Mardi 4 octobre 2016
8h - 13h

Il sera tenu compte de façon importante de la qualité de la rédaction et de l'argumentation. En particulier, répondre juste à une question est valorisé, répondre faux est pénalisé et ne pas répondre n'est ni valorisé ni pénalisé.

Sources : Capes de mathématiques, 2008, seconde épreuve.

Notations et rappels

- ullet On note ${\mathcal P}$ l'ensemble des nombres premiers positifs.
- \bullet Si E désigne un ensemble fini, on note #E le cardinal de cet ensemble, c'est-à-dire le nombre d'éléments de E.
- Si $(u_n)_n$ et $(v_n)_n$ désignent deux suites numériques, on notera $u_n \sim v_n$ pour dire que ces suites sont équivalentes. On notera $u_n = o(v_n)$ pour dire que la suite $(u_n)_n$ est négligeable devant la suite $(v_n)_n$ et enfin, on notera $u_n = O(v_n)$ pour dire que la suite $(u_n)_n$ est dominée par la suite $(v_n)_n$, c'est-à-dire, qu'il existe un réel c et un entier v_0 tels que pour tout $v_0 > v_0$ on ait $v_0 < v_0 < v_0$.
- Si x désigne un réel, on notera [x] sa partie entière, c'est-à-dire le plus grand entier inférieur ou égal à x; autrement dit, [x] est l'unique élément de $\mathbb Z$ vérifiant :

$$[x] \leqslant x < [x] + 1.$$

- On rappelle que si a et b sont deux entiers tels que $0 \le b \le a$, le coefficient binomial $\binom{a}{b}$ est égal à $\frac{a!}{(a-b)!b!}$.
- Pour tout entier $n \ge 0$, on note $\pi(n)$ le nombre de nombres premiers compris dans l'intervalle [0, n]; ainsi on a $\pi(0) = \pi(1) = 0$, $\pi(2) = 1$, $\pi(3) = 2$, $\pi(4) = 2$, etc. Pour tout entier $n \ge 1$, on note $\delta(n) = \pi(n) \pi(n-1)$, de sorte que si l'on pose $\delta(0) = 0$, on voit que δ est la fonction caractéristique de \mathcal{P} dans \mathbb{N} (c'est-à-dire, $\delta(n)$ vaut 1 si n est premier, et 0 sinon).
- Dans tout ce texte la lettre p désignera toujours et exclusivement un nombre premier, ceci y compris lorsque la lettre p sera utilisée comme symbole d'indice d'une somme ou d'un produit. Par exemple, la notation $\sum_{p \leqslant x} \frac{1}{p}$ désigne la somme des inverses des nombres premiers p inférieurs ou égaux au réel x.
- Étant donnés un entier $n \ge 1$ et un nombre premier p, on appelle valuation p-adique de n l'entier noté $v_p(n)$ et égal à l'exposant de p dans la décomposition en facteurs premiers de n. Par exemple, si l'on prend $n = 350 = 2 \cdot 5^2 \cdot 7$ on a $v_2(350) = 1$, $v_3(350) = 0$, $v_5(350) = 2$, $v_7(350) = 1$ et $v_p(350) = 0$ pour tout nombre premier $p \ge 11$.

On admet les propriétés élémentaires suivantes :

- a) $v_n(n)$ est l'entier k tel que p^k divise n et p^{k+1} ne divise pas n.
- b) Pour tout $n \ge 1$ fixé, la suite $(v_p(n))_{p \in \mathcal{P}}$ est nulle à partir d'un certain rang, de sorte que l'on peut écrire $n = \prod_{p \in \mathcal{P}} p^{v_p(n)}$ (ce produit pouvant alors être considéré

comme un produit fini). Cette écriture n'est alors rien d'autre que la décompostion en facteurs premiers de l'entier n.

c) Pour tous n, m entiers naturels non nuls et tout $p \in \mathcal{P}$, on a

$$v_p(nm) = v_p(n) + v_p(m)$$

54

Aucune preuve de ces trois résultats n'est demandée aux candidats.

