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1 Introduction

An harmonic map h between two Riemannian manifolds M and N is a
smooth map satisfying some partial differential equation linked with the
Laplacian ∆M on M and the Riemannian metric on N . More precisely,
for y ∈ N , we can use the exponential map expy and its inverse exp−1

y which
is defined on a neighbourhood of y. If h : M → N is C2, then

hx : z 7→ exp−1
h(x) h(z)

is defined and C2 on a neighbourhood of x, and takes its values in the tangent
space Th(x)(N); thus the Laplacian ∆M acts on it and we can define

∆N
Mh(x) = ∆Mhx(x) ∈ Th(x)(N).

This map is called the tension field of h, and h is said to be harmonic if
∆N

Mh = 0. The problem of constructing harmonic maps has been widely
studied in the literature, see for instance [4, 9] or the lectures in [7]. In
particular, if M = M ∪ ∂M is a manifold with boundary ∂M , the Dirichlet
problem consists in finding a map h which is harmonic on M , and which
converges to a prescribed function g on ∂M . If

dh(x) : Tx(M) → Th(x)(N)

is the derivative of h and if µ is the Riemannian measure on M , one can
consider the energy functional

EN(h) =
1

2

∫
|dh(x)|2µ(dx).

If (hε; ε ∈ IR) is a smooth family of maps, then

d

dε
EN(hε) = −

∫ ( d

dε
hε(x), ∆N

Mhε(x)
)
µ(dx),

so the harmonic maps appear to be the critical points of EN . Thus a classical
method for solving the Dirichlet problem is to look for a map which is energy
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minimizing in the class of maps converging to g; this map is a critical point for
the energy functional, but it is not necessarily smooth (it is in the Sobolev
space W 1,2); it is said to be weakly harmonic; then one has to study its
smoothness in order to prove that it is harmonic. This program has been
completed in [8] when the boundary condition g has a small image (see the
survey [4] for other results).

Our aim is firstly to extend the construction of energy minimizing maps
when the Laplacian ∆M is replaced by a more general symmetric operator,
and secondly to study the probabilistic properties of these maps; the problem
of the smoothness is studied in [17]. More precisely, the manifold M is
replaced by a locally compact space endowed with a local Dirichlet form E .
The main tool is the reflected Dirichlet space; this space was introduced in
[20], and was further studied in [3]. We extend it to maps h : M → N ,
and define the energy EN(h). The ellipticity of the Laplacian ∆M is replaced
here by an absolute continuity condition on the semigroup associated to E ,
and it appears that this condition is sufficient for the existence of energy
minimizing maps. In particular, we obtain weakly harmonic maps. Then we
can begin the stochastic analysis of the problem; we consider the diffusion
associated to E ; harmonic maps send the diffusion to martingales on N , and
we prove that weakly harmonic maps have the same property except on a set
of zero capacity; they are said to be quasi harmonic. The main probabilistic
tool is the stochastic calculus for Dirichlet processes which has been worked
out in [12, 11]. By using the results of [17], one can then deduce under some
conditions that these quasi harmonic maps are smooth, so they are harmonic
in the strong sense.

Notice that another stochastic construction of harmonic maps can be
deduced from the existence of a martingale on N with prescribed limit, see
[10, 16, 1]; this method does not require the symmetry of the diffusion or
any smoothness on the boundary condition g; however, one has to assume a
strong convexity condition on the image of g (the map g has to take its values
in a set with convex geometry). The advantage of the variational approach
is to get rid of this convexity condition; the convexity is then only used for
the smoothness.

We first introduce the framework, and state the main existence theorem
for the Dirichlet problem in Section 2, in the case where N is complete. This
theorem is proved in two steps; we solve the variational problem in Section
3, and the probabilistic analysis involving Dirichlet processes is worked out
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in Section 4. Finally, in Section 5, we explain how the convexity can be used
in order to consider non complete manifolds N .

Acknowledgement. The author is grateful to Liming Wu who gave him
the proof of Lemma 1.

2 The main result

Let N be a C∞ separable Riemannian manifold which is viewed as a Rieman-
nian submanifold of the Euclidean space IRn; more precisely, if N is complete,
we suppose that N is closed in IRn, and in the general case we suppose that
its closure N is a subset of a smooth manifold Ñ with the same dimension.
Nevertheless, we will verify that our results do not depend on the choice of
this isometric embedding of N into IRn.

If F is a C2 function on N , then its Hessian is at y a symmetric bilinear
form on Ty(N) × Ty(N), and F is said to be convex if its Hessian is non
negative. We can also consider the notion of N -valued continuous martingales
(we rely on [5] for the stochastic calculus on manifolds and do not list the
original papers in which the results appeared); actually, since we do not use
non continuous martingales, we will omit the word “continuous”.

