
CATEGORICAL TRACES OF CONVOLUTION CATEGORIES

KOSTAS I. PSAROMILIGKOS

In this text I explain what I understand from [Ben+22, §3]. In particular, I expand on
the strategy described in [Dos24, §2.5], following the notation and conventions in [Ric24].
These notes are incomplete and full of errors - please feel free to send me comments and

questions.
Much of the beautiful theory developed in this section depends on a lot of previous work,

especially by the authors. An incomplete list that I found particularly helpful is:

(1) For the monoidal structure on the category of ind-coherent sheaves, see
David Ben-Zvi, David Nadler, and Anatoly Preygel. “Integral transforms for coherent
sheaves”. In: Journal of the European Mathematical Society 19.12 (Nov. 2017),
pp. 3763–3812. issn: 1435-9863. doi: 10.4171/JEMS/753

(2) For the notion of singular support for ind-coherent sheaves, see
D. Arinkin and D. Gaitsgory. “Singular support of coherent sheaves and the geo-
metric Langlands conjecture”. In: Selecta Mathematica 21.1 (Nov. 2014), pp. 1–199.
issn: 1420-9020. doi: 10.1007/s00029-014-0167-5

(3) For the relevant derived algebraic geometry and infinity category, see
D. Gaitsgory and N. Rozenblyum. A study in derived algebraic geometry. Ed. by
American Mathematical Society. Mathematical Surveys and Monographs, 2017

(4) For Theorem 7 which is the main technical tool behind the use of categorical traces
for the construction of the Springer sheaf, see
D. Gaitsgory et al. “A toy model for the Drinfeld–Lafforgue shtuka construction”.
In: Indagationes Mathematicae 33.1 (Jan. 2022), pp. 39–189. issn: 0019-3577. doi:
10.1016/j.indag.2021.11.002

(5) For the computation of the categorical trace and the theory of descent with supports,
see
David Ben-Zvi, David Nadler, and Anatoly Preygel. “A spectral incarnation of affine
character sheaves”. In: Compositio Mathematica 153.9 (June 2017), pp. 1908–1944.
issn: 1570-5846. doi: 10.1112/S0010437X17007278

1. Generalities on categorical traces

The purpose of Section 3 is to develop a theory of higher categorical traces on convolution
categories coming from derived algebraic geometry so that it can be applied to the mixed
affine Hecke category based on the results of Section 2.

1. Recall. We start by recalling some constructions from the previous talks, in particular,
see [Ric24].

Let G be a reductive group, g its Lie algebra, N ⊆ g its nilpotent cone, and µ : Ñ → N
the Springer resolution.

We define Z := Ñ ×g Ñ to be the Steinberg stack, where the fiber product is derived.
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Also,

H := Coh(Z/G), Hm := Coh(Z/(G×Gm)),

are the affine and mixed affine Hecke categories.
We denote by Haff the affine Hecke algebra of the affine Weyl group of G.
In Simon’s talk, we learned that

Haff
∼= HH0(Ind(Hm))

and that the other Hochschild homology groups vanish, so we can identify Haff with the
dg-algebra concentrated in degree 0, and turn this into an isomorphism

Haff
∼= HH(Ind(Hm))

of dg-algebras.
The affine Hecke and mixed affine Hecke categories are special examples of convolution

categories coming from derived algebraic geometry, ie. categories of some kind of sheaves on
X ×Y X, which are usually monoidal using some kind of convolution. In this section (and
a multitude of other papers) the authors develop a formalism based on categorical traces
that applies nicely to convolution categories to give another computation of the Hochschild
homology, and in particular construct the universal Springer sheaf and study its properties.
All these categories are naturally ∞-categories.
Let Vectk to be the∞-category of complexes of vector spaces over k. For us, a “monoidal
∞-category” means “an algebra object in PrLSt,k”, where PrLSt,k stands for “the ∞-category
of Vectk-modules in the ∞-category of stable presentable ∞-categories” and left adjoint
functors, as in Simon’s talk - so we also require our infinity categories to be stable presentable
and k-linear, as we will work in the setting of derived algebraic geometry. PrLSt,k is symmetric
monoidal by defining the tensor product to be the product over Vectk. As an example, the
category Vectk is itself an obvious object of PrLSt,k, and also the unit for the symmetric
monoidal structure.