A. Une estimation à la Tchebychev

I. Une minoration de la fonction π

On considère, pour tout entier $n \ge 1$, l'entier $\Delta_n = \operatorname{ppcm}(1, 2, \dots, n)$. Dans cette partie nous allons établir une minoration de Δ_n . Nous en déduirons ensuite une minoration de $\pi(n)$. On considère $a, b \in \mathbb{N}$ vérifiant $1 \le b \le a$ et l'on pose :

$$I(b,a) = \int_0^1 x^{b-1} (1-x)^{a-b} \, \mathrm{d}x.$$

A.I.1.

A.I.1.a. Expliciter I(1, a) en fonction de a.

A.I.1.b. Montrer que si b < a alors $I(b+1,a) = \frac{b}{a-b}I(b,a)$.

A.I.1.c. En déduire que $I(b, a) = \frac{1}{b\binom{a}{b}}$.

A.I.2. On se propose dans cette question de donner une autre méthode pour calculer I(b,a). On considère un réel $y \in [0,1[$.

A.I.2.a. En développant à l'aide de la formule du binôme de Newton, montrer que :

$$\int_0^1 (1 - x + xy)^{a-1} dx = \sum_{k=1}^a {a-1 \choose k-1} y^{k-1} I(k, a)$$

A.I.2.b. En calculant maintenant directement l'intégrale, montrer que :

$$\int_0^1 (1 - x + xy)^{a-1} dx = \frac{1}{a} \sum_{k=1}^a y^{k-1}$$

A.I.2.c. En déduire que $I(b, a) = \frac{1}{b\binom{a}{b}} = \frac{1}{a\binom{a-1}{b-1}}$.

A.I.3.

A.I.3.a. Montrer que $I(b,a) = \sum_{k=0}^{a-b} (-1)^k {a-b \choose k} \frac{1}{k+b}$.

A.I.3.b. En déduire que $I(b, a)\Delta_a \in \mathbb{N}$.

A.I.3.c. Prouver que l'entier $b\binom{a}{b}$ divise l'entier Δ_a .

A.I.4. Soit $n \ge 1$ un entier.

A.I.4.a. Montrer que les entiers $n\binom{2n}{n}$ et $(2n+1)\binom{2n}{n}$ divisent l'entier Δ_{2n+1} .

(Indication : On remarquera que pour tout $k \ge 1$, Δ_k divise Δ_{k+1} .)

A.I.4.b. En déduire que l'entier $n(2n+1)\binom{2n}{n}$ divise Δ_{2n+1} .

(Indication : On remarquera que les entiers n et 2n+1 sont toujours premiers entre eux.)

A.I.4.c. Montrer que pour tout $k \in \{0, \dots, 2n\}$ on a l'inégalité $\binom{2n}{k} \leqslant \binom{2n}{n}$.

A.I.4.d. En déduire que $(2n+1)\binom{2n}{n} \geqslant 4^n$.

(Indication : On développera l'égalité $4^n = (1+1)^{2n}$.)

A.I.4.e. En déduire que $\Delta_{2n+1} \geqslant n4^n$.

A.I.4.f. Montrer que si $n \ge 9$ alors $\Delta_n \ge 2^n$ et vérifier que cette inégalité est encore vraie pour n = 7 et 8.

A.I.5. Soit $n \ge 1$ un entier.

A.I.5.a. Soit $p \in \mathcal{P}$, montrer que $p^{v_p(\Delta_n)} \leq n$.

(Indication : On commencera par exprimer $v_p(\Delta_n)$ en fonction des entiers $v_p(1), \ldots, v_p(n)$.)

A.I.5.b. Montrer que $\Delta_n = \prod_{p \leq n} p^{v_p(\Delta_n)}$.

A.I.5.c. En déduire que $\Delta_n \leqslant n^{\pi(n)}$.

A.I.6.

A.I.6.a. Montrer que pour tout $n \ge 7$ on a

$$\pi(n) \geqslant (\ln 2) \frac{n}{\ln n}.$$

A.I.6.b. Pour quels entiers $n \in \{2, 3, 4, 5, 6\}$ l'inégalité de la question précédente est-elle encore vraie?

