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1. Introduction

The goal of the series of 3 papers presented in this volume [BRR, BR2, BR3]
is to construct an analogue for coefficients of positive characteristic of the main
construction of [B2], and provide an application in the modular representation
theory of reductive algebraic groups.

1.1. First realization of the affine Hecke algebra, via p-adic groups. Let
G be an adjoint semisimple1 algebraic group over an algebraically closed field F of
characteristic p > 0, with a choice of Borel subgroup B ⊂ G and maximal torus
T ⊂ B. Let Wf be the Weyl group of (G,T ); then the associated (extended)
affine Weyl group is the semidirect product W = Wf ⋉X∗(T ), where X∗(T ) is the
lattice of cocharacters of T . The group algebra Z[W ] admits a natural deformation
H called the (extended) affine Hecke algebra, which appears in different contexts
in geometric representation theory. (Here by “deformation” we mean that H is
an algebra over the ring Z[v, v−1] where v is an indeterminate, which is free as a
Z[v, v−1]-module, and we have an identification H/(v − 1)H = Z[W ].)

The first context (which provides one of the main motivations for studying this al-
gebra) is that of representations of p-adic groups. Namely, consider a split semisim-
ple group scheme G0 over some finite subfield F0 ⊂ F whose base change to F is
G, and assume that B and T are similarly obtained by base change from a Borel
subgroup B0 ⊂ G0 and a split maximal torus T0 ⊂ B0. The theory of smooth rep-
resentations of the group G0(F0((z)))

2 on K-vector spaces has attracted a lot of at-
tention. (Here K is a fixed algebraically closed field of characteristic 0.) Bernstein’s
theory [Ber] allows one to break the category of such representations as a prod-
uct indexed by G0(F0((z)))-conjugacy classes of cuspidal data for Levi subgroups,
and the factor corresponding to the pair consisting of the class of T0(F0((z))) and
its trivial representation (the so-called “principal block”) identifies with the sub-
group of representations generated by their fixed points under the Iwahori subgroup
I0 ⊂ G0(F0((z))) consisting of elements whose image in G0(F0) belongs to B0(F0).
Using results of Borel [Bo] and Iwahori–Matsumoto [IM], this subcategory there-
fore identifies with the category of modules for the algebra H ⊗Z[v,v−1] K, where

the algebra morphism Z[v, v−1] → K sends v to the inverse of a fixed square root
of q. In particular, in this way the classification the simple objects in this principal

1This assumption is made here for simplicity, but in the papers we consider more general

connected reductive algebraic groups.
2Here we consider the case of the local field F0((z)) since it is closer to the geometry that will

be considered later, but similar statements hold over other local fields, like finite extensions of Qp.
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block (which is the subject of a part of Langlands’ conjectures called the Deligne–
Langlands conjecture) reduces to the classification of the simple H ⊗Z[v,v−1] K-
modules.

This identification relies of the description of H⊗Z[v,v−1] K as the algebra of lo-
cally constant I0-biinvariant functions with compact support on G0(F0((z))) (for an
appropriate “convolution” product). Grothendieck’s “faisceaux-fonctions” philoso-
phy suggests to consider “categorifications” of this algebra, in the form of derived
categories of Iwahori-equivariant constructible sheaves on the affine flag variety
FlG of G; here FlG is an ind-scheme over F whose set of F-points is the quotient
G(F((z)))/I(F), where I(F) ⊂ G(F[[z]]) is the preimage of B under the natural map
G(F[[z]]) → G(F). (Grothendieck’s original motivations involved Qℓ-sheaves, but
more general coefficients might be considered too.)

1.2. Second realization of the affine Hecke algebra, via coherent sheaves.
The problem of classifying simple H ⊗Z[v,v−1] K-modules (and, in fact, the classi-
fication of all simple modules over similar algebras where the image of v is not a
root of unity) was solved by Kazhdan–Lusztig [KL] using a completely different
geometric realization of H, in terms of coherent sheaves on varieties attached to
the Langlands dual group G∨

C over C. Namely, by construction this group comes
with a maximal torus T∨

C ⊂ G∨
C whose lattice of characters identifies with X∗(T ),

and we denote by B∨
C ⊂ G∨

C the Borel subgroup containing T∨
C corresponding to B.

The cotangent space Ñ to the flag variety G∨
C/B

∨
C admits a canonical morphism to

the dual (g∨C)
∗ of the Lie algebra g∨C of G∨

C , and the Steinberg variety is the fiber
product

Ñ ×(g∨
C )∗ Ñ .

