## Square-tiled surfaces \& quasimodular forms

The results that will not be presented here have been obtained in collaboration with Samuel Lellèvre (Paris-Sud XI) inside the project ANR Teichmüller.

Emmanuel Royer<br>Université Blaise Pascal<br>Clermont-Ferrand<br>http://carva.org/emmanuel.royer

Trieste, May 2007

I sincerly thank the three organizers of this meeting, Balasubramanian, Deshouillers and Kowalski!

## $\because$

## Ramified coverings

Let $S$ be a surface ( 2 dimensional variety, smooth, compact, connected, oriented, without boundary). A ramified covering of $S$ by a surface $C$ is a smooth application preserving the orientation $p: C \rightarrow S$ such that

- each point of $S$ has a finite number of preimages (by $p$ );
- there exists a finite set $\mathcal{R} \subset S$ such that $p$ is a covering of $S \backslash \mathcal{R}$.


## Coverings



## Local behavior

Given $c \in C$, the coordinates may be chosen so that, locally, $p$ is $z \mapsto z^{k}$ for some integer $k \geq 1$.

## Different orders

- for any $c \in C$, we define the preimage order:ord $\operatorname{inv}(c)=k$.
- if $k>1$ then
- $c$ is said to be a critical point and its critical order is:

$$
\text { ord_cri }(c)=k-1 \geq 1
$$

- $p(c)$ is said to be a ramification point and its ramification order is

$$
\text { ord_ram }(p(c))=\sum_{\substack{x \text { critical } \\ p(x)=p(c)}} \text { ord_cri }(x)
$$

## Degree

The map

$$
\begin{array}{lll}
C & \rightarrow & \mathbb{N} \\
c & \mapsto & \sum_{\substack{x \in C \\
p(x)=p(c)}} \text { ord_inv(x) }
\end{array}
$$

is constant.

This is called the degree of $p: \operatorname{deg}(p)$.

## Riemann-Hürwitz formula (RH)

Let $p: C \rightarrow S$ be a ramified covering with ramification points $\mathcal{R} \subset S$, then

$$
2 \operatorname{genus}(C)-2=(2 \operatorname{genus}(S)-2) \operatorname{deg}(p)+\sum_{r \in \mathcal{R}} \text { ord_ram }(r) .
$$

## Description of the preimages

For $y \in S$ and $i \in\{1, \ldots, \operatorname{deg}(p)\}$, let $q_{i} \geq 0$ be the number of preimages $x \in C$ of $y$ having order

$$
\text { ord_inv }(x)=i
$$

Then

$$
\begin{aligned}
& \sum_{i=1}^{\operatorname{deg}(p)} i q_{i}=\operatorname{deg}(p) \\
& \sum_{i=1}^{\operatorname{deg}(p)} q_{i}=\text { number of distinct preimages of } y .
\end{aligned}
$$

## Partition associated to a ramification point

We can associate to $(p, y)$ a partition of $\operatorname{deg}(p)$ :

$$
(\underbrace{1, \ldots, 1}_{q_{1} \text { times }}, \ldots, \underbrace{\operatorname{deg}(p), \ldots, \operatorname{deg}(p)}_{q_{p} \text { times }})=\left(1^{q_{1}} \ldots \operatorname{deg}(p)^{\operatorname{deg}(p)}\right) .
$$

If

$$
(\underbrace{1, \ldots, 1}_{q_{1} \text { times }}, \ldots, \underbrace{\operatorname{deg}(p), \ldots, \operatorname{deg}(p)}_{q_{p} \text { times }})=\left(m_{1}, \ldots, m_{d}\right)
$$

with $m_{i} \geq 1$ for any $i$, then $d$ is the number of preimages of $y$.

## Equivalent coverings

Two ramified coverings $p_{1}: C_{1} \rightarrow S$ and $p_{2}: C_{2} \rightarrow S$ of the same surface $S$ are equivalent if there is a diffeomorphism $\phi: C_{1} \rightarrow C_{2}$ such that:

$$
p_{2} \circ \phi=p_{1} .
$$

The following diagram commutes:


## Automorphism of coverings

An automorphism of a ramified covering $p: C \rightarrow S$ is a diffeomorphism $\phi: C \rightarrow C$ which is invisible through $p$ that is

$$
p \circ \phi=p .
$$

The following diagram commutes:


The group of automorphisms of $p$ is $\operatorname{denoted} \operatorname{Aut}(p)$.