II. Une majoration de la fonction π

A.II.1. On cherche dans cette question à majorer simplement le produit $\prod_{p \leq n} p$ en fonction de l'entier $n \geq 1$.

A.II.1.a. Soient a et b deux entiers tels que $0 < \frac{b}{2} \le a < b$. Montrer que le produit $\prod_{a divise l'entier <math>\binom{b}{a}$ (le produit considéré est supposé être égal à 1 dans le cas où il n'y aurait pas de nombre premier p dans l'intervalle [a, b]).

A.II.1.b. En déduire que pour tout $m \ge 1$, le produit $\prod_{m+1 divise l'entier <math>\binom{2m+1}{n}$.

A.II.1.c. Comparer, pour $m \ge 1$, les entiers $\binom{2m+1}{m}$ et $\binom{2m+1}{m+1}$.

A.II.1.d. En déduire que pour tout entier $m \ge 1$ on a $\binom{2m+1}{m} \le 4^m$.

(Indication : On développera la quantité $(1+1)^{2m+1}$.)

A.II.1.e. Montrer que pour tout entier $m \ge 1$, on a $\prod_{m+1 .$

A.II.1.f. Prouver finalement que pour tout entier $n \ge 1$, on a

$$\prod_{p \leqslant n} p \leqslant 4^n.$$

(Indication : On pourra montrer par récurrence, pour $n \ge 1$, la propriété P_n : pour tout $k \in \{1, \dots, 2n\}$ on a $\prod_{n \le k} p \le 4^k$.)

A.II.2.

A.II.2.a. Montrer que pour tout entier $m \ge 1$ on a $m! > \left(\frac{m}{e}\right)^m$.

(Indication : On pourra penser au développement en série entière de la fonction exponentielle.)

A.II.2.b. Déduire de ce qui précède que, pour tout $n \ge 2$, on a $\pi(n)! \le 4^n$ et que par suite, on a

$$\pi(n) \ln \pi(n) - \pi(n) \leqslant n \ln 4$$

A.II.3. On souhaite montrer, à partir du résultat précédent, que pour tout $n \ge 3$ on a

$$\pi(n) \leqslant e \frac{n}{\ln n}$$

Pour cela on raisonne par l'absurde, en supposant qu'il existe un entier $n_0 \ge 3$ tel que $\pi(n_0) > e \frac{n_0}{\ln n_0}$.

A.II.3.a. Montrer que la fonction $x \mapsto x \ln x - x$ est strictement croissante sur $[1, +\infty[$. En déduire que

$$\frac{e - \ln 4}{e} < \frac{\ln \ln n_0}{\ln n_0}$$

A.II.3.b. Montrer que la fonction $x \mapsto \frac{\ln x}{x}$ est majorée par e^{-1} sur $[1, +\infty[$. Conclure.

B. Autour d'un théorème de Mertens

I. Une formule de Legendre sur la valuation p-adique de n!

On considère un entier $n \ge 2$ et un nombre premier p. Pour tout entier $k \ge 0$, on considère les sous-ensembles finis U_k , V_k et Ω_k de $\mathbb N$ définis par

$$U_k = \{ a \in \{1, \dots, n\} \mid p^k \text{ divise } a \}$$

$$V_k = \{ a \in \{1, \dots, n\} \mid p^k \text{ ne divise pas } a \}$$

$$\Omega_k = \{ a \in \{1, \dots, n\} \mid v_p(a) = k \}$$

B.I.1. Justifier qu'il existe un plus petit entier $k_0 \ge 0$ tel que $n < p^{k_0}$. Montrer que $k_0 \ge 1$ et expliciter k_0 en fonction de n et p.

B.I.2.

