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Introduction

0.1. The goal of these notes is to present an easy proof, due to Springer
and MacPherson, of the well-known fact that the stalks of simple perverse
sheaves on the flag variety B of a complex semisimple algebraic group G
can be described by coefficients of Kazhdan-Lusztig polynomials. These
polynomials are defined combinatorially, in terms of the Hecke algebra of
the corresponding Weyl group.

We also discuss other proofs of this result, and the related question of a
geometric description of the Hecke algebra, and we perform explicit compu-
tations.

0.2. The origin of this problem is Kazdan-Lusztig conjecture, which de-
scribes characters of simple representations of the complex semisimple Lie
algebras Lie(G) in terms of Kazhdan-Lusztig polynomials (see [KL1]). The
proof of this conjecture was completed in two steps. First, as described in
[Ri], one can describe these characters in terms of stalks of simple perverse
sheaves on B. Then, these notes explain how these stalks can be described in
terms of Kazhdan-Lusztig polynomials. Note that, historically, the second
step was completed (by Kazhdan-Lusztig, see [KL2]) before the first one
(by Brylinski-Kashiwara and Beilinson-Bernstein, see [Ri] and references
therein).

0.3. Notation. All functors considered are derived functors, but for sim-
plicity we will not indicate “R” or “L”. We normalize the intersection
cohomology complexes so that they are perverse sheaves (as in [Ri]).
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1. Hecke algebras and Kazhdan-Lusztig polynomials

1.1. Hecke algebra. Let (W,S) be a Coxeter group. The associated Hecke
algebra HW is a Z[t, t−1]-algebra, with a basis {Tw, w ∈ W} parametrized
by W , whose multiplication is given by the following rules:{

Tv · Tw = Tvw if `(vw) = `(v) + `(w),
T 2
s = (t2 − 1)Ts + t2 if s ∈ S.

(For details on the construction, see e.g. [Hu].)
The Kazhdan-Lusztig involution i : HW → HW is the algebra involution

defined by the formulas i(t) = t−1, i(Tw) = T−1
w−1 .

1.2. Kazhdan-Lusztig basis. The following fundamental result is due to
Kazhdan and Lusztig, see [KL1]. The proof is very elementary. (See [Hu] for
a detailled version or the original proof of Kazhdan-Lusztig, or [S2, Theorem
2.1] for a very simple proof avoiding the use of R-polynomials, and an even
more general unicity result.)

Theorem 1.2.1. For any w ∈W , there exists a unique element Cw ∈ HW
which satisfies the following properties:

(1) i(Cw) = Cw
(2) Cw = t−`(w)

∑
x≤wQx,w(t)Tx, where Qw,w = 1 and for x < w,

Qx,w ∈ Z[t] is a polynomial of degree ≤ `(w)− `(x)− 1.
Moreover, for each x ≤ w, there exists a polynomial Px,w ∈ Z[q] (of degree

≤ 1
2(`(w)− `(x)− 1)) such that Qx,w(t) = Px,w(t2).

The polynomials Px,w are called Kazhdan-Lusztig polynomials. The ele-
ments Cw (which are rather denoted C ′w in [KL1] and [Hu], and Hw in [S2])
are called Kazhdan-Lusztig elements.

Example 1.2.2. (1) We have C1 = 1.
(2) For s ∈ S, we have Cs = t−1(Ts + 1).
(3) If s, t are different simple reflections, then Cst = t−2(Tst+Ts+Tt+1).

2. Geometry of the flag variety

For more details (and further results) on this section, the reader may
consult [BK].

2.1. Bruhat decomposition. Let G be a complex connected semisimple
algebraic group, and let B ⊂ G be a Borel subgroup and T ⊂ B be a
maximal torus. Let W be the Weyl group of G. The choice of B determines
a naturel set of generators S ⊂W , such that (W,S) is a Coxeter group.

Let B = G/B be the flag variety. The Bruhat decomposition gives the
partition of B into B-orbits:

B =
⊔
w∈W

BwB/B.

Moreover, we have

Xw := BwB/B =
⊔
y≤w

ByB/B.
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We let T denote the stratification of B by the BwB/B, w ∈ W . (It is
a Whitney stratification.) The orbit BwB/B is isomorphic to the affine
space A`(w), in particular it is simply connected. Hence the simple perverse
sheaves constructible for the stratification T are the IC complexes IC(Xw)
associated with the trivial local system on the orbits BwB/B. We write
IC(Xw)y for the stalk of IC(Xw) at yB/B ∈ B. It is a complex of vector
spaces. The goal of these notes is to explain how the cohomology of IC(Xw)y
is described by the Kazhdan-Lusztig polynomial Py,w introduced in §1.2.

It is sometimes convenient to consider a more symmetric situation. Name-
ly, the Bruhat decomposition equivalently describes the orbits of the diago-
nal G-action on B × B:

B × B =
⊔
w∈W

G · (B/B,wB/B).

We also write
Xw := G · (B/B,wB/B).

We denote by S the stratification of B×B by the G · (B/B,wB/B), w ∈W .
There are natural isomorphisms, for each w ∈W ,

G · (B/B,wB/B) ∼= G×B Xw, Xw
∼= G×B Xw.

In particular, these strata are also simply-connected. We write IC(Xw)y for
the stalk of the simple perverse sheaf IC(Xw) at the point (B/B, yB/B) ∈
B×B. Note that, by simply connectedness of the strata, the object IC(Xw)
has constant cohomology along Xy

1. Moreover, for any w, y ∈W and i ∈ Z
there is a natural isomorphism

H i(IC(Xw)y) ∼= H i+dim(B)(IC(Xw)y).

