
TANNAKIAN RECONSTRUCTION

CAN YAYLALI

In the following we fix primes p and ` such that ` - p, an algebraically closed field k of charac-
teristic p, a split reductive group G with split maximal torus T , Λ = Z/`cZ for some c ≤ 1 and a
finite set I.

The goal of these notes are to construct a flat Λ-group scheme Ĝ such that the category of

Ĝ-representations in flat Λ-modules is equivalent to the Satake category SatG(Λ).

1. Tannakian duality

The goal of this section is to establish the general theory that allows us to construct a flat Λ-
group scheme such that its category of representations is equivalent to the Satake category. The
main ingredient of the construction will be the Barr-Beck monadacity theorem.

Definition 1.1. A symmetric monoidal category is called rigid if every object is dualizable.

Example 1.2. The following symmetric monoidal categories are rigid.

(i) The category of vector bundles over a scheme X, the dual of a vector bundle F , seen as a
locally free OX -module, is given by Hom(F ,OX).

(ii) The category of perfect complexes over a ring A, the dual of a perfect complex P is given
by RHom(P,A).

(iii) The category SatIG(Λ), the dual of an object A ∈ SatIG(Λ) is given by sw∗D(A), where D(A)

denotes the Verdier dual of A and sw : HckIG → HckIG is the isomorphism that switches the
two G-torsors on the points of the Hecke stack.

Definition 1.3. Let F : C → A be a functor. A parallel pair f, g : A→ B in C is called F -split if it
induces a coequalizer of the following form

F (A) F (B) C,
F (f)

F (g)

t

h

s

where t resp. s is a section of F (f) resp. h and F (g) ◦ t = s ◦ h.

Remark 1.4. Assume F : C → A is an additive functor of additive categories and f, g : A → B is
an parallel pair in C. Further assume that ker(F (f − g)) exists and that f, g is F -split, then the
following sequence is split exact

0 ker(F (f − g)) F (A) F (B) 0.
F (f−g)

Example 1.5. Consider the functor F IG : SatIG(Λ)→ Modfin.proj.
Λ . Let f, g : A→ B be an F IG-split

parallel pair ins SatIG(Λ). Then Coker(f − g) exists by the above remark and and talk 9, and so
Coeq(f, g) = Coker(f − g) exists.

Definition 1.6. An endofunctor T : A → A is called a monad if there exists natural transformations
ε : idA → T and µ : T 2 → T such that the following diagrams commute

T 3 T T T T

T 2 T, T.

µT

Tµ µ

εT

=
µ

Tε

=
µ
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Definition 1.7. Let T : A → A be a monad. A T -algebra in A is a pair (A, a), where A is an object
in A and a : TA→ A is a morphism in A such that the following diagrams commute

A TA T 2A TA

A, TA A.
idA

εA

a

Ta

µ a

a

Example 1.8. Let A be the category of flat Λ-modules and let us define the endofunctor T : M 7→
M ⊗ΛA on A, where A some flat Λ-module. If T is a monad, then we have natural transformations
ε : idA → T and µ : T 2 → T such that the diagrams in the definition of a monad commute. Eval-
uating T at Λ gives us in particular Λ-linear maps ε : Λ → A and µ : A ⊗Λ A → A (here we abuse
notation). The morphism ε gives us a distinguished element 1 ∈ A and µ a map A × A → A that
is compatible with the abelian group structure on A. Further, the compatibilities of µ and ε in the
definition of a monad show that this endows A with a structure of an associated Λ-algebra. Going
through the definitions, we also see that T is a monad if A is an associative Λ-algebra.

Going through the definitions of a T -algebra one also sees similarly that giving a T -algebra is
equivalent to giving an A-module.

Example 1.9. Let F : C → A be a functor with left adjoint L : A → C. Then T := F ◦ L is a
monad.

Indeed, the unit ε : idA → T and counit η : L ◦ F → idC give the desired monad structure by
defining µ = F ◦ η ◦ L : T 2 → T .