We also denoted by Catperfk the ∞-category of small, stable, idempotent complete ∞-
categories, with morphisms given by exact functors. It is also symmetric monoidal and we
have a symmetric monoidal ind-completion functor

Ind : Catperfk → PrLSt,k.

For details, see [Ric24, §1.2] and the references therein.

Example 1. Let X be a QCA derived stack over k, which for the authors means quasi-
compact stacks of finite presentation with affine finitely-presented diagonal. Then,

(1) Perf(X), the category of perfect complexes on X, is in Catperfk .
(2) QC(X) ∼= Ind(Perf(X)).
(3) QC!(X) ∼= Ind(Coh(X)), see [GR17].
(4) By the above, we have

QC(X)c = Perf(X), QC!(X)c = Coh(X).

Definition 2. We call a monoidal∞-category C compactly generated, when it is of the form
C = Ind(A) for a category A ∈ Catperfk .
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2. Definitions of categorical trace. For an extensive discussion of the notions in this
subsection, and generally for applications of this formalism, see the online notes by Harrison
Chen on his webpage, or [Dos24, §2].

If C is compactly generated, C is dualizable, and we have defined its Hochschild homology
HH(C, F ) ∈ Vectk see [Ric24, Definition 1.3].

Definition 3. We also call this the vertical trace tr(C, f) := HH(C, f).

Morphisms of pairs (F, ψ) : (C, f) → (D, g) induce maps on traces tr(F, ψ) : HH(C, f) →
HH(D, g) via functoriality of traces, see [Ric24, §1.4].
Consider the Morita category of A-module categories, with morphisms given by (B,A)-

bimodule categories, 2-morphisms are functors between them etc. If we apply our construc-
tion to this category, we get the following.

Definition 4. Alternatively, we have the horizontal or 2-categorical trace

Tr(C, F ) := C ⊗C⊗Crv CF ,
where Crv is defined by reversing just the monoidal product, and CF is C where the left

action has been twisted by F .

For more details on the above, consult [Ben+22, Definition 3.1].
By this definition, we also have functoriality of traces for Tr.
If C is a compactly generated monoidal ∞-category and F a monoidal endofunctor, there

is a natural morphism of pairs η : (Vectk, id) → (C, F ). We have Tr(Vectk, id) ∼= Vectk, so
we can consider k as a complex concentrated in degree 0 and define the following object.

Definition 5. The character [C, F ] of (C, F ) is defined to be the image

[C, F ] := Tr(η)(k) ∈ Tr(C, F ).

The theory we will study works nicely in the following setting

Definition 6. A compactly generated monoidal ∞-category C is called rigid if the monoidal
unit is compact, the multiplication map sends compact objects to compact objects, and every
compact object of C is dualizable.

In particular, the vertical trace will be an algebra object of Vectk, not just an object.
See also [Ric24, Remark 1.5].
The first part of the following is [Gai+22, Theorem 3.8.5] stated in our setting similarly

to [Ben+22, Theorem 3.4], [Dos24, Theorem 2.5].

Theorem 7. Let C be a compactly generated rigid monoidal ∞-category and F a monoidal
endofunctor. There is an equivalence

HH(C, F ) ∼= EndTr(C,F )([C, F ]),
of dg-algebras, inducing an equivalence of functors

HH(−) ∼= HomTr(C,F )([C, F ],−) : (C, F )−mod→ HH(C, F )−mod

In particular, assuming that [C, F ] is a compact object, then the left adjoint to the func-
tor HomTr(C,F )([C, F ],−) defines a fully faithful embedding which preserves compact objects,
whose essential image is the category generated by [C, F ].
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HH(C, F )−mod Tr(C, F )

⟨[C, F ]⟩

∼=

[C,F ]⊗EndTr(C,F )
−

HomTr(C,F )([C,F ],−)

For the second part, notice that since [C, F ] is compact and the category is rigid, the
tensor sends compact objects to compact objects. I think the reason the embedding is fully
faithful is that the category generated by [C, F ] embeds in Tr(C, F ) (but this may just be
circular).