- **B.I.2.a.** Montrer que, pour tout $k \in \{0, \dots, k_0 1\}$, l'ensemble U_{k+1} est strictement inclus dans U_k et que pour $k \ge k_0$ on a $U_k = \emptyset$.
- **B.I.2.b.** Montrer que, pour tout $k \in \{0, ..., k_0 1\}$, l'ensemble V_k est strictement inclus dans V_{k+1} et que pour $k \ge k_0$ on a $V_k = \{1, ..., n\}$.
- **B.I.2.c.** Prouver que la famille de parties $\{\Omega_0, \ldots, \Omega_{k_0-1}\}$ forme une partition de l'ensemble $\{1, \ldots, n\}$.

57

- B.I.3.
- **B.I.3.a.** Pour tout $k \ge 0$, établir que $\Omega_k = U_k \cap V_{k+1}$.
- **B.I.3.b.** Calculer, pour tout $k \ge 0$, $\#U_k$ et $\#V_k$ puis $\#\Omega_k$ en fonction de n, p.
- **B.I.4.** Montrer que $v_p(n!) = \sum_{k\geqslant 0} k \# \Omega_k$ et en déduire que

$$v_p(n!) = \sum_{k \geqslant 1} \left[\frac{n}{p^k} \right]$$

(formule de Legendre)

II. Un théorème de Mertens

Dans toute cette partie II, on considère un entier $n \ge 2$.

B.II.1. Prouver que pour tout $p \in \mathcal{P}$ on a

$$\frac{n}{p} - 1 < v_p(n!) \leqslant \frac{n}{p} + \frac{n}{p(p-1)}$$

(Indication : On pourra utiliser l'encadrement $x-1 < [x] \le x$ valable pour tout réel x et la formule de Legendre.)

B.II.2. En déduire que

$$n\sum_{p\leqslant n}\frac{\ln p}{p}-\sum_{p\leqslant n}\ln p<\ln n!\leqslant n\sum_{p\leqslant n}\frac{\ln p}{p}+n\sum_{p\leqslant n}\frac{\ln p}{p(p-1)}$$

(Indication : On pourra commencer par montrer que $n! = \prod_{p \leqslant n} p^{v_p(n!)}$.)

- **B.II.3.** Dans cette question on établit plusieurs majorations techniques utiles aux deux questions suivantes.
- **B.II.3.a.** Montrer la convergence de la série $\sum \frac{r}{2^r}$ et prouver que $\sum_{r=1}^{+\infty} \frac{r}{2^r} = 2$.

(Indication : On pourra s'intéresser à la série entière $\sum_{k\geqslant 0}\frac{x^k}{2^k}$ ainsi qu'à sa série dérivée.)

- **B.II.3.b.** Calculer pour tout entier $r \geqslant 1$ la somme finie $\sum_{2^{r-1} < m \leqslant 2^r} \frac{1}{m(m-1)}$. En déduire que si l'on pose $U_r = \sum_{2^{r-1} < m \leqslant 2^r} \frac{\ln m}{m(m-1)}$ alors on a $U_r \leqslant \frac{r}{2^r} \ln 2$.
- **B.II.3.c.** Montrer que la série $\sum U_r$ converge. Donner un majorant de $\sum_{r=1}^{+\infty} U_r$.
- **B.II.3.d.** En déduire que la série $\sum \frac{\ln m}{m(m-1)}$ est convergente et que l'on a :

$$\sum_{m=2}^{+\infty} \frac{\ln m}{m(m-1)} \leqslant \ln 4.$$

58

- **B.II.3.e.** Montrer que l' on a : $1 \frac{1}{2n} \le n \ln \left(1 + \frac{1}{n}\right) \le 1$ et $\ln \left(1 + \frac{1}{n}\right) \ge \frac{1}{2n}$. (Indication : On commencera par déterminer pour quels réels u on a les inégalités $u u^2/2 \le \ln(1 + u) \le u$.)
- **B.II.3.f.** En déduire, par récurrence sur n, qu' il existe un réel $\theta_n \in [0,1]$ tel que :

$$\ln n! = n \ln n - n + 1 + \theta_n \ln n.$$

B.II.4. Prouver, en utilisant les résultats des questions B.II.2 et B.II.3, que :

$$\ln n - (1 + \ln 4) < \sum_{p \le n} \frac{\ln p}{p}.$$

B.II.5. De même, en utilisant les questions B.II.2, B.II.3 et A.II.1.f, montrer que :

$$\sum_{p \le n} \frac{\ln p}{p} < \ln n + \ln 4.$$

En déduire que

$$\sum_{p \le n} \frac{\ln p}{p} = \ln n + O(1)$$

(théorème de Mertens).

