Tilting exotic sheaves, parity sheaves on affine Grassmannians, and the Mirković–Vilonen conjecture (joint work with C. Mautner)

Simon Riche

CNRS - Université Blaise Pascal (Clermont-Ferrand 2)

Feb. 17th, 2015

Simon Riche (CNRS – UBP)

Exotic sheaves and parity sheaves

Feb. 17th, 2015 1 / 20

- Parity sheaves on affine Grassmannians
- 3 Main result
- Application to the Mirković–Vilonen conjecture
- 5 A modular Arkhipov–Bezrukavnikov–Ginzburg equivalence

- 2 Parity sheaves on affine Grassmannians
- 3 Main result
- 4 Application to the Mirković–Vilonen conjecture
- 5 A modular Arkhipov–Bezrukavnikov–Ginzburg equivalence

Notation:

 \mathbb{F} algebraically closed field of characteristic *p*.

G connected reductive algebraic group over \mathbb{F} , with simply-connected derived subgroup.

 $\textbf{T} \subset \textbf{B} \subset \textbf{G}$ maximal torus and Borel subgroup.

- $U \subset G$ unipotent radical of **B**.
- $\mathfrak{g}, \mathfrak{b}, \mathfrak{t}, \mathfrak{u}$ Lie algebras of G, B, T, U.

Springer resolution:

$$\widetilde{\mathcal{N}}:=\{(\xi, \boldsymbol{g} \mathbf{B})\in \mathfrak{g}^* imes \mathbf{G}/\mathbf{B}\mid \xi_{\mid \boldsymbol{g}\cdot\mathfrak{b}}=\mathbf{0}\}\cong \mathbb{T}^*(\mathbf{G}/\mathbf{B}).$$

Definition

$$D^{\mathbf{G} imes \mathbb{G}_{\mathrm{m}}}(\widetilde{\mathcal{N}}) := D^{\mathrm{b}} \operatorname{Coh}^{\mathbf{G} imes \mathbb{G}_{\mathrm{m}}}(\widetilde{\mathcal{N}})$$

for the action of $\mathbf{G} \times \mathbb{G}_m$ defined by $(g, z) \cdot (\xi, h\mathbf{B}) = (z^{-2}g \cdot \xi, gh\mathbf{B}).$

Affine Weyl group: $W_{\text{aff}} := W \ltimes X^*(\mathbf{T})$ (where $W = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$ is the Weyl group), with its natural length function ℓ .

Definition

The affine braid group \mathbb{B}_{aff} is the group with

- generators: T_w for $w \in W_{aff}$;
- relations: $T_v T_w = T_{vw}$ for $v, w \in W_{aff}$ with $\ell(vw) = \ell(v) + \ell(w)$.

Let $s \in W$ be a simple reflection, and P_s be the associated minimal standard parabolic subgroup.

$$\rightsquigarrow Z_{\boldsymbol{s}} := \left\{ (\xi, \boldsymbol{g} \boldsymbol{\mathsf{B}}, \boldsymbol{h} \boldsymbol{\mathsf{B}}) \in \mathfrak{g}^* \times \boldsymbol{\mathsf{G}} / \boldsymbol{\mathsf{B}} \times \boldsymbol{\mathsf{G}} / \boldsymbol{\mathsf{B}} \left| \begin{array}{c} \boldsymbol{g} \boldsymbol{\mathsf{P}}_{\boldsymbol{s}} = \boldsymbol{h} \boldsymbol{\mathsf{P}}_{\boldsymbol{s}} \\ \xi_{|\boldsymbol{g} \cdot \mathfrak{b} + \boldsymbol{h} \cdot \mathfrak{b}} = \boldsymbol{\mathsf{0}} \end{array} \right\} \right. \subset \widetilde{\mathcal{N}} \times \widetilde{\mathcal{N}}.$$

Theorem (Bezrukavnikov-R.)

There exists a unique weak right action of \mathbb{B}_{aff} on $D^{\mathbf{G} \times \mathbb{G}_m}(\widetilde{\mathcal{N}})$ where:

- for a simple reflection $s \in W$, T_s acts by $R(p_s^2)_* \circ L(p_s^1)^* \langle -1 \rangle$, where $p_s^j : Z_s \to \tilde{\mathcal{N}}$ are the projections;
- for λ ∈ X*(T) dominant, T_λ acts by tensor product with the line bundle O_Ñ(λ).