It admits a canonical (diagonal) action of G∨
C , and an action of the multiplicative

group Gm by (diagonal) dilation along the cotangent directions. Moreover, the
equivariant K-theory

KG∨
C ×Gm(Ñ ×(g∨

C )∗ Ñ )

admits a canonical product, given by a “convolution” procedure.3 With this nota-
tion, a crucial step in Kazhdan–Lusztig’s proof is the construction of a ring isomor-
phism

(1.1) H ∼−→ KG∨
C ×Gm(Ñ ×(g∨

C )∗ Ñ ).

This isomorphism suggests to consider (derived) categories of equivariant coher-

ent sheaves on Ñ ×(g∨
C )∗ Ñ (or appropriate variants) as another categorical incar-

nation of the algebra H. (Here again, the isomorphism (1.1) holds more generally
when C is replaced by an algebraically closed field of very good characteristic, so
that coefficients more general than C might be considered.)

3To be precise, this product was not considered by Kazhdan–Lusztig in [KL], and the result they

actually prove is slightly weaker (although sufficient for the expected application to classification of
simple H⊗Z[v,v−1]K-modules) than the one stated below. The convolution product was considered

in parallel work by Ginzburg (see the reference [G] in [KL]), which was never published because

it had a gap. A complete exposition of these constructions, which uses some of the results of
Kazhdan–Lusztig to fill this gap, can be found in [CG]. For a slightly different treatment of these
constructions, see [Lu2].
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1.3. The “two realizations” equivalence. In [B2], the first author constructed
several equivalences of monoidal categories relating these categorifications of H,
in the setting of étale Qℓ-sheaves on FlG (here ℓ is a prime number distinct from
p) and equivariant coherent sheaves on (variants of) the Steinberg variety of the
dual group G∨

Qℓ
over Qℓ. We will not recall these equivalences explicitly here, but

only mention that they have found important applications in representation theory
(some of which are presented in [B1]) and in various geometric approaches to the
Langlands program (in particular in work of Gaitsgory, Hemo–Zhu, and Ben-Zvi–
Chen–Helm–Nadler).

1.4. The modular case. The main results of the present series of papers is a
counterpart of (some of) the equivalences of [B2] in the setting of étale sheaves
on FlG with coefficients in an algebraic closure k of Fℓ and equivariant coherent
sheaves on the Steinberg variety of the Langlands dual group G∨

k over k. Although
they might find applications in some modular aspects of the Geometric Langlands
Program, our desire to construct such variants primarily comes from questions in
the representation theory of reductive algebraic groups over k; conceretely, in [BR3]
we use them to confirm a conjecture of Finkelberg–Mirković giving a geometric
incarnation of the (extended) principal block of representations of the reductive
group G over k whose Frobenius twist is G∨

k in terms of perverse sheaves on the
affine Grassmannian GrG of G.

1.5. Outline of the proof. Although the basic ingredients of our approach on the
constructible side are rather similar to those used in [B2] (in particular, we make
extensive use of the geometric Satake equivalence [MV], Gaitsgory’s central func-
tor [Ga], and Wakimoto sheaves), the strategy we follow differs significantly from
that of [B2]. It is based on a general technique first advertised by Soergel: on each
side we identify a monoidal additive subcategory from which the whole category
can be reconstructed as the bounded homotopy category, and we compare the sub-
categories on the two sides via an intermediate category of “Soergel bimodules”4

for the group W .
On the constructible side this subcategory consists of tilting perverse sheaves,

which are related to Soergel bimodules via a “functor V”. This is similar to other
results of this form, as e.g. in [BY], although the present setting combines the tech-
nical difficulties of handling infinite-dimensional flag varieties with the necessity to
incorporate some specific aspects of the loop group setting (i.e. the comparison with
the geometric Satake equivalence, which is not considered in [BY]), and occupies
the first two parts [BRR, BR2] of the series.

