
TALK 12: IDENTIFICATION OF THE DUAL GROUP

BY TIMO RICHARZ

The aim of this talk is to identify the group scheme qG constructed in Talk 11 as the Langlands
dual group following the arguments in [FS21, VI.11]. I claim no originality.

1. Statement of the result

Let G be a reductive group over an algebraically closed field k. Fix a prime number ` P N
invertible on k. Recall from Talk 11 that, for each n ě 1, there exists a flat affine Z{`n-group

scheme qGZ{`n together with a Tannakian equivalence

(1.1)
`

SatG,Z{`n , ‹, FG,Z{`n
˘

–
`

Repp qGZ{`nq,b, forget
˘

,

where FG,Z{`n :“ ‘mPZR
mπG,˚ : SatG,Z{`n Ñ Modfg,proj

Z{`n is the global cohomology functor.

Lemma 1.1. For m ě n ě 1, the equivalence (1.1) fits in the commutative diagram

(1.2) SatG,Z{`m
– //

A ÞÑAbLZ{`n

��

Repp qGZ{`mq

V ÞÑVbZ{`n

��
SatG,Z{`n

– // Repp qGZ{`nq,

compatibly with the Tannakian structures. Diagram (1.2) induces an equivalence of inverse sys-

tems tSatG,Z{`nuě1 – tRepp qGZ{`nquně1. Passing to the 2-limit of categories gives the Tannakian
equivalence

(1.3) SatG,Z` :“ lim
ně1

SatG,Z{`n – Repp qGZ`q,

where qGZ` is a flat affine Z`-group scheme equipped with compatible isomorphisms qGZ` bZ` Z{`n –
qGZ{`n of Z{`n-group schemes for all n ě 1.

Proof. The operation p-qbLZ{`n preserves flat perversity, ULAness and convolution. So the functor
SatG,Z{`m Ñ SatG,Z{`n , A ÞÑ A bL Z{`n is well-defined and monoidal. To see that it is compatible
with the global cohomology functor, we fix an auxiliary datum of a split maximal torus T contained
in a Borel subgroup B in G. Using the ˚-pullback and !-push forward version of the shifted constant
terms functor, the projection formula gives the isomorphism

(1.4) CTBrdegspAbL Z{`nq –
ÝÑ CTBrdegspAq bL Z{`n,

functorially in A P SatG,Z{`m . As the objects (1.4) of DpGrT ,Λq
bd are in cohomological degree 0,

the isomorphism of functors FG – H0pCTBrdegsq implies FGp-b
L Z{`nq – FGp-qbZ{`n as functors

SatG,Z{`m Ñ Modfg,proj
Z{`n . We conclude that (1.2) is well-defined, commutative and compatible with

the Tannakian structures.
Recall from Talk 11 that qGZ{`n “ SpecpAnq with An “ colimWAn,W where W Ă X`˚ runs

through finite subsets and each An,W is a finite free Z{`n-module. One checks that SatG,Z` together
with the induced convolution structure and the functor

(1.5) FG,Z` : SatG,Z` Ñ Modfg,proj
Z` , tAnuně1 ÞÑ ‘mPZ lim

ně1
RmπG,˚An
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satisfies the Tannakian formalism of Talk 11. The associated co-algebra object in IndpModfg,proj
Z` q is

given by A :“ colimW limně1 An,W . By construction, it is equipped with compatible isomorphisms

AbZ{`n – An of Z{`n-co-algebras for all n ě 1. So qGZ` :“ SpecpAq is a flat affine Z`-group scheme

equipped with compatible isomorphisms qGZ` bZ` Z{`n – qGZ{`n for all n ě 1. �

In the following, we abbreviate qG :“ qGZ` and likewise SatG :“ SatG,Z` , FG,Z` :“ FG. Let pG be the
Langlands dual group formed over Z`. By the construction of Chevalley group schemes from based

root data, pG is equipped with pT Ă pB and isomorphisms LiepUaq – Z` for all simple coroots a of pG.

Recall that, by construction, the pinned group pG is uniquely determined up to pinning preserving
automorphisms, which correspond to automorphisms of the based root datum, see [Co14, Theorem
6.1.17]. The aim of this talk is to explain the proof of the following theorem:

Theorem 1.2 ([FS21, Theorem VI.11.1]). Fix a compatible system of `n-th roots of unity in k for

all n ě 1. Then there exists a pinned isomorphism qG – pG.