## Hürwitz Problem

## Data

- a compact Riemann surface $S$ with $c$ marqued points $y_{1}, \ldots, y_{c}$;
- an integer $n$ and, for every marqued point $y_{i}$ a partition $\tau_{i}$ of $n$.


## Question

How many non equivalent ramified coverings of $S$ of degree $n$ have

- the marqued points $y_{1}, \ldots, y_{c}$ for ramification points
- the partition $\tau_{i}$ associated to the ramification point $y_{i}$ for any i?

Each covering $p$ is counted with weight $\frac{1}{|\operatorname{Aut}(p)|}$. We get the Hürwitz number associated to the data : $h$.

## Weights in countings (1)

Forgett the symmetry
Given $n$ coins, there is $\alpha(n)=\binom{n}{2}$ possible choices of 2 coins. The generating function is

$$
\mathrm{GF}(\alpha ; x)=\sum_{n \in \mathbb{N}} \alpha(n) x^{n}=\frac{x^{2}}{(1-x)^{3}}
$$

The computation is not so easy : use inversion of summations on

$$
\sum_{k \in \mathbb{N}} \sum_{n \in \mathbb{N}}\binom{n}{k} x^{n} y^{k}
$$

and specialize.

## Weights in countings (2)

Take account of the symmetry
There is $\left|\mathfrak{S}_{n}\right|=n$ ! numerotations of the coins. Put $1 /\left|\mathfrak{S}_{n}\right|$ as a weight leads to trivial computations:

$$
\operatorname{EGF}(\alpha ; x)=\sum_{n \in \mathbb{N}} \frac{1}{n!} \alpha(n) x^{n}=\frac{x^{2}}{2} e^{x}
$$

## Idea

Weighting by the symmetry group in countings leads to

- easier caluclations
- same information
if the symmetry group is easy to evaluate!


## Hürwitz formula (1)

## Data

- surfaces $S$ and $C$ are spheres
- there is $n-d+2$ ramification points with ord_ram $=1$ and only one ramification point can have ord_ram $>1$
- the partition of $n$ associated to this point is $\left(k_{1}, \ldots, k_{d}\right)=\left(1^{a_{1}}, \ldots, n^{a_{n}}\right)$


## Notation

We note $\left|\operatorname{Aut}\left(k_{1}, \ldots, k_{d}\right)\right|$ the number of permutations $\sigma$ of the elements $k_{1}, \ldots, k_{d}$ such that $k_{\sigma(i)}=k_{i}$ for any $i$. We have

$$
\left|\operatorname{Aut}\left(k_{1}, \ldots, k_{d}\right)\right|=a_{1}!\cdots a_{n}!
$$

## Hürwitz formula (2)

The associated Hürwitz number is

$$
n^{d-3} \frac{(n+d-2)!}{\left|\operatorname{Aut}\left(k_{1}, \ldots, k_{d}\right)\right|} \prod_{i=1}^{d} \frac{k_{i}^{k_{i}}}{k_{i}!}
$$

## Coverings of the torus

Let $\mathbb{T}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and $\mathcal{R} \subset \mathbb{T}$ of finite cardinality $r$ (necessary even).
Let $R(\mathbb{T}, \mathcal{R}, n)$ be the set of equivalent classes of coverings of degree $n$ whose ramification points are in $\mathcal{R}$ and are all simple.

The dependance in $\mathcal{R}$ of the number

$$
\sum_{p \in R(\mathbb{T}, \mathcal{R}, n)} \frac{1}{|\operatorname{Aut}(p)|}
$$

is only in $r$. Denote it by $N_{\mathbb{T}}(r, n)$.
NB. If $p: C \rightarrow \mathbb{T}$ is in $R(\mathbb{T}, \mathcal{R}, n)$ then the genus of $C$ is $(r+2) / 2$.

## Coverings of the torus

Dijkgraaf and Kaneko \& Zagier
Fix $r \geq 2$. The generating function

$$
\sum_{n \geq 1} N_{\mathbb{T}}(r, n) e^{2 \pi i n z}
$$

is a quasimodular form of weight $3 r=6 g-6$.
Generalisation
The result is still true when considering the other types of ramification :

- Eskin, Masur \& Schmoll
- Bloch \& Okounkov
- Eskin \& Okounkov.

We will present a specific example.

