
HOCHSCHILD HOMOLOGY OF THE HECKE CATEGORY

(AFTER BEN-ZVI, CHEN, HELM AND NADLER)

SIMON RICHE

In this text I explain what I understand about the description of the Hochschild
homology of the Hecke category, following [BZCHN, §2]. Some of the proofs
sketched below are slightly different from those contained in that reference.

1. Hochschild homology of ∞-categories

1.1. Setting. For references on the notions considered here, we recommend [HSS,
§4.1].

We consider the following ∞-categories.

• Catperf is the ∞-category of small, stable, idempotent-complete ∞-catego-
ries and exact functors;
• PrL

St is the ∞-category of stable presentable ∞-categories and left adjoint
functors.

In PrL
St, the condition that a functor is a left adjoint (i.e. admits a right adjoint)

is equivalent to the condition that it preserves small colimits, see [GR, Chap. 1,
Theorem 2.5.4]. We have an ind-completion functor

(1.1) Ind : Catperf → PrL
St.

This functor induces an equivalence between Catperf and the (non full!) subcate-

gory of PrL
St consisting of compactly generated presentable stable∞-categories and

left-adjoint functors preserving compact objects. (Here the property of preserving
compact objects is equivalent to the right adjoint commuting with small colimits,
see [GR, Lemma 7.1.5].) If C is in PrL

St we will denote by Cω the ∞-subcategory of

compact objects; then for A in Catperf we have Ind(A)ω = A.

Remark 1.1. Idempotent completeness of∞-categories concerns existence of certain
colimits, see the discussion preceding [Lu1, Corollary 4.4.5.14]. Hence presentable
∞-categories are automatically idempotent-complete. But since these colimits are
not finite, it is not automatic in a stable ∞-category.

Recall that both Catperf and PrL
St admit canonical symmetric monoidal struc-

tures such that (1.1) is symmetric monoidal. The monoidal structure on PrL
St is

given by the Lurie tensor product, and the structure on Catperf is defined precisely
so that Ind becomes monoidal; see [BGT1, §3.1]. For simplicity, the tensor prod-

uct bifunctors will be denoted ⊗ in both cases. The unit object in PrL
St is the

∞-category Sp of spectra (denoted S∞ in [BGT1]), and the unit object in Catperf

is the ∞-category of finite spectra Spω (i.e. compact objects in Sp). We also have
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internal Hom objects Funex(A,B) in Catperf (describing the exact functors from A
to B) and FunL(A,B) in PrL

St (describing the left-adjoint functors from A to B).

Remark 1.2. By [BGT1, Corollary 4.25] the category Catperf is complete and co-
complete, i.e. admits small limits and colimits.

1.2. Linear categories. We fix a field k.1 In practice we will work with “k-
linear” versions of the ∞-categories above; this corresponds to the setting of [HSS,
§4] with E being the ∞-category Vectωk of compact objects in the (compactly gen-
erated presentable stable)∞-category Vectk of k-vector spaces, i.e. the∞-category
of bounded complexes of finite-dimensional k-vector spaces. Here Vectωk is a com-

mutative algebra object in Catperf , and Vectk is a commutative algebra object in
PrL

St. We will therefore consider the following ∞-categories.

• Catperf
k is the ∞-category of Vectωk -modules in Catperf .

• PrL
St,k is the ∞-category of Vectk-modules in PrL

St.

There are natural monoidal structures on these categories, whose monoidal products
will be denoted ⊗k in both cases; the monoidal product on PrL

St,k can be computed
by taking the colimit of the simplicial diagram

· · · ////// C ⊗Vectk ⊗D //// C ⊗ D

for C,D in PrL
St,k. We also have internal Hom objects Funk(A,B) in Catperf

k (describ-

ing k-linear exact functors) and FunL
k (C,D) in PrL

St (describing k-linear left-adjoint
functors). The functor (1.1) lifts to a symmetric monoidal functor

Ind : Catperf
k → PrL

St,k.

Remark 1.3. (1) By [HSS, Proposition 4.9(3)], the right adjoint of any mor-

phism in PrL
St,k is a Vectk-module functor.

(2) I guess that Remark 1.2 implies that Catperf
k is cocomplete.

Objects in Catperf
k are naturally enriched over Vectk. Namely, if A ∈ Catperf

k and
a ∈ A, then the functor

Vectωk → A

given by action on a is exact, hence we can consider the induced functor

Vectk → Ind(A),

which admits a right adjoint. The restriction of this right adjoint to A is denoted
Ak(a,−). This procedure defines a functor

Aop → Funk(A,Vectk),

called the “enriched Yoneda embedding.” For a, b ∈ A we therefore have an ob-
ject Ak(a, b) ∈ Vectk. As explained in [HSS, Comments after Corollary 4.11] the
enriched Yoneda embedding is fully faithful.

For the same reason, objects in PrL
St,k are also enriched over Vectk.

1Eventually this field will be assumed to be of characteristic 0, but this restriction is not
required in this section and the next one.
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Remark 1.4. Since Sp (resp. Spω) is the unit object in PrL
St (resp. Catperf), any

object in PrL
St (resp. Catperf) admits a canonical action of Sp (resp. Spω). By the

same considerations as above, for A in PrL
St or Catperf and a, b ∈ A we therefore

have an object A(a, b) ∈ Sp. Since Vectk belongs to PrL
St we have a canonical

functor

(1.2) Sp→ Vectk

in PrL
St, see e.g. [GR, Chap. 1, Corollary 6.2.6], and its right adjoint

(1.3) Vectk → Sp.