The strata BwB/B (resp. G · (B/B,wB/B)) are called Schubert cells
(resp. G-Schubert cells), and their closures Xw (resp. Xw) are called Schu-
bert varieties (resp. G-Schubert varieties). For any w ∈ W , we denote
by

jw : G · (B/B,wB/B) ↪→ B × B
the inclusion.

Example 2.1.1. (1) We have by definition

X1 = {B/B}, X1 = ∆B,

where ∆B ⊂ B × B is the diagonal copy.
(2) The closure Xs coincides with Ps/B, hence is isomorphic to P1

C. In
particular it is smooth, and

IC(Xs) = Q
Xs

[1].

Similarly, Xs is a P1
C-fibration over B, and we have

IC(Xs) = Q
Xs

[dim(B) + 1].

1Alternatively, this fact can be checked using the G-action.
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2.2. Demazure resolutions. In the study of Schubert varieties, a crucial
role is played by Demazure resolutions. Let w ∈ W , and let w = s1 · · · sn
be a reduced decomposition (so that n = `(w)). Then consider the variety

Y(s1,··· ,sn) := Ps1 ×B Ps2 ×B · · · ×B Psn/B.

Here, Ps denotes the minimal parabolic subgroup of B such that Ps =
B t BsB. The variety Y(s1,··· ,sn) is an iterated P1-fibration; in particular it
is smooth, of dimension n. There is a natural proper morphism

$(s1,··· ,sn) : Y(s1,··· ,sn) → B

defined by

$(s1,··· ,sn)([p1 : · · · : pnB/B]) = p1 · · · pnB/B.

It is well-known that the image of $(s1,··· ,sn) is Xw, and that it is an iso-
morphism over BwB/B. In particular,

$(s1,··· ,sn) : Y(s1,··· ,sn) → Xw

is a resolution of singularities.
Again, it is often convenient to consider aG-equivariant analogue. Namely,

for s ∈ S consider the partial flag variety Ps := G/Ps, and the natural pro-
jection morphism B → Ps. Let again w ∈W , and w = s1 · · · sn be a reduced
decomposition. Consider the variety

Y(s1,··· ,sn) := B ×Ps1 B ×Ps2 · · · ×Psn B,

and the proper morphism

π(s1,··· ,sn) : Y(s1,··· ,sn) → B × B

induced by the projection on the first and the last component. Then as
above the image of π(s1,··· ,sn) is Xw, and this morphism is an isomorphism
over Xw. In particular,

π(s1,··· ,sn) : Y(s1,··· ,sn) → Xw

is a resolution of singularities. In fact, there are natural isomorphism

Y(s1,··· ,sn)
∼= G×B Y(s1,··· ,sn)

such that π(s1,··· ,sn) is induced by $(s1,··· ,sn).
Let us remark that there is a natural isomorphism

(2.2.1) Y(s1,··· ,sn)
∼= Xs1 ×B Xs2 ×B · · · ×B Xsn .

Example 2.2.2. When `(w) ≤ 2, the Demazure resolution is an isomor-
phism. In particular, these Schubert varieties are smooth, and their IC
complexes are shifted constant sheaves.

3. Description of perverse sheaves in terms of the Hecke
algebra

The proofs in this subsection are due to MacPherson and Springer, see
[Sp].



KAZHDAN-LUSZTIG POLYNOMIALS AND PERVERSE SHEAVES 5

3.1. Crucial lemma. Let Db
S(B × B) be the bounded derived categories

of sheaves of Q-vector spaces on B × B, constructible with respect to the
stratification S by G-orbits. To simplify the notation, for anyA in Db

S(B×B)
we write Aw for the fiber A(B/B,wB/B) of A at the point (B/B,wB/B). For
any object A of Db

S(B×B), we consider the element h(A) ∈ HW defined by
the following formula:

h(A) =
∑
w∈W

(∑
i∈Z

dimH i(Aw)ti
)
· Tw.

Here the fiber Aw is a complex of vector spaces, and H i(Aw) is its i-th
cohomology.

Now we define a convolution product on the category Db
S(B×B). Consider

the projection morphism pi,j : B3 → B2 on the i-th and j-th components.
Then for A1 and A2 in Db

S(B × B), we set

A1 ∗ A2 := (p1,3)∗
(
p∗1,2A1 ⊗Q p

∗
2,3A2

)
∈ Db

S(B × B).

By the base change formula, this product is associative. Moreover, the
object Q

X1
is a unit. (Recall that X1 is the diagonal copy of B in B × B.)

The following crucial lemma is proved in [Sp, Lemme 2.6]. See also [S3,
Lemma 3.2.3] for a slightly different argument. The proof does not use the
Decomposition Theorem; hence this lemma is true for perverse sheaves with
coefficients in any field.

Lemma 3.1.1. Let A be an object of Db
S(B × B) such that Hi(A) = 0 if i

is odd (resp. even), and let s ∈ S. Then the object Q
Xs
∗ A has the same

property, and we have

h
(
Q

Xs
∗ A
)

= (Ts + 1) · h(A).

Proof. An easy computation gives

(Ts + 1) · h(A) =
∑
sw<w

(∑
i∈Z

(dimH i(Asw) + dimH i−2(Aw))ti
)
· Tw

+
∑
sw>w

(∑
i∈Z

(dimH i(Aw) + dimH i−2(Asw))ti
)
· Tw.