Theorem 1.10. Let F : C → A be a functor. Then F satisfies the following assumptions

(1) F has a left adjoint L,
(2) F is conservative, and
(3) C has coequalizers by F -split parallel pairs and F preserves these

if, and only if C is equivalent to the category of modules over the monad F ◦ L.

Proof. [BW05, Thm. 3.14]. �

Definition 1.11. Let A and C be symmetric monoidal categories. Then C has a tensored action of A
if there is a functor−⊗− : A×C → C such that we have natural isomorphisms αAA′X : (A⊗A′)⊗X ∼−→
A ⊗ (A′ ⊗ X) for A,A′ ∈ A and X ∈ C, a natural isomorphism λX : 1 ⊗ X → X for X ∈ C, such
that the usual diagram commute, i.e. associativity and right/left neutrality.

Example 1.12. The Satake category SatIG(Λ) is tensored over Modfin.proj.
Λ as we can see every finite

projective Λ-module as a flat perverse ULA sheaf over HckIG concentrated in degree 0.

Proposition 1.13 ([FS21, Prop. VI.10.2]). Let A be a rigid symmetric monoidal category and let
C be a rigid symmetric monoidal category tensored over A. Moreover, let

F : C → A

be a symmetric monoidal A-linear conservative functor, such that C admits and F reflects coequal-
izers by F -split parallel pairs. Assume that C is the filtered union of subcategories Ci stable under
coequalizers of F -split parallel pairs and the A-action, such that Fi := F|Ci is representable by Xi ∈ C.
Then

H := lim
−→
i

F (Xi)
∨ ∈ Ind(A)

admits naturally the structure of a Hopf-algebra and C is naturally equivalent to the category of
H-comodules in A.

Proof. The functor Fi has a left adjoint given by A 7→ A⊗Xi, as

Hom(A⊗Xi, Y ) = Hom(Xi, A
∨ ⊗ Y ) = F (A∨ ⊗ Y ) = A∨ ⊗ F (Y ) = Hom(A,F (Y )).
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Therefore, the functor T : A 7→ A⊗ F (Xi) is a Monad (see Example 1.9), which is equivalent to an
associtive algebra structure on F (Xi) (see Example 1.8) and the category of modules over F (Xi)
in A is by the Barr-Beck theorem (see Theorem 1.10) equivalent to Ci. Dually, the category of
comodules over the coalgebra F (Xi)

∨ in A is equivalent to Ci. Then, we claim that

H := lim
−→
i

F (Xi)
∨ ∈ Ind(A)

has the structure of a Hopf-algebra and C is equivalent to the category of comodules over H in A.
Indeed, for any X ∈ C there is an i such that X ∈ Ci so by adjunction, we have

F (F (X)∨ ⊗X) = Hom(Xi, F (X)∨ ⊗X) = Hom(F (X)⊗Xi, X)

and thus get a map F (X) ⊗Xi → X. Using A-linearity and and that F is monoidal, this yields a
map

F (X)⊗ F (Xi) = F (F (X)⊗Xi)→ F (X)

and dually, we get the map

F (X)→ F (X)⊗ F (Xi)
∨ → F (X)⊗H.

Thus, we get a functor from C to H-comodules in Ind(A). Then we claim that the category of
H-comodules in Ind(A) is equivalent to the filtered colimit of F (Xi)

∨-comodules in A which by the
above is equivalent to C.

To see this let M be an H-comodule in Ind(A) (here we view Ind(A) as a symmetric monoidal
category via colimit of termwise tensor product). In particular, we can write M = lim

−→i
Mi, where

Mi ∈ A. The H-module structure is given by a map

lim
−→
i

Mi → lim
−→
i

Mi ⊗ F (Xi)
∨.

Hence, we see that every Mi has an F (Xi)
∨-comodule structure and the H-comodule structure on

M is determined by those. This shows the equivalence and that the category of H-comodules in
Ind(A) is equivalent to C.