If A belongs to PrL
St,k or Catperf

k , for a, b ∈ A the spectrum A(a, b) can be recovered
from the object Ak(a, b) by taking the image under (1.3). Objects in ∞-categories
have (pointed) spaces (or, in other words, ∞-groupoids) of morphisms. For A in

PrL
St or Catperf and a, b ∈ A, the space of morphisms from a to b can be recovered

from A(a, b) by taking the image under the functor Ω∞ from [GR, §6.2.7] (which
is the right adjoint of the canonical functor Σ∞ from spaces to spectra, see [GR,
§6.2.2]).

1.3. Definition. If C is a dualizable object in PrL
St,k, with dual C∨, then the

Hochschild homology of C is the object HH(C) ∈ Vectk representing the compo-
sition

(1.4) Vectk
coev−−−→ C ⊗k C∨

ev−→ Vectk.

More generally, given a functor f : C → C in PrL
St,k, we denote by HH(C, f) ∈ Vectk

the object representing the composition

Vectk
coev−−−→ C ⊗k C∨

f⊗id−−−→ C ⊗k C∨
ev−→ Vectk.

A particular case of this construction is when C is compactly generated, i.e. of the

form Ind(A) for some A in Catperf
k ; in this case we have C∨ = Ind(Aop). For details,

see [HSS, Proposition 4.10].

Remark 1.5. (1) If A is an algebra object in Vectk, then we can consider the
∞-category RModA(Vectk) of right A-modules in Vectk. This category
is dualizable. If M is an A-bimodule we can consider the functor fM =
(−)⊗AM on RModA(Vectk), and we have

HH(RModA(Vectk), fM ) = A⊗A⊗kAop M.

(2) As a consequence of the comments above, if A ∈ Catperf
k we have evaluation

and coevaluation morphisms

Ind(Aop ⊗k A) = Ind(Aop)⊗k Ind(A)→ Vectk,

Vectk → Ind(Aop)⊗k Ind(A) = Ind(Aop ⊗k A),

but these functors do not necessarily preserve compact objects, hence do
not necessarily provide a duality datum between A and Aop. In fact, A is

dualizable in Catperf
k iff these maps preserve compact objects, and in this

case the dual of A is Aop. See [HSS, §4.3] for more on this topic. If A is

dualizable in Catperf
k , then the composition (1.4) is induced by a functor

Vectωk → Vectωk ; as a consequence, HH(C) belongs to Vectωk in this case.
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1.4. Functoriality. This construction admits the following functoriality. Consider
pairs (C, f) and (D, g) as above. A morphism of pairs from (C, f) to (D, g) is the

datum of a pair (F,ψ) where F : C → D is a morphism in PrL
St,k whose right adjoint

perserves small colimits and ψ : F ◦ f → g ◦ F is an object in FunL
k (C,D). In this

case we have a morphism

HH(F,ψ) : HH(C, f)→ HH(D, g)

defined as the composition

HH(C, f)→ HH(C, FRFf)→ HH(C, FRgF ) ∼= HH(D, gFFR)→ HH(D, g)

where:

• FR is the right adjoint to F ;
• the first, resp. second, resp. third, map is induced by the morphism of func-

tors f → FRFf (induced by adjunction), resp. FRFf → FRgF (induced
by ψ), resp. gFFR → g (induced by adjunction);
• the isomorphism follows from cyclicity of the trace.

As a first application of this construction, consider a compact object c ∈ C. Then
the morphism

αc : Vectk → C
given by action on c admits a right adjoint, and preserves compact objects, so
that this adjoint preserves colimits (hence is a morphism in Vectk). Any map
ψ : c → f(c) defines a morphism of pairs (αc, ψ) : (Vectk, id) → (C, F ), which
provides a map

HH(αc, ψ) : k = HH(Vectk)→ HH(C, f).

The image of 1 ∈ k is denoted [c] ∈ HH0(C, f). (This vector depends on ψ; in
practice we will take f = id, and ψ = id.)

As explained in [HSS, §2 and §4.4], this construction can be upgraded as follows.

The ∞-category PrL
St,k can be upgraded to a symmetric monoidal (∞, 2)-category

PrL
St,k. Then we have a symmetric monoidal∞-category End(PrL

St,k) whose objects

are the pairs (C, f) with C a dualizable object in PrL
St,k and f : C → C is a morphism

in PrL
St,k, and whose 1-morphisms are morphisms of pairs (F,ψ) as above. Moreover,

we have a symmetric monoidal functor

HH : End(PrL
St,k)→ Vectk.

If C is an algebra object in PrL
St,k which is dualizable (as an object of PrL

St,k),
whose unit is compact and such that the tensor product C ⊗k C → C sends compact
objects to compact objects, then C defines an algebra object in End(PrL

St,k), so
that HH(C) becomes an algebra object in Vectk. The same comments apply if we
are moreover given a monoidal functor f : C → C; we obtain an algebra object

HH(C, f). In particular, if A is an algebra object in Catperf
k , then C = Ind(A)

satisfies these assumptions.

1.5. Computation via a complex. We consider A ∈ Catperf
k , and a functor

f : A → A. We set C = Ind(A), and still denote by f the induced endofunctor of C.
In this setting, the Hochschild homology HH(C, f) can be computed via a complex
as follows. Given a set S of objects in A, for n ≥ 0 we set

C−n(S, f) =
∨

a0,··· ,an∈S
Ak(an, an−1)⊗k · · ·⊗kAk(a1, a0)⊗kAk(a0, f(an)) ∈ Vectk.
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This collection of objects has face and degeneracy maps which define a simplicial
object in Vectk, and we can consider

C(S, f) = colimn Cn(S, f).