2. Traces in geometric settings

1. Monoidal structures of convolution categories. Let p1 : X → S, p2 : Y → S be
proper maps of perfect stacks over k.

There is an equivalence

QC(X)⊗QC(S) QC(Y )
∼=−→ QC(X ×S Y ),

and since QC(X) is a dualizable QC(S)-module, the integral transform

Φ : QC(X ×S Y )
∼=−→ FunL

QC(S)(QC(X),QC(Y )),

given by Φ(K) = F 7→ p2∗(p
∗
1F ⊗K), is an equivalence.

Remark 8. Alternatively there is the tensor product

QC!(X)⊗QC!(S) QC!(Y )→ QC!(X ×S Y )

which we will heavily use, but it is not an equivalence anymore. Indeed, if X, Y, S are assumed
to be smooth, the left hand side is equal to QC(X ×S Y ), but the fiber product does not have
to remain smooth (it does not for the affine Hecke category), therefore QC(X ×S Y ) ̸=
QC!(X ×S Y ).

To find the essential image of this tensor product, we will need the notion of singular
support, which we will recall in the next subsection.

By [Ben+22, Theorem 1.1.3], and since for a smooth stack QC(X) = QC!(X), the compact
objects are the same and in particular Coh(X) = Perf(X), we have

Proposition 9. The integral transform Φ restricts on the compact objects to an equivalence

Φ : Coh(X ×Y X)
∼=−→ Funex

Perf(Y )(Perf(X),Perf(X)).

Grothendieck duality, ie. the functor D(F) = F∨ ⊗ ωX , intertwines this equivalence, and
we get the !-transform given by Φ(K) = F 7→ p2∗(p

!
1F ⊗ K), since by properness of p2 we

have p2∗ = p2!.
On the right hand side, we have a monoidal structure by composition, which can be trans-

formed into convolution on the right to give Coh(Z) a monoidal structure via convolution.
After ind-completion, we can turn QC!(Z) into a monoidal∞-category via the !-convolution.

For QC(Z) we cannot do the same trick, but there is an equivalence by Ben-Zvi, Francis,
Nadler which is the same as in the proposition by replacing all categories with QC, which
immediately gives QC(Z) a monoidal structure, this time corresponding to ∗-convolution.
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For QC!, this works as follows. Let Xi be smooth QCA stacks over k, proper over Y , and
Zij = Xi ×Y Xj. We have a correspondence

Z12 × Z23
(p12,p23)←−−−−− X1 ×Y X2 ×Y X3

p13−−→ Z13,

wich allows us to define the convolution

F1 ∗ F2 := p13∗(p
!
12F1 ⊗ p!23F2) : QC!(Z12)⊗QC!(Z23)→ QC!(Z13).

Notice the maps pij are proper as base changes of the proper maps Xk → Y . Smoothness of
the stacks implies pullback along the diagonal preserves coherent objects, and properness of
the stacks over Y implies the pushforward also preserves coherence. The convolution functor
∗ descents to a relative tensor product

∗ : QC!(Z12)⊗QC!(Z22)
QC!(Z23)→ QC!(Z13).

Proposition 10. The monoidal unit of QC!(Z) is ω∆ := ∆∗ωX , where ∆ : X → X ×Y X is
the relative diagonal.

2. Review on singular support. Let X be a quasi-smooth stack.

Definition 11. The odd cotangent bundle or scheme of singularities T∗[−1]
X is defined to be

T∗[−1]
X := SpecXSymXH

0(TX [1]),
where TX is the tangent complex of X.

Example 12. For a smooth stack X, T∗[−1]
X = X. In general, the fibers of T∗[−1]

X → X lie
over the singular locus of X.