Remark 1.3. (1) In particular, the Z`-group scheme qG is reductive. Its pinning is constructed
throughout the proof using the fixed system of `n-th roots of unity, which are needed in
order to construct a canonical isomorphism H2

pP1
k,Z`q – Z`, see (2.1) below. This choice

can be circumvented by using Tate twists LieppUaq – Z`p1q in the construction of the dual
group, see [FS21, Theorem VI.11.1]. Let us point out that even if k “ C and we would work
with sheaves in the analytic topology, then we would still need to make the choice of ˘i.

(2) By base change, one obtains pinned isomorphisms qGQ` –
pGQ` and qGZ{`n – pGZ{`n for all

n ě 1.
(3) If k is any field and G any reductive k-group (not necessarily split), then qG – pG Galois

equivariantly up to the cyclotomic twist LieppUaq – Z`p1q, see [FS21, Lemma VI.11.4 ff.].

2. Proof of the theorem in several steps

Fix an auxiliary pinning of G and denote by T Ă B the maximal torus and the Borel subgroup.
The proof of Theorem 1.2 proceeds in several steps as follows.

2.1. The case G “ teu. Then GrG “ Specpkq and FG “ ΓpSpecpkq, -q induces an equivalence

Satteu – limně1 Modfg,proj
Z{`n – Modfg,proj

Z` .

2.2. The case G “ T . The map µ ÞÑ µptq induces an isomorphism X˚pT q – pGrT qred of k-group
schemes as we now argue. The source is the constant group scheme associated with the abelian
group X˚pT q. The target denotes the underlying reduced ind-scheme of GrT which is a scheme in
this case. As the map X˚pT q Ñ pGrT qred is functorial in the torus T and compatible with products,

we reduce to the case T “ Gm,k, for which see [Ri19, Section 2.3]. This shows X˚pT q – pGrT qred.

Under this isomorphism, we have FT “ ‘µPX˚pT qΓptµu, -q as functors SatT Ñ Modfg,proj
Z` . Thus,

FT can naturally be upgraded to an equivalence between SatG with the category of finite free Z`-
modules equipped with a X˚pT q-grading. This equivalence is symmetric monoidal: Indeed, for two
objects Aµ, Aλ P SatG concentrated on tµu, respectively tλu for some µ, λ P X˚pT q, the convolution
Aµ ‹ Aλ is concentrated on tλ ` µu and given by the (derived) tensor product of the underlying

sheaves. We conclude that qT is the unique multiplicative group scheme over Z` with character group

X˚p qT q “ X˚pT q, that is, qT “ pT .

2.3. The closed immersion qT ãÑ qG. The constant term functor CTBrdegs : SatG Ñ SatT induces

a map of Z`-group schemes qT Ñ qG. To check that the map is a closed immersion, we use the following
result:

Theorem 2.1 ([DH18, Theorem 4.1.2 (ii)]). Let f : H Ñ H 1 be a map of flat affine Z`-group
schemes. Then f is a closed immersion if and only if every object of ReppHq is isomorphic to a
strict subquotient of f˚V for some V P ReppH 1q.

2



Now, for any µ P X˚pT q`, one has H˚c pSµ X GrG,ďµ,
pjµ,˚Z{`nq » Z{`n for every n ě 1 as we

now argue. Indeed, SµXGrG,ďµ Ă GrG,µ and SµXGrG,ďµ – Adµk for dµ :“ dimpGrG,ďµq by [NP01,
Lemme 5.2], so pjµ,˚Z{`n|SµXGrG,ďµ “ Z{`n

Adµk
rdµs and its compactly supported cohomology is

concentrated in cohomological degree dµ, where it is isomorphic to Z{`n.
We see that the µ-isotypical component of CTBrdegsppjµ,˚Z`q viewed as an object of SatT is

isomorphic to Z` concentrated in degree µ. For varying µ, these objects generate SatT “ Repp qT q
under finite direct sums as this category is identified with the category of X˚pT q-graded, finite free

Z`-modules, see §2.2. So Theorem 2.1 implies that qT Ñ qG is a closed immersion.
As explained by Torsten Wedhorn during my talk, an alternative argument uses the rigidity of

tori as in [Co14, Corollary B.3.5] to reduce to show that qTF` Ñ
qGF` is a closed immersion. The

analogue of Theorem 2.1 over fields is classical (see [DM82, Proposition 2.21 (b)]), and we conclude
by the same argument as above.