As explained in [HSS, Proposition 4.24], if S contains one object in each equivalence
class in A, there is an equivalence

HH(C, f) ∼= C(S, f).

It is claimed in [BZCHN, Remark 2.8] that this property holds as soon as S is
stable under F and generates A (i.e. A does not contain a strict stable, idempotent
complete, full subcategory containing S.) This version does not seem to appear in
the literature, but according to the authors of [HSS] their proof also applies in this
setting.

In [BZCHN] the authors also use a variant of this construction, as follows. Con-
sider the multiplicative group2 Gm,k, its ∞-category Rep(Gm,k) of representations

(an object of PrL
St,k), and the full subcategory Rep(Gm,k)ω of compact objects (an

object of Catperf
k ). Assume that A is a Rep(Gm,k)ω-module category, and that f

commutes with the action of Rep(Gm,k)ω. By the same considerations as in §1.2,
in this case A is enriched over Rep(Gm,k): for a, b ∈ A we have an object

AGm(a, b) ∈ Rep(Gm,k).

The obvious embedding Vectk → Rep(Gm,k) has as right adjoint the functor of
fixed points (−)Gm,k ; we therefore have

Ak(a, b) =
(
AGm(a, b)

)Gm,k .

More generally, denoting by km the 1-dimensional Gm,k-module of weight m, for
any m,m′ ∈ Z we have

(1.5) Ak(km ⊗ a, km′ ⊗ b) =
(
AGm

(a, b)⊗ km′−m
)Gm,k .

Let S be an F -stable collection of objects in A which generate A under the
action of Rep(Gm,k)ω, i.e. such that the objects V ⊗ a with V ∈ Rep(Gm,k)ω and
a ∈ S generate A. Then we can consider the complex as above associated with
the collection of objects (km ⊗ a : m ∈ Z, a ∈ S), where km is the 1-dimensional
Gm,k-module of weight m: we find a simplicial object with n-term∨

a0,··· ,an∈S
m0,··· ,mn∈Z

Ak(kmn
⊗ an, kmn−1

⊗ an−1)⊗k · · · ⊗k Ak(km1
⊗ a1, km0

⊗ a0)

⊗k Ak(km0
⊗ a0, kmn

⊗ f(an)).

Using (1.5), the latter object identifies with∨
a0,··· ,an∈S
m0,··· ,mn∈Z

(
AGm(an, an−1)⊗kmn−1−mn

)Gm,k⊗k· · ·⊗k
(
AGm(a1, a0)⊗km0−m1

)Gm,k

⊗k
(
AGm

(a0, f(an))⊗ kmn−m0

)Gm,k ,

2In [BZCHN] the authors in fact consider this construction for a reductive algebraic group,

assuming that k has characteristic 0, but in practice they apply it only for Gm,k. A natural
setting for this construction might be to consider a linearly reductive group. (Semisimplicity of

representations seems to be important.)
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hence finally with

(1.6)
∨

a0,··· ,an∈S

(
AGm(an, an−1)⊗k · · · ⊗k AGm(a1, a0)

⊗k AGm
(a0, f(an))

)Gm,k ⊗ O(Gm,k).

1.6. Hochschild homology is a localizing invariant. In [BGT1, §5.1] the au-
thors define what it means for a sequence

(1.7) A f−→ B g−→ C
of objects and morphisms in Catperf to be an exact sequence. (This involves con-
sideration of an ∞-categorical version of the Verdier quotient of triangulated cate-
gories, see in particular [BGT1, Proposition 5.14].) This definition can in fact be
checked at the level of homotopy categories: a sequence as in (1.7) is exact iff it
satisfies the following properties:

• the functor Ho(A)→ Ho(B) induced by f is fully faithful;
• the functor Ho(A)→ Ho(C) induced by g ◦ f is zero;
• the induced functor Ho(B)/Ho(A) → Ho(C) (where the first category is

the Verdier quotient) identifies Ho(C) with the idempotent completion of
Ho(B)/Ho(A).

For details, see [BGT1, Proposition 5.15] and [HSS, §5.1]. Following [BGT1, Defi-
nition 5.18] (see also [HSS, Definition 5.2]), we will say that a sequence as in (1.7)
is split exact if it is exact and f and g admit right adjoints. (If these adjoints are
denoted i and j respectively, then we automatically have i ◦ f ∼= id and g ◦ j ∼= id.)

Remark 1.6. As explained to us by S. Scherotzke, the existence of a right adjoint
for an exact functor between ∞-categories can be checked at the level of homotopy
categories. (In fact, the adjoint at the level of homotopy categories is automatically
an H-enriched adjoint, since in [Lu1, Definition 5.2.2.7], if the composition is a
bijection between connected components then it is automatically an equivalence
between mapping spaces. Then the claim follows from [Lu1, Proposition 5.2.2.12].)
Hence the fact that a sequence as in (1.7) is a split exact sequence can also be
checked at the level of infinity-categories.

We will say that a sequence as above, but now in Catperf
k , is exact, resp. split

exact, if its image in Catperf is exact, resp. split exact. In this case, the adjoints i and
j considered above are automatically Vectωk -linear, see [HSS, Proposition 4.9(3)].
See also [HSS, Proposition 5.4] for another characterization of this condition.

Following [HSS, Definitions 5.11 and 5.16], if D is an object in PrL
St, we will say

that a functor F : Catperf
k → D is an additive invariant, resp. a localizing invariant,

if the following conditions are satisfied:

• F preserves filtered colimits;
• F preserves zero objects;

• F sends split exact sequences, resp. exact sequences, in Catperf
k to cofiber

sequences in D.

