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Ramified coverings

Let S be a surface (2 dimensional variety, smooth, compact,
connected, oriented, without boundary). A ramified covering of S
by a surface C is a smooth application preserving the orientation

p: C — S such that
» each point of S has a finite number of preimages (by p) ;

» there exists a finite set R C S such that p is a covering of

S\ R.
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Coverings

) Lkt

=1
proj V

Every s € S\ R has
» a neighborhood V,
» a non empty finite a set F
» and a homeomorphism
¢:p (V)= VXF
such that the following diagram

commutes

p1(V) e V x F

N

V
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L ocal behavior

Given ¢ € C, the coordinates may be chosen so that, locally, p is
z +— z¥ for some integer k > 1.
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Different orders

C > c Icoordtnates 0eC
around ¢

p l l \LZI—)Zk

S5 p(c coordinates 0 ¢ C

around p(c)

» for any ¢ € C, we define the preimage order:ord_inv(c) = k.

» if k> 1 then
» C is said to be a critical point and its critical order is:

ord_cri(c) =k —1> 1.

» p(c) is said to be a ramification point and its ramification

order is
ord_ram (p(c)) = Z ord_cri(x)

x critical
p(x)=p(c).
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Degree

The map
C — N
c — Z ord_inv(x)
xeC
p(x)=p(c)

s constant.

This is called the degree of p: deg(p).
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Riemann-Hurwitz formula (RH)

Let p: C — S be a ramified covering with ramification points
R C S, then

2 genus(C) — 2 = (2genus(S) — 2)deg(p) + Z ord_ram(r).
re’R
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Description of the preimages

Forye Sand i€ {1,...,deg(p)}, let gi > 0 be the number of
preimages x € C of y having order

ord_inv(x) = i.

Then

deg(p)

Y g = deg(p)

i=1

deg(p)

Z g; = number of distinct preimages of y.
i=1
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Partition associated to a ramification point

We can associate to (p, y) a partition of deg(p):

1,...,1,....deg(p),...,deg(p) | = (1‘71 e deg(p)deg(p)) :
N’ (. /

N

gitimes gptimes

It

1,...,1,....deg(p),...,deg(p) | = (m1,...,mq)
N’ (. /

N

gitimes gptimes

with m; > 1 for any /, then d is the number of preimages of y.
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Equivalent coverings

Two ramified coverings p1: (1 — S and pa: (3 — S of the same
surface S are equivalent if there is a diffeomorphism ¢: ¢; —
such that:

p20 ¢ = p1.

The following diagram commutes:

¢

AN

S

C1

Co
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Automorphism of coverings

An automorphism of a ramified covering p: C — S is a
diffeomorphism ¢: C — C which is invisible through p that is

po¢o=p.

The following diagram commutes:

N

S

The group of automorphisms of p is denoted Aut(p).
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Hirwitz Problem

Data
» a compact Riemann surface S with ¢ marqued points
Y1, -5 Ye
» an integer n and, for every marqued point y; a partition 7; of
n.
Question
How many non equivalent ramified coverings of S of degree n
have
» the marqued points yy, ...,y for ramification points

» the partition 7; associated to the ramification point y; for any
I 7

Each covering p is counted with weight |AT1(M|' We get the
Hirwitz number associated to the data : h.
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Weights in countings (1)

Forgett the symmetry

Given n coins, there is a(n) = ('2’) possible choices of 2 coins.
The generating function is

X2

GF(a; x) = Z a(n)x" = 1)

ncN

The computation is not so easy : use inversion of summations on

>3 (5)

keN neN

and specialize.
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Weights in countings (2)

Take account of the symmetry

There is |&,| = n! numerotations of the coins. Put 1/|&,] as a
weight leads to trivial computations :

1 X2

EGF(q; x) = Z ma(n)x” = ?ex.

ncN

ldea
Weighting by the symmetry group in countings leads to

» easier caluclations
» same information

itf the symmetry group is easy to evaluate!



16/1

Huarwitz formula (1)

Data

» surfaces S and C are spheres

» there is n — d + 2 ramification points with ord ram =1 and
only one ramification point can have ord ram > 1

» the partition of n associated to this point is
(kl,...,kd) = (1‘91,...,n3")

Notation
We note |Aut(ky, ..., ky)| the number of permutations o of the
elements ki, ..., kg such that k,;y = k; for any i. We have

\Aut(kl, Ceey kd)‘ — a1l a,!
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Hirwitz formula (2)

The associated Hurwitz number is
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Coverings of the torus

Let T = R?/Z? and R C T of finite cardinality r (necessary

even).
Let R(T, R, n) be the set of equivalent classes of coverings of

degree n whose ramification points are in R and are all simple.

The dependance in R of the number

1
2 Aut(p)|

peR(T,R,n)

is only in r. Denote it by Nt(r, n).
NB. If p: C — T isin R(T, R, n) then the genus of C is (r+2)/2.
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Coverings of the torus

Dijkgraat and Kaneko & Zagier

Fix r > 2. The generating function

Z N‘u‘(l’, n) e27rinz

n>1
is @ quasimodular form of weight 3r = 6g — 6.

Generalisation
The result is still true when considering the other types of

ramification :
» Eskin, Masur & Schmoll
» Bloch & Okounkov
» Eskin & Okounkov.