Definition 1 Let (Yt) be a N-valued adapted process.

1. We say that (Yt; 0 ≤ t ≤ ∞) is a martingale if it is a continuous
semimartingale such that the process

ΛF
t = F (Yt)− 1

2

∫ t

0
Hess F (Ys)(dYs, dYs) (1)

is a local martingale for any C∞ real-valued function F .

2. If σ is an optional time, we say that (Yt) is a martingale on [0, σ] if the
process stopped at σ is a martingale.

3. If τ is a predictable time, we say that (Yt) is a martingale on [0, τ) if it
is a martingale on [0, σ] for any optional time σ ≤ τ such that σ < τ
on {τ > 0}.
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The N -valued martingales can also be characterized locally as the contin-
uous adapted processes which are transformed into submartingales by real-
valued convex C2 functions. This characterization has useful consequences;
if τ is a predictable time, a martingale on [0, τ) is a martingale on [0, τ ] if and
only if it is left continuous at time τ ; if τ is the increasing limit of optional
times σk, one can also check that (Yt) is a martingale on [0, τ) if and only if
it is a martingale on each [0, σk].

Let us now consider the space M . We adopt the framework of [6] with
moreover a carré du champ operator ([2]). Let M be a separable locally
compact space which is endowed with a Radon measure µ with support M .
Let E be a regular strongly local Dirichlet form on L2(µ) with domain ID, and
which is transient; in the Beurling-Deny formula, the strong locality means
that there is no jump and no killing inside M ; we suppose that E admits a
carré du champ Γ defined on ID× ID, so that

E(φ, ψ) =
1

2

∫
Γ(φ, ψ)dµ. (2)

We will often use the short notation Γ(f) or E(f) for Γ(f, f) and E(f, f).
The space ID endowed with the form

E1(φ, ψ) = E(φ, ψ) +
∫

φψ dµ (3)

is a Hilbert space. We will need the reflected Dirichlet space IDr (see [20, 3]);
it consists of the functions, the truncations of which are locally in ID and
have bounded energy. Then Γ and E can be extended to IDr. Notice that
the functions of IDr have a quasi continuous modification.

The diffusion associated to E can be realized on the space Ω of M -valued
continuous paths with finite or infinite lifetime and which diverge to infinity;
this means that if ω ∈ Ω and if ζ(ω) ∈ (0,∞] is its lifetime, then ω(t) is
M -valued and continuous on [0, ζ(ω)), ω(t) quits all the compact subsets of
M as t ↑ ζ(ω), and ω(t) = ∂ /∈ M (a cemetery point) for t ≥ ζ(ω). Let Xt

be the canonical process with filtration Ft; the time ζ is predictable. Let
(IPx; x ∈ M) be a family of probabilities on Ω such that X0 = x almost
surely under IPx. We suppose that (Ω,Ft, Xt; IP

x, x ∈ M) is the symmetric
diffusion associated to (ID, E); we also consider the σ-finite measure

IPµ =
∫

IPxµ(dx).

If f is quasi continuous, then (f(Xt); t ≥ 0) is IPµ almost surely continuous.
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Definition 2 Let h be a map from M into N . We say that h is quasi
harmonic if h(Xt) is a IPµ martingale on [0, ζ).

We now introduce the Dirichlet problem which is the main purpose of
this work. If (θt) is the shift operator on Ω, then a random variable U is said
to be terminal if U ◦ θt = U on {t < ζ}.

Definition 3 Let U be a N-valued terminal variable. We say that h : M →
N is a quasi solution of the Dirichlet problem with terminal condition U if
h(Xt) is a IPµ martingale converging almost surely to U as t ↑ ζ. This means
that the process

Yt = h(Xt) on {t < ζ}, U on {t ≥ ζ} (4)

is a IPµ martingale on [0,∞].

Our main assumption on E will be an absolute continuity condition on
the associated semigroup; we say that the process Xt satisfies the absolute
continuity assumption at x ∈ M if

µ(B) = 0 =⇒ IPx[Xt ∈ B] = 0 (5)

for t > 0. We will suppose that this condition holds for almost any x (this is
needed for Lemma 1 below).

Let Q be the set of points x such that the process Yt of (4) is a IPx

martingale. Definition 3 says that Xt lives IPµ almost surely in Q (otherwise,
from the optional section theorem, there would exist an optional time σ such
that Xσ is in Qc with positive IPµ measure, and therefore Yσ+t would not be
a martingale), so Qc has zero capacity. This is a justification for the prefix
“quasi” of our terminology. If moreover (5) holds for any x, then Qc is polar,
and the process (Yt; t > 0) is for any x a IPx martingale. We can deduce that
x is in Q if and only if h is finely continuous at x (this means that h(Xt)
converges IPx almost surely to h(x) as t ↓ 0). If Q = M , we can say that h
is a solution of the Dirichlet problem. In this work, we only construct quasi
solutions; a condition for the fine continuity is given in [17].

