Computation of stalks of simple perverse sheaves on the flag variety (after MacPherson and Springer)

Simon Riche

(Université Blaise Pascal - Clermont-Ferrand)

Isle of Skye, May 27th, 2010

Table of contents

(1) Reminder and notation

Table of contents

(1) Reminder and notation
(2) Perverse sheaves on \mathcal{B} and the Hecke algebra

Table of contents

(1) Reminder and notation
(2) Perverse sheaves on \mathcal{B} and the Hecke algebra
(3) Examples

Hecke algebra

G is a complex, connected, semisimple algebraic group.
B is a Borel subgroup. T is a maximal torus.

Hecke algebra

G is a complex, connected, semisimple algebraic group.
B is a Borel subgroup. T is a maximal torus.
$W=N_{G}(T) / T$ is the Weyl group.
$S \subset W$ is the set of Coxeter generators defined by B.

Hecke algebra

G is a complex, connected, semisimple algebraic group.
B is a Borel subgroup. T is a maximal torus.
$W=N_{G}(T) / T$ is the Weyl group.
$S \subset W$ is the set of Coxeter generators defined by B.

Definition (Hecke algebra of (W, S))

The Hecke algebra of (W, S) is

$$
\mathcal{H}_{W}=\bigoplus_{w \in W} \mathbb{Z}\left[t, t^{-1}\right] \cdot T_{w}
$$

with the multiplication given by

$$
\begin{cases}T_{v} \cdot T_{w}=T_{v w} & \text { if } \ell(v w)=\ell(v)+\ell(w), \\ T_{s} T_{w}=\left(t^{2}-1\right) T_{w}+t^{2} T_{s w} & \text { if } s \in S \text { and } s w<w .\end{cases}
$$

KL basis and KL polynomials

Kazhdan-Lusztig involution $i: \mathcal{H}_{W} \rightarrow \mathcal{H}_{W}$ is the algebra involution defined by the formulas

$$
i(t)=t^{-1}, \quad i\left(T_{w}\right)=T_{w-1}^{-1} .
$$

KL basis and KL polynomials

Kazhdan-Lusztig involution $i: \mathcal{H}_{W} \rightarrow \mathcal{H}_{W}$ is the algebra involution defined by the formulas

$$
i(t)=t^{-1}, \quad i\left(T_{w}\right)=T_{w^{-1}}^{-1}
$$

Theorem (Kazhdan-Lusztig)

For any $w \in W$, there exists a unique element $C_{w} \in \mathcal{H}_{W}$ which satisfies the following properties:
(1) $i\left(C_{w}\right)=C_{w}$
(2) $C_{w}=t^{-\ell(w)} \sum_{x \leq w} Q_{x, w}(t) T_{x}$, where $Q_{w, w}=1$ and for $x<w, Q_{x, w} \in \mathbb{Z}[t]$ is a polynomial of degree $\leq \ell(w)-\ell(x)-1$.
Moreover, for each $x \leq w$, there exists a polynomial $P_{x, w} \in \mathbb{Z}[q]$ (of degree $\leq \frac{1}{2}(\ell(w)-\ell(x)-1)$) such that $Q_{x, w}(t)=P_{x, w}\left(t^{2}\right)$.

Reminder and notation
Perverse sheaves on \mathcal{B} and the Hecke algebra Examples

Examples

Example

- For $w=1$ we have $C_{1}=T_{1}$.

Examples

Example

- For $w=1$ we have $C_{1}=T_{1}$.
- For $s \in S$ we have $C_{s}=t^{-1}\left(1+T_{s}\right)$. Hence $P_{1, s}=1$.

Examples

Example

- For $w=1$ we have $C_{1}=T_{1}$.
- For $s \in S$ we have $C_{s}=t^{-1}\left(1+T_{s}\right)$. Hence $P_{1, s}=1$.
- For $s \neq t$ in S we have $C_{s t}=C_{s} C_{t}=t^{-2}\left(1+T_{s}+T_{t}+T_{s t}\right)$.

Bruhat decomposition and Schubert varieties

Bruhat decomposition:

$$
\mathcal{B}:=G / B=\bigsqcup_{w \in W} Y_{w} \quad \text { with } \quad Y_{w}:=B w B / B
$$

Bruhat decomposition and Schubert varieties

Bruhat decomposition:

$$
\mathcal{B}:=G / B=\bigsqcup_{w \in W} Y_{w} \quad \text { with } \quad Y_{w}:=B w B / B
$$

Schubert varieties:

$$
X_{w}:=\overline{Y_{w}}=\bigsqcup_{v \leq w} Y_{v}
$$

Bruhat decomposition and Schubert varieties

Bruhat decomposition:

$$
\mathcal{B}:=G / B=\bigsqcup_{w \in W} Y_{w} \quad \text { with } \quad Y_{w}:=B w B / B
$$

Schubert varieties:

$$
X_{w}:=\overline{Y_{w}}=\bigsqcup_{v \leq w} Y_{v}
$$

G-equivariant versions:

$$
\begin{gathered}
\mathcal{B} \times \mathcal{B}=\bigsqcup_{w \in W} \mathfrak{Y}_{w} \quad \text { with } \mathfrak{Y}_{w}:=G \cdot(B / B, w B / B), \\
\mathfrak{X}_{w}:=\overline{\mathfrak{Y}_{w}}=\bigsqcup_{v \leq w} \mathfrak{Y}_{v}
\end{gathered}
$$

For any y, w in W and $i \in \mathbb{Z}$ we have

$$
H^{i}\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)_{(B / B, y B / B)}\right) \cong H^{i+\operatorname{dim}(\mathcal{B})}\left(\operatorname{IC}\left(X_{w}\right)_{y B / B}\right) .
$$

For any y, w in W and $i \in \mathbb{Z}$ we have

$$
H^{i}\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)_{(B / B, y B / B)}\right) \cong H^{i+\operatorname{dim}(\mathcal{B})}\left(\operatorname{IC}\left(X_{w}\right)_{y B / B}\right) .
$$

We are interested in the computation of the dimension of these vector spaces.

For any y, w in W and $i \in \mathbb{Z}$ we have

$$
H^{i}\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)_{(B / B, y B / B)}\right) \cong H^{i+\operatorname{dim}(\mathcal{B})}\left(\operatorname{IC}\left(X_{w}\right)_{y B / B}\right) .
$$

We are interested in the computation of the dimension of these vector spaces.

Example

- If $w=1$ we have $X_{1}=\{B / B\}$ hence $\operatorname{IC}\left(X_{1}\right)=\underline{\mathbb{Q}}_{X_{1}}$. Similarly, $\mathfrak{X}_{1}=\Delta \mathcal{B}$.

For any y, w in W and $i \in \mathbb{Z}$ we have

$$
H^{i}\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)_{(B / B, y B / B)}\right) \cong H^{i+\operatorname{dim}(\mathcal{B})}\left(\operatorname{IC}\left(X_{w}\right)_{y B / B}\right) .
$$

We are interested in the computation of the dimension of these vector spaces.

Example

- If $w=1$ we have $X_{1}=\{B / B\}$ hence $\operatorname{IC}\left(X_{1}\right)=\mathbb{Q}_{X_{1}}$. Similarly, $\mathfrak{X}_{1}=\Delta \mathcal{B}$.
- If $s \in S$ we have $X_{s}=P_{s} / B \cong \mathbb{P}^{1}$, hence $\operatorname{IC}\left(X_{s}\right)=\underline{\mathbb{Q}}_{X_{s}}[1]$. Similarly, $\mathfrak{X}_{s}=\mathcal{B} \times \mathcal{P}_{s} \mathcal{B}$.