We will present a specific example.
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What is a quasimodular forms 7

Quasimodularity condition

A holomorphic function f on the Poincaré half-plane is a
quasimodular form of weight k and depth s > 0 if there exists
holomorphic functions fy, ..., fs (fs # 0) such that

s (2) S0 (%)

for any
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What is a quasimodular forms 7

Growth condition
Take the matrix (§ 1) to see that f is 1-periodic. We assume that
there are no Fourier coefficient of neative order

+00
f(z)=> f(n)e*™.
n=0

ATTENTION &y

Think on how we see that if f is a modular form then it has a
Fourier development at any cusp. Remark that a quasimodular
form does not satisty this property. The growth condition is not a
condition at the cusp. This is (a little) problematic for congruence
subgroups.
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Example

Eisenstein series of weight 2

| et
+00 _
Ex(z) =1-24) o1(n)e*™™.
n=1
It satisfies
az -+ b 6 ¢
d) °E — E
(cz+d) 2<cz—|—d> 2(Z)—i_iwcz—l—d

for any (i 3) e SL(2,2Z).

Hence this is a quasimodular form of weight 2 and depth 1.
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Example

Modular forms and differentation

» a modular form is a quasimodular form of depth O.

» the derivative of a modular form of weight k is a
quasimodular form of weight kK + 2 and depth 1.

» the derivative of a quasimodular form of weight k and depth
s is a quasimodular form of weight k + 2 and depth s + 1.
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Structure theorem

Denote by My the vector space of modular forms of weight k, and
by MkSs the vector space of quasimodular forms of weight k and
depth <'s.

k/2—1
MP = € D'My_o;i @ CD*>7'E,.
=0

k/2

Mg~ = EB M E;.
i=0
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Definition

A square-tiled surface is a collection of unit squares with
identifications of the opposite sides.

£ 0 £ 0 L

» each top side is identified with a bottom side

» each left side is identified with a right side.
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We moreover ask to obtain a connex surface.

We obtain a ramified covering of the torus R/Z with a single
ramification point (the origin of the torus).
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Ramification type

» The image of the unit circle centered at O covered once is
this circle covered k times.

» Hence the order ord_inv(x) of a preimage x of the
ramification point is determined by its angle 27 ord_inv(x).

» Denote by 27(k; + 1) the angles of the preimages,
Riemann-Hurwitz formula leads to

> ki=2g -2

where g is the genus of the square-tiled surface.

» We denote by H(ki, ..., kg) the set of non-equivalent
surfaces with angles 2 (k; + 1).
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Only one preimage is critical, its angle is 6, its critical order is
2. The genus of the square-tiled surface is 2. This surface is in

H(2).
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/orich coordinates in H(2): cylinder decomposition

By drawing geodesics (for the flat metric) passing through interior
points, it is possible to decompose a surface in H(2) into
cylinders.
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>

>

Take a point inside the
surface.

Draw the horizontal line
joining this point to itself.
Continuously move this line

until crossing a link
between saddle points.

repeat for a point not
already in a founded
cylinder
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One can show that one always get a surface with 1 or 2 cylinders.

ot e
S0
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Zorich coordinates in H(2): torsion for one cylinder

surfaces

By cutting & gluing, unit squares may be transformed in
parralelogram such that a one cylinder surface has the following
shape with

(617 627 63) — min{(glv 627 63)7 (627 637 61)7 (637 617 62)}

for the lexicographical order. This allow to define a torsion

t € [0, ¢[.
t [3 12 11
— —
® ® \
I n/l
o ® ®
1] 12 13
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Countings of one-cylinder surfaces in H(2)

» The length of the cylinder, ¢ divides n,
» the twist can take ¢ values,

» taking acount of the order of /1, ¢> and /3,

we get

1 1 1 1
3 ) ) l = 503(n) - 502(”) + 501(”)-
£ln (41,62,03)EN*3
b1+bla+03=¢
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/orich coordinates in H(2): torsion for two cylinder

surfaces

By cutting & gluing, one can transform any 2-cylinder surface of
H(2) in a surface having the following shape:

t2 b

tl

QLI

b C

obtaining two torsion parameters.
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Example
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Example
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/orich coordinates in H(2)

» two heights, h; et hy
» two lengths w; > w»

» two torsions t; € [0, wi[ and tr € [0, wa.

w2

t2 b
h2
t1
a C
: ./ "
b C
wl

The number of unit squares is n = hyw; + hows.
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Countings of two-cylinder surfaces in H(2)

n—1
S wmw= % S 01(s)os(n—5) - %nal(n) + %Jz(n).

(h17h27W17W2)€|N*4
W1>Ww2
hiwi+howso=n
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Since E, is a quasimodular form of weight 4 and depth 2, we have
E, € CE4 + DE, where D =1/(2wi)d/dz and

+00
Ea(z) =1+240) o3(n)e* ™.

n=1

It follows that
E5 = E4 + 12DE,

and

n—1 5 ] .
;0’1(5)(710’7 — S) — EO‘3(H) — §n01(n) -+ Egl(n).
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Countings surfaces in H(2)

Putting all together, the number of inequivalent square-tiled
surfaces in H(2) with n squares is

() = Slo3() — (20— Do ()]

The generating series is a linear combination of quasimodular
form:

“+00

. 1
> h(n)e*™ = c20(9 — 10E2 + 20DE; + ).
n=0

We recover (alternative method) a result of Eskin, Masur &
Schmoll. This is an explicit version, in the case of H(2), of the
general result of Bloch & Okounkov et Eskin & Okounkov.



1N

n 516 |7 38 9 10 | 11 | 12 | 13 | 14 15
h(n) 27 | 45190 | 135|201 | 297 | 405 | 525 | 693 | 918 | 1062
h(n) 3

li f = —-=20,375

nITJIrgo n3 8

. h(n) 3

| —((3) = 0,451.

meup s = 5403
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What's next?

» Definition of an action of SL(2,Z)
» Determination of the orbits (Hubert & Lelievre, McMullen)

» Countings by orbits, recover quasimodular form (Lelievre &

R.).