Hence it is sufficient to prove that

(∗) dimH i
(
(Q

Xs
∗ A)w

)
=
{

dimH i(Asw) + dimH i−2(Aw) if sw < w,
dimH i(Aw) + dimH i−2(Asw) if sw > w.

Let C be the restriction of p∗1,2Q
Xs
⊗Q p

∗
2,3A to

Zsw := {(B/B, gB/B,wB/B), g ∈ Ps} ⊂ B3.

This variety is isomorphic to P1
C, and we have H i

(
(Q

Xs
∗A)w

)
= H i(Zsw, C).

Assume first that sw < w. Then (gB/B,wB/B) is inG·(B/B, swB/B) iff
gB = sB. In particular, only one point of Zsw is in Xs×B

(
G·(B/B, swB/B)

)
;

all the other points are in Xs ×B
(
G · (B/B,wB/B)

)
. Let

i : {(B/B, sB/B,wB/B)} ↪→ Zsw
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be the inclusion, and let j be the inclusion of the complement. Consider the
exact triangle

j!j
∗C → C → i∗i

∗C +1−−→,
and the associated long exact sequence of cohomology with compact sup-
ports. The complex i∗C is the constant complex Asw, and j∗C is the constant
complex on Zsw−{(B/B, sB/B,wB/B)} ∼= A1 with fiber Aw. Using the fact
that H∗c (C,Q) = Q[−2], the parity vanishing assumption ensures that the
long exact sequence reduces to a collection of short exact sequences. This
gives the first case of (∗).

Assume now that sw > w. Then (B/B,B/B,wB/B) is the only point
in Zsw which is in Xs ×B

(
G · (B/B,wB/B)

)
. All other points are in Xs ×B(

G · (B/B, swB/B)
)
. The same arguments as above give the second line of

(∗). �

3.2. Computation of fibers of simple perverse sheaves.

Theorem 3.2.1. For any w ∈W , we have

h(IC(Xw)) = t− dimB · Cw.
In other words, for any y ≤ w and any i ∈ Z, the dimension of H i(IC(Xw)y)
is zero if i + `(w) is odd, and is the coefficient of q(i+`(w))/2 in Py,w(q) if
i+ `(w) is even.

Proof. We proceed by induction on `(w), the case w = 1 being trivial. Let
w = s1 · · · sn be a reduced decomposition. (Hence n = `(w).) Consider the
(G-)Demazure resolution

π(s1,··· ,sn) : Y(s1,··· ,sn) → Xw.

Using (2.2.1), a repeated use of the base change theorem gives an isomor-
phism

(π(s1,··· ,sn))∗QY(s1,··· ,sn)

∼= Q
Xs1
∗ · · · ∗Q

Xsn
.

By Lemma 3.1.1, we deduce that we have

(3.2.2) h((π(s1,··· ,sn))∗QY(s1,··· ,sn)
[n]) = t−n(1 + Ts1) · · · (1 + Tsn).

As the variety Y(s1,··· ,sn) is smooth, we have

IC(Y(s1,··· ,sn)) = Q
Y(s1,··· ,sn)

[n+ dimB].

Hence the Decomposition Theorem ensures that we have an isomorphism

(π(s1,··· ,sn))∗QY(s1,··· ,sn)
[n+ dimB] ∼=

⊕
y≤w

IC(Xy)⊗Q Vy,

where Vy is a graded finite dimensional Q-vector space. Moreover, as the
morphism π(s1,··· ,sn) is an isomorphism over G ·(B/B,wB/B), we have Vw =
Q. As π(s1,··· ,sn) is proper, the object (π(s1,··· ,sn))∗QY(s1,··· ,sn)

[n + dimB] is

self-dual (under Verdier duality). Hence V n
x = V −nx . It follows that we have

h((π(s1,··· ,sn))∗QY(s1,··· ,sn)
[n+ dimB]) = h(IC(Xw)) +

∑
y<w

Qy(t)h(IC(Xy)),

where Qy is a polynomial such that Qy(t) = Qy(t−1). By induction, we
know that h(IC(Xy)) = t− dimBCy for any y < w. In particular, the element
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tdimB ·
∑

y<wQy(t)h(IC(Xy)) is stable under the involution i of HW . By
(3.2.2), also tdimB · h((π(s1,··· ,sn))∗QY(s1,··· ,sn)

[n + dimB]) is stable under i.

It follows that tdimBh(IC(Xw)) is stable under i.
Now, by the general properties of IC complexes, we have, for y < w

H i−dimB(IC(Xw)y) = 0 if i /∈ J−`(w),−`(y)− 1K.

It follows that tdimBh(IC(Xw)) satisfies the conditions which characterize
Cw, see Theorem 1.2.1. Hence h(IC(Xw)) = t− dimBCw. �

3.3. Remarks.

3.3.1. Positivity. Let us remark that it follows from Theorem 3.2.1 that
the coefficients of Py,w are non-negative. This is far from obvious from the
definition, and still a conjecture for a general Coxeter group.