For any y, w in W and $i \in \mathbb{Z}$ we have

$$
H^{i}\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)_{(B / B, y B / B)}\right) \cong H^{i+\operatorname{dim}(\mathcal{B})}\left(\operatorname{IC}\left(X_{w}\right)_{y B / B}\right)
$$

We are interested in the computation of the dimension of these vector spaces.

Example

- If $w=1$ we have $X_{1}=\{B / B\}$ hence $\operatorname{IC}\left(X_{1}\right)=\mathbb{Q}_{X_{1}}$. Similarly, $\mathfrak{X}_{1}=\Delta \mathcal{B}$.
- If $s \in S$ we have $X_{s}=P_{s} / B \cong \mathbb{P}^{1}$, hence $\operatorname{IC}\left(X_{s}\right)=\underline{\mathbb{Q}}_{X_{s}}[1]$. Similarly, $\mathfrak{X}_{s}=\mathcal{B} \times \mathcal{P}_{s} \mathcal{B}$.
- For $s \neq t$ in $S, X_{s t}$ is smooth, hence $\operatorname{IC}\left(X_{s t}\right)=\underline{\mathbb{Q}}_{X_{s t}}$ [2].

Bott-Samelson(-Demazure-Hansen) resolutions

Let $w \in W$, and let $w=s_{1} \cdots s_{n}$ be a reduced decomposition.

$$
\begin{gathered}
B S_{\left(s_{1}, \cdots, s_{n}\right)}:=P_{s_{1}} \times{ }^{B} P_{s_{2}} \times{ }^{B} \cdots \times^{B} P_{s_{n}} / B . \\
\varpi_{\left(s_{1}, \cdots, s_{n}\right)}:\left\{\begin{array}{ccc}
B S_{\left(s_{1}, \cdots, s_{n}\right)} & \rightarrow & \mathcal{B} \\
{\left[p_{1}: \cdots: p_{n} B / B\right]} & \mapsto & p_{1} \cdots p_{n} B / B
\end{array}\right.
\end{gathered}
$$

Bott-Samelson(-Demazure-Hansen) resolutions

Let $w \in W$, and let $w=s_{1} \cdots s_{n}$ be a reduced decomposition.

$$
\begin{gathered}
B S_{\left(s_{1}, \cdots, s_{n}\right)}:=P_{s_{1}} \times^{B} P_{s_{2}} \times{ }^{B} \cdots \times^{B} P_{s_{n}} / B . \\
\varpi_{\left(s_{1}, \cdots, s_{n}\right)}:\left\{\begin{array}{ccc}
B S_{\left(s_{1}, \cdots, s_{n}\right)} & \rightarrow & \mathcal{B} \\
{\left[p_{1}: \cdots: p_{n} B / B\right]} & \mapsto & p_{1} \cdots p_{n} B / B
\end{array}\right.
\end{gathered}
$$

G-equivariant versions:

$$
\begin{aligned}
& \mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}:=\mathcal{B} \times \mathcal{P}_{s_{1}} \cdots \times_{\mathcal{P}_{s_{n}}} \mathcal{B} \cong \mathfrak{X}_{s_{1}} \times \mathcal{B} \cdots \times \mathcal{B} \mathfrak{X}_{s_{n}} . \\
& \pi_{\left(s_{1}, \cdots, s_{n}\right)}:\left\{\begin{array}{ccc}
\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)} & \rightarrow & \mathcal{B} \times \mathcal{B} \\
\left(g_{0} B / B, \cdots, \cdots, g_{n} B / B\right) & \mapsto & \left(g_{0} B / B, g_{n} B / B\right)
\end{array}\right.
\end{aligned}
$$

Perverse sheaves on $\mathcal{B} \times \mathcal{B}$

$D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$: bounded derived category of sheaves of \mathbb{Q}-vector spaces on $\mathcal{B} \times \mathcal{B}$, constructible with respect to the stratification \mathcal{S} by G-orbits.
Notation: $\mathcal{A}_{w}:=\mathcal{A}_{(B / B, w B / B)}$.

Perverse sheaves on $\mathcal{B} \times \mathcal{B}$

$D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$: bounded derived category of sheaves of \mathbb{Q}-vector spaces on $\mathcal{B} \times \mathcal{B}$, constructible with respect to the stratification \mathcal{S} by G-orbits.
Notation: $\mathcal{A}_{w}:=\mathcal{A}_{(B / B, w B / B)}$.
For \mathcal{A} in $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$, consider $h(\mathcal{A}) \in \mathcal{H}_{W}$ defined by the formula:

$$
h(\mathcal{A})=\sum_{w \in W}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot T_{w} .
$$

Perverse sheaves on $\mathcal{B} \times \mathcal{B}$

$D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$: bounded derived category of sheaves of \mathbb{Q}-vector spaces on $\mathcal{B} \times \mathcal{B}$, constructible with respect to the stratification \mathcal{S} by G-orbits.
Notation: $\mathcal{A}_{w}:=\mathcal{A}_{(B / B, w B / B)}$.
For \mathcal{A} in $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$, consider $h(\mathcal{A}) \in \mathcal{H}_{W}$ defined by the formula:

$$
h(\mathcal{A})=\sum_{w \in W}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot T_{w} .
$$

Convolution product: for $\mathcal{A}_{1}, \mathcal{A}_{2}$ in $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$,

$$
\mathcal{A}_{1} \star \mathcal{A}_{2}:=\left(p_{1,3}\right)_{*}\left(p_{1,2}^{*} \mathcal{A}_{1} \otimes \mathbb{Q} p_{2,3}^{*} \mathcal{A}_{2}\right) \quad \in D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})
$$

Perverse sheaves on $\mathcal{B} \times \mathcal{B}$

$D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$: bounded derived category of sheaves of \mathbb{Q}-vector spaces on $\mathcal{B} \times \mathcal{B}$, constructible with respect to the stratification \mathcal{S} by G-orbits.
Notation: $\mathcal{A}_{w}:=\mathcal{A}_{(B / B, w B / B)}$.
For \mathcal{A} in $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$, consider $h(\mathcal{A}) \in \mathcal{H}_{W}$ defined by the formula:

$$
h(\mathcal{A})=\sum_{w \in W}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot T_{w} .
$$

Convolution product: for $\mathcal{A}_{1}, \mathcal{A}_{2}$ in $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$,

$$
\mathcal{A}_{1} \star \mathcal{A}_{2}:=\left(p_{1,3}\right)_{*}\left(p_{1,2}^{*} \mathcal{A}_{1} \otimes_{\mathbb{Q}} p_{2,3}^{*} \mathcal{A}_{2}\right) \quad \in D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})
$$

This product is associative, the unit is $\mathbb{Q}_{\mathfrak{X}_{1}}$.