In fact, as noted in [HSS, Footnote 6 on p. 138], if F is an additive invariant, given
a split exact sequence

A
f // B

g //
i

oo C,
j

oo
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the functors i and g induce an equivalence

F (A) ∨ F (C) ∼−→ F (B)

in D. It is clear that a localizing invariant is a fortiori an additive invariant. These
definitions are “linear variants” of concepts considered in [BGT1]; in particular we

have a notion of additive or localizing invariant from Catperf to D..
The ∞-category of additive invariants with values in D will be denoted

Funadd(Catperf
k ,D).

Proposition 1.7. The functor

Catperf
k → Vectk

given by A 7→ HH(Ind(A)) is a localizing invariant.

Proof. First, recall that in this context Ind(A) is always dualizable, see §1.3, so that
HH(Ind(A)) is well defined. We need to check that the 3 properties characteriz-
ing localizing invariants are satisfied. The commutation with colimits follows from
the recipe to compute Hochschild homology explained in §1.5 (see [HSS, Corol-
lary 4.25]). The second property is clear. Finally, the third property is proved
in [HSS, Theorem 3.4 and Proposition 5.4]. �

Remark 1.8. In fact, [HSS, Theorem 3.4 and Proposition 5.4] give a version of the
claim on images of exact sequences which allows endomorphisms of the categories.

2. K-theory as a universal additive invariant

2.1. K-theory of ∞-categories. Algebraic (connective) K-theory is a functor

(2.1) K : Catperf → Sp,

see [BGT1, §7.1] and [HSS, §5.4]. See also [Ba] for another construction of algebraic
K-theory, which hopefully is equivalent. This functor takes values in connective
spectra, i.e. spectra whose πn vanishes for n < 0.

What we will mainly consider is the composition of this functor with (1.2), which
we will denote

(2.2) Kk : Catperf → Vectk,

or even its “restriction” to Catperf
k . This functor takes values in complexes concen-

trated in non-positive (cohomological) degrees.
As explained in [Lu2, Remark 11], the group K0(A) := π0(K(A)) identifies with

the Grothendieck group K0(Ho(A)) of the triangulated category Ho(A). As a con-
sequence we have H0(Kk(A)) = k ⊗Z K0(Ho(A)).

Remark 2.1. (1) The main result of [Ba] says that if A is equipped with a
bounded t-structure with heart A♥ (an abelian category), then there is an
equivalence of spectra K(A) ∼= K(A♥) where the right-hand side is K-theory
of abelian categories in the sense of Quillen. In particular, this provides
a different proof, in this setting, that K0(A) is the Grothendieck group
K0(A♥) of the abelian category A♥, or equivalently of the triangulated
category Ho(A).

(2) It is important here to work with small stable ∞-categories, as opposed to
presentable ∞-categories, as the Grothendieck group of a category admit-
ting arbitrary colimits will often vanish.
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2.2. Universal additive invariant – absolute case. There are various state-
ments in the literature which make sense of the idea that “K-theory is the universal

additive invariant” on Catperf or Catperf
k . The following version was explained to

us by V. Saunier (to whom all the proofs in this section are due).

We start with the “absolute” case, i.e. for Catperf . Consider the functor

ι : Catperf → Sp

which is the composition of the functor sending an ∞-category to the underlying
∞-groupoid (see e.g. [GR, Chap. 1, §1.1.3]) with the functor Σ∞ considered in
Remark 1.4.

Proposition 2.2. There exists a morphism ι → K which is initial among the
morphisms from ı to an additive invariant on Catperf with values in Sp.

Sketch of proof. In [BGT1] the authors construct a presentable stable ∞-category
Mot of “noncommutative motives” and a functor

Uadd : Catperf → Mot

which is the “universal additive invariant” in the sense that for any D ∈ PrL
St,

composition with Uadd induces an equivalence of ∞-categories

(2.3) FunL(Mot,D)
∼−→ Funadd(Catperf ,D).

For formal reasons, this implies that for D as above, if F : Catperf → D is a (colimit-
preserving) functor, there is an initial morphism from F to an additive invariant
with values in D, given by

F → P1(Uadd,!F ) ◦ Uadd

where Uadd,! is left Kan extension along Uadd, and P1(−) is the target of the universal
morphism to a colimit-preserving functor.

We apply this process to the morphism ι. The functor Ω∞ commutes with
limits, hence with Kan extension, and the first functor in the definition of ι is
corepresented by Spω. As a consequence, Uadd,!ι is corepresented by Uadd(Spω).
Now since Mot is a stable ∞-category, applying P1 to the functor corepresented by
Uadd(Spω) produces the functor Mot(Uadd(Spω),−) where we use the notation of
Remark 1.4.

Finally, one uses the following fact: algebraic K-theory has the property that for

A,B in Catperf
k with B compact, there is a canonical equivalence

HomMot(Uadd(B),Uadd(A)) ∼= K(Funex(B,A))

in Sp, see [BGT1, Theorem 7.13]. In particular, when B = Spω we have Funex(B,A) =
A, hence an equivalence

HomMot(Uadd(Spω),Uadd(A)) ∼= K(A),

which concludes the proof. �

One also has a version of this property which takes monoidal structures into ac-
count. Namely, in [BGT2, Proposition 5.9], the authors show that the functor (2.1)
is lax-monoidal. Arguments similar to those for the proof of Proposition 2.2, based
on the results of [BGT2], show that this functor is initial among lax-monoidal
additive invariants with values in Sp.
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2.3. Universal additive invariant – linear case. Most of the main results
of [BGT1, BGT2] are adapted to a relative case in [HSS] (see in particular [HSS,
Theorem 5.12] and [HSS, Theorem 5.24]). Using these variants one shows that:

• the composition Catperf
k → Catperf K−→ Sp admits a morphism from the

composition Catperf
k → Catperf ι−→ Sp, and this morphism is initial among

the morphisms from this composition to an additif invariant on Catperf
k with

values in Sp.