Remark. Suppose that E is irreducible; we have assumed that it is transient;
if this is not the case, then U is a constant under IPµ, and this constant is a
trivial quasi solution of the Dirichlet problem.
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Example 1. Let M̃ be a C∞ manifold and let µ be a measure with positive
C∞ density with respect to the Lebesgue measure on each local chart. If
(Ξi; 1 ≤ i ≤ q) are C∞ vector fields, we can consider the operator

Γ(φ, ψ) =
q∑

i=1

(Ξiφ)(Ξiψ) (6)

and the form Ẽ associated by (2). A core for this form is the space of
C∞ functions with compact support. We can close this form and obtain a
Dirichlet space ĨD. The associated diffusion X̃t under IPx can be realized on
the Wiener space as the solution up to its explosion time ζ̃ of the Stratonovich
equation

dX̃x
t = Ξ0(X̃

x
t )dt +

q∑

i=1

Ξi(X̃
x
t ) ◦ dW i

t , X̃x
0 = x,

with

Ξ0 =
1

2

q∑

i=1

(divµΞi)Ξi.

If now M is an open subset of M̃ , one can let (ID, E) be the part of (ĨD, Ẽ) on
M ; this is the subset of functions, a quasicontinuous modification of which is
zero on M̃ \M (Section 4.4 of [6]). If Ẽ is irreducible and M̃ \M has positive
capacity, then E is transient. The process Xt is X̃t absorbed (or killed) at
the first exit time ζ of M ; if we consider g : ∂M → N and y ∈ N , then the
variable

U = g(X̃ζ) = g(Xζ−) on {ζ < ζ̃}, y on {ζ = ζ̃}
is terminal. Thus we obtain the classical Dirichlet problem with boundary
condition g on ∂M , and y at infinity. If ζ < ζ̃, there is no condition at
infinity; this is for instance the case when M is relatively compact in M̃ ,
or when Ẽ is recurrent. If the Lie algebra generated by the vector fields
(Ξi; 1 ≤ i ≤ q) is at x the whole tangent space Tx(M) (this is the Hörmander
condition), then the absolute continuity condition (5) holds at x. In good
cases, the reflected Dirichlet space IDr can be identified to a regular Dirichlet
form on M , and the associated process is the classical reflected diffusion (see
the end of [3]).

Example 2. If M̃ is a Riemannian manifold, if µ is the Riemannian volume
measure, we can consider the operator

Γ(φ, ψ) = (dφ(x), dψ(x)).
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The associated diffusion X̃t is the Brownian motion on M̃ . This example can
enter the framework of Example 1 by considering M̃ as a submanifold of IRq,
and by letting (Ξi(x)) be the orthogonal projection of the canonical basis of
IRq on the tangent space Tx(M); then Ξ0 = 0. This process is elliptic, so it
satisfies (5) everywhere. If now µ has a smooth density u with respect to the
Riemannian measure and Γ is unchanged, then X̃t is the Brownian motion
with drift Ξ0 = ∇u/(2u) on {u > 0}; this is a Nelson diffusion; it can be
extended to M̃ by letting {u = 0} be a trap for the process, and (5) holds
on {u > 0}. If M̃ is a Euclidean space, this construction has been extended
to some non smooth u such that u > 0 almost everywhere for the Lebesgue
measure (see [13, 21]). If

√
u is in the Sobolev space W 1,2 one obtains a

recurrent Dirichlet form on M̃ ; the diffusion is absolutely continuous with
respect to the Wiener measure, so (5) holds almost everywhere.

Example 3. If M̃ is a C∞ finite dimensional Lie group with Lie algebra M,
if µ is a right invariant measure, and if (Λi; 1 ≤ i ≤ q) are elements of M,
we can consider the left invariant vector fields Ξi associated to Λi and the
operator (6); then Ξ0 = 0 and the Hörmander condition is satisfied when the
Lie algebra generated by (Λi; 1 ≤ i ≤ q) is M; in this case, the diffusion X̃t

is a left invariant hypoelliptic Brownian motion (or continuous Lévy process)
on M̃ ; it has infinite lifetime.

Let IDr(IRn) be the set of IRn-valued functions f = (f1, . . . , fn) such that
each fj is in the reflected space IDr; for these functions we can put

Γ(φ, ψ) =
n∑

j=1

Γ(φj, ψj), E(φ, ψ) =
n∑

j=1

E(φj, ψj).