For an ind-coherent sheaf F ∈ QC!(X), Arinkin and Gaitsgory constructed its singular

support which is a closed conical subset of the odd cotangent bundle SS(F) ⊆ T∗[−1]
X , see

[AG14, Definition 4.4]. The reason we review this notion is that we often want to restrict to
the full subcategory QC!

Λ(X) ⊆ QC!(X) of ind-coherent sheaves with singular support in Λ,
in particular for this application to be able to do some kind of descent, and to study tensor
products of ind-coherent sheaves.

Let Y be another quasi-smooth stack and f : X → Y a representable morphism. There is
a natural correspondence

T∗[−1]
X

df←− T∗[−1]
Y ×Y X

p−→ T∗[−1]
Y ,

where p is just the projection and df is a “derived differential”? We can then pushforward
and pullback conical subsets via f∗ΛX = p(df−1(ΛX)), f

!ΛY = p(df(ΛY ))
We sum up the properties we need in the following proposition. For more details, see

[AG14, §1.3.9].

Proposition 13. For an ind-coherent sheaf F ∈ QC!(X), the following are true.

(1) The intersection of SS(F) with the zero section is the classical support of F .
(2) SS(f∗F) = f∗SS(F) [AG14, Proposition 7.1.3]
(3) SS(f !F) = f !SS(F) [AG14, Proposition 7.1.3]
(4) SS(F) is the zero section if and only if F ∈ QC(X) [AG14, Theorem 4.2.6], and if
F is coherent SS(F) = {0}X ⇔ F to F is perfect.

(5) The singular support is preserved by Serre duality [AG14, Proposition 4.7.2].
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Remark 14. If there exists a reasonable theory of this in characteristic p, then one could
reasonably expect all these properties to remain true, except (2), which would probably be a
very strict containment.

Singular support can be checked locally: See [AG14, Theorem 1.3.8].

Example 15. (1) QC!
{0}X (X) = QC(X).

(2) QC!

T∗[−1]
X

(X) ∼= QC!(X)

(3) More generally, if i : Z ↪→ X is a closed subscheme, and Λ0,Λ1 are the pullbacks
to Z through the inclusion, QC!

Λ1
(X) = QCZ(X),QC!

Λ2
(X) = QC!

Z(X), ie. sheaves
with classical support on Z.

Example 16. Notice that from the above we also get that for a smooth stack X, since

T∗[−1]
X = X,

QC(X) = QC!
{0}X (X) = QC!

T∗[−1]
X

(X) ∼= QC!(X).

We may thus view the singular support as measuring the failure of an object of QC!(X)
to be in QC(X).

We consider the (classical I think) category of pairs Pair, with objects (X,Λ) being X a
quasi-smooth stack and Λ a closed conical subset of the odd cotangent bundle, and morphisms
being maps of stacks such that f∗ΛX ⊆ ΛY .
To a pair (X,Λ), we attach the corresponding category QC!

Λ(X). The inclusion functor
i : QC!

Λ(X) ↪→ QC!(X) has a right adjoint RΓΛ, which we intuitively think of as “taking
local cohomology along Λ”.

For the proof, see [BNP17a, Lemma 2.3.1]. A map of pairs f is called strict along Λ′
X if

f !T∗[−1]
Y ∩ ΛX ∩ Λ′

X = f !ΛY ∩ Λ′
X

Proposition 17. Let f be a quasi-smooth map of pairs. There is a natural morphism

f∗ ◦RΓΛX
→ RΓΛY

◦ f∗
of functors QC!(X) → QC!

ΛY
(Y ), which restricts to an equivalence in QC!

Λ′
X

if f is strict

along Λ′
X .

Definition 18. Suppose that f is a quasi-smooth map of pairs. We can define adjoint
functors with support conditions f∗ : QC!

ΛX
(X) → QC!

ΛY
(Y ) and f !, via the formulas (in

the right hand side we consider the actual pushorward and pullback - we will heavily abuse
notation in this)

f∗ := RΓΛY
◦ f∗ ◦ iΛX

, f ! := RΓΛY
◦ f ! ◦ iΛY

The next definitions are important building blocks for the theory of descent with support
in [BNP17a].