To handle the coherent side we use a third geometric incarnation of the affine
Hecke algebra, constructed using Harish-Chandra bimodules for the group G as
above. (This third player has no counterpart in [B2].) The relation between this
category and coherent sheaves on Steinberg’s variety is provided by the “localization
theory” developed by the first author with Mirković and Rumynin [BMR], which
plays a crucial role in [BR3]. In a sense, this is what allows to “control” the
coherent side of the picture; namely, the additive subcategory alluded to above is

4Technically the category we use is not a category of Soergel bimodules in any usual sense,

but rather a certain category of representations of an affine group scheme constructed out of the
regular centralizer for G∨

k . But philosophically this category plays exactly the traditional role of

Soergel bimodules.
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the subcategory corresponding to the “wall crossing bimodules” studied in [BR1]
in the category of Harish-Chandra bimodules, and the proof of the fact that the
whole category can be reconstructed from this subcategory crucially builds on the
comparison with Harish-Chandra bimodules.

2. Contents

Each paper in this series relies on the results obtained in the previous part, but
they have been written at different periods, and we have tried our best to make
them understandable without prior familiarity with the other parts (if the reader
accepts to use the results of these parts as black boxes).

2.1. The regular quotient and representations of the regular unipotent
centralizer. The first step in our approach, handled in [BRR], consists of a “co-
herent” description of the “regular quotient” category P0

I,I. Namely, recall the flag
variety FlG considered above, and fix an algebraic closure k of Fℓ, where ℓ is a prime
number different from p. The ind-scheme FlG is the quotient of the loop group LG
(whose F-points are G(F((z))) by the Iwahori subgroup I. The I-orbits on FlG are
naturally parametrized by W , so that the simple objects in the abelian category
PI,I of I-equivariant perverse sheaves on FlG are in a canonical bijection with W .
This group has a canonical structure of “quasi-Coxeter” group, hence in particular
a length function. With this notation, P0

I,I is the Serre quotient of PI,I by the Serre
subcategory generated by the simple objects whose label has positive length. The
natural convolution operation on the I-equivariant derived category of sheaves on
FlG induces a monoidal product on this category.

On the other hand, consider a regular unipotent element u ∈ G∨
k , and its cen-

tralizer ZG∨
k
(u). (Under mild assumptions on ℓ, this is a smooth group scheme

over k.) Let Rep(ZG∨
k
(u)) be the abelian category of finite-dimensional algebraic

representations of ZG∨
k
(u); it is a monoidal category for the tensor product of rep-

resentations. Then the main result of [BRR] states that, under mild assumptions
on ℓ, there exists an equivalence of monoidal abelian categories

(2.1) P0
I,I

∼= Rep(ZG∨
k
(u)).

By construction, this equivalence is compatible with the geometric Satake equiv-
alence [MV] in the following sense. Let L+G ⊂ LG be the arc group of G,
and let PL+G,L+G be the category of L+G-equivariant perverse sheaves on the
affine Grassmannian GrG = LG/L+G. Convolution endows this category with a
monoidal structure, and the geometric Satake equivalence is a canonical equivalence
of monoidal abelian categories

(2.2) PL+G,L+G
∼−→ Rep(G∨

k ).

Gaitsgory has constructed a “central” functor Z : PL+G,L+G → PI,I, and we denote
by Z0 its composition with the natural quotient functor to P0

I,I. Then the following
diagram commutes, where the right-hand vertical arrow is the obvious forgetful
functor:

PL+G,L+G

(2.2) //

Z0

��

Rep(G∨
k )

For
G∨

k
Z
G∨

k
(u)

��
P0
I,I

(2.1) // Rep(ZG∨
k
(u)).
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2.2. Tilting perverse sheaves and the regular centralizer. The next step is
handled in [BR2]. For this, we consider the pro-unipotent radical Iu ⊂ I (i.e. the
preimage of the unipotent radical of B via the natural map I → B), and the
category DIu,Iu obtained as the triangulated subcategory in the Iu-equivariant de-
rived category of sheaves on LG/Iu generated by complexes obtained by pullback
from I-equivariant complexes on FlG. This category admits a convolution product
which makes it a nonunital monoidal category, and Yun [BY] has explained how
to construct a “completion” D∧

Iu,Iu
which (in particular) becomes a unital monoidal

category. The perverse t-structure on DIu,Iu extends to a t-structure on D∧
Iu,Iu

whose
heart has a structure which is close to that of a highest weight category. In partic-
ular, there is a notion of tilting perverse sheaves, and we will denote by T∧

Iu,Iu
the

full subcategory of D∧
Iu,Iu

whose objects are those tilting perverse sheaves. Classical
arguments show that this category is closed under the monoidal product, and that
there exists a natural equivalence of monoidal triangulated categories

(2.3) KbT∧
Iu,Iu

∼−→ D∧
Iu,Iu .