2.4. The reductive group qGQ` and the pair qT Ă qB. The group qGQ` is reductive, the subgroup
qB Ă qG stabilizing the ascending filtration FG,ďi :“ ‘mďiR

mπG,˚, i P Z contains qT and defines a

Borel subgroup over Q`, and qTQ` Ă
qGQ` is a maximal torus, see [FS21, bottom of page 233].

2.5. The case G “ PGL2,k. Assume that G “ PGL2,k equipped with the standard pinning. Fix
µ P X˚pT q` “ Zě0 minuscule (corresponding to 1). Then GrG,ďµ “ GrG,µ “ P1

k and

(2.1) FGpZ`GrG,ďµ
r1sq “ H0

pP1
k,Z`q ‘H2

pP1
k,Z`q – Z` ‘ Z`p´1q » Z2

` .

Note that the H0-component is canonically isomorphic to Z`, but that the H2-component is canon-
ically isomorphic to Z`p´1q “ lµ.. b´1

`8 pkq by [De77, Corollaire 3.5], which we identify in (2.1) with Z`
using the fixed compatible system of `n-th roots of unity in k, compare with Remark 1.3 (1). By

the Tannkian formalism, qG naturally acts on (2.1). We consider the induced morphism of Z`-group
schemes

(2.2) qGÑ GL2,Z` .

By construction, qB maps into the Borel subgroup of GL2,Z` stabilizing the filtration Z`‘0 Ă Z`‘Z`,
that is, into the upper triangular matrices, and qT maps into the diagonal torus.

Claim 2.2. The map (2.2) factors through SL2,Z` and induces an isomorphism qG – SL2,Z` .

The torus qT ãÑ qG acts under (2.1) with weights ˘1 on Z2
` : Indeed, the decomposition into

semi-infinite orbits is given by GrG,ďµ “ Sµ X GrG,ďµ \ S´µ X GrG,ďµ and corresponds to the
decomposition P1

k “ A1
k \ t˚u. Using the ˚-pullback and !-pushforward version of CTBrdegs, we see

that the ˘µ-component lies in weight ˘1 under X˚pT q “ Z. So qT acts with the prescribed weights,
and hence maps under (2.2) isomorphically onto the diagonal torus Gm,Z` Ă SL2,Z` .

Next, we prove Claim 2.2 over Q`. Since qGQ` is a split reductive group of rank rankp qTQ`q “ 1 by

§2.4 and the inclusion qTQ` Ă
qGQ` is strict, qGQ` must be 3-dimensional by considering Lie algebras,

hence also semisimple. As qBQ` maps under (2.2) into the upper triangular matrices, the map (2.2)

over Q` induces an isogeny qGQ` Ñ SL2,Q` , which is necessarily central, so an isomorphism, compare
with [Co14, Proof of Theorem 1.2.7, Proposition 4.3.1]. This proves Claim 2.2 over Q`.

As qG is flat over Z` (so agrees with the scheme-theoretic closure of its generic fiber), the scheme-
theoretic image of (2.2) is contained in SL2,Z` . Hence, (2.2) factors as a morphism of Z`-group
schemes

(2.3) qGÑ SL2,Z`

that is an isomorphism over Q`. Next, put H :“ imagep qGF` Ñ SL2,F`q which is a closed subgroup

scheme of SL2,F` . The surjective map qGF` Ñ H induces an injection on the set of isomorphism
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classes of its irreducible representations

(2.4) IrreppHq ãÑ Irrepp qGF`q “ Zě0.

The last equality arises by taking highest weights for qTF` and the notion of positivity induced by

the group qBF` stabilizing the filtration F` ‘ 0 Ă F` ‘ F`. The following lemma shows that one has
H “ SL2,F` , so (2.3) is surjective:

Lemma 2.3 ([FS21, Lemma VI.11.2]). Let H Ă SL2,F` be a closed subgroup containing the diagonal
torus such that IrreppHq ãÑ IrreppSL2,F`q “ Zě0 via consideration of highest weights. Then H “

SL2,F` .