III. Le comportement asymptotique de $\left(\sum\limits_{p\leqslant n}\frac{1}{p}\right)_n$

- **B.III.1.** Dans cette question on établit des résultats préliminaires utiles pour la suite.
- **B.III.1.a.** Montrer que la série $\sum \frac{1}{n \ln^2 n}$ est convergente, que la série $\sum \frac{1}{n \ln n}$ est divergente et qu'on a

$$\sum_{k=2}^{n-1} \frac{1}{k \ln k} = \ln \ln n + O(1)$$

(Indication : On comparera les séries considérées avec les intégrales généralisées $\int_2^{+\infty} \frac{dt}{t \ln^2 t}$ et $\int_2^{+\infty} \frac{dt}{t \ln t}$.)

B.III.1.b. On considère la suite $(u_n)_{n\geqslant 3}$ définie par $u_n=\sum\limits_{k=2}^{n-1}\frac{1}{k\ln k}-\ln\ln n$. Montrer que

$$u_{n+1} - u_n = \frac{1}{2n^2 \ln n} + o\left(\frac{1}{n^2 \ln n}\right).$$

B.III.1.c. En déduire qu'il existe un réel ℓ tel que

$$\sum_{k=2}^{n-1} \frac{1}{k \ln k} = \ln \ln n + \ell + o(1).$$

- **B.III.2.** On note $(\psi(n))_{n\geqslant 2}$ la suite définie par $\psi(n)=\sum\limits_{p\leqslant n}\frac{\ln p}{p}.$ On considère un entier $n\geqslant 3.$
- **B.III.2.a.** Montrer que $\sum_{p \leq n} \frac{1}{p} = \sum_{k=2}^{n-1} \psi(k) \frac{\ln(1+1/k)}{\ln k \ln(k+1)} + \frac{\psi(n)}{\ln n}$

(Indication : On pourra remarquer que $\sum_{p\leqslant n} \frac{1}{p} = \sum_{k=2}^{n} \frac{\delta(k) \ln k}{k} \cdot \frac{1}{\ln k}$ où δ est la fonction caractéristique de \mathcal{P} , puis utiliser la transformation d'Abel sous la forme suivante : si $(a_n)_{n\geqslant 1}$, $(b_n)_{n\geqslant 1}$ sont deux suites numériques et si pour $n\geqslant 1$ on pose $A_n = \sum_{k=1}^{n} a_k$, alors pour tout $N\geqslant 2$, on a

$$\sum_{n=1}^{N} a_n b_n = A_N b_N + \sum_{n=1}^{N-1} A_n (b_n - b_{n+1})$$

B.III.2.b. Prouver, en utilisant le théorème de Mertens, que :

$$\psi(k) \frac{\ln(1+1/k)}{\ln k \ln(k+1)} = \frac{1}{k \ln k} + O\left(\frac{1}{k \ln^2 k}\right)$$

(Indication : On commencera par écrire la fraction $\frac{\ln(1+1/k)}{\ln k \ln(k+1)}$ sous la forme $\frac{1}{\ln k} \frac{t(k)}{1+t(k)}$, où t(k) est une suite qu'on déterminera. On montrera ensuite que $\frac{t(k)}{1+t(k)} = \frac{1}{k \ln k} - \frac{1}{2k^2 \ln k} + o\left(\frac{1}{k^2 \ln k}\right)$.)