This action "categorifies" the Kazhdan–Lusztig–Ginzburg isomorphism $\mathcal{K}^{\mathbf{G} \times \mathbb{G}_m}(\widetilde{\mathcal{N}} \times_{\mathfrak{g}^*} \widetilde{\mathcal{N}}) \cong \mathbb{H}_{\mathrm{aff}}$ and the corresponding action on $\mathcal{K}^{\mathbf{G} \times \mathbb{G}_m}(\widetilde{\mathcal{N}})$.

Definition (Bezrukavnikov, 2006)

Set

$$\begin{split} D^{\leq 0} &:= \langle\!\langle (T_w)^{-1} \cdot \mathcal{O}_{\widetilde{\mathcal{N}}} \langle m \rangle [n], \ m \in \mathbb{Z}, \ n \in \mathbb{Z}_{\geq 0} \rangle\!\rangle_{\text{ext}}, \\ D^{\geq 0} &:= \langle\!\langle T_w \cdot \mathcal{O}_{\widetilde{\mathcal{N}}} \langle m \rangle [n], \ m \in \mathbb{Z}, \ n \in \mathbb{Z}_{\leq 0} \rangle\!\rangle_{\text{ext}}. \end{split}$$

Then $(D^{\leq 0}, D^{\geq 0})$ is a t-structure on $D^{\mathbf{G} \times \mathbb{G}_m}(\widetilde{\mathcal{N}})$, called the *exotic t-structure*.

Theorem (Bezrukavnikov, Mautner–R.)

The heart $\mathcal{E}^{\mathbf{G} \times \mathbb{G}_m}(\widetilde{\mathcal{N}})$ of the exotic t-structure has a natural structure of graded highest weight category, with weights $X^*(\mathbf{T})$.

 \rightsquigarrow category of tilting objects Tilt($\mathcal{E}^{\mathbf{G} \times \mathbb{G}_m}(\widetilde{\mathcal{N}})$), with indecomposable objects $\mathcal{T}^{\lambda} \langle m \rangle$ for $\lambda \in X^*(\mathbf{T})$ and $m \in \mathbb{Z}$.

Proposition (Mautner-R.)

Assume that *p* is good for **G** and that there exists a **G**-invariant non-degerenate bilinear form on g. If $\lambda \in X^*(\mathbf{T})$ is dominant, then we have

$$\mathcal{T}^{\lambda} \cong \mathsf{T}(\lambda) \otimes \mathcal{O}_{\widetilde{\mathcal{N}}}$$

where $T(\lambda)$ is the tilting **G**-module with highest weight λ .

Result closely related to the description of the tilting *perverse coherent sheaves* on the nilpotent cone of **G** (Minn-Thu-Aye).

2 Parity sheaves on affine Grassmannians

3 Main result

- 4 Application to the Mirković–Vilonen conjecture
- 5 A modular Arkhipov–Bezrukavnikov–Ginzburg equivalence

Notation:

 G^{\vee} connected *complex* reductive group which is Langlands-dual to **G**. $T^{\vee} \subset B^{\vee}$ maximal torus and Borel subgroup (with $X_*(T^{\vee}) = X^*(\mathbf{T})$). Iwahori subgroup: $I^{\vee} := \operatorname{ev}_0^{-1}(B^{\vee})$ where $\operatorname{ev}_0 : G^{\vee}(\mathbb{C}[[x]]) \to G^{\vee}$ sends x to 0.

Affine Grassmannian:

$$\Im r := G^{\vee}(\mathbb{C}((x)))/G^{\vee}(\mathbb{C}[[x]]) = \bigsqcup_{\lambda \in X^*(\mathbf{T})} \Im r_{\lambda} \quad \text{where } \Im r_{\lambda} = I^{\vee} \cdot L_{\lambda}.$$

Definition

 $D_{(I^{\vee})}(\mathfrak{Gr}, \mathbb{F})$: derived category of sheaves of \mathbb{F} -vector spaces on \mathfrak{Gr} which are constant along I^{\vee} -orbits.