• the composition Catperf
k → Catperf K−→ Sp is lax-monoidal, and is initial

among lax-monoidal additive invariants on Catperf
k with values in Sp.

2.4. Application to Hochschild homology. We have seen in Proposition 1.7
that the functor HH(Ind(−)) is a localizing invariant, hence in particular an additive

invariant, on Catperf
k , with values in Vectk. This functor is monoidal. Hence its

composition with (1.3) is lax monoidal. (Here we use the fact that (1.2) is monoidal,
so that its right adjoint is lax-monoidal, see [GR, Chap. 1, Lemma 3.2.4].) Using
the results explained in §2.3, this composition receives a canonical morphism from
K; by adjointness we deduce a canonical map

(2.4) Kk(A)→ HH(Ind(A))

in Vectk for any A in Catperf
k , called the Chern character, see [BZCHN, §2.1.3].

This morphism can also be obtained using the linear analogue of Proposition 2.2,
once one produces a morphism from ι to HH(Ind(−)), which can be done e.g. using
the computation in terms of the complex of §1.5.

In the cases considered below, the Hochschild homology HH(Ind(A)) will be
concentrated in nonnegative degrees; in this case this map must factor through a
map

(2.5) k ⊗Z K0(Ho(A))→ HH(Ind(A)).

By functoriality, for any a ∈ A this map sends the image in the left-hand side of
the class of a in K0(Ho(A)) to [a] ∈ HH0(Ind(A)) (see §1.4).

3. Hecke category and Bezrukavnikov’s equivalence

3.1. Hecke categories. From now on we set k = Q`. We fix a connected reductive
algebraic group G over k, with a fixed choice of Borel subgroup B ⊂ G and maximal
torus T ⊂ B. We will also denote by W the Weyl group of (G,T ), and by g, b, t the
Lie algebras of G, B, T . The choice of B determines in the usual way a system of
generators S ⊂W (the “simple reflections”) such that (W,S) is a Coxeter system.

The Springer resolution Ñ is the cotangent bundle T ∗(G/B) of the flag variety
G/B. This is a smooth quasi-projective scheme over k, endowed with an action of
G. After fixing a G-invariant bilinear form on g, which gives rises to a G-invariant

identification g ∼= g∗, we obtain an identification Ñ = G ×B u where u is the Lie
algebra of the unipotent radical U of B. From this identification we see that there

exists a canonical G-invariant morphism Ñ → g, and we set

Z := Ñ ×g Ñ .
Here the fiber product is a derived fiber product, and Z is a derived scheme, called

the (derived) Steinberg variety. The action of G on Ñ extends to an action of
G × Gm,k, where z ∈ Gm,k acts by multiplication by z−1 on the fibers of the
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projection Ñ → G/B, and we obtain an induced action of Z. We will also consider

the non-derived fiber product of Ñ with itself over g, which we will denote Zcl;
this is a scheme, equipped with a canonical morphism i : Zcl → Z.

It is sometimes useful to consider a variant of this construction in which Ñ is
replaced by the Grothendieck resolution g̃ = G×B b, and consider

Z = g̃×g g̃.

Here, even if we take the derived fiber product, Z is an honest scheme ; in fact it
is a local complete intersection in g̃ × g̃. It is a standard fact that the irreducible
components of Z are in bijection with W , and we will denote by Zw the component
associated with w. (It is the closure of the preimage of the G-orbit on G/B×G/B
associated with w.) It is not difficult to check that the scheme-theoretic intersection

of Zw with Ñ × g̃ is contained in Zcl; this closed subscheme will be denoted Z ′w.
The main players in this section will be the Hecke category

H = Coh(Z/G)

and its “mixed variant”

Hm = Coh(Z/G×Gm,k).

Here we consider the derived stacks Z/G and Z/G×Gm,k, and the full∞-subcate-
gories of the (stable, presentable, k-linear) ∞-categories of quasi-coherent sheaves
on these derived stacks consisting of coherent sheaves, i.e. complexes whose pullback

to Z are bounded complexes of coherent sheaves. These are objects in Catperf
k . The

homotopy categories Ho(H) and Ho(Hm) can be described as the bounded derived
categories of equivariant coherent sheaves on Z realized as a dg-scheme. As such,
Ho(H) has appeared in [B3]. Using the general formalism of [BFN], one obtains that
H and Hm admit canonical structures of (nonsymmetric!) monoidal ∞-category,
with monoidal product given by convolution.

3.2. Braid objects. The (extended) affine Weyl group Waff is the semidirect prod-
uct

Waff := W nX∗(T ).

There exists a canonical subset Saff containing S (depending on the initial choice
of B) and an abelian subgroup Ω ⊂Waff such that:

• the subgroup 〈Saff〉 ⊂Waff generated by Saff is normal in Waff ;
• the pair (〈Saff〉, Saff) is a Coxeter system, and the action of Ω by conjugation

preserves Saff ;
• multiplication induces an isomorphism Ω n 〈Saff〉

∼−→Waff .

In particular, the length function on 〈Saff〉 extends to Waff by setting `(ωw) = `(w)
for ω ∈ Ω and w ∈ 〈Saff〉. The affine braid group is the group generated by symbols
(Tw : w ∈Waff), with relations

TyTw = Tyw if y, w ∈Waff satisfy `(yw) = `(y) + `(w).