B.III.3. Déduire de ce qui précède qu'il existe une constante $\lambda \in \mathbb{R}$ telle que

$$\sum_{p \le n} \frac{1}{p} = \ln \ln n + \lambda + o(1).$$

B.III.4. Montrer que pour tout $n \ge 2$ on a $\sum_{p \le n} \frac{1}{p} = \sum_{k=1}^{n-1} \frac{\pi(k)}{k(k+1)} + \frac{\pi(n)}{n}$. En déduire que s'il existe une constante réelle c telle que $\pi(n) \sim c \frac{n}{\ln n}$ alors c = 1 (théorème de Tchebychev).

IV. Une application à l'étude des entiers possédant de grands facteurs premiers

Étant donné un entier $n \ge 2$, on note $P^+(n)$ le plus grand facteur premier apparaissant dans la décomposition en facteurs premiers de n. Par exemple, $P^+(50) = P^+(2 \cdot 5^2) = 5$. On s'intéresse dans cette question à l'ensemble A constitué des entiers $n \ge 2$ vérifiant $P^+(n) > \sqrt{n}$ (c'est ce qu'on entend par entiers possédant de grands facteurs premiers dans le titre de cette partie). L'objectif de cette partie est de montrer que l'ensemble A possède une densité valant ln 2. En d'autres termes, si pour un réel $x \ge 2$ on pose $A(x) = A \cap [0,x]$ et a(x) = #A(x) le cardinal de A(x), nous allons montrer que la suite $\left(\frac{a(n)}{n}\right)_n$ possède une limite (on dira alors que A possède une densité) et que cette limite vaut ln A (qui sera donc appelée la densité de A). Ce résultat signifiera que, « moralement », il y a une proportion de A0, A1 d'entiers dans A2 qui possèdent de grands facteurs premiers.

- **B.IV.1.** En utilisant la question B.III.3 montrer que la suite $\left(\sum_{\sqrt{n} possède une limite et donner cette limite.$
- **B.IV.2.** Soit $x \ge 2$ un réel.
- **B.IV.2.a.** Soient $p \in \mathcal{P}$, $m \in \mathbb{N}^*$ et n = mp. Montrer que

$$(p = P^+(n) \text{ et } n \in A(x)) \iff m$$

B.IV.2.b. Soient $p, p' \in \mathcal{P}$ et $m, m' \in \mathbb{N}^*$ tels que $m et <math>m' < p' \leqslant x/m'$. Montrer que

$$mp = m'p' \iff (p = p' \text{ et } m = m').$$

- **B.IV.2.c.** En déduire que les entiers de la forme mp avec $p \in \mathcal{P}$, $m \in \mathbb{N}^*$, et vérifiant m décrivent de manière biunivoque l'ensemble <math>A(x).
- B.IV.2.d. Prouver finalement que

$$a(x) = \sum_{p \le x} \min\left(p - 1, \left[\frac{x}{p}\right]\right)$$

- **B.IV.3.** Soit $x \ge 1$ un réel.
- **B.IV.3.a.** Montrer que pour tout nombre premier p, on a l'équivalence

$$p-1 \leqslant [x/p] \iff p \leqslant \varphi(x)$$

où
$$\varphi(x) = \frac{1 + \sqrt{1 + 4x}}{2}$$
.

- **B.IV.3.b.** Montrer que $\sqrt{x} < \varphi(x) < \sqrt{x} + 1$.
- **B.IV.3.c.** En déduire que $a(x) = \sum_{p \leqslant \sqrt{x}} (p-1) + \sum_{\sqrt{x} .$

(Indication : On examinera le cas où il existe un nombre premier dans l'intervalle $]\sqrt{x}, \varphi(x)]$ et le cas où il n'en existe pas.)

- **B.IV.3.d.** En utilisant les encadrements obtenus dans la partie A, démontrer que $\sum_{p\leqslant \sqrt{x}}(p-1)=o(x).$
- **B.IV.3.e.** En utilisant la question B.IV.1 et les encadrements obtenus dans la partie A, montrer que $\sum_{\sqrt{x} .$
- **B.IV.3.f.** En déduire que $a(x) = x \ln 2 + o(x)$ et conclure.

FIN DE L'ÉPREUVE