Definition (Juteau–Mautner–Williamson)

An object \mathcal{F} in $D_{(I^{\vee})}(\mathfrak{Gr}, \mathbb{F})$ is *even* if

 $\mathcal{H}^n(\mathcal{F}) = \mathcal{H}^n(\mathbb{D}_{\mathrm{Gr}}(\mathcal{F})) = 0$ unless *n* is even.

An object \mathcal{F} is a *parity complex* if $\mathcal{F} \cong \mathcal{G} \oplus \mathcal{G}'[1]$ with \mathcal{G} and \mathcal{G}' even.

 \rightsquigarrow additive category $\mathsf{Parity}_{(I')}(\mathfrak{Gr},\mathbb{F}) \subset D_{(I')}(\mathfrak{Gr},\mathbb{F}).$

Theorem (Juteau–Mautner–Williamson, 2009)

For any $\lambda \in X^*(\mathbf{T})$, there exists a unique indecomposable parity complex \mathcal{E}_{λ} supported on $\overline{\Im r_{\lambda}}$ and such that $(\mathcal{E}_{\lambda})_{|\Im r_{\lambda}} \cong \underline{\mathbb{F}}_{\Im r_{\lambda}}[\dim \Im r_{\lambda}]$. Moreover, any indecomposable parity complex is isomorphic to $\mathcal{E}_{\mu}[n]$ for some $\mu \in X^*(\mathbf{T})$ and $n \in \mathbb{Z}$. Spherical (i.e. $G^{\vee}(\mathbb{C}[[x]])$ -constructible) indecomposable parity complexes: $\mathcal{E}_{\lambda}[n]$ where λ is *antidominant*.

Geometric Satake equivalence (Lusztig, Ginzburg, Mirković–Vilonen): equivalence of abelian tensor categories

 $\mathbb{S}_{\mathbb{F}}: \text{Perv}_{(G^{\vee}(\mathbb{C}[\![x]\!]))}(\mathfrak{Gr},\mathbb{F}) \xrightarrow{\sim} \text{Rep}(\textbf{G}).$

Proposition (Juteau–Mautner–Williamson)

If, for some $\lambda \in X^*(\mathbf{T})$ antidominant, the object \mathcal{E}_{λ} is perverse, then

 $\mathbb{S}_{\mathbb{F}}(\mathcal{E}_{\lambda})\cong \mathsf{T}(w_{0}\lambda).$

Theorem (Juteau–Mautner–Williamson, 2009)

If p is bigger than the following bounds:

An	B_n, D_n	Cn	G_2, F_4, E_6	<i>E</i> ₇	E_8
1	2	п	3	19	31

then \mathcal{E}_{λ} is perverse for all antidominant λ .

Parity sheaves on affine Grassmannians

3 Main result

4 Application to the Mirković–Vilonen conjecture

5 A modular Arkhipov–Bezrukavnikov–Ginzburg equivalence

Theorem (Mautner–Riche, 2015)

Assume that

• **G** is a product of groups $\operatorname{GL}_n(\mathbb{F})$ and of quasi-simple simply connected groups;

• *p* is very good for each quasi-simple factor of **G**.

Then there exists an equivalence of additive categories

$$\Theta: \mathsf{Parity}_{(I^{\vee})}(\mathfrak{Gr}, \mathbb{F}) \xrightarrow{\sim} \mathsf{Tilt}(\mathcal{E}^{\mathbf{G} \times \mathbb{G}_{\mathrm{m}}}(\widetilde{\mathcal{N}}))$$

such that

•
$$\Theta \circ [1] \cong \langle -1 \rangle \circ \Theta;$$

•
$$\Theta(\mathcal{E}_{\lambda}) \cong \mathcal{T}^{-\lambda}.$$

Corollary

Assume that *p* is good for **G**. Then \mathcal{E}_{λ} is perverse for any λ antidominant.

Main ideas of the proof:

- use a "deformation" of the picture;
- replace \mathbb{F} by a finite localization \mathfrak{R} of \mathbb{Z} ;
- describe both sides in terms of some "Soergel bimodules."