3.3.2. Geometric description of the Hecke algebra. The arguments used
above also give a geometric (or topological) construction of the Hecke alge-
bra. More precisely, consider the subcategory D of Db

S(B×B) whose objects
are the semisimple complexes, i.e. the complexes of the form⊕

x∈W
IC(Xx)⊗Q Vx,

where Vx is a graded vector space. (Note that D is not a triangulated
subcategory.) Then one has the application

h : Obj(D)→ HW .
One can check easily, using a general result of Goresky-MacPherson and the
Decomposition Theorem, that D is stable under the convolution product
(see [Sp, Proposition 2.13]). One can also easily check2 that

h(A1 ∗ A2) = h(A1) · h(A2)

for any A1, A2 in D (see [Sp, Corollaire 2.11]). The subcategory D is stable
under (cohomological) shifts, and we have

h(A[1]) = t−1h(A)

for A in D. It is clear also that D is stable under Verdier duality D, and
that

h(D(A)) = t−2 dimB · i(h(A))
for any A in D. Finally, the image of h is⊕

w∈W
Z≥0[t, t−1] · Cw.

Hence the structure of HW is “encoded” in the category D. One can deduce
in particular that for x, y ∈W we have

Cx · Cy ∈
⊕
w∈W

Z≥0[t, t−1] · Cw.

(This result is stated as [Sp, Corollaire 2.14].)

2This property is not clear for arbitrary A1, A1 in Db
S(B ×B). This is the reason why

one has to restrict to the category D.



8 SIMON RICHE

4. Examples

4.1. Type A1. Consider G = SL(2,C). In this case W = {1, s}, with
s2 = 1. The Kazhdan-Lusztig elements in HW are the following:

C1 = 1, Cs = t−1(Ts + 1).

The flag variety is B = P1
C. The Schubert cells are

X1 = {∞}, BsB/B = C.

The Schubert varieties are smooth in this case, hence the simple perverse
sheaves are the (shifted) constant sheaves:

IC(X1) = Q
X1
, IC(Xs) = QB[1].

In this case, the Demazure resolutions are isomorphisms.

4.2. Type A2. Consider G = SL(3,C). In this case we have

W = {1, s1, s2, s1s2, s2s1, s1s2s1 = s2s1s2}.
The first Kazhdan-Lusztig elements are the following:

C1 = 1, Cs1 = t−1(Ts1 + 1), Cs2 = t−1(Ts2 + 1),

Cs1s2 = Cs1Cs2 = t−2(Ts1s2 + Ts1 + Ts2 + 1),

Cs2s1 = Cs2Cs1 = t−2(Ts2s1 + Ts1 + Ts2 + 1).

To compute Cw0 (with here w0 = s1s2s1), we observe that

Cs1Cs2Cs1 = t−3
(
Tw0 + Ts1s2 + Ts2s1 + (t2 + 1)Ts1 + Ts2 + (t2 + 1)

)
.

The coefficient of Ts1 has degree 2, which is greater than `(w0)−`(s1)−1 = 1.
Hence we have to substract a multiple of Cs1 . We obtain that Cs1Cs2Cs1 =
Cw0 + Cs1 , with

Cw0 = t−3
(
Tw0 + Ts1s2 + Ts2s1 + Ts1 + Ts2 + 1

)
.

The Schubert varieties are again all smooth, hence the simple perverse
sheaves are the shifted constant sheaves. The Demazure resolution is an
isomorphism for all elements except w0. (In particular Xs1s2 and Xs2s1 are
P1

C-fibrations over P1
C.) The case of w0 is more interesting. Choose the

(G-)Demazure resolution

Y(s1,s2,s1) = B ×Ps1 B ×Ps2 B ×Ps1 B

of the (G-)Schubert variety

Xw0 = B × B.
For simplicity we write π for π(s1,s2,s1), and Y for Y(s1,s2,s1). The restriction
of π to (B × B)− Xs1 is an isomorphism. And we have

π−1(B, s1B) = {(B, gB, s1B), g ∈ Ps1/B} ∼= P1
C.

Hence we have
H∗
(
(π∗QY

)(B,s1B)

)
= Q⊕Q[−2].

Similarly, we have

π−1(B, s1B) = {(B, gB,B), g ∈ Ps1/B} ∼= P1
C.
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Hence we have
H∗
(
(π∗QY

)(B,B)

)
= Q⊕Q[−2].

The following table gives the fibers of π∗IC(Y) = π∗QY
[6]:

dim(Xw) w −6 −5 −4
6 w0 Q 0 0
5 s2s1 Q 0 0
5 s1s2 Q 0 0
4 s2 Q 0 0
4 s1 Q 0 Q
3 1 Q 0 Q

As π∗IC(Y) is self-dual, this table shows that it is a perverse sheaf, but
that it is not isomorphic to IC(Xw0). (Look at the line of s1.) In fact, the
Decomposition Theorem implies that π∗ICY is semisimple. Hence we have
an isomorphism

π∗IC(Y) ∼= IC(Xw0)⊕ IC(Xs1).

4.3. Type B2. We have

W = {1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2 = s2s1s2s1},
and dimB = 4. The Demazure resolutions are isomorphisms for elements of
length ≤ 2. Let us consider elements of length 3. We denote by α and β the
simple roots, such that sα = s1, sβ = s2.

4.3.1. s1s2s1. To fix notations, we assume that the roots of the Borel B
are the negative ones. Let U+ be the unipotent subgroup of G whose roots
are the positive roots. Let uγ : k ∼−→ Uγ be isomorphisms, for γ ∈ R+, which
satisfy the following commutation relation:

uα(x)uβ(y)uα(−x)uβ(−y) = uα+β(xy)u2α+β(x2y).