Further we claim that for any i, j there is a k such that Ci ⊗ Cj ⊆ Ck.
Indeed, first we claim that Ci (resp. Cj) is generated by Xi (resp. Xj) under tensors with A

and coequalizers of F -split parallel paris, so Ci⊗Cj is generated under these operations by Xi⊗Xj .
Therefore, for any k such that Xi ⊗Xj ∈ Ck, we have Ci ⊗ Cj ⊆ Ck.

To show the claim let X ∈ Ci and let us look at the counit ε(X) : Xi ⊗ F (X) → X of the
adjunction in the beginning. Let us denote the left adjoint of Fi by Li. Then we have the following
diagram

LiFLiF (X) LiF (X) X.
εLiFX

LiFε(X) ε(X)

Applying F to the diagram yields an F -split coequliazer by [BW05, Cor. 3.9] and since F reflects
those, we see that the above diagram is a coequalizer. Now note that we have

LiFLiF (X) = Xi ⊗ F (Xi)⊗ F (X), LiF (X) = Xi ⊗ F (X)

proving the claim.
Let Xk respresent F|Ck , then we have a natural map Xk → Xi ⊗ Xj , that is adjoint to 1 →

F (Xi⊗Xj) = F (Xi)⊗F (Xj) which is the tensor product of the natural unit maps 1→ F (Xi) and
1→ F (Xj). Therefore, we get a map

H⊗H = lim
−→
i,j

F (Xi)
∨ ⊗ F (Xj)

∨ ∼= lim
−→
i,j

F (Xi ⊗Xj)
∨ → lim

−→
k

F (Xk)∨ = H.

We also have a unit map 1 → H that is induced by 1 = F (1) → F (Xi)
∨ (note that F (1) =

Hom(Xi, 1) and so applying F and then dualizing the map Xi → 1 corresponding to 1 = F (1)
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gives the desired map). This makes H into a commutative algebra object in A. To make H into a
Hopf-algebra note that we have

F (Xi)
∨ = F (X∨i ) = Hom(Xi, X

∨
i ) = Hom(Xi ⊗Xi, 1).

Now switching of the components defines the antipode (that is actually an involution) of the comul-
tiplication on H. �

2. I = {∗} case

Let W ⊆ X∗(T )+ be a finite subset closed under the dominance order. We can define HckG,W as
the union of all open Schubert cells HckG,µ for µ ∈ W . This is a closed substack and similarly, we
can define the full subcategory SatG,W (Λ). We will not be able to construct left adjoint for the fiber

functors from SatG(Λ)→ Modfin.proj
Λ but if we can construct them for finite subsets X∗(T )+ (closed

under the dominance order), we can still use Proposition 1.13, as we can write the Satake category
as a filtered colimit over the Satake categories corresponding to the closures of the Schubert cells of
the Hecke stack.

We will first do this for the case where I is a singleton and later use this to construct the left
adjoint for general I.

Theorem 2.1. The functor

FG,W :=
⊕
m

Hm(RπG∗) : SatG,W (Λ)→ Modfin.proj
Λ

has a left adjoint LW . Moreover, it is the restriction of the left adjoint to

F ′ :=
⊕
m

Hm(RπG∗) : Perv(HckG,W ,Λ)→ Shvét(X,Λ).

Proof. First note that the base change functor naturally has a left adjoint. Since all the categories
involved are symmetric monoidal and FG,W is symmetric monoidal and linear with respect to finite
projective Λ-modules seen as complexes concentrated in degree 0, the left adjoint, if it exists, is

uniquely determined by its value of Λ ∈ Modfin.proj
Λ as then LW (V ) = LW (Λ) ⊗ V for any V ∈

Modfin.proj
Λ (note that any finite projective Λ-module can be seen as an object in D(HckG,W ,Λ)bd

and using the characterization of flat perverse ULA sheaves via the constant term functor, we see
that V can be seen as an object in the Satake category).