It turns out that this group admits another presentation, similar to the Bernstein
presentation of the associated Hecke algebra, with generators (Tw : w ∈W ) ∪ (θλ :
λ ∈ X∗(T )), and a series of relations which includes in particular:

TyTw = Tyw if y, w ∈W satisfy `(yw) = `(y) + `(w);

θλθµ = θλ+µ if λ, µ ∈ X∗(T ).
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Using the results of [BR], one can check that there exists a group morphism from
Baff to the group of isomorphism classes of invertible objects in the category Ho(H),
which is given as follows on generators:

θλ 7→ [i∗O∆Ñ (λ)] (λ ∈ X∗(T )); Tw 7→ [i∗OZ′w ] (w ∈W ).

Here O∆Ñ (λ) is the pullback to the diagonal copy of Ñ in Zcl of the line bundle

on G/B corresponding to λ, seen (via pushforward) as a coherent sheaf on Zcl,
and OZ′w is the structure sheaf of Z ′w, again seen as a coherent sheaf on Zcl. The

image of T−1
w is the (pushforward of the) dualizing sheaf ωZ′

w−1
of the scheme Z ′w−1

(which is Cohen–Macaulay).

3.3. Constructible side. We now fix a prime power q prime with `, and consider
the connected reductive algebraic group G∨ over Fq which is Langlands dual to
G, and a choice of Borel subgroup B∨ ⊂ G∨ and maximal torus T∨ ⊂ B∨ such
that X∗(T

∨) = X∗(T ), and the choice of positive roots of (G,T ) determined by B
corresponds to the set of positive coroots of (G∨, T∨) determined by B∨.

Associated with these data we have:

• the loop group LG∨, defined as the group ind-scheme over Fq representing
the functor R 7→ G∨(R((z))) (where z is an indeterminate);
• the arc group L+G∨, defined as the group scheme over Fq representing the

functor R 7→ G∨(R[[z]]);
• the Iwahori subgroup I∨, defined as the preimage of B∨ under the natural

morphism L+G∨ → G∨ sending z to 0.

It is a classical fact that the étale sheafification of the quotient LG∨/I∨ is repre-
sented by an ind-projective ind-scheme, called the affine flag variety and denoted
FlG∨ . We will denote by Sh(I∨\LG∨/I∨) the bounded derived category of étale
k-sheaves on the stack I∨\FlG∨ , seen as a triangulated category. A standard con-
struction provides a monoidal structure on this category, with product given by
convolution.

Remark 3.1. In fact the quotient I∨\FlG∨ does not make sense as an algebraic
stack, since FlG∨ is an ind-scheme rather than a scheme, and I∨ is not of finite
type. But there is a standard remedy for this: one can write FlG∨ as a filtered
colimit of schemes colimnXn where each Xn is projective, stable under the action
of I∨, and such that the induced action factors through a quotient of finite type
type along a pro-unipotent subgroup. Then one defines the category Sh(I∨\Xn) by
replacing I∨ by any such quotient, and Sh(I∨\LG∨/I∨) is defined as the colimit of
such categories.

The (affine version of the) Bruhat decomposition provides a parametrization of
the I∨-orbits on FlG∨ by Waff (identified here with W nX∗(T

∨)3), in such a way
that the orbit FlG∨,w labelled by w is isomorphic to an affine space of dimension
`(w). For w ∈Waff we denote by jw : FlG∨,w → FlG∨ the embedding, and set

∆w = jw!k[`(w)], ∇w = jw∗k[`(w)].

These are I∨-equivariant perverse sheaves on FlG∨ , which we see as objects in
Sh(I∨\LG∨/I∨).

3Note that W identifies canonically with the Weyl group of (G∨, T∨).
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It is a standard fact that there exists a group morphism from Baff to the group of
isomorphism classes of invertible objects in the monoidal category Sh(I∨\LG∨/I∨),
given on generators by

Tw 7→ [∇w] (w ∈Waff).

The image of T−1
w is the class of ∆w−1 .

3.4. Bezrukavnikov’s equivalence. The following statement is one of the main
results of [B3].

Theorem 3.2. There exists a canonical equivalence of monoidal triangulated cat-
egories

Ho(H)
∼−→ Sh(I∨\LG∨/I∨).

The following statement can easily be deduced from [BL, Proposition 5.8].

Proposition 3.3. The equivalence of Theorem 3.2 intertwines the group mor-
phisms from Baff considered in §3.2 and §3.3.

3.5. Some consequences. Let us now fix an enumeration w0, w1, · · · of Waff such
that if wi < wj in the Bruhat order, then i < j. For any i, the object corresponding
to T−1

w under the group morphism considered in §3.2 can be “lifted” to an object
Ei ∈ Hm. For i ≥ 0, we denote by Hm

≤i the full idempotent-complete stable

∞-subcategory of Hm generated under the action of Rep(Gm,k)ω by the objects
E0, · · · ,Ei. Then we have

(3.1) Hm = colimi H
m
≤i.

Below we will also make extensive use of the exact sequences

(3.2) Hm
≤i−1 → Hm

≤i → Hm
≤i/H

m
≤i−1

for i ≥ 1.
We will denote by E i the image of Ei in Hm

≤i/H
m
≤i−1, and set

Ai = (Hm
≤i/H

m
≤i−1)Gm(E i,E i).