Definition 19. [BNP17a, Definition 2.3.5] A strict Cartesian diagram of pairs is a Cartesian
diagram of quasi-smooth stacks

(Z = X ×S X
′,ΛZ) (X ′,Λ′

X)

(X,ΛX) (Y,ΛY )

p2

p1 q

p
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which also satisfies the strictness condition

ΛZ ⊇ p!1ΛX ∩ p!2Λ′
X .

Remark 20. If p1, p2 are also quasi-smooth, which will be true in all cases we study, the
strictness condition is equivalent to p1 being strict along p

!
2Λ

′
X and p2 being strict along p

!
1ΛX .

In such diagrams we restore natural properties like base change on the underlying cate-
gories with restricted support, see [BNP17a, §2.3]. This is important for the definition of
augmented simplicial diagrams, which basically means all possible Cartesian diagrams are
strict, and we usually want stacks to be smooth and maps proper - these allow us to compute
the categorical trace by identifying the terms in a relative bar resolution.

Let ∆ denote the simplex category of totally ordered non-empty finite sets, and ∆+ the
augmented category of possibly empty finite sets.

Definition 21. A simplicial diagram of pairs is a functor ∆op → Pair where Pair denotes
the obvious category of pairs with morphisms. An augmented simplicial diagram is a functor
∆+,op → Pair. We denote a simplicial diagram of pairs as (X•,Λ•) as is usual in these
settings.

We will call an (augmented) simplicial diagram nice if

(1) All Xn are quasi-smooth
(2) Any map [m]→ [n] induces a strict Cartesian diagram of pairs.
(3) The categories QC!

Λn
(Xn) are compactly generated.

(4) If it is an augmented diagram, we ask that the last map is conservative.

For nice augmented simplicial diagrams, we can use [BNP17a, Corollary 2.4.2] to provide
an isomorphism between the resolution |QC!

Λ•(Z•)| and the augmentation QC!
Λ−1

(Z−1). This
process is called descent with support, and the support conditions are necessary for base
change arguments to be true - in Lurie language, these are called “adjointability conditions”.

We will apply it first to study the convolution of QC!(Z). There is a similar convolution
of closed conical subsets where Λ12 ∗ Λ23 is defined via the same diagram.

Proposition 22. Convolution defines an equivalence of categories

QC!
Λ12

(Z12)⊗QC!(Z22)
QC!

Λ23
(Z23)

∼=−→ QC!
Λ13

(Z13)

Proof. For convenience, letM = QC!
Λ12

(Z12), N = QC!
Λ23

(Z23), A = QC!(Z22), B = QC!
Λ13

(Z13).
We write

M ⊗A N ∼= M ⊗A A⊗A N

and we resolve A as an A⊗B A
rv module via the relative bar complex.

We define

qn : Zn := X1 ×Y X
n+1
2 ×Y X3 → Z12 × Zn

22 × Z23 =: Wn

by the projections, and Λn := q!n(Λ12 ⊠ (T∗[−1]
Z22

)n ⊠ Λ23).
Then, we have

M ⊗A N = colim(QC!
Λn
(Zn)).

The augmented simplicial diagram (Z•,Λ•)→ (Z13,Λ13) is nice, by definition in the other
terms and for the augmentation by definition of Λ13.

Therefore, by [BNP17a, Corollary 2.4.2], this colimit is QC!
Λ13

(Z13). □
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3. Categorical trace of a convolution category

From now on let f : X → Y to be a proper morphism of smooth, QCA stacks over k,
and Z = X ×Y X. Let also ϕX : X → X, ϕY : Y → Y be representable proper self-maps
commuting with f , inducing a proper self-map ϕ : Z → Z.
We have the derived fixed points LϕX := X ×X×X X, where the derived fiber product

is taken over the diagonal ∆ : X → X × X and the graph map Γϕ : X → X × X. This
construction is functorial. The special case ϕ = id is called the derived loop space, and it
can also be written

L(X) = Map(S1, X) ∼= X ×X×X X

by thinking of S1 as two points connected by two line segments.
We want to prove the following [Ben+22, Theorem 3.23].
Let

Z = X ×Y X
δ←− LϕYX = Z ×X×X X ∼= X ×Y×X X

π−→ LϕY,

and we define Λϕ := δ∗π
!T∗[−1]

Z

Theorem 23. We have
Tr(QC!(Z), ϕ∗) ∼= QC!