Proof. We repeat the proof for convenience. The pullback of representations along the Frobenius
endomorphism Frob` : SL2,F` Ñ SL2,F` induces multiplication by ` on Zě0 and, in particular, is
injective. Passing to a sufficiently high power, we may assume without loss of generality that H is
reduced and, further, that H is connected by [DM82, Corollary 2.22]. Since LiepHq Ă LiepSL2,F`q
is stable under the action of the diagonal torus, there are only three possibilities according to the
dimension of H: either H is the diagonal torus, or the upper triangular Borel subgroup, or all of
SL2,F` . In the first two cases, H has too many representations so that H “ SL2,F` . �

In conclusion, the map qG Ñ SL2,Z` in (2.3) is surjective, an isomorphism over Q` and both
schemes are affine and flat over Z`. Note that the induced map on the underlying rings is injective
by surjectivity of (2.3) and reducedness of SL2,Z` . Therefore, the following lemma implies that (2.3)
is an isomorphism, so proves the claim:

Lemma 2.4 ([FS21, Lemma VI.11.3]). Let f : M Ñ N be a morphism of flat Z`-modules such that
f bQ` is an isomorphism and f b F` is injective. Then f is an isomorphism.

Proof. We repeat the proof for convenience. The map f is injective because fbQ` is an isomorphism
and ` is a non-zero divisor on M (by flatness). To see that f is surjective, pick any n P N and
write fpmq “ `kn for some m P M with k ě 0 minimal (again, f b Q` is an isomorphism). If
k ě 1, then m mod ` lies in kernelpf b F`q, hence vanishes. Writing m “ `m1 and using that ` is a
non-zero divisor on N , we get fpm1q “ `k´1n, contradicting the minimality of k. Hence, k “ 0, so
fpmq “ n. �

We point out that qT Ă qB corresponds under qG – SL2,Z` to the diagonal torus contained in the

upper triangular matrices. We equip qG with the standard pinning induced from SL2,Z` .

2.6. The case G of semisimple rank 1. The adjoint group Gad is isomorphic to PGL2,k by the
classification of split reductive groups of rank 1. Note that the fixed pinning of G induces a pinning
of Gad. The isomorphism Gad – PGL2,k is uniquely determined by requiring that the pinning of Gad

induces the standard pinning of PGL2,k: Indeed, the pinning preserving automorphisms of PGL2,k

correspond to automorphisms of the based roots datum. So any such automorphism must be the
identity. In order to link the Satake categories SatG and SatGad

, we study the map GrG Ñ GrGad

of affine Grassmannians induced by the quotient G Ñ Gad. Recall that for the set of connected
components π0pGrGq “ π1pGq, see Talk 6. This induces a locally constant morphism GrG Ñ π1pGq
of k-ind-schemes that is functorial in G for morphisms of k-group schemes. Hence, the map GÑ Gad

induces a canonical morphism of k-ind-schemes

(2.5) f : GrG Ñ π1pGq ˆπ1pGadq GrGad
.

Lemmas 2.5 and 2.7 hold for general reductive groups G:

Lemma 2.5. The map (2.5) is a universal homeomorphism, compatibly with the stratification into
Schubert varieties. Further, it is an isomorphism on the underlying reduced ind-schemes if charpkq
does not divide #π1pGadq.
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Proof. By [HR19, Proposition 3.5], the induced map on Schubert varieties GrG,ďµ Ñ GrGad,ďµad
is a

finite birational universal homeomorphism for all µ P X˚pT q
`, where µad denotes the composition of

µ with T Ă GÑ Gad. If k - #π1pGadq, then GrGad,ďµad
is normal by [PR08, Theorem 0.3], in which

case GrG,ďµ Ñ GrGad,ďµad
is an isomorphism (being a finite birational map of integral schemes with

normal target). Now, passing to the colimit over µ and taking neutral components recovers the map
(2.5) on the underlying reduced ind-schemes, which has therefore the desired properties. �

Remark 2.6. We note that the finer information, on whether (2.5) is an isomorphism, is not
needed for §2.6. Also, we remark that (2.5) fails to be an isomorphism in the case G “ SL2,k and
charpkq “ 2, see [HLR20]. This difficulty does not arise in the setting of [FS21, Section VI.11] and
the analogue of (2.5) is an isomorphism.

Since universal homeomorphisms of schemes induce equivalences on the categories of étale sheaves
[StP, 04DY], Lemma (2.5) gives an equivalence

(2.6) f˚ : DpGrG,Λq
bd – D

`

π1pGq ˆπ1pGadq GrGad
,Λ

˘bd
: f˚

on derived categories with bounded support.