## What is a quasimodular forms ?

## Quasimodularity condition

A holomorphic function $f$ on the Poincare half-plane is a quasimodular form of weight $k$ and depth $s \geq 0$ if there exists holomorphic functions $f_{0}, \ldots, f_{s}\left(f_{s} \neq 0\right)$ such that

$$
(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)=\sum_{i=0}^{s} f_{i}(z)\left(\frac{c}{c z+d}\right)^{i}
$$

for any

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})
$$

## What is a quasimodular forms ?

## Growth condition

Take the matrix $\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right)$ to see that $f$ is 1 -periodic. We assume that there are no Fourier coefficient of neative order

$$
f(z)=\sum_{n=0}^{+\infty} \widehat{f}(n) e^{2 i \pi n z}
$$

## (2) ATTENTION D

Think on how we see that if $f$ is a modular form then it has a Fourier development at any cusp. Remark that a quasimodular form does not satisfy this property. The growth condition is not a condition at the cusp. This is (a little) problematic for congruence subgroups.

## Example

Eisenstein series of weight 2
Let

$$
E_{2}(z)=1-24 \sum_{n=1}^{+\infty} \sigma_{1}(n) e^{2 i \pi n z}
$$

It satisfies

$$
(c z+d)^{-2} E_{2}\left(\frac{a z+b}{c z+d}\right)=E_{2}(z)+\frac{6}{i \pi} \frac{c}{c z+d}
$$

for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})$.
Hence this is a quasimodular form of weight 2 and depth 1.

## Example

## Modular forms and differentation

- a modular form is a quasimodular form of depth 0 .
- the derivative of a modular form of weight $k$ is a quasimodular form of weight $k+2$ and depth 1 .
- the derivative of a quasimodular form of weight $k$ and depth $s$ is a quasimodular form of weight $k+2$ and depth $s+1$.


## Structure theorem

Denote by $M_{k}$ the vector space of modular forms of weight $k$, and by $M_{k}^{\leq s}$ the vector space of quasimodular forms of weight $k$ and depth $\leq s$.

$$
M_{k}^{\infty}=\bigoplus_{i=0}^{k / 2-1} D^{i} M_{k-2 i} \bigoplus \mathbb{C} D^{k / 2-1} E_{2}
$$

$$
M_{k}^{\infty}=\bigoplus_{i=0}^{k / 2} M_{k-2 i} E_{2}^{i}
$$

## Definition

A square-tiled surface is a collection of unit squares with identifications of the opposite sides.


- each top side is identified with a bottom side
- each left side is identified with a right side.

We moreover ask to obtain a connex surface.


We obtain a ramified covering of the torus $\mathbb{R} / \mathbb{Z}$ with a single ramification point (the origin of the torus).

## Ramification type

- The image of the unit circle centered at 0 covered once is this circle covered $k$ times.
- Hence the order ord_inv $(x)$ of a preimage $x$ of the ramification point is determined by its angle $2 \pi \operatorname{ord} \operatorname{inv}(x)$.
- Denote by $2 \pi\left(k_{i}+1\right)$ the angles of the preimages, Riemann-Hürwitz formula leads to

$$
\sum_{i} k_{i}=2 g-2
$$

where $g$ is the genus of the square-tiled surface.

- We denote by $\mathcal{H}\left(k_{1}, \ldots, k_{d}\right)$ the set of non-equivalent surfaces with angles $2 \pi\left(k_{i}+1\right)$.


Only one preimage is critical, its angle is $6 \pi$, its critical order is 2. The genus of the square-tiled surface is 2 . This surface is in $\mathcal{H}(2)$.

## Zorich coordinates in $\mathcal{H}(2)$ : cylinder decomposition

By drawing geodesics (for the flat metric) passing through interior points, it is possible to decompose a surface in $\mathcal{H}(2)$ into cylinders.

- Take a point inside the surface.
- Draw the horizontal line joining this point to itself.
- Continuously move this line until crossing a link between saddle points.
- repeat for a point not already in a founded cylinder


One can show that one always get a surface with 1 or 2 cylinders.


## Zorich coordinates in $\mathcal{H}(2)$ : torsion for one cylinder

 surfacesBy cutting \& gluing, unit squares may be transformed in parralelogram such that a one cylinder surface has the following shape with

$$
\left(\ell_{1}, \ell_{2}, \ell_{3}\right)=\min \left\{\left(\ell_{1}, \ell_{2}, \ell_{3}\right),\left(\ell_{2}, \ell_{3}, \ell_{1}\right),\left(\ell_{3}, \ell_{1}, \ell_{2}\right)\right\}
$$

for the lexicographical order. This allow to define a torsion $t \in[0, \ell[$.




