts to the formal
deformation of the algebra M of modular forms
given by the usual Rankin-Cohen brackets.

oy IS a formal deformation of



... and back to Jacobi forms

Lemma

The algebra 7 is stable by the Poisson bracket [-, -]V if
and only if v—1 = 12u.

Conjecture

For any complex number u, the sequence ([, -]y ™“™") .«

Is a formal deformation of the algebra J of weak Jacobi
forms.



Thanks

THANK YOU!