Then Ai is an algebra object in Rep(Gm,k). Moreover, denoting by A the symmetric
algebra of t, considered as an algebra object in Rep(Gm,k) where t is placed in degree
2 and has Gm,k-weight 1, then we have

(3.3) H•(Ai) = A.

In fact the proof of this claim relies on Theorem 3.2. More specifically, if we denote
by H≤i the full idempotent-complete stable ∞-subcategory of Hm generated by
the objects E0, · · · ,Ei, then for any i the equivalence of Theorem 3.2 restricts to an
equivalence

Ho(H≤i) ∼= Sh(I∨\FlG,≤i)
where FlG,≤i is the closed subscheme of FlG which is the union of the orbits FlG,wj

with j ≤ i. As a consequence, we have

Ho(H≤i/H≤i−1) ∼= Sh(I∨\FlG,wi
),

so that H•(Ai) identifies with the I∨-equivariant cohomology of FlG,wi , or equiva-
lently of the point, which is A. To identify the action of Gm,k, we also need to know
that, under this equivalence, multiplication by q on the left-hand side corresponds
to pullback under Frobenius on the right-hand side, which is proved in [B3].
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Remark 3.4. Using standard claims for the corresponding subcategories of the trian-
gulated category Sh(I∨\LG∨/I∨), one can check that for any i ≥ 0, the composition

〈Ei〉Gm
→ Hm

≤i → Hm
≤i/H

m
≤i−1

is an equivalence, where the left-hand side is the full idempotent-complete stable
∞-subcategory of Hm generated by the objects V ⊗ Ei with V in Rep(Gm,k)ω, and
the second arrow is the quotient functor.

In the homotopy category Ho(Hm), the images of the elements (Tw : w ∈ Waff)
form a graded quasi-exceptional set (for the Bruhat order on Waff), with dual the
images of the elements (T−1

w−1 : w ∈ Waff). (See [B1] for quasi-exceptional sets,
and [B2] for graded exceptional sets. The definition of a graded quasi-exceptional
set should be easy to guess from these.) In particular, for any i the Grothendieck
group K0(Hm

≤i/H
m
≤i−1) = K0(Ho(Hm

≤i/H
m
≤i−1)) is free of rank 1 over Z[q,q−1] =

KGm,k(pt), with generator the class of the image of Ei, and we have a short exact
sequence

(3.4) K0(Hm
≤i−1) ↪→ K0(Hm

≤i) � K0(Hm
≤i/H

m
≤i−1).

We also have

(3.5) K0(Hm) = colimi K
0(Hm

≤i).

4. Hochschild homology of Ind(Hm)

In this section we explain the description of the algebra HH(Ind(Hm)), which
is the main result of [BZCHN, §2]. Note that by results of Drinfeld–Gaitsgory,
the category Ind(Hm) identifies with the ∞-category of ind-coherent sheaves on
Z/G × Gm,k, see [BZCHN, §1.6.2] for details and references. Similarly, Ind(H)
identifies with the ∞-category of ind-coherent sheaves on Z/G.

4.1. A preliminary lemma. Let C be an object of PrL
St,k endowed with an action

of Rep(Gm,k). As in §1.5 we then have the enriched morphism spaces CGm
(a, b) ∈

Rep(Gm,k) for a, b ∈ C. In particular, if a ∈ C we have the algebra object CGm(a, a)
in Rep(Gm,k).

Lemma 4.1. If a ∈ C is compact and generates C under the action of Rep(Gm,k),
then we have equivalences of ∞-categories

C ∼−→ RModCGm (a,a)(Rep(Gm,k)), Cω ∼−→ PerfCGm (a,a)(Rep(Gm,k))

where

• RModCGm (a,a)(Rep(Gm,k)) is the ∞-category of right CGm
(a, a)-modules in

Rep(Gm,k);
• PerfCGm (a,a)(Rep(Gm,k)) is the ∞-subcategory generated by objects of the

form V ⊗ CGm
(a, a) with V ∈ Rep(Gm,k)ω.

Proof. The second equivalence follows from the first one by passing to compact
objects. For the first equivalence we consider the adjunction

C
CGm (a,−) // Rep(Gm,k).
V 7→V⊗a

oo

The associated monad on Rep(Gm,k) is given by tensoring by CGm(a, a). The func-
tor CGm

(a,−) preserves colimits because its left adjoint preserves compact objects,
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and it is conservative by our assumption that a generates C under the action
of Rep(Gm,k). Then the equivalence follows from the Barr–Beck–Lurie theorem,
see [GR, Chap. I, Proposition 3.7.7]. �

4.2. Construction of a basis of Hochschild homology. Recall the algebra
objects Ai (i ≥ 0) and A introduced in §3.5.

Lemma 4.2. For any i ≥ 0, there exists an equivalence of Rep(Gm,k)-categories

RModAi(Rep(Gm,k)) ∼= RModA(Rep(Gm,k))

intertwining An in the left-hand side with A in the right-hand side.

I don’t really know how to prove this lemma formally in the setting of ∞-
categories. However this is an analogue of a standard claim for dg-algebras. Namely,
let E be a dgg-algebra, i.e. a Z2-graded algebra

E =
⊕
n,m∈Z

En,m

endowed with a differential d (of square 0) of bidegree (1, 0), which satisfies the
Leibniz rule. The cohomology H(E) is then naturally Z2-graded, and we assume
that we have

Hn,m(E) 6= 0 ⇒ n = 2m.

Then E is formal; more specifically, setting

E′ =

 ⊕
n,m∈Z
n<2m

Ei,j

⊕(⊕
m∈Z

ker(d2m,m)

)
,

E′ is a sub-dgg-algebra of E and we have natural quasi-isomorphisms of dgg-
algebras

E ←↩ E′ � H(E).