On the dual side, consider a Steinberg section Σ ⊂ G∨
k to the adjoint quotient

G∨
k → G∨

k /G
∨
k sending u to the base point in the quotient, and the restriction

JΣ of the universal centralizer group scheme (i.e. the affine group scheme over G∨
k

whose fiber at an element g is the centralizer of g). Under mild assumptions on ℓ,
this Steinberg section is well defined, and the group scheme is smooth. We have a
canonical identification

G∨
k /G

∨
k

∼−→ T∨
k /Wf ,

hence a canonical morphism T∨
k ×T∨

k /Wf
T∨
k → Σ, and we denote by I∧Σ the pullback

of JΣ to the spectrum of the completion of O(T∨
k ×T∨

k /Wf
T∨
k ) with respect to the

ideal corresponding to the point (e, e). Then the category Rep(I∧Σ) of representations
of I∧Σ on coherent sheaves over this spectrum admits a canonical monoidal product.
In [BR2] we construct a monoidal additive subcategory SRep(I∧Σ) ⊂ Rep(I∧Σ) of “So-
ergel representations,” and the main result of [BR2] is an equivalence of monoidal
categories

(2.4) T∧
Iu,Iu

∼= SRep(I∧Σ)

(again, under some mild technical assumptions on ℓ). This equivalence enjoys some
compatibility properties with (2.1) and with the geometric Satake equivalence (2.2)
(via a “completed” variant of Gaitsgory’s functor) that we will not state explicitly
here.

2.3. Coherent sheaves on the Steinberg variety. For the last step of our pro-
gram [BR3], we pass to the coherent side of the picture. Consider the multiplicative

Grothendieck resolution G̃∨
k = G∨

k ×B∨
k B∨

k (where B∨
k acts on itself by conjuga-

tion), with its natural morphism to G∨
k and the “multiplicative and Grothendieck”

variant of the Steinberg variety given by

Stm = G̃∨
k ×G∨

k
G̃∨

k

This variety has a natural (diagonal) action of G∨
k , and a canonical morphism to

T∨
k ×T∨

k /Wf
T∨
k . Let St∧m be the fiber product of Stm with the spectrum of the

completion of O(T∨
k ×T∨

k /Wf
T∨
k ) with respect to the ideal corresponding to the



6 R. BEZRUKAVNIKOV, S. RICHE, AND L. RIDER

point (e, e). This scheme again has a canonical action of G∨
k , and the derived

category

DbCohG
∨
k (St∧m)

of G∨
k -equivariant coherent sheaves on St∧m admits a canonical monoidal product

given by convolution. The main result of [BR3] is the construction of a monoidal
additive subcategory

A ⊂ DbCohG
∨
k (St∧m)

such that we have a natural equivalence of monoidal triangulated categories

(2.5) Kb(A)
∼−→ DbCohG

∨
k (St∧m),

and such that restriction to the preimage of Σ×G∨
k /G∨

k
Σ ⊂ G∨

k ×G∨
k /G∨

k
G∨

k induces
an equivalence of monoidal categories

(2.6) A
∼−→ SRep(I∧Σ).

(Again, our proofs require some mild and explicit assumptions on ℓ.)
Combining the equivalences (2.3), (2.4), (2.5) and (2.6) we finally obtain an

equivalence of monoidal categories

(2.7) D∧
Iu,Iu

∼−→ DbCohG
∨
k (St∧m)

which can be considered as a categorical version of the comparison between the two
geometric realizations of H discussed in Section 1.

Remark 2.1. (1) Technically, the categories considered in (2.7) are rather cat-
egorical realizations of the group algebra of W , since we do not consider
any counterpart of the parameter v.

(2) In [BR3] we deduce from (2.7) several variants, and in particular an equiv-
alence of nonunital monoidal categories

DIu,Iu
∼−→ DbCoh

G∨
k

U (Stm)

where the right-hand side is the derived category of the category of equivari-
ant coherent sheaves on Stm supported (set-theoretically) on the preimage
of (e, e) ∈ T∨

k ×T∨
k /Wf

T∨
k .