Lemma (MacPherson, Springer)

Let \mathcal{A} be in $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$, with $\mathcal{H}^{i}(\mathcal{A})=0$ if i is odd (resp. even), and let $s \in S$. Then $\mathbb{Q}_{\mathfrak{X}_{s}} \star \mathcal{A}$ has the same property, and

$$
h\left(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}\right)=\left(T_{s}+1\right) \cdot h(\mathcal{A}) .
$$

Lemma (MacPherson, Springer)

Let \mathcal{A} be in $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$, with $\mathcal{H}^{i}(\mathcal{A})=0$ if i is odd (resp. even), and let $s \in S$. Then $\mathbb{Q}_{\mathfrak{X}_{s}} \star \mathcal{A}$ has the same property, and

$$
h\left(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}\right)=\left(T_{s}+1\right) \cdot h(\mathcal{A}) .
$$

Proof:

$$
\left(T_{s}+1\right) \cdot h(\mathcal{A})=\sum_{s w<w}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot\left(\left(t^{2}-1\right) T_{w}+t^{2} T_{s w}\right)
$$

Lemma (MacPherson, Springer)

Let \mathcal{A} be in $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$, with $\mathcal{H}^{i}(\mathcal{A})=0$ if i is odd (resp. even), and let $s \in S$. Then $\mathbb{Q}_{\mathfrak{X}_{s}} \star \mathcal{A}$ has the same property, and

$$
h\left(\mathbb{Q}_{\mathfrak{X}_{s}} \star \mathcal{A}\right)=\left(T_{s}+1\right) \cdot h(\mathcal{A}) .
$$

Proof:

$$
\begin{aligned}
& \left(T_{s}+1\right) \cdot h(\mathcal{A})=\sum_{s w<w}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot\left(\left(t^{2}-1\right) T_{w}+t^{2} T_{s w}\right) \\
& +\sum_{s w>w}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot T_{s w}+\sum_{w \in W}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot T_{w}
\end{aligned}
$$

Lemma (MacPherson, Springer)

Let \mathcal{A} be in $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$, with $\mathcal{H}^{i}(\mathcal{A})=0$ if i is odd (resp. even), and let $s \in S$. Then $\mathbb{Q}_{\mathfrak{X}_{s}} \star \mathcal{A}$ has the same property, and

$$
h\left(\mathbb{Q}_{\mathfrak{X}_{s}} \star \mathcal{A}\right)=\left(T_{s}+1\right) \cdot h(\mathcal{A}) .
$$

Proof:

$$
\begin{gathered}
\left(T_{s}+1\right) \cdot h(\mathcal{A})=\sum_{s w<w}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot\left(\left(t^{2}-1\right) T_{w}+t^{2} T_{s w}\right) \\
+\sum_{s w>w}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot T_{s w}+\sum_{w \in W}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot T_{w} \\
=\sum_{s w<w}\left(\sum_{i \in \mathbb{Z}}\left(\operatorname{dim} H^{i}\left(\mathcal{A}_{s w}\right)+\operatorname{dim} H^{i-2}\left(\mathcal{A}_{w}\right)\right) t^{i}\right) \cdot T_{w}
\end{gathered}
$$

Lemma (MacPherson, Springer)

Let \mathcal{A} be in $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$, with $\mathcal{H}^{i}(\mathcal{A})=0$ if i is odd (resp. even), and let $s \in S$. Then $\mathbb{Q}_{\mathfrak{X}_{s}} \star \mathcal{A}$ has the same property, and

$$
h\left(\mathbb{Q}_{\mathfrak{X}_{s}} \star \mathcal{A}\right)=\left(T_{s}+1\right) \cdot h(\mathcal{A}) .
$$

Proof:

$$
\begin{gathered}
\left(T_{s}+1\right) \cdot h(\mathcal{A})=\sum_{s w<w}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot\left(\left(t^{2}-1\right) T_{w}+t^{2} T_{s w}\right) \\
+\sum_{s w>w}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot T_{s w}+\sum_{w \in W}\left(\sum_{i \in \mathbb{Z}} \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right) t^{i}\right) \cdot T_{w} \\
=\sum_{s w<w}\left(\sum_{i \in \mathbb{Z}}\left(\operatorname{dim} H^{i}\left(\mathcal{A}_{s w}\right)+\operatorname{dim} H^{i-2}\left(\mathcal{A}_{w}\right)\right) t^{i}\right) \cdot T_{w} \\
\quad+\sum_{s w>w}\left(\sum_{i \in \mathbb{Z}}\left(\operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right)+\operatorname{dim} H^{i-2}\left(\mathcal{A}_{s w}\right)\right) t^{i}\right) \cdot T_{w}
\end{gathered}
$$

So, we have to prove that
$\operatorname{dim} H^{i}\left(\left(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}\right)_{w}\right)= \begin{cases}\operatorname{dim} H^{i}\left(\mathcal{A}_{s w}\right)+\operatorname{dim} H^{i-2}\left(\mathcal{A}_{w}\right) & \text { if } s w<w, \\ \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right)+\operatorname{dim} H^{i-2}\left(\mathcal{A}_{s w}\right) & \text { if } s w>w .\end{cases}$

So, we have to prove that
$\operatorname{dim} H^{i}\left(\left(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}\right)_{w}\right)= \begin{cases}\operatorname{dim} H^{i}\left(\mathcal{A}_{s w}\right)+\operatorname{dim} H^{i-2}\left(\mathcal{A}_{w}\right) & \text { if } s w<w, \\ \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right)+\operatorname{dim} H^{i-2}\left(\mathcal{A}_{s w}\right) & \text { if } s w>w .\end{cases}$

Assume $s w<w$. Let \mathcal{C} be the restriction of $p_{1,2}^{*} \mathbb{Q}_{\mathfrak{X}_{s}} \otimes_{\mathbb{Q}} p_{2,3}^{*} \mathcal{A}$ to

$$
Z_{w}^{s}:=\left\{(B / B, g B / B, w B / B), g \in P_{s}\right\} \cong \mathbb{P}^{1}
$$

We have $H^{n}\left(\left(\underline{\mathbb{Q}}_{\mathfrak{x}_{s}} \star \mathcal{A}\right)_{w}\right) \cong H^{n}\left(Z_{w}^{s}, \mathcal{C}\right)$.

So, we have to prove that
$\operatorname{dim} H^{i}\left(\left(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}\right)_{w}\right)= \begin{cases}\operatorname{dim} H^{i}\left(\mathcal{A}_{s w}\right)+\operatorname{dim} H^{i-2}\left(\mathcal{A}_{w}\right) & \text { if } s w<w, \\ \operatorname{dim} H^{i}\left(\mathcal{A}_{w}\right)+\operatorname{dim} H^{i-2}\left(\mathcal{A}_{s w}\right) & \text { if } s w>w .\end{cases}$

Assume $s w<w$. Let \mathcal{C} be the restriction of $p_{1,2}^{*} \underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \otimes_{\mathbb{Q}} p_{2,3}^{*} \mathcal{A}$ to

$$
Z_{w}^{s}:=\left\{(B / B, g B / B, w B / B), g \in P_{s}\right\} \cong \mathbb{P}^{1}
$$

We have $H^{n}\left(\left(\underline{\mathbb{Q}}_{\mathfrak{x}_{s}} \star \mathcal{A}\right)_{w}\right) \cong H^{n}\left(Z_{w}^{s}, \mathcal{C}\right)$.
We have $(g B / B, w B / B) \in \mathfrak{Y}_{s w}$ iff $g B=s B$. Let

$$
i:\{(B / B, s B / B, w B / B)\} \hookrightarrow Z_{w}^{s}
$$

be the inclusion, and let j be the inclusion of the complement.