Note that F ′ admits a left adjoint L′ by the adjoint functor theorem (?). Therefore, if PW :=
L′W (Λ) is ULA and flat perverse the claim is shown.

By the characterization of flat perverse and ULA sheaves via the constant term functor it is
enough to show that F ′(PW ) is equivalent to a finite projective Λ module concentrated in degree 0.
We will show this by induction on W .

Let µ ∈ W be a character of dimension dµ = 〈2ρ, µ〉 and let us look at the inclusion of the
Schubert cell jµ : HckG,µ ↪→ HckG,W . By definition, we have

Hom(PW ,
pRjµ∗Λ[dµ]) = F ′(H0(Rjµ∗Λ[dµ]))

and by [FS21, Prop.VI.7.9], this is a finite free Λ-module. Further by adjunction, we have that
Hom(pj∗µPW ,Λ[dµ])) is a finite free Λ-module. Now pj∗µPW is concentrated on an open Schubert
cell HckG,µ, so by definition of the perverse t-structure it is equivalent to M [dµ], where M is a
Λ-module. Note that Λ is Gorenstein, so its dualizing complex is given by Λ[0]. By the above, we
know that Hom(M,Λ) is finite free and by [Sta22, 0A7C], we have that M ∼= Hom(Hom(M,Λ),Λ)
and the functor RHom(−,Λ[0]) induces an antiequivalence between the bounded derived category
of Λ-modules with coherent cohomology. Thus, M is finitely generated and therefore isomorphic
to a direct sum of a finite free Λ-module and torsion Λ-module. The torsion part has to vanish
since otherwise Hom(M,Λ) would have torsion which cannot happen as it is finite free (note that
Λ = Z/`cZ). Therefore, M is a finite free Λ-module.
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Now let us take a maximal element µ ∈ W and set W ◦ = W \ {µ}. Let us look at the excat
sequence

0 K pjµ!j
∗
µPW PW Q 0

in Perv(HckG,W ,Λ), where K is the kernel and Q is the cokernel of pjµ!j
∗
µPW → PW . By (see

[BBD82, Prop. 1.3.17]), we have
Q = pRiµ∗Li

∗
µPW ,

where iµ is the inclusion of the complement of the open Schubert cell with reduced structure . As
µ was chosen maximal, we know that (HckG,W \HckG,µ)red = HckG,W◦ . As pRiµ∗Li

∗
µ is a left

adjoint (again use [BBD82, Prop. 1.3.17]), we see that pRiµ∗Li
∗
µL
′
W must be a left adjoint for

F ′W◦ and therefore Q ' PW◦ . Also, note that F ′(pjµ!j
∗
µPW ) is finite projective, as pj∗PW is finite

projective module sitting in one degree, so by [FS21, Prop. VI.7.5], we have that F ′(pjµ!j
∗
µPW ) is

finite projective. Therefore, F ′(Q) is a finite projective Λ-module. Thus, by induction it is enough
to show that K = 0. For this note that K lies in the kernel of

pjµ!j
∗
µPW →

pRjµ∗j
∗
µPW .

Again, as pj∗µPW is finite free, we can use [FS21, Prop. VI.7.5] to see that there is an a such

that `aK = 0. Let K ′ denote the kernel of the above cunstruction for Λ′ = Z/`c+aZ. Using that
everything is functorial, we get a map from K ′ to K by the map Λ′ → Λ. Since pjµ!j

∗
µPW is in

the Satake category, so in particular flat over Λ, we see that the image of K ′ in K lies in `aK = 0
(note that Λ = Λ′/(`aZ/`a+cZ) and so the base change of K ′ lies in the image of the base change
K ′ ⊗Λ′ Λ, which is `aK ′). But as all constructions are compatible with base change, we see that
K ′ → K has to be surjective (?), so K = 0. �

3. The general case

Let Wi ⊆ X∗(T )+ be a finite family of finite subsets stable under the dominance order indexed

by I. As in the absolute case, we can define HckIG,(Wi)i and SatIG,(Wi)i(Λ).