The construction of the subcategory A (and, more importantly, the proof of its
properties) is indirect; it requires a passage to the Lie algebra g∨k of G∨

k , and the

consideration of the reductive group G whose Frobenius twist G(1) is G∨
k . Let also

B,T ⊂ G be the subgroups whose Frobenius twists are B∨
k , T

∨
k respectively, let b, t

be their Lie algebras, let u be the Lie algebra of the unipotent radical of B, and
let g be the Lie algebra of G. If the completed Steinberg variety St∧m is defined

in terms of G as above for G∨
k , then we have St∧(1)

m = St∧m. We also consider the
additive Grothendieck resolution g̃ = G ×B (g/u)∗. This smooth variety has a
canonical morphism to g∗, and we consider the fiber product

St = g̃ ×g∗ g̃.

There exists a canonical morphism St → t∗ ×t∗/Wf
t∗, and we denote by St∧ the

fiber product of St with the spectrum of the completion of O(t∗ ×t∗/Wf
t∗) with

respect to the ideal corresponding to the point (0, 0). Then, under suitable technical
assumptions we show that there exists a G-equivariant isomorphism of schemes

St∧m
∼= St∧,
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hence finally an equivalence of monoidal triangulated categories

DbCohG
∨
k (St∧m)

∼= DbCohG
(1)

(St∧(1)).

In [BR3] we consider a certain category HC0̂,0̂ of Harish-Chandra bimodules
for G “completed at the trivial Harish-Chandra central character,” whose derived
category has a natural monoidal product induced by tensor product of bimodules,
and using a variant of the localization theory developed in [BMR] we construct an
equivalence of monoidal triangulated categories

DbHC0̂,0̂ ∼= DbCohG
(1)

(St∧(1)).

The subcategory A is obtained as the image under these equivalences of the Karou-

bian additive monoidal subcategory of DbHC0̂,0̂ generated by the “wall-crossing
bimodules,” i.e. the bimodules which induce the standard wall-crossing functors on
the derived category of representations of G. These bimodules also play a major
role in the previous paper [BR1] by the first two authors, and the proof of the desired
properties of A follows from considerations close to those used in that paper.

2.4. Application to the Finkelberg–Mirković conjecture. The Weyl group
of (G,T) identifies with Wf , and acts naturally on X∗(T). Pullback under the
Frobenius morphism also induces a natural group morphism X∗(T∨

k ) → X∗(T),
hence an action of X∗(T ) = X∗(T∨

k ) on X∗(T). Combining these actions we deduce
an action of W on X∗(T). The “dot-action” is the twist of this action defined by

w • λ = w · (λ+ ρ)− ρ,

where ρ ∈ 1
2X

∗(T) is the half-sum of the positive roots (chosen as the T-weights
in g/b). It is a standard fact that the simple objects in the category Rep(G) of
finite-dimensional algebraic G-modules are parametrized by the dominant weights
X∗(T)+. If ℓ is larger than the Coxeter number h of G, the “extended principal
block” Rep⟨0⟩(G) in Rep(G) is the Serre subcategory generated by the simple ob-

jects whose label belongs to W • 0. (This is a direct summand in Rep(G), which
captures all the relevant combinatorial information on this category in a precise
sense.) Pullback under the Frobenius morphism defines a fully faithful functor

Rep(G∨
k ) → Rep(G),

which takes values in Rep⟨0⟩(G). In this way, the latter category can be considered

an “enlargement” of Rep(G∨
k ). The Finkelberg–Mirković conjecture [FM] gives an

answer to the question of enlarging the equivalence (2.2) to a geometric description
of Rep⟨0⟩(G). More precisely, denoting by PL+G,Iu the category of Iu-equivariant

perverse sheaves on the “opposite affine Grassmannian”5 L+G\LG, it postulates
an equivalence of abelian categories

PL+G,Iu
∼−→ Rep⟨0⟩(G)

such that the natural action of PL+G,L+G by convolution on the left-hand side
corresponds via the geometric Satake equivalence to the action of Rep(G∨

k ) by tensor
product with pullbacks under the Frobenius morphism. One of the nice aspects of

5Introducing this space allows to obtain an equivalence which behaves in the simplest possible

way with respect to the natural parametrizations of simple objects on both sides. In any case,

the assignment g 7→ g−1 induces an isomorphism L+G\LG ∼−→ GrG, so that one can also describe
this category in terms of perverse sheaves on the usual affine Grassmannian.



8 R. BEZRUKAVNIKOV, S. RICHE, AND L. RIDER

this equivalence is that it enlightens the meaning of Lusztig’s character formula for
simple modules in large characteristic. (For a detailed discussion of this topic, see
e.g. [Wi, CW].)

As an application of the results discussed above, we prove this conjecture (under
appropriate technical assumptions) in [BR3].
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