The subset U+B/B ⊂ B is a dense open subset, isomorphic to U+. We also
have an isomorphism

U+ ∼= Uα × Uβ × Uα+β × U2α+β.

To study the singularities of Xs1s2s1 , it is sufficient to consider the intersec-
tion Xs1s2s1 ∩ U+B/B.

Consider the Demazure resolution

$(s1,s2,s1) : Y(s1,s2,s1) → Xs1s2s1 .

A generic point of Y(s1,s2,s1) is of the form [uα(x) : uβ(y) : uα(z)B/B]. Its
image in B is

uα(x)uβ(y)uα(z) = uα(x+ z)uβ(y)uα+β(yz)u2α+β(yz2).

We remark that (yz)2 = y × (yz2). Hence a generic point

uα(xα)uβ(xβ)uα+β(xα+β)u2α+β(x2α+β) ∈ Uα × Uβ × Uα+β × U2α+β

is in Xs1s2s1 iff x2
α+β = xβx2α+β. It follows that Xs1s2s1∩U+B/B is included

in the hypersurface of U+ defined by the equation x2
α+β = xβx2α+β. As both

subschemes are reduced, irreducible and of the same dimension, we deduce
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that Xs1s2s1 ∩ U+B/B is the hypersurface of U+ defined by the equation
x2
α+β = xβx2α+β.
Consider the equation f(xα, xβ, xα+β, x2α+β) = x2

α+β − xβx2α+β. Then
the locus where all the partial derivatives of f vanish is defined by xβ =
xα+β = x2α+β = 0. It follows that the set of singular points of Xs1s2s1 is
Xs1 .

Now, let us compute IC(Xs1s2s1). Consider the (G-)Demazure resolution

π(s1,s2,s1) : Y(s1,s2,s1) → Xs1s2s1 .

As for type A2, one easily checks that π(s1,s2,s1) is an isomorphism over
Xs1s2s1 − Xs1 , and that the fibers over Xs1 are all isomorphic to P1

C. Hence
the fibers of (π(s1,s2,s1))∗IC(Y(s1,s2,s1)) are given by the following table:

dim(Xw) w −7 −6 −5
7 s1s2s1 Q 0 0
6 s2s1 Q 0 0
6 s1s2 Q 0 0
5 s2 Q 0 0
5 s1 Q 0 Q
4 1 Q 0 Q

One deduces that

(π(s1,s2,s1))∗IC(Y(s1,s2,s1)) ∼= IC(Xs1s2s1)⊕ IC(Xs1),

and that
IC(Xs1s2s1) = Q

Xs1s2s1
[7].

In particular, the IC complex “does not detect” the singularities of Xs1s2s1 .
Correspondingly, in the Hecke algebra we have

Cs1Cs2Cs1 = Cs1s2s1 + Cs1 ,

and
Cs1s2s1 = t−3

∑
x≤s1s2s1

Tx.

4.3.2. s2s1s2. One easily checks that the intersection Xs2s1s2 ∩ U+B/B is
the hypersurface of U+ defined by the equation x2α+β = xαxα+β, where
here we use the isomorphism

U+ ∼= Uβ × Uα × Uα+β × U2α+β.

Hence Xs2s1s2 is smooth, and its IC complex is the shifted constant sheaf.
One also checks that the situation for the Demazure resolution is similar

to that for s1s2s1.

4.3.3. s1s2s1s2. Now, consider the longest elements w0 = s1s2s1s2, and the
Demazure resolution

Y := Y(s1,s2,s1,s2)

of the (smooth) Schubert variety Xw0 = B ×B, and write π for π(s1,s2,s1,s2).
The morphism π is an isomorphism over Xw0−Xs1s2 , and all the non-trivial
fibers are isomorphic to two copies of P1

C glued along one point. The latter
variety has a cell decomposition with one cell isomorphic to {pt}, and two
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cells isomorphic to A1. Hence its comology is Q ⊕ Q2[−2]. The following
table gives the fibers of π∗IC(Y):

dim(Xw) w −8 −7 −6
8 w0 Q 0 0
...

... Q 0 0
6 s1s2 Q 0 Q2

5 s2 Q 0 Q2

5 s1 Q 0 Q2

4 1 Q 0 Q2

It follows that we have

π∗IC(Y) ∼= IC(Xw0)⊕ IC(Xs1s2)2.

4.4. Type G2. We will not make any computation in this case. We only
mention that, according to [KL2, §1.6], all Schubert varieties in rank ≤ 2
(hence in particular in type G2) are rationally smooth. It follows that
their IC complexes are shifted constant sheaves. (See [HTT, p. 211] for
generalities on rational smoothness and relation with perverse sheaves.)

4.5. Type A3. Consider G = SL(4,C). The Weyl group W has three
generators, denoted s1, s2, s3. Here s1 and s3 commute. The flag variety
has dimension 6.

In this case, all the Schubert varieties are smooth, except for two of them,
corresponding to s2s1s3s2 and s1s3s2s3s1. We will only consider these cases.

4.5.1. s2s1s3s2. One easily checks that

Cs2Cs1Cs3Cs2 = t−4
(
Ts2s1s3s2 +Ts2s1s3 +Ts2s1s2 +Ts2s3s2 +Ts1s3s2 +Ts2s1

+ Ts1s2 + Ts1s3 + Ts2s3 + Ts2s3 + Ts1 + Ts3 + (t2 + 1)Ts2 + (t2 + 1)
)
.