We use the case for I singleton to construct a left adjoint for the fiber functor FG,(Wi)i : SatIG,(Wi)i(Λ)→
Modfin.proj

Λ . We can already do this on perverse sheaves since the compatibility of F with exterior
products shows that on perverse sheaves the left adjoint is given by exterior products. We then have
to show that the image of the unit under the left adjoint lies in the Satake category, which follows
again from the I singleton case.

Theorem 3.1. The functor

FG,(Wi)i :=
⊕
m

Hm(RπG∗) : SatIG,(Wi)i(Λ)→ Modfin.proj
Λ

has a left adjoint L(Wi)i satisfiyng

(i) L(Wi)i(V ) = L(Wi)i(1)⊗ V , and
(ii) L(Wi)i(1) = ∗i∈ILWi

(1).

Proof. Certainly, if we can show (ii), then (i) uniquely characterizes the left adjoint using Theorem
2.1. First note that

F ′ :=
⊕
m

Hm(RπG∗) : Perv(HckIG,(Wi)i ,Λ)→ Shvét(X
I ,Λ)

has a left adjoint since we can decompose I into singletons, where we already know the existence of
a left adjoint (see Theorem 2.1).

For i ∈ I let Li denote the left adjoint corresponding to F i in Theorem 2.1. Then the exterior
product defines a left adjoint for F ′ as the functor F ′ commutes with exterior products.

Let P(Wi)i be the image of the unit under the left adjoint. We have that F ′(∗iP(Wi)i)
∼=

�i∈IFWi(PWi) by compatibility of F with the fusion product. Let P(Wi)i → ∗iPWi be the ad-
joint to the section of the above isomorphism. We can write F ′ using hyperbolic localization as
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a !-pullback followed by ∗-pushforward, so the left adjoint is given by pH0(q−! p
−∗(−)) (note that

q−! p
−∗A ∈ pD≥0 for any A ∈ Shvét(X

I ,Λ) seen as a complex concentrated in degree 0 in D(GrIT ,Λ),
see [BBD82, Prop. 1.3.17]). In particular, using the Künneth formula, we see that the left adjoint
commutes with exterior products, so for the inclusion

j∗ : SatIG,(Wi)i(Λ)→ SatI,I1,...,InG,(Wi)i
(Λ),

we have that j∗P(Wi)i ' j∗∗iPWi
. Now using that B ∈ SatIG,(Wi)i(Λ) is equivalent to pH(Rj∗j∗(B)),

we see with Yoneda that the morphism P(Wi)i → ∗iPWi
is indeed an equivalence. �

4. The Satake group

We know that the reduced subscheme of GrIG is given by
⋃
µ•∈(X∗(T )+)I GrIG,≤µ• . So, we can

write the Satake category SatIG as a filtered union over (X∗(T )+)I of SatIG,(Wµi
)i , where for µ• ∈

(X∗(T )+)I we set Wµi = {ν ∈ X∗(T )+ | ν ≤ µi}.
Using Theorem 3.1 and Proposition 1.13 (note that by Talk 10 the functor F I satisfies all of

the assumptions in the proposition), we now get a Hopf algebra HIG corresponding to SatIG(Λ). By
construction and Theorem 3.1 (ii), we finally get

Proposition 4.1. We have an isomorphism of Hopf-algebras⊗
i

H{i}G ∼= HIG.

So the group scheme in the I = {∗} not only determines the Satake category SatG(Λ) but

also SatIG(Λ). This allows us to define Ĝ as the group scheme associated to H{∗}G and we have

RepĜ(Λ) ' SatG(Λ). Note that Ind(Modfin.proj
Λ ) is equivalent to the category of flat Λ-modules. In

particular Ĝ is a flat group scheme over Λ.
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[BBD82] A. A. Bĕılinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and topology on singular spaces,
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