## Countings of one-cylinder surfaces in $\mathcal{H}(2)$

- The length of the cylinder, $\ell$ divides $n$,
- the twist can take $\ell$ values,
- taking acount of the order of $\ell_{1}, \ell_{2}$ and $\ell_{3}$,
we get

$$
\frac{1}{3} \sum_{\substack{\ell \mid n}} \sum_{\substack{\left(\ell_{1}, \ell_{2}, \ell_{3}\right) \in \mathbb{N}^{* 3} \\ \ell_{1}+\ell_{2}+\ell_{3}=\ell}} \ell=\frac{1}{6} \sigma_{3}(n)-\frac{1}{2} \sigma_{2}(n)+\frac{1}{3} \sigma_{1}(n) .
$$

## Zorich coordinates in $\mathcal{H}(2)$ : torsion for two cylinder

 surfacesBy cutting \& gluing, one can transform any 2-cylinder surface of $\mathcal{H}(2)$ in a surface having the following shape:

obtaining two torsion parameters.

Example


Example


## Zorich coordinates in $\mathcal{H}(2)$

- two heights, $h_{1}$ et $h_{2}$
- two lengths $w_{1}>w_{2}$
- two torsions $t_{1} \in\left[0, w_{1}\left[\right.\right.$ and $t_{2} \in\left[0, w_{2}[\right.$.


The number of unit squares is $n=h_{1} w_{1}+h_{2} w_{2}$.

## Countings of two-cylinder surfaces in $\mathcal{H}(2)$

$$
\sum_{\substack{\left(h_{1}, h_{2}, w_{1}, w_{2}\right) \in \mathbb{N}^{* 4} \\ w_{1}>w_{2} \\ h_{1} w_{1}+h_{2} w_{2}=n}} w_{1} w_{2}=\frac{1}{2} \sum_{s=1}^{n-1} \sigma_{1}(s) \sigma_{1}(n-s)-\frac{1}{2} n \sigma_{1}(n)+\frac{1}{2} \sigma_{2}(n) .
$$

Since $E_{2}$ is a quasimodular form of weight 4 and depth 2, we have $E_{2} \in \mathbb{C} E_{4}+D E_{2}$ where $D=1 /(2 \pi i) d / d z$ and

$$
E_{4}(z)=1+240 \sum_{n=1}^{+\infty} \sigma_{3}(n) e^{2 i \pi n z}
$$

It follows that

$$
E_{2}^{2}=E_{4}+12 D E_{2}
$$

and

$$
\sum_{s=1}^{n-1} \sigma_{1}(s) \sigma_{1}(n-s)=\frac{5}{12} \sigma_{3}(n)-\frac{1}{2} n \sigma_{1}(n)+\frac{1}{12} \sigma_{1}(n)
$$

## Countings surfaces in $\mathcal{H}(2)$

Putting all together, the number of inequivalent square-tiled surfaces in $\mathcal{H}(2)$ with $n$ squares is

$$
h(n)=\frac{3}{8}\left[\sigma_{3}(n)-(2 n-1) \sigma_{1}(n)\right] .
$$

The generating series is a linear combination of quasimodular form:

$$
\sum_{n=0}^{+\infty} h(n) e^{2 i \pi n z}=\frac{1}{640}\left(9-10 E_{2}+20 D E_{2}+E_{4}\right)
$$

We recover (alternative method) a result of Eskin, Masur \& Schmoll. This is an explicit version, in the case of $\mathcal{H}(2)$, of the general result of Bloch \& Okounkov et Eskin \& Okounkov.

| $n$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h(n)$ | 3 | 9 | 27 | 45 | 90 | 135 | 201 | 297 | 405 | 525 | 693 | 918 | 1062 |

$$
\begin{aligned}
\liminf _{n \rightarrow+\infty} \frac{h(n)}{n^{3}} & =\frac{3}{8}=0,375 \\
\limsup _{n \rightarrow+\infty} \frac{h(n)}{n^{3}} & =\frac{3}{8} \zeta(3) \approx 0,451 .
\end{aligned}
$$

## What's next?

- Definition of an action of $S L(2, \mathbb{Z})$
- Determination of the orbits (Hubert \& Lelièvre, McMullen)
- Countings by orbits, recover quasimodular form (Lelièvre \& R.).