Consider the exact triangle $j!j^{*} \mathcal{C} \rightarrow \mathcal{C} \rightarrow i_{*} i^{*} \mathcal{C} \xrightarrow{+1}$, and the associated long exact sequence

$$
\cdots \rightarrow H_{c}^{n}\left(j, j^{*} \mathcal{C}\right) \rightarrow H_{c}^{n}(\mathcal{C}) \rightarrow H_{c}^{n}\left(i_{*} *^{*} \mathcal{C}\right) \rightarrow H_{c}^{n+1}\left(j, j^{*} \mathcal{C}\right) \rightarrow \cdots
$$

Consider the exact triangle $j!j^{*} \mathcal{C} \rightarrow \mathcal{C} \rightarrow i_{*} i^{*} \mathcal{C} \xrightarrow{+1}$, and the associated long exact sequence

$$
\cdots \rightarrow H_{c}^{n}\left(j, j^{*} \mathcal{C}\right) \rightarrow H_{c}^{n}(\mathcal{C}) \rightarrow H_{c}^{n}\left(i_{*} *^{*} \mathcal{C}\right) \rightarrow H_{c}^{n+1}\left(j, j^{*} \mathcal{C}\right) \rightarrow \cdots
$$

We have

$$
H_{c}^{n}\left(i_{*} i^{*} \mathcal{C}\right) \cong H^{n}\left(\mathcal{A}_{s w}\right), \quad H_{c}^{n}\left(j_{!} j^{*} \mathcal{C}\right) \cong H^{n-2}\left(\mathcal{A}_{w}\right)
$$

(Because $j^{*} \mathcal{C}$ has constant cohomology, with fiber \mathcal{A}_{w}, and $\left.H_{c}^{*}(\mathbb{C}, \underline{\mathbb{Q}})=\mathbb{Q}[-2].\right)$

Consider the exact triangle $j!j^{*} \mathcal{C} \rightarrow \mathcal{C} \rightarrow i_{*} i^{*} \mathcal{C} \xrightarrow{+1}$, and the associated long exact sequence

$$
\cdots \rightarrow H_{c}^{n}\left(j, j^{*} \mathcal{C}\right) \rightarrow H_{c}^{n}(\mathcal{C}) \rightarrow H_{c}^{n}\left(i_{*} *^{*} \mathcal{C}\right) \rightarrow H_{c}^{n+1}\left(j, j^{*} \mathcal{C}\right) \rightarrow \cdots
$$

We have

$$
H_{c}^{n}\left(i_{*} i^{*} \mathcal{C}\right) \cong H^{n}\left(\mathcal{A}_{s w}\right), \quad H_{c}^{n}\left(j_{j} j^{*} \mathcal{C}\right) \cong H^{n-2}\left(\mathcal{A}_{w}\right)
$$

(Because $j^{*} \mathcal{C}$ has constant cohomology, with fiber \mathcal{A}_{w}, and $\left.H_{c}^{*}(\mathbb{C}, \mathbb{Q})=\mathbb{Q}[-2].\right)$
Hence the long exact sequence splits into short exact sequences, and

$$
\operatorname{dim} H^{n}\left(\left(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}\right)_{w}\right)=\operatorname{dim} H^{n}\left(\mathcal{A}_{s w}\right)+\operatorname{dim} H^{n-2}\left(\mathcal{A}_{w}\right)
$$

Consider the exact triangle $j!j^{*} \mathcal{C} \rightarrow \mathcal{C} \rightarrow i_{*} i^{*} \mathcal{C} \xrightarrow{+1}$, and the associated long exact sequence

$$
\cdots \rightarrow H_{c}^{n}\left(j, j^{*} \mathcal{C}\right) \rightarrow H_{c}^{n}(\mathcal{C}) \rightarrow H_{c}^{n}\left(i_{*} *^{*} \mathcal{C}\right) \rightarrow H_{c}^{n+1}\left(j, j^{*} \mathcal{C}\right) \rightarrow \cdots
$$

We have

$$
H_{c}^{n}\left(i_{*} i^{*} \mathcal{C}\right) \cong H^{n}\left(\mathcal{A}_{s w}\right), \quad H_{c}^{n}\left(j_{!} j^{*} \mathcal{C}\right) \cong H^{n-2}\left(\mathcal{A}_{w}\right)
$$

(Because $j^{*} \mathcal{C}$ has constant cohomology, with fiber \mathcal{A}_{w}, and $\left.H_{c}^{*}(\mathbb{C}, \mathbb{Q})=\mathbb{Q}[-2].\right)$
Hence the long exact sequence splits into short exact sequences, and

$$
\operatorname{dim} H^{n}\left(\left(\underline{\mathbb{Q}}_{\mathfrak{X}_{s}} \star \mathcal{A}\right)_{w}\right)=\operatorname{dim} H^{n}\left(\mathcal{A}_{s w}\right)+\operatorname{dim} H^{n-2}\left(\mathcal{A}_{w}\right)
$$

The case $s w>w$ is similar. \square

Computation of stalks

Theorem

For $w \in W$, we have

$$
h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)=t^{-\operatorname{dim} \mathcal{B}} \cdot C_{w} .
$$

Hence for $y \leq w$ and $i \in \mathbb{Z}, \operatorname{dim}\left(H^{i}\left(\operatorname{IC}\left(X_{w}\right)_{y}\right)\right)$ is zero if $i+\ell(w)$ is odd, and is the coefficient of $q^{(i+\ell(w)) / 2}$ in $P_{y, w}(q)$ if $i+\ell(w)$ is even.

Computation of stalks

Theorem

For $w \in W$, we have

$$
h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)=t^{-\operatorname{dim} \mathcal{B}} \cdot C_{w} .
$$

Hence for $y \leq w$ and $i \in \mathbb{Z}, \operatorname{dim}\left(H^{i}\left(\operatorname{IC}\left(X_{w}\right)_{y}\right)\right)$ is zero if $i+\ell(w)$ is odd, and is the coefficient of $q^{(i+\ell(w)) / 2}$ in $P_{y, w}(q)$ if $i+\ell(w)$ is even.

Proof: By induction on $\ell(w)$.

Computation of stalks

Theorem

For $w \in W$, we have

$$
h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)=t^{-\operatorname{dim\mathcal {B}}} \cdot C_{w}
$$

Hence for $y \leq w$ and $i \in \mathbb{Z}, \operatorname{dim}\left(H^{i}\left(\operatorname{IC}\left(X_{w}\right)_{y}\right)\right)$ is zero if $i+\ell(w)$ is odd, and is the coefficient of $q^{(i+\ell(w)) / 2}$ in $P_{y, w}(q)$ if $i+\ell(w)$ is even.

Proof: By induction on $\ell(w)$.
Let $w=s_{1} \cdots s_{n}$ be a reduced decomposition. Consider the resolution

$$
\pi_{\left(s_{1}, \cdots, s_{n}\right)}: \mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)} \rightarrow \mathfrak{X}_{w}
$$

Now we have

$$
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_{1}}} \star \cdots \star \mathbb{\mathbb { Q }}_{\mathfrak{X}_{s_{n}}} .
$$

Now we have

$$
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \Im_{\left(s_{1}, \cdots, s_{n}\right)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_{1}}} \star \cdots \star \underline{\mathbb{Q}}_{\mathfrak{X}_{s_{n}}} .
$$

Indeed,

$$
\mathfrak{B S _ { (s _ { 1 } , \cdots , s _ { n }) } \cong \mathfrak { B S } (s _ { 1 } , \cdots , s _ { n - 1 })}\left({ }_{\mathcal{B}} \mathfrak{X}_{s_{n}}\right.
$$

Now we have

$$
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_{1}}} \star \cdots \star \mathbb{Q}_{\mathfrak{X}_{s_{n}}} .
$$