Lemma 2.7. The equivalence (2.6) induces a Tannakian equivalence between SatG and the category
of objects A P SatGad

together with a refinement of the π1pGadq-grading to a π1pGq-grading.

Proof. The convolution of objects in SatG is compatible with the abelian group structure of π1pGq
as follows. If A,B P SatG is supported in the connected component of GrG corresponding to
α, β P π1pGq, then A ‹ B is supported on α ` β. We leave it to the reader to check that (2.6) is
compatible with the Tannakian structures. �

Lemma 2.7 implies that qG “ }Gad ˆ
lµ.. 2

qZ where qZ is the multiplicative Z`-group scheme with

X˚p qZq “ π1pGq. The scheme-theoretic center pZ of pG is split multiplicative [Co14, Corollary 3.3.6].

Following [Bo98], there is a natural isomorphism X˚p pZq – π1pGq, so qZ – pZ. In particular, pG “

pGsc ˆ
lµ.. 2

pZ along with }Gad – SL2,Z` –
pGsc from §2.5 induces the pinned isomorphism qG – pG.

2.7. General case. We return to the case of a general pinned reductive k-group G. For a simple
coroot a, we get the Levi subgroup Ma Ă G of semisimple rank 1 containing the torus T and
the parabolic subgroup Pa containing Ma and the Borel subgroup B. The constant term functor
CTPardegPas : SatG Ñ SatPa is compatible with the constant term functors to SatT , see Talk 10. As
CTPardegPas is equipped with a Tannakian structure, it induces a morphism of Z`-group schemes
|Ma Ñ qG compatible with the closed subgroup scheme qT . As both |Ma,Q` ,

qGQ` are reductive, a P

X˚pT q “ X˚p qT q defines a root of qGQ` and a_ P X˚pT q “ X˚p qT q defines a coroot of qGQ` . In

particular, the simple reflection sa is contained in the Weyl group |W :“ |W p qGQ` ,
qTQ`q. Varying a,

this implies W pG,T q Ă |W and

(2.7) Φ_pG,T q Ă Φp qGQ` ,
qTQ`q, ΦpG,T q Ă Φ_p qGQ` ,

qTQ`q.

In fact, the inclusions (2.7) are equalities as both sets have the same cardinality. Thus, the pinned

isomorphisms |Ma – xMa over Z` constructed in §2.6 extend, at least over Q`, to a pinned isomorphism

(2.8) qGQ` –
pGQ` .

Claim 2.8. The map (2.8) extends to a pinned isomorphism qG – pG over Z`.

One argues as follows. Since pGpZ̆`q is generated by the subgroups xMapZ̆`q for varying a, the

image of pGpZ̆`q Ă pGpQ̆`q – qGpQ̆`q lies inside qGpZ̆`q. So, picking any qG Ñ GLN,Z` that is a closed

immersion over Q`, the map pGQ` –
qGQ` Ñ GLN,Q` extends to a map

(2.9) pGÑ GLN,Z`

by [BT84, Proposition 1.7.6]. Furthermore, (2.9) is a closed immersion:
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Lemma 2.9 (special case of [PY06, Corollary 1.3]). Let f : H Ñ H 1 be a morphism of affine, finite
type Z`-group schemes with H reductive. Assume either that ` ‰ 2 or that H is simply connected.
Then f is a closed immersion.

In order to apply the lemma in the case ` “ 2, we additionally use a reduction to the adjoint group

as in §2.6. Next, the map (2.9) being a closed immersion together with the flatness of qGÑ SpecpZ`q
implies that (2.8) extends to a map

(2.10) qGÑ pG.

Also, (2.10) is an isomorphism over Q` and surjective on Z̆`-valued points because the image of
pGpZ̆`q Ă pGpQ̆`q – qGpQ̆`q lies inside qGpZ̆`q. In particular, (2.10) is surjective: any element in

g P pGpF`q lifts to an element in g̃ P pGpZ̆`q by (formal) smoothness of pG over Z`. Finally, we
conclude that (2.10) is an isomorphism by Lemma 2.4. As (2.10) is pinned by construction, Theorem
1.2 follows.

2.8. Independence of auxiliary pinning. It remains to show that the pinned isomorphism qG – pG
is independent of the auxiliary pinning T Ă B and LiepUaq – Z` chosen in the beginning of §2. This
follows as in [FS21, top of page 236].
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