In particular we can consider the derived category DGGMod(E) of dgg-E-modules,
i.e. Z2-graded E-modules endowed with a differential satisfying the Leibniz rule. We
can also forget about the second grading of E, and consider the derived category
DGMod(E) of dg-E-modules. We also have similar categories for H(E). Since
quasi-isomorphisms induce equivalences on derived categories of dg(g)-modules, we
deduce equivalences of categories

DGGMod(E) ∼= DGGMod(H(E)), DGMod(E) ∼= DGMod(H(E)).

These considerations apply here thanks to (3.3).

Corollary 4.3. Let i ≥ 0. We have HHn(RModAi
(Rep(Gm,k))) = 0 for any n 6= 0,

and an isomorphism

HH0(RModAn
(Rep(Gm,k))) ∼= k[q,q−1],

where q is an indeterminate.

Proof. In view of Lemma 4.2, it suffices to prove that

HH(RModA(Rep(Gm,k))) ∼= k[q,q−1].
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Now the left-hand side can be computed using the complex (1.6), with the set S
consisting of {A}. Here, since A/k has positive weights for the action of Gm,k, for
any m we have

(A⊗m)Gm,k = 0.

Hence the complex is the same as for the computation of HH(Vectk) (with S con-
sisting of {k}), up to tensor product with O(Gm,k) = k[q,q−1]. The desired claim
follows. �

Since HH(Ind(−)) is a localizing invariant (see Proposition 1.7), from (3.1) we
deduce that

(4.1) HH(Ind(Hm)) = colimi HH(Ind(Hm
≤i)).

Moreover, for any i ≥ 1, applying this functor to the exact sequence (3.2) we obtain
a cofiber sequence

HH(Ind(Hm
≤i−1))→ HH(Ind(Hm

≤i))→ HH(Ind(Hm
≤i/H

m
≤i−1)).

Using Corollary 4.3 and induction, we deduce that for any i ≥ 0 we have

HHn(Ind(Hm
≤i)) = 0 for any n 6= 0,

and that for i ≥ 1 we have canonical exact sequence

(4.2) HH0(Ind(Hm
≤i−1)) ↪→ HH0(Ind(Hm

≤i)) � k[q,q−1].

In view of (4.1) we also have

HHn(Ind(Hm)) = 0 for any n 6= 0.

4.3. Identification with the affine Hecke algebra. Let Haff be the Hecke al-
gebra over k associated with Waff . In other words Haff is a k[q,q−1]-algebra which
is free as a Z[q,q−1]-module, with a basis (Tw : w ∈ Waff), and multiplication
determined by the following rules:

• (Ts − q) · (Ts + 1) = 0 for s ∈ Saff ;
• TyTw = Tyw if y, w ∈Waff are such that `(yw) = `(y) + `(w).

By a classical result of Kazhdan–Lusztig and Ginzburg, there exists a canonical
isomorphism of k[q,q−1]-algebras

(4.3) Haff
∼−→ k ⊗Z K0(Hm)

intertwining multiplication by q with the automorphism given by tensoring with
the tautological Gm,k-module.

Remark 4.4. More precisely, Kazhdan–Lusztig and Ginzburg proved this result
under the assumption that G has simply-connected derived subgroup. The general
case follows.

We are now in a position to explain the first main result of [BZCHN, §2].

Theorem 4.5. We have HHn(Ind(Hm)) = 0 for any n 6= 0, and an isomorphism
of k-algebras

Haff
∼−→ HH0(Ind(Hm)).
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Proof. The vanishing claim was already explained at the end of §4.2. Using this
fact, the constructions of §2.4 provide an algebra morphism

k ⊗Z K0(Hm)→ HH0(Ind(Hm))

This map is compatible in the obvious way with the filtrations on both sides
(see (3.4) and (3.5) for the left-hand side, and (4.1) and (4.2) for the right-hand
side), and one sees using Corollary 4.3 that it induces an isomorphism on each as-
sociated subquotient (see in particular (3.4)). It is therefore an isomorphism. We
conclude using (4.3). �

4.4. A q-specialization. We fix q ∈ kr{0, 1}, and still denote by q : Z/G→ Z/G
the automorphism given by the action of q ∈ Gm,k(k). The following statement is
the second main result of [BZCHN, §2].

Theorem 4.6. We have HHn(Ind(H), q∗) = 0 for any n 6= 0, and an isomorphism
of k-algebras

Haff |q=q
∼−→ HH0(Ind(H), q∗),

where the left-hand side denotes the specialization of Haff at q = q.

Note that the forgetful (or pullback) functor Hm → H induces a morphism of
pairs

(Ind(Hm), id)→ (Ind(H), q∗).

We deduce a canonical algebra morphism

HH(Ind(Hm))→ HH(Ind(H))

and, in view of Theorem 4.5, to conclude it suffices to prove that this morphism
induces an isomorphism

HH(Ind(Hm))|q=q
∼−→ HH(Ind(H)).

For this we use the filtration of H similar to that of Hm considered in §3.5 (see
Remark 1.8). For any i we have an automorphism of Ai induced by q∗, and a
compatible automorphism of A (denoted ϕq) induced by multiplication by q on t.
What we have to prove is therefore that the obvious forgetful functor induces an
isomorphism

HH(RModA(Rep(Gm,k)))|q=q
∼−→ HH(RModA(Vectk)).

Now the left-hand side has been computed in the proof of Corollary 4.3. For the
right-hand side we can use Remark 1.5, and compute the derived tensor product
using a Koszul resolution. This gives the claim.
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