Constructible side (cf. Soergel, Ginzburg):

Proposition (Bezrukavnikov-Finkelberg, 2008)

There exists a canonical graded \mathfrak{R} -algebra morphism $\mathcal{O}(\mathfrak{t}^*_{\mathfrak{R}} \times_{\mathfrak{t}^*_{\mathfrak{R}}/W} \mathbb{T}(\mathfrak{t}^*_{\mathfrak{R}}/W)) \to H^{\bullet}_{l^{\vee}}(\mathfrak{Gr};\mathfrak{R})$ which is an "isomorphism up to torsion."

→ fully-faithful functor

$$\begin{split} & \mathsf{H}^{\bullet}_{I^{\vee}}(\mathfrak{Gr},-):\mathsf{BSParity}_{I^{\vee}}(\mathfrak{Gr},\mathfrak{R})\to\mathsf{Mod}^{\mathrm{gr}}\big(\mathcal{O}(\mathfrak{t}^*_{\mathfrak{R}}\times_{\mathfrak{t}^*_{\mathfrak{R}}}\mathbb{T}(\mathfrak{t}^*_{\mathfrak{R}}/W))\big)\\ & \mathsf{where}\;\mathsf{BSParity}_{I^{\vee}}(\mathfrak{Gr},\mathfrak{R})\;\mathsf{is}\;\mathsf{a}\;\mathsf{certain}\;\mathsf{category}\;\mathsf{of}\;\mathsf{"Bott-Samelson"}\\ & I^{\vee}\text{-equivariant}\;\mathsf{parity}\;\mathsf{complexes}\;\mathsf{on}\;\mathfrak{Gr}. \end{split}$$

Coherent side (cf. Bezrukavnikov–Finkelberg, Dodd): One needs to replace $\widetilde{\mathcal{N}}$ by the Grothendieck resolution

$$\widetilde{\mathfrak{g}}:=\{(\xi, {oldsymbol{g}} {f B})\in \mathfrak{g}^* imes {f G}/{f B}\mid \xi_{\mid {oldsymbol{g}}\cdot\mathfrak{u}}=0\},$$

or rather its version $\widetilde{\mathfrak{g}}_{\mathfrak{R}}$ over \mathfrak{R} .

Under the assumptions of the Main Theorem, one can construct a "Kostant section" $\widetilde{\mathcal{S}} \subset \widetilde{\mathfrak{g}}_{\mathfrak{R}}$. Let $\widetilde{I}_{\mathcal{S}}$ be the restriction to $\widetilde{\mathcal{S}}$ of the "universal centralizer group scheme" associated with the $G_{\mathfrak{R}}$ -action on $\widetilde{\mathfrak{g}}_{\mathfrak{R}}$.

Proposition

The group scheme $\widetilde{I}_{\mathcal{S}}$ over $\widetilde{\mathcal{S}}$ is commutative and smooth, and its Lie algebra is isomorphic to $\mathcal{O}(\mathfrak{t}_{\mathfrak{R}}^*) \otimes_{\mathcal{O}(\mathfrak{t}_{\mathfrak{R}}^*/W)} \Omega(\mathfrak{t}_{\mathfrak{R}}^*/W)$.

~> fully-faithful "Kostant-Whittaker reduction" functor

 $\kappa: \mathsf{BSTilt}(\widetilde{\mathfrak{g}}_{\mathfrak{R}}) \to \mathsf{Mod}^{\mathrm{gr}}\big(\mathcal{O}(\mathfrak{t}_{\mathfrak{R}}^* \times_{\mathfrak{t}_{\mathfrak{R}}^*/W} \mathbb{T}(\mathfrak{t}_{\mathfrak{R}}^*/W))\big)$

where $BSTilt(\tilde{\mathfrak{g}}_{\mathfrak{R}})$ is some category of Bott–Samelson "deformed tilting exotic sheaves" (cf. work of C. Dodd).

Parity sheaves on affine Grassmannians

3 Main result

Application to the Mirković–Vilonen conjecture

5 A modular Arkhipov–Bezrukavnikov–Ginzburg equivalence

For $\lambda \in X^*(\mathbf{T})$ dominant, set $\Im r^{\lambda} := \mathbf{G}^{\vee}(\mathbb{C}[[x]]) \cdot L_{\lambda} = \bigsqcup_{\mu \in W(\lambda)} \Im r_{\mu}$, and denote by $j^{\lambda} : \Im r^{\lambda} \hookrightarrow \Im r$ the inclusion.