Hence we have Cs2s1s3s2 = Cs2Cs1Cs3Cs2 .
Now, consider the Demazure resolution

Y1 := Y(s2,s1,s3,s2) = B ×Ps2 B ×Ps1 B ×Ps3 B ×Ps2 B

of the Schubert variety X1, where X1 := Xs2s1s3s2 . We write π for π(s2,s1,s3,s2).
Then π is an isomorphism over X1 − Xs2 . Moreover, we have

π−1(B, s2B) = {(B, gB, gB, gB, s2B), g ∈ Ps2/B} ∼= P1
C.

Similarly we have

π−1(B,B) = {(B, gB, gB, gB,B), g ∈ Ps2/B} ∼= P1
C.

The following table gives the fibers of π∗IC(Y1) = π∗(QY
[10]):

dim(Xw) w −10 −9 −8
B2 − X1 0 0 0

10–7 X1 − Xs2 Q 0 0
7 s2 Q 0 Q
6 1 Q 0 Q
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It follows from this table that π∗IC(Y1) is a perverse sheaf, and even that

π∗IC(Y1) ∼= IC(X1).

(In fact, in this case the morphism π is small.) In particular, in this case
the IC complex detects the singularities.

More concretely, if B is identified with the variety of complete flags

{0} ⊂ V1 ⊂ V2 ⊂ V3 ⊂ C4,

and if V 0
• is the flag fixed by B, then Xs2s1s3s2 is identified with the subva-

riety of B defined by the conditions

V1 ⊂ V 0
3 , V 1

0 ⊂ V3.

4.5.2. s1s3s2s3s1. Consider the Demazure resolution

Y2 := Y(s1,s3,s2,s3,s1)

of the Schubert variety X2, where X2 := Xs1s3s2s3s1 . As usual, we write π
for π(s1,s3,s2,s3,s1). The morphism π is an isomorphism over X2−Xs1s3 . And
all the non-trivial fibers are isomorphic to P1

C × P1
C, whose cohomology is

Q⊕Q2[−2]⊕Q[−4]. For example, we have

π−1(B/B,B/B) =

{(B/B, gB/B, ghB/B, ghB/B, gB/B,B/B), g ∈ Ps3 , h ∈ Ps1}.

The following table gives the fibers of π∗IC(Y2) = π∗QY2 [11]:

dim(Xw) w −11 −10 −9 −8 −7
B2 − X2 0 0 0 0 0

11–7 X1 − Xs1s3 Q 0 0 0 0
8 s1s3 Q 0 Q2 0 Q
7 s1 Q 0 Q2 0 Q
7 s3 Q 0 Q2 0 Q
6 1 Q 0 Q2 0 Q

We deduce that

π∗IC(Y2) = IC(X2)⊕ IC(Xs1s3)[1]⊕ IC(Xs1s3)[−1],

and that the fibers of IC(X2) are given by the following table:
dim(Xw) w −11 −10 −9

B2 − X2 0 0 0
11–7 X1 − Xs1s3 Q 0 0

8 s1s3 Q 0 Q
7 s1 Q 0 Q
7 s3 Q 0 Q
6 1 Q 0 Q

Notice that, in this case, the resolution π is not semismall.
More concretely, if B is identified with the variety of complete flags

{0} ⊂ V1 ⊂ V2 ⊂ V3 ⊂ C4,
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and if V 0
• is the flag fixed by B, then Xs1s2s3s2s1 is identified with the sub-

variety of B defined by the conditions

V2 ∩ V 0
2 6= {0}.

5. Other approaches and generalizations

5.1. Kazhdan-Lusztig. The first proof of Theorem 3.2.1 was due to Kazh-
dan and Lusztig ([KL2]), and was quite different from the one described in
Section 3. The main step is the proof of pointwise purity of simple perverse
sheaves on B (or rather on the similar variety defined over a finite field).

First, by general results explained in [BBD, §6], the dimension of fibers of
simple Q-perverse sheaves on B (or B × B) is the same as the dimension of
fibers of simple Ql-perverse sheaves on BFq (or BFq × BFq), for q � 0. Here
BFq is the flag variety defined over the finite field Fq, and l does not divide
q. Hence one can work with l-adic sheaves on BFq , and consider weights of
the Frobenius. We use the definitions and notations from [BBD].

5.1.1. Pointwise purity: definition. Let X0 be a scheme of finite type over
Fq, and let X be the scheme over Fq obtained by extension of scalars. Let
Frq : X → X be the Frobenius morphism. Let F0 be a Ql-sheaf on X0, and
F be the sheaf on X obtained by extension of scalars. Then F is naturally
endowed with an isomorphism F ∗q : Fr∗qF

∼−→ F . We denote by F ∗qn the n-th
power of F ∗q .

Definition 5.1.1. (i) The sheaf F0 is said to be pointwise pure of weight
w ∈ Z if for any n ≥ 1 and any point x of X defined over Fqn (i.e. fixed
by Frnq ), the eigenvalues of the isomorphism Fx

∼−→ Fx induced by F ∗qn are
algebraic numbers, all of whose complex conjugates have absolute value
qnw/2.

(ii) An object F0 of Db
c(X0,Ql) is said to be pointwise pure of weight w

if for any i ∈ Z, the sheaf Hi(F0) is pointwise pure of weight w + i.