Indeed,

$$
\mathfrak{B S _ { (s _ { 1 } , \cdots , s _ { n }) } \cong \mathfrak { B } \mathfrak { S } _ { (s _ { 1 } , \cdots , s _ { n - 1 }) } \times \mathcal { B } \mathfrak { X } _ { s _ { n } }}
$$

Hence

$$
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right) * \mathbb{Q}_{\mathfrak{B} \mathfrak{G}_{\left(s_{1}, \cdots, s_{n}\right)}} \cong\left(p_{1, n+1}\right)_{*}\left(\mathbb{Q}_{\mathfrak{B} \mathfrak{G}_{\left(s_{1}, \cdots, s_{n-1}\right)} \times \mathcal{B}} \mathbb{Q}_{\mathbb{Q}}^{\left.\mathbb{Q}_{\mathcal{B}^{n-1} \times \mathfrak{x}_{s_{n}}}\right)}\right.
$$

Now we have

$$
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_{1}}} \star \cdots \star \mathbb{Q}_{\mathfrak{X}_{s_{n}}} .
$$

Indeed,

Hence

$$
\begin{gathered}
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)_{*} \mathbb{Q}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}} \cong\left(p_{1, n+1}\right)_{*}\left(\mathbb{Q}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n-1}\right)} \times \mathcal{B}} \mathbb{Q}_{\mathbb{Q}} \underline{\mathbb{B}}_{\mathcal{B}^{n-1} \times \mathfrak{X}_{s_{n}}}\right) \\
\left.\cong\left(p_{1,3}\right)_{*}\left(p_{1, n, n+1}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n-1}\right)} \times \mathcal{B}} \otimes \mathbb{Q} \underline{\mathbb{Q}}_{\mathcal{B} \times \mathfrak{X}_{s_{n}}}\right)
\end{gathered}
$$

Now we have

$$
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_{1}}} \star \cdots \star \mathbb{Q}_{\mathfrak{X}_{s_{n}}} .
$$

Indeed,

$$
\mathfrak{B S _ { (s _ { 1 } , \cdots , s _ { n }) } \cong \mathfrak { B } \mathfrak { S } _ { (s _ { 1 } , \cdots , s _ { n - 1 }) } \times \mathcal { B } \mathfrak { X } _ { s _ { n } }}
$$

Hence

$$
\begin{gathered}
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)_{*} \mathbb{Q}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}} \cong\left(p_{1, n+1}\right)_{*}\left(\mathbb{Q}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n-1}\right)} \times \mathcal{B}} \otimes_{\mathbb{Q}} \underline{\mathbb{Q}}_{\mathcal{B}^{n-1} \times \mathfrak{X}_{s_{n}}}\right) \\
\left.\cong\left(p_{1,3}\right)_{*}\left(p_{1, n, n+1}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n-1}\right)} \times \mathcal{B}} \otimes_{\mathbb{Q}} \underline{\mathbb{Q}}_{\mathcal{B} \times \mathfrak{X}_{s_{n}}}\right) \\
\cong\left(\left(\pi_{\left(s_{1}, \cdots, s_{n-1}\right)}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n-1}\right)}}\right) \star \mathbb{Q}_{\mathfrak{X}_{s_{n}}} .
\end{gathered}
$$

Now we have

$$
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}} \cong \underline{\mathbb{Q}}_{\mathfrak{X}_{s_{1}}} \star \cdots \star \mathbb{\mathbb { Q }}_{\mathfrak{X}_{s_{n}}} .
$$

Indeed,

Hence

$$
\begin{aligned}
& \left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right) * \mathbb{\mathbb { Q }}_{\mathfrak{B} \mathfrak{G}_{\left(s_{1}, \cdots, s_{n}\right)}} \cong\left(p_{1, n+1}\right)_{*}\left(\mathbb{\mathbb { Q }}_{\mathfrak{B} \mathfrak{G}_{\left(s_{1}, \ldots, s_{n-1}\right)} \times \mathcal{B}} \mathbb{Q}_{\mathbb{Q}} \mathbb{Q}_{\mathcal{B}^{n-1} \times \mathfrak{x}_{s_{n}}}\right) \\
& \cong\left(p_{1,3}\right)_{*}\left(\left(p_{1, n, n+1}\right) * \mathbb{Q}_{\mathfrak{B} \mathcal{G}_{\left(s_{1}, \ldots, s_{n-1}\right)} \times \mathcal{B}} \otimes \mathbb{Q} \underline{\mathbb{Q}}_{\mathcal{B} \times \mathfrak{X}_{s_{n}}}\right) \\
& \cong\left(\left(\pi_{\left(s_{1}, \cdots, s_{n-1}\right)}\right) * \mathbb{Q}_{\mathfrak{B} \mathfrak{G}_{\left(s_{1}, \ldots, s_{n-1}\right)}}\right) \star \mathbb{\mathbb { Q }}_{\mathfrak{s}_{s_{n}}} .
\end{aligned}
$$

The claim follows by induction.

Then, by the crucial lemma,

$$
\begin{aligned}
& h\left(\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right) * \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}}[n]\right)=t^{-n}\left(1+T_{s_{1}}\right) \cdots\left(1+T_{s_{n}}\right) \\
&=C_{s_{1}} \cdots C_{s_{n}} .
\end{aligned}
$$

Then, by the crucial lemma,

$$
\begin{aligned}
& h\left(\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right) * \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}}[n]\right)=t^{-n}\left(1+T_{s_{1}}\right) \cdots\left(1+T_{s_{n}}\right) \\
&=C_{s_{1}} \cdots C_{s_{n}} .
\end{aligned}
$$

In particular, this element of \mathcal{H}_{w} is stable under i.

Then, by the crucial lemma,

$$
\begin{aligned}
& h\left(\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right) * \underline{\mathbb{Q}}_{\mathfrak{B} \mathbb{S}_{\left(s_{1}, \cdots, s_{n}\right)}}[n]\right)=t^{-n}\left(1+T_{s_{1}}\right) \cdots\left(1+T_{s_{n}}\right) \\
&=C_{s_{1}} \cdots C_{s_{n}} .
\end{aligned}
$$

In particular, this element of \mathcal{H}_{w} is stable under i.
By the Decomposition Theorem,

$$
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}}[n+\operatorname{dim} \mathcal{B}] \cong \bigoplus_{y \leq w} \operatorname{IC}\left(\mathfrak{X}_{y}\right) \otimes_{\mathbb{Q}} V_{y}
$$

where the V_{y} 's are graded finite dimensional \mathbb{Q}-vector space, with $V_{w}=\mathbb{Q}$.

Then, by the crucial lemma,

$$
\begin{aligned}
& h\left(\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right) * \underline{\mathbb{Q}}_{\mathfrak{B} \mathbb{S}_{\left(s_{1}, \cdots, s_{n}\right)}}[n]\right)=t^{-n}\left(1+T_{s_{1}}\right) \cdots\left(1+T_{s_{n}}\right) \\
&=C_{s_{1}} \cdots C_{s_{n}} .
\end{aligned}
$$

In particular, this element of \mathcal{H}_{w} is stable under i.
By the Decomposition Theorem,

$$
\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}}[n+\operatorname{dim} \mathcal{B}] \cong \bigoplus_{y \leq w} \operatorname{IC}\left(\mathfrak{X}_{y}\right) \otimes_{\mathbb{Q}} V_{y}
$$

where the V_{y} 's are graded finite dimensional \mathbb{Q}-vector space, with $V_{w}=\mathbb{Q}$.
This object is stable under \mathbb{D}, hence $\operatorname{dim}\left(V_{y}^{n}\right)=\operatorname{dim}\left(V_{y}^{-n}\right)$.