Definition (standard spherical perverse sheaves)

k Noetherian ring of finite global dimension.

$$\mathcal{I}_!(\lambda, k) := {}^{p}(j^{\lambda})_! ig(\underline{k}_{\operatorname{Gr}^{\lambda}}[\operatorname{\mathsf{dim}} \operatorname{Gr}^{\lambda}] ig).$$

Proposition (Mirković–Vilonen)

The **G**_{*k*}-module $\mathbb{S}_k(\mathcal{I}_!(\lambda, k))$ is the Weyl module with highest weight λ .

Conjecture (Mirković–Vilonen, 2000)

The cohomology modules of the stalks of the perverse sheaf $\mathcal{I}_!(\lambda, \mathbb{Z})$ are free. In other words, for any field \Bbbk , for any $n \in \mathbb{Z}$ and $\mu \in X^*(\mathbf{T})$, the dimension

$$\dim_{\Bbbk} \big(\mathsf{H}^{n}(\mathcal{I}_{!}(\lambda, \Bbbk)_{|L_{\mu}}) \big)$$

is independent of \Bbbk .

Juteau (2008): the stalks of $\mathcal{I}_!(\lambda, \mathbb{Z})$ can have *p*-torsion if *p* is bad for **G**; in particular, the Mirković–Vilonen conjecture is false.

Theorem (Achar–Rider, 2013)

If the indecomposable parity complexes \mathcal{E}_{λ} over $\overline{\mathbb{F}}_{p}$ are perverse for any λ antidominant, then the stalks of $\mathcal{I}_{!}(\lambda, \mathbb{Z})$ have no *p*-torsion.

 \rightsquigarrow the stalks of $\mathcal{I}_!(\lambda, \mathbb{Z})$ have no *p*-torsion if *p* is bigger than the bounds in the Juteau–Mautner–Williamson theorem:

A _n	B_n, D_n	C _n	G_2, F_4, E_6	<i>E</i> ₇	E_8
1	2	n	3	19	31

Corollary

The stalks of $\mathcal{I}_!(\lambda, \mathbb{Z})$ have no *p*-torsion if *p* is good for **G**.

- 2 Parity sheaves on affine Grassmannians
- 3 Main result
- 4 Application to the Mirković–Vilonen conjecture

5 A modular Arkhipov–Bezrukavnikov–Ginzburg equivalence

Definition (Achar-R.)

The modular mixed derived category is the triangulated category

$$\mathcal{D}^{\min}_{(I^{\vee})}(\mathfrak{Gr},\mathbb{F}):=\mathcal{K}^{\mathrm{b}}\operatorname{Parity}_{(I^{\vee})}(\mathfrak{Gr},\mathbb{F}).$$

It can be endowed with a "Tate twist" autoequivalence $\langle 1 \rangle$ and a "perverse" t-structure whose heart $\text{Perv}_{(I')}^{\text{mix}}(\text{Gr}, \mathbb{F})$ is a graded quasi-hereditary category with weights $X^*(\mathbf{T})$.

Theorem (Achar–Rider 2014, Mautner–R. 2015)

Under the assumptions of the Main Theorem, there exists an equivalence of triangulated categories

$$\Phi: D^{\mathrm{mix}}_{(I^{\vee})}(\mathfrak{Gr}, \mathbb{F}) \xrightarrow{\sim} D^{\mathbf{G} \times \mathbb{G}_{\mathrm{m}}}(\widetilde{\mathcal{N}})$$

which satisfies $\Phi\circ\langle 1\rangle\cong\langle 1\rangle[1]\circ\Phi$ and

$$\Phi(\Delta^{\mathrm{mix}}_{\lambda})\cong \Delta^{-\lambda}, \quad \Phi(\nabla^{\mathrm{mix}}_{\lambda})\cong \nabla^{-\lambda}, \quad \Phi(\mathcal{E}^{\mathrm{mix}}_{\lambda})\cong \mathcal{T}^{-\lambda}.$$