Pointwise purity is not a general property of simple perverse sheaves.
However, simple perverse sheaves are pointwise pure for most of the situa-
tions encountered in Geometric Representation Theory.

5.1.2. Pointwise purity on the flag variety. Let us assume in this subsection
thatG, B, W are defined over Fq, and letXFq

w be the Schubert cell considered
over Fq.

Theorem 5.1.2. For any w ∈ W , the perverse sheaf IC(XFq
w ) is pointwise

pure.

This result was first proved by Kazhdan and Lusztig, see [KL2, Theorem
4.2]. Their arguments are reproduced (in the language of Hodge modules),
perhaps more clearly, in [HTT, Proposition 13.2.9]. The same arguments
are used in [S1] to prove a slightly more general result, see [S1, Parabolic
purity theorem]. In [G1], Ginzburg simplifies these arguments by using
general results on weights contained in [BBD]. All these proofs are based
on the fact that if y ≤ w, ByB/B is, locally in Xw, the fixed points set of
a contracting C×-action. Finally, Haines gives a different proof of Theorem
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5.1.2 in [Ha], based on the fact (also proved in [Ha]) that fibers of Demazure
resolutions are paved by affine spaces.

In fact, let us mention that Kazhdan and Lusztig prove more precisely
that the eigenvalues of the Frobenius action on Hi(IC(Xw))x, where x is
defined over Fqn , are equal to qin/2. The proof of [Ha] also gives this more
precise result (but not that of [G1]). Even more precisely, it is proved in
[BGS, §4.4] that the action of the Frobenius on stalks of simple perverse
sheaves is semisimple.

5.1.3. End of the proof. The end of the proof of Theorem 3.2.1 given by
Kazhdan and Lusztig uses the Lefschetz fixed point formula (which allows
to relate the trace of the Frobenius action on global intersection cohomology
and traces of the Frobenius on stalks of IC sheaves), and Poincaré duality
(which implies that a certain element of the Hecke algebra is fixed by the
involution i). Let us remark that Poincaré duality is the “global counter-
part” of the fact that Verdier duality fixes IC-sheaves. Hence the proof of
the fact that a certain element is fixed by i relies on arguments similar to
those given in Section 3.

Let us mention also that the arguments of [KL2] are (essentially) repro-
duced in [Ha, §5].

5.2. Lusztig-Vogan. In [LV], Lusztig and Vogan give a different realiza-
tion of HW in terms of perverse sheaves on B, which allows them to give
a different proof of Theorem 3.2.1. (In fact, they consider in [LV] a more
general geometric situation, encountered in representation theory of real Lie
groups. Let us mention also that the proofs of [LV] are not purely geo-
metric.) More precisely, they consider a certain category C of sheaves on
BFq × BFq , which are certain pointwise pure, G-equivariant Weil sheaves3

(see [LV, Definition 2.2] for the precise definition, which is not quite natu-
ral), and construct an isomorphism

HW ∼= K0(C).
Under this isomorphism, the product on HW corresponds to a convolution
product similar to the one considered in Section 3, the multiplication by t
corresponds to a Tate twist, and the involution i corresponds essentially to
Verdier duality.

To deduce Theorem 3.2.1, they use purity of IC complexes on BFq ×BFq .
This property (which does not imply pointwise purity, nor is implied by it)
is a general property of simple perverse sheaves on schemes over Fq.

5.3. Tanisaki.

5.3.1. Definitions. The most satisfactory geometric construction ofHW has
been obtained by Tanisaki using the theory of mixed Hodge modules on
B × B. (Here, as in Section 3, we consider the complex flag variety.) We
will not review the theory of Hodge modules here; the interested reader may
consult [HTT, §8.3] for a detailled overview. Let us only recall that a mixed
Hodge module is a D-module endowed with extra structures, including a

3Recall that, if X0 is defined over Fq and X is obtained by extension of scalars to Fq,
a Weil sheaf on X is a Ql-sheaf F together with an isomorphism Φ : Fr∗qF

∼−→ F .
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good filtration. For the basics of D-modules, see [Ri] and the references
therein.

Let us denote by MHMG(B × B) the abelian category of G-equivariant
mixed Hodge modules on B × B. We will consider the objects

MH
w := (jw)H! OHG·(B/B,wB/B), LHw := ICH(Xw).

Here, OHG·(B/B,wB/B) is the mixed Hodge module on Xw associated to the
natural DG·(B/B,wB/B)-module OG·(B/B,wB/B), (jw)H! is the !-direct image
for mixed Hodge modules, and ICH(Xw) is the Hodge version of IC(Xw).

Next, one can define a (convolution) product on the Grothendieck group
K0(MHMG(B × B)) by the following formula:

[M1] ∗ [M2] := (−1)dim(B)
∑
j∈Z

(−1)j [Hj
(
(p1,3)H! r

∗
H(M1 �M2)

)
].

Here, p1,3 : B3 → B2 is the projection on the first and third components,
r : B3 → B4 is defined by r(a, b, c) = (a, b, b, c), and (p1,3)H! and r∗H are
the (derived) !-direct and inverse images for Hodge modules. Note that this
formula is again very similar to that used in Section 34.

Finally, let us denote by R the Grothendieck group of the category of
mixed Hodge modules on a point. Note that we have an embedding

Z[q, q−1] ↪→ R

given by qn 7→ [OHB×B(−n)]. (Here, (1) is the Tate twist.) The product
defined above is R-bilinear.