It follows that

$$
\begin{aligned}
& h\left(\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right) * \mathbb{\mathbb { Q }}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}}[n+\operatorname{dim} \mathcal{B}]\right) \\
&=h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)+\sum_{y<w} Q_{y}(t) h\left(\operatorname{IC}\left(\mathfrak{X}_{y}\right)\right),
\end{aligned}
$$

where Q_{y} is a Laurent polynomial such that $Q_{y}(t)=Q_{y}\left(t^{-1}\right)$.

It follows that

$$
\begin{aligned}
& h\left(\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right) * \underline{\mathbb{Q}}_{\mathfrak{B S}_{\left(s_{1}, \cdots, s_{n}\right)}}[n+\operatorname{dim} \mathcal{B}]\right) \\
&=h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)+\sum_{y<w} Q_{y}(t) h\left(\operatorname{IC}\left(\mathfrak{X}_{y}\right)\right)
\end{aligned}
$$

where Q_{y} is a Laurent polynomial such that $Q_{y}(t)=Q_{y}\left(t^{-1}\right)$.
By induction, $h\left(\operatorname{IC}\left(\mathfrak{X}_{y}\right)\right)=t^{-\operatorname{dim} \mathcal{B}} C_{y}$ for any $y<w$.

It follows that

$$
\begin{aligned}
& h\left(\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right) * \underline{\mathbb{Q}}_{\mathfrak{B G}_{\left(s_{1}, \ldots, s_{n}\right)}}[n+\operatorname{dim} \mathcal{B}]\right) \\
&=h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)+\sum_{y<w} Q_{y}(t) h\left(\operatorname{IC}\left(\mathfrak{X}_{y}\right)\right)
\end{aligned}
$$

where Q_{y} is a Laurent polynomial such that $Q_{y}(t)=Q_{y}\left(t^{-1}\right)$.
By induction, $h\left(\operatorname{IC}\left(\mathfrak{X}_{y}\right)\right)=t^{-\operatorname{dim} \mathcal{B}} C_{y}$ for any $y<w$. In particular, $t^{\operatorname{dim} \mathcal{B}} \cdot \sum_{y<w} Q_{y}(t) h\left(\operatorname{IC}\left(\mathfrak{X}_{y}\right)\right)$ is stable under i.

It follows that

$$
\begin{aligned}
&\left.h\left(\left(\pi_{\left(s_{1}, \cdots, s_{n}\right)}\right)\right)_{*} \underline{\mathbb{Q}}_{\mathfrak{B} \mathfrak{S}_{\left(s_{1}, \cdots, s_{n}\right)}}[n+\operatorname{dim} \mathcal{B}]\right) \\
&=h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)+\sum_{y<w} Q_{y}(t) h\left(\operatorname{IC}\left(\mathfrak{X}_{y}\right)\right),
\end{aligned}
$$

where Q_{y} is a Laurent polynomial such that $Q_{y}(t)=Q_{y}\left(t^{-1}\right)$.
By induction, $h\left(\operatorname{IC}\left(\mathfrak{X}_{y}\right)\right)=t^{-\operatorname{dim} \mathcal{B}} C_{y}$ for any $y<w$. In particular, $t^{\operatorname{dim} \mathcal{B}} \cdot \sum_{y<w} Q_{y}(t) h\left(\operatorname{IC}\left(\mathfrak{X}_{y}\right)\right)$ is stable under i.

Hence $t^{\operatorname{dim} \mathcal{B}} h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)$ is stable under i.

For $y<w$, we have

$$
H^{i-\operatorname{dim} \mathcal{B}}\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)_{y}\right)=0 \quad \text { if } i \notin \llbracket-\ell(w),-\ell(y)-1 \rrbracket
$$

by the support and co-support conditions on IC sheaves.

For $y<w$, we have

$$
H^{i-\operatorname{dim} \mathcal{B}}\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)_{y}\right)=0 \quad \text { if } i \notin \llbracket-\ell(w),-\ell(y)-1 \rrbracket
$$

by the support and co-support conditions on IC sheaves.
Hence $t^{\operatorname{dim} \mathcal{B}} h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)$ satisfies the conditions which characterize C_{w}.

For $y<w$, we have

$$
H^{i-\operatorname{dim} \mathcal{B}}\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)_{y}\right)=0 \quad \text { if } i \notin \llbracket-\ell(w),-\ell(y)-1 \rrbracket
$$

by the support and co-support conditions on IC sheaves.
Hence $t^{\operatorname{dim} \mathcal{B}} h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)$ satisfies the conditions which characterize C_{w}.
Hence $h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)=t^{-\operatorname{dim} \mathcal{B}} C_{w} . \square$

For $y<w$, we have

$$
H^{i-\operatorname{dim} \mathcal{B}}\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)_{y}\right)=0 \quad \text { if } i \notin \llbracket-\ell(w),-\ell(y)-1 \rrbracket
$$

by the support and co-support conditions on IC sheaves.
Hence $t^{\operatorname{dim} \mathcal{B}} h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)$ satisfies the conditions which characterize C_{w}.

Hence $h\left(\operatorname{IC}\left(\mathfrak{X}_{w}\right)\right)=t^{-\operatorname{dim} \mathcal{B}} C_{w} . \square$

Corollary

The coefficients of $P_{y, w}$ are non-negative.

Example: type $\mathbf{B}_{\mathbf{2}}$

Consider $w=s_{1} s_{2} s_{1}$, and the resolution

$$
\pi: \mathfrak{B S}_{\left(s_{1}, s_{2}, s_{1}\right)} \rightarrow \mathfrak{X}_{w}
$$

Example: type B_{2}

Consider $w=s_{1} s_{2} s_{1}$, and the resolution

$$
\pi: \mathfrak{B S}_{\left(s_{1}, s_{2}, s_{1}\right)} \rightarrow \mathfrak{X}_{w}
$$

π is an isomorphism over $\mathfrak{X}_{w}-\mathfrak{X}_{s_{1}}$, and the non trivial fibers are isomorphic to \mathbb{P}^{1}. For example we have

$$
\pi^{-1}(B / B, B / B)=\left\{(B / B, g B / B, g B / B, B / B), g \in P_{s_{1}}\right\}
$$

Example: type B_{2}

Consider $w=s_{1} s_{2} s_{1}$, and the resolution

$$
\pi: \mathfrak{B S _ { (s _ { 1 } , s _ { 2 } , s _ { 1 }) }} \rightarrow \mathfrak{X}_{w}
$$

π is an isomorphism over $\mathfrak{X}_{w}-\mathfrak{X}_{s_{1}}$, and the non trivial fibers are isomorphic to \mathbb{P}^{1}. For example we have

$$
\pi^{-1}(B / B, B / B)=\left\{(B / B, g B / B, g B / B, B / B), g \in P_{s_{1}}\right\}
$$

We have

$$
H^{*}\left(\mathbb{P}^{1}\right)=\mathbb{Q} \oplus \mathbb{Q}[-2] .
$$

The stalks of $\pi_{*} \mathrm{IC}(\mathfrak{B S})=\pi_{*} \underline{\mathbb{Q}}_{\mathfrak{B C}}[7]$ are given by:

$\operatorname{dim}\left(\mathfrak{X}_{v}\right)$	v	-7	-6	-5
7	$s_{1} s_{2} s_{1}$	\mathbb{Q}	0	0
6	$s_{2} s_{1}$	\mathbb{Q}	0	0
6	$s_{1} s_{2}$	\mathbb{Q}	0	0
5	s_{2}	\mathbb{Q}	0	0
5	s_{1}	\mathbb{Q}	0	\mathbb{Q}
4	1	\mathbb{Q}	0	\mathbb{Q}

The stalks of $\pi_{*} \mathrm{IC}(\mathfrak{B S})=\pi_{*} \underline{\mathbb{Q}}_{\mathfrak{B S}}[7]$ are given by:

$\operatorname{dim}\left(\mathfrak{X}_{v}\right)$	v	-7	-6	-5
7	$s_{1} s_{2} s_{1}$	\mathbb{Q}	0	0
6	$s_{2} s_{1}$	\mathbb{Q}	0	0
6	$s_{1} s_{2}$	\mathbb{Q}	0	0
5	s_{2}	\mathbb{Q}	0	0
5	s_{1}	\mathbb{Q}	0	\mathbb{Q}
4	1	\mathbb{Q}	0	\mathbb{Q}

Hence

$$
\pi_{*} \mathrm{IC}(\mathfrak{B S}) \cong \operatorname{IC}\left(\mathfrak{X}_{s_{1} s_{2} s_{1}}\right) \oplus \operatorname{IC}\left(\mathfrak{X}_{s_{1}}\right)
$$

Moreover,

$$
\operatorname{IC}\left(\mathfrak{X}_{s_{1} s_{2} s_{1}}\right)=\mathbb{Q}_{\mathfrak{X}_{s_{1} s_{2} s_{1}}}[7] .
$$

In terms of KL elements, we have

$$
C_{s_{1}} C_{s_{2}} C_{s_{1}}=t^{-3}\left(1+T_{s_{1}}\right)\left(1+T_{s_{2}}\right)\left(1+T_{s_{1}}\right)
$$

In terms of KL elements, we have

$$
\begin{aligned}
& C_{s_{1}} C_{s_{2}} C_{s_{1}}=t^{-3}\left(1+T_{s_{1}}\right)\left(1+T_{s_{2}}\right)\left(1+T_{s_{1}}\right) \\
& =t^{-3}\left(T_{s_{1} s_{2} s_{1}}+T_{s_{1} s_{2}}+T_{s_{2} s_{1}}+T_{s_{2}}+\left(t^{2}+1\right) T_{s_{1}}+\left(t^{2}+1\right) T_{1}\right)
\end{aligned}
$$

In terms of KL elements, we have

$$
\begin{aligned}
& C_{s_{1}} C_{s_{2}} C_{s_{1}}=t^{-3}\left(1+T_{s_{1}}\right)\left(1+T_{s_{2}}\right)\left(1+T_{s_{1}}\right) \\
& =t^{-3}\left(T_{s_{1} s_{2} s_{1}}+T_{s_{1} s_{2}}+T_{s_{2} s_{1}}+T_{s_{2}}+\left(t^{2}+1\right) T_{s_{1}}+\left(t^{2}+1\right) T_{1}\right) \\
& =C_{s_{1} s_{2} s_{1}}+C_{s_{1}}
\end{aligned}
$$

In terms of KL elements, we have

$$
\begin{aligned}
& C_{s_{1}} C_{s_{2}} C_{s_{1}}=t^{-3}\left(1+T_{s_{1}}\right)\left(1+T_{s_{2}}\right)\left(1+T_{s_{1}}\right) \\
& =t^{-3}\left(T_{s_{1} s_{2} s_{1}}+T_{s_{1} s_{2}}+T_{s_{2} s_{1}}+T_{s_{2}}+\left(t^{2}+1\right) T_{s_{1}}+\left(t^{2}+1\right) T_{1}\right) \\
& =C_{s_{1} s_{2} s_{1}}+C_{s_{1}}
\end{aligned}
$$

with

$$
C_{s_{1} s_{2} s_{1}}=t^{-3}\left(T_{s_{1} s_{2} s_{1}}+T_{s_{1} s_{2}}+T_{s_{2} s_{1}}+T_{s_{2}}+T_{s_{1}}+T_{1}\right)
$$

Example: type \mathbf{A}_{3}

Consider $w=s_{1} s_{3} s_{2} s_{3} s_{1}$, and the resolution

$$
\pi: \mathfrak{B S}_{\left(s_{1}, s_{3}, s_{2}, s_{3}, s_{1}\right)} \rightarrow \mathfrak{X}_{w}
$$

Example: type \mathbf{A}_{3}

Consider $w=s_{1} s_{3} s_{2} s_{3} s_{1}$, and the resolution

$$
\pi: \mathfrak{B S}_{\left(s_{1}, s_{3}, s_{2}, s_{3}, s_{1}\right)} \rightarrow \mathfrak{X}_{w}
$$

π is an isomorphism over $\mathfrak{X}_{w}-\mathfrak{X}_{s_{1} s_{3}}$, and all the non-trivial fibers are isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. For example, we have

$$
\begin{aligned}
& \quad \pi^{-1}(B / B, B / B)= \\
& \left\{(B / B, g B / B, g h B / B, g h B / B, g B / B, B / B), g \in P_{s_{3}}, h \in P_{s_{1}}\right\}
\end{aligned}
$$

Example: type \mathbf{A}_{3}

Consider $w=s_{1} s_{3} s_{2} s_{3} s_{1}$, and the resolution

$$
\pi: \mathfrak{B S}_{\left(s_{1}, s_{3}, s_{2}, s_{3}, s_{1}\right)} \rightarrow \mathfrak{X}_{w}
$$

π is an isomorphism over $\mathfrak{X}_{w}-\mathfrak{X}_{s_{1} s_{3}}$, and all the non-trivial fibers are isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. For example, we have

$$
\begin{aligned}
& \quad \pi^{-1}(B / B, B / B)= \\
& \left\{(B / B, g B / B, g h B / B, g h B / B, g B / B, B / B), g \in P_{s_{3}}, h \in P_{s_{1}}\right\}
\end{aligned}
$$

We have

$$
H^{*}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\mathbb{Q} \oplus \mathbb{Q}^{2}[-2] \oplus \mathbb{Q}[-4]
$$

The stalks of $\pi_{*} \mathrm{IC}(\mathfrak{B S})=\pi_{*} \underline{\mathbb{Q}}_{\mathfrak{B}}[11]$ are given by:

$\operatorname{dim}\left(\mathfrak{X}_{v}\right)$	v	-11	-10	-9	-8	-7
	$\mathcal{B}^{2}-\mathfrak{X}_{w}$	0	0	0	0	0
$11-7$	$\mathfrak{X}_{w}-\mathfrak{X}_{s_{1} s_{3}}$	\mathbb{Q}	0	0	0	0
8	$s_{1} s_{3}$	\mathbb{Q}	0	\mathbb{Q}^{2}	0	\mathbb{Q}
7	s_{1}	\mathbb{Q}	0	\mathbb{Q}^{2}	0	\mathbb{Q}
7	s_{3}	\mathbb{Q}	0	\mathbb{Q}^{2}	0	\mathbb{Q}
6	1	\mathbb{Q}	0	\mathbb{Q}^{2}	0	\mathbb{Q}

The stalks of $\pi_{*} \mathrm{IC}(\mathfrak{B S})=\pi_{*} \underline{\mathbb{Q}}_{\mathfrak{B}}[11]$ are given by:

$\operatorname{dim}\left(\mathfrak{X}_{v}\right)$	v	-11	-10	-9	-8	-7
	$\mathcal{B}^{2}-\mathfrak{X}_{w}$	0	0	0	0	0
$11-7$	$\mathfrak{X}_{w}-\mathfrak{X}_{s_{1} s_{3}}$	\mathbb{Q}	0	0	0	0
8	$s_{1} s_{3}$	\mathbb{Q}	0	\mathbb{Q}^{2}	0	\mathbb{Q}
7	s_{1}	\mathbb{Q}	0	\mathbb{Q}^{2}	0	\mathbb{Q}
7	s_{3}	\mathbb{Q}	0	\mathbb{Q}^{2}	0	\mathbb{Q}
6	1	\mathbb{Q}	0	\mathbb{Q}^{2}	0	\mathbb{Q}

Hence

$$
\pi_{*} \mathrm{IC}(\mathfrak{B G})=\mathrm{IC}\left(\mathfrak{X}_{w}\right) \oplus \operatorname{IC}\left(\mathfrak{X}_{s_{1} s_{3}}\right)[1] \oplus \operatorname{IC}\left(\mathfrak{X}_{s_{1} s_{3}}\right)[-1] .
$$

Moreover, the stalks of $\operatorname{IC}\left(\mathfrak{X}_{w}\right)$ are given by:

$\operatorname{dim}\left(\mathfrak{X}_{v}\right)$	v	-11	-10	-9
	$\mathcal{B}^{2}-\mathfrak{X}_{w}$	0	0	0
$11-7$	$\mathfrak{X}_{w}-\mathfrak{X}_{s_{1} s_{3}}$	\mathbb{Q}	0	0
8	$s_{1} s_{3}$	\mathbb{Q}	0	\mathbb{Q}
7	s_{1}	\mathbb{Q}	0	\mathbb{Q}
7	s_{3}	\mathbb{Q}	0	\mathbb{Q}
6	1	\mathbb{Q}	0	\mathbb{Q}

Moreover, the stalks of $\operatorname{IC}\left(\mathfrak{X}_{w}\right)$ are given by:

$\operatorname{dim}\left(\mathfrak{X}_{v}\right)$	v	-11	-10	-9
	$\mathcal{B}^{2}-\mathfrak{X}_{w}$	0	0	0
$11-7$	$\mathfrak{X}_{w}-\mathfrak{X}_{s_{1} s_{3}}$	\mathbb{Q}	0	0
8	$s_{1} s_{3}$	\mathbb{Q}	0	\mathbb{Q}
7	s_{1}	\mathbb{Q}	0	\mathbb{Q}
7	s_{3}	\mathbb{Q}	0	\mathbb{Q}
6	1	\mathbb{Q}	0	\mathbb{Q}

In particular, \mathfrak{X}_{w} is not rationally smooth, and π is not semi-small.

Geometric realization of \mathcal{H}_{w}

Consider the subcategory \mathcal{D} of $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$ whose objects are the semisimple complexes, i.e. the complexes of the form

$$
\bigoplus_{x \in W} \mathrm{IC}\left(\mathfrak{X}_{x}\right) \otimes_{\mathbb{Q}} V_{x}
$$

Geometric realization of \mathcal{H}_{w}

Consider the subcategory \mathcal{D} of $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$ whose objects are the semisimple complexes, i.e. the complexes of the form

$$
\bigoplus_{x \in W} \operatorname{IC}\left(\mathfrak{X}_{x}\right) \otimes_{\mathbb{Q}} V_{x}
$$

We have

$$
h: \operatorname{Obj}(\mathcal{D}) \rightarrow \mathcal{H}_{w}
$$

Geometric realization of \mathcal{H}_{W}

Consider the subcategory \mathcal{D} of $D_{\mathcal{S}}^{b}(\mathcal{B} \times \mathcal{B})$ whose objects are the semisimple complexes, i.e. the complexes of the form

$$
\bigoplus_{x \in W} \operatorname{IC}\left(\mathfrak{X}_{x}\right) \otimes_{\mathbb{Q}} V_{x}
$$

We have

$$
h: \operatorname{Obj}(\mathcal{D}) \rightarrow \mathcal{H}_{w}
$$

One can check that \mathcal{D} is stable under the convolution, and that

$$
h\left(\mathcal{A}_{1} \star \mathcal{A}_{2}\right)=h\left(\mathcal{A}_{1}\right) \cdot h\left(\mathcal{A}_{2}\right)
$$

for any $\mathcal{A}_{1}, \mathcal{A}_{2}$ in \mathcal{D}.
\mathcal{D} is stable under shifts, and

$$
h(\mathcal{A}[1])=t^{-1} h(\mathcal{A})
$$

for \mathcal{A} in \mathcal{D}.
\mathcal{D} is stable under shifts, and

$$
h(\mathcal{A}[1])=t^{-1} h(\mathcal{A})
$$

for \mathcal{A} in \mathcal{D}.
\mathcal{D} is also stable under \mathbb{D}, and

$$
h(\mathbb{D}(\mathcal{A}))=t^{-2 \operatorname{dim} \mathcal{B}} \cdot i(h(\mathcal{A}))
$$

for any \mathcal{A} in \mathcal{D}.
\mathcal{D} is stable under shifts, and

$$
h(\mathcal{A}[1])=t^{-1} h(\mathcal{A})
$$

for \mathcal{A} in \mathcal{D}.
\mathcal{D} is also stable under \mathbb{D}, and

$$
h(\mathbb{D}(\mathcal{A}))=t^{-2 \operatorname{dim} \mathcal{B}} \cdot i(h(\mathcal{A}))
$$

for any \mathcal{A} in \mathcal{D}.
Finally, the image of h is

$$
\bigoplus_{w \in W} \mathbb{Z}_{\geq 0}\left[t, t^{-1}\right] \cdot C_{w}
$$

\mathcal{D} is stable under shifts, and

$$
h(\mathcal{A}[1])=t^{-1} h(\mathcal{A})
$$

for \mathcal{A} in \mathcal{D}.
\mathcal{D} is also stable under \mathbb{D}, and

$$
h(\mathbb{D}(\mathcal{A}))=t^{-2 \operatorname{dim} \mathcal{B}} \cdot i(h(\mathcal{A}))
$$

for any \mathcal{A} in \mathcal{D}.
Finally, the image of h is

$$
\bigoplus_{w \in W} \mathbb{Z}_{\geq 0}\left[t, t^{-1}\right] \cdot C_{w}
$$

Hence \mathcal{D} gives a geometric realization of \mathcal{H}_{W}.
\mathcal{D} is stable under shifts, and

$$
h(\mathcal{A}[1])=t^{-1} h(\mathcal{A})
$$

for \mathcal{A} in \mathcal{D}.
\mathcal{D} is also stable under \mathbb{D}, and

$$
h(\mathbb{D}(\mathcal{A}))=t^{-2 \operatorname{dim} \mathcal{B}} \cdot i(h(\mathcal{A}))
$$

for any \mathcal{A} in \mathcal{D}.
Finally, the image of h is

$$
\bigoplus_{w \in W} \mathbb{Z}_{\geq 0}\left[t, t^{-1}\right] \cdot C_{w}
$$

Hence \mathcal{D} gives a geometric realization of \mathcal{H}_{W}.
Remark: It follows that for $x, y \in W$,

$$
C_{x} \cdot C_{y} \in \bigoplus_{w \in W} \mathbb{Z}_{\geq 0}\left[t, t^{-1}\right] \cdot C_{w}
$$