Λϕ
(LϕY ),

and
[QC!(Z), ϕ∗] ∼= Lϕf∗ωLϕX .

For ϕ = id, this is [BNP17a, Theorem 3.3.1]. It is extended for general ϕ in [Ben+22,
Appendix A2]. We give a rough sketch of the ideas involved in this proof.

Proof. Let A := QC!(Z), B = Perf(X) andM the B ⊗B-module defined by the graph map
Γϕ. The diagonal map also makes A an algebra in B-bimodules. This comes from the fact
that both maps are proper by our assumptions so pushforward is monoidal.

We will compute Tr(QC!(Z), ϕ∗) via the relative bar resolution |A⊗B(•+2)|. We denote by
Aϕ∗ the same category where the left action is twisted by ϕ∗.

C• = |A⊗B(•+2)| ⊗A⊗Arv ⊗Aϕ∗ = |A⊗B(•+1) ⊗B⊗B ⊗M|,
(I am not sure why the second equality is true)

Let
Z• := X•+1 ×Y LϕY, W

• = (X ×Y X)• × LϕX.

The complex Z• → LϕY is the Cech nerve [GR17, §2.2] of Z0 = X ×Y LϕY → LϕY.
If ϕ = id, this can be more intuitively written as

Zn
∼= Map([n] ↪→ S1, X → Y ) ∼= Map([n], S1)×Map([n],Y ) Map(S1, Y ).

We have natural maps qn : Zn → Wn, obtained by taking relative diagonals.
The fully faithful map of simplicial diagrams C• → QC!(Z•),

has essential image QC!
Λ•(Z•) where Λn := q!n(T

∗[−1]
Wn

).
Since (Z•,Λ•)→ (LϕY,Λϕ) is an augmented simplicial diagram satisfying all the assump-

tions, we just have to show it is nice.
The augmented simplicial diagram is the Cech nerve of X ×Y LϕY → LϕY , so the fact

that the diagrams are cartesian is immediate, and because this map is a base change of the
proper map x→ Y , we get the properness and quasi-smoothness of all face maps.
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For strictness, see the concrete computations in [BNP17a, Proposition 3.3.8].
Therefore, by [BNP17a, Corollary 2.4.2] we have the identification of the categorical trace.
For the identification of the Springer sheaf: The monoidal unit of QC!(Z) is ω∆ := ∆∗ωX ,

where ∆ : X → X ×Y X = Z is the relative diagonal.

LϕX LϕY
X LϕY

X Z = X ×Y X

∆̃

p

π

δ

∆

and we have [ω∆] = π∗δ
!∆∗ωX , which by base change is Lϕf∗ωLϕX =: Sϕ. □

Then, the first sentence in the following theorem, which we will prove implies the rest.

Theorem 24. [Ben+22, Theorem 3.25] The convolution category QC!(Z) is a rigid monoidal
∞-category . In particular, Theorem 7 applies, and we have that the vertical trace of QC!(Z)
is identified as an algebra with the endomorphisms of the Springer sheaf (universal trace
sheaf) Sϕ := Lϕf∗ωLϕX ∈ QC!(LϕY ), therefore

HH(QC!(Z), ϕ∗) ∼= EndQC!(LϕY )(Sϕ)

Proof. To be written, but if everything else is set up correctly, it follows from the definition
of the monoidal structure and the fact that ω∆ is compact, upon checking that integral
transforms coming from compact/coherent kernels preserve compactness - this comes I think
from the fact that compact objects commute with colimits... □
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