5.3.2. Hodge-theoretic description of HW . The following result is due to
Tanisaki ([Ta]). His arguments are reproduced in [HTT, §13.2]. We define
q := t2, and denote by HqW ⊂ HW the Z[q, q−1]-subalgebra⊕

w∈W
Z[q, q−1] · Tw.

Theorem 5.3.1. There exists an isomorphism of R-algebras

F : K0(MHMG(B × B)) ∼−→ R⊗Z[q,q−1] H
q
W ,

which satisfies

F (MH
w ) = (−1)`(w)Tw, F (LHw ) = (−t)`(w)Cw.

Under this isomorphism, the involution i corresponds to qdimB times the
morphism induced by Verdier duality.

4The only difference is the term (−1)dimB. This difference can be explained the fol-
lowing considerations. In Section 3 it is natural to define the product so that the unit is
Q

X1
. But the natural unit for the product on K0(MHMG(B×B)) is the class of the mixed

Hodge module on X1, which is associated with the perverse sheaf IC(X1) = Q
X1

[dimB].
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5.3.3. Consequences. From Theorem 5.3.1 easily following a result which is
slightly weaker than Theorem 3.2.1 (but still sufficient to prove the Kazhdan-
Lusztig conjecture on characters of simple modules over Lie(G), see [Ri]),
namely equality

Py,w(1) = (−1)`(w) ·
∑
j∈Z

(−1)j dim(Hj(IC(Xw)y)).

This proof again uses purity of simple mixed Hodge modules.
Then, it is not difficult to deduce Theorem 3.2.1 from pointwise purity

(in the sense of Hodge modules) of IC sheaves, see [HTT, Theorem 13.2.11].
This property can be proved exactly as for perverse sheaves over Fq. One
even obtains a complete description of restrictions of ICH(Xw) to G-orbits
as Hodge modules (and not only weights).

5.3.4. Relation to the geometric description of the extended affine Hecke
algebra. Another advantage of this description of HW is that it is possible to
relate it to the description of the extended affine Hecke algebra H̃ associated
with G (i.e. the Hecke algebra of the group W̃aff defined below) in terms
of coherent sheaves on the Steinberg variety due to Kazhdan-Lusztig and
Ginzburg (see [CG, Chapter 7]). Indeed the inclusion HW ↪→ H̃ is induced
by the functor which sends a mixed Hodge module on B×B to the associated
graded of the underlying D-module with respect to the filtration (which is
given as part of the structure of mixed Hodge module). This associated
graded is a coherent sheaf on T ∗B×T ∗B, supported on the Steinberg variety.
For details, see [Ta].

5.4. Generalizations and related results.

5.4.1. Affine flag manifold. All the proofs mentioned above generalize to
the case where B is replaced by the affine flag variety, and W is replaced
by the affine Weyl group Waff , see e.g. [KL2, §5]. In [KT], Kashiwara
and Tanisaki even generalize some of the constructions of §5.3 to give a
description of the intersection cohomology groups of the Schubert varieties
in partial flag manifolds over symmetrizable Kac-Moody Lie algebras in
terms of parabolic Kazhdan-Lusztig polynomials (introduced by Deodhar,
see e.g. [S2]).

5.4.2. Affine Grassmannian. Let Waff = W n Q, resp. W̃aff = W n P
be the semi-direct product of W with the root lattice Q, resp. the weight
lattice P . It is well-known that Waff is a Coxeter group, with a natural set of
generators Saff containing S. Let Ω be the normalizer of Saff in W̃aff . Then
we have a natural isomorphism W̃aff

∼= ΩnWaff (induced by multiplication).
We extend the length function ` and the Bruhat order ≤ of Waff by setting
for w,w′ ∈Waff and ω, ω′ ∈ Ω

`(ωw) = `(w),

ωw ≤ ω′w′ iff ω = ω′ and w ≤ w′.

With these conventions, the definition of Kazhdan-Lusztig elements Cw and
Kazhdan-Lusztig polynomials Py,w(q) (y, w ∈ W̃aff) generalize. For λ a
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dominant weight, we denote by nλ the minimal length representative of
W · λ ·W in W̃aff .

Let Gr := Ǧ(C((x)))/Ǧ(C[[t]]) be the affine Grassmannian of the semisim-
ple group Ǧ of adjoint type whose root system is dual to that of G (i.e. Ǧ
is the dual of the simply-connected cover of G in the sense of Langlands).
There is a natural injection P ↪→ Gr. We denote by Grλ the Ǧ(C[[x]])-orbit
of λ.

In [Lu, §11], Lusztig explains that, for dominant weights λ, µ, the coef-
ficients of Pnµ,nλ compute the dimension of cohomology spaces of the stalk

at µ of the intersection cohomology object IC(Grλ). In [Lu, Theorem 6.1],
he also proves that Pnµ,nλ(1) is the dimension of the µ-weight space of the
simple Lie(G)-module with highest weight λ (again for dominant λ, µ). The
main step is to prove a “q-analog” of Weyl’s character formula. These results
were the starting point for the study of the “Geometric Satake isomorphism”,
see [G2] (and in particular [G2, §5]).

For this situation, the pointwise purity results of [G1] and [BGS] can also
be applied.

5.4.3. Kazhdan-Lusztig polynomials. In [Po], Polo proves, using Theorem
3.2.1, that any polynomial with non-negative integral coefficients and con-
stant term 1 is a Kazhdan-Lusztig polynomial for certain (explicit) elements
of a symmetric group.
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