We let IDr(N) be the subset of functions which are N -valued, and introduce
the energy functional EN(f) = E(f).

Proposition 1 The space IDr(N) and the energy functional EN do not de-
pend on the embedding of N as a submanifold of IRn.

Proof. First consider the case when N is compact. Let J be an isometry be-
tween two copies N1 and N2 of N in IRn. Let P be the orthogonal projection
onto N1; then J can be extended to a smooth Lipschitz function of IRn into
itself such that J = J ◦P on a neighbourhood V of N1. Consider a map f of
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IDr(N1); the space IDr is stable by the action of Lipschitz transformations,
so J ◦ f is in IDr(N2). Moreover, J is a contraction on V , so

Γ(J ◦ f) ≤ Γ(f),

and therefore
EN2(J ◦ f) ≤ EN1(f).

The reverse inequality is obtained by a symmetric argument, so the result is
proved. In the general non compact case, one can again consider a smooth
extension of the function J (this follows from our assumptions on the em-
bedding of N , see the beginning of the section), but this extension is only
locally Lipschitz. Consider the sequence of functions

Fk(x) = ((|x| ∧ (2k − |x|)) ∨ 0) x/|x|
on IRn; then Fk is a contraction, has compact support, and is the identity
on the ball of radius k. The function Fk ◦ J is Lipschitz, so Fk ◦ J ◦ f is in
IDr(IRn) and

E(Fk ◦ J ◦ f) ≤ EN1(f).

If i ≥ k, one has

E(Fi ◦ J ◦ f − Fk ◦ J ◦ f) =
1

2

∫

{|J◦f |≥k}
Γ(Fi ◦ J ◦ f − Fk ◦ J ◦ f)dµ

≤
∫

{|J◦f |≥k}
Γ(Fi ◦ J ◦ f)dµ

+
∫

{|J◦f |≥k}
Γ(Fk ◦ J ◦ f)dµ

≤ 2
∫

{|J◦f |≥k}
Γ(f)dµ

because Fk ◦ J and Fi ◦ J are contractions on a neighbourhood of N1. This
expression converges to 0, so (Fk◦J◦f) is a Cauchy sequence for the seminorm
E . Since it converges to J ◦ f , we deduce that J ◦ f is in IDr(N2) (this is a
consequence of Theorem 3.3 of [3]), and

EN2(J ◦ f) = lim E(Fk ◦ J ◦ f) ≤ EN1(f).

Thus we can again conclude.

If U is the terminal condition, we define IDr
U(N) as the subset of quasi

continuous functions f of IDr(N) such that f(Xt) converges IPµ almost surely
to U as t ↑ ζ. We are now ready to state the main result of this work when
N is complete. The non complete case will be considered in Theorem 2.
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Theorem 1 Let E be a regular strongly local transient Dirichlet form on
L2(M, µ) with a carré du champ; we suppose that E satisfies the absolute
continuity assumption (5) for almost any x. Let N be a complete separable
Riemannian manifold. Let U be a N-valued terminal variable, and suppose
that IDr

U(N) is not empty. Then the Dirichlet problem with terminal condition
U has a quasi solution in IDr

U(N).

We have assumed that IDr
U(N) is not empty, so let us comment this

assumption. A necessary condition is that IDr
U(IRn) should be non empty;

this is the case when U is in the universal Dirichlet space ([20, 3]), so that
the harmonic function g0(x) = IEx[U ] is well defined and in IDr

U(IRn). In
the framework of the above examples with U = g(Xζ−), this condition holds
when the boundary condition g is in the domain of the trace of Ẽ on M̃ \M
(Theorem 4.6.5 of [6]). If moreover U takes its values in a closed subset N0 of
N and if N ′

0 is the closed convex hull of N0, then the function g0 is in IDr
U(N ′

0).
Thus, if there exists a Lipschitz projection of N ′

0 onto N0, then IDr
U(N0) is

not empty, and therefore IDr
U(N) is not empty. This can be applied for

instance when N0 is a closed subset of the sphere N = Sn−1 with N0 6= N .
However, IDr

U(N) may be empty when this Lipschitz projection does not
exist. Consider for instance the case where Xt is the Brownian motion on
the unit ball M of IR2, let N be the unit circle, and let U = g(Xζ−) with g the
identity map; if IDr

U(N) is not empty, then the analytical theory of [18, 19]
shows that g can be extended to a weakly harmonic map which is continuous
on M (because M has dimension 2); but g has no continuous extension, so
IDr

U(N) is empty in this case. Notice however that h(x) = x/|x| is a quasi
solution of the Dirichlet problem ; moreover, since N = S1, there are many
solutions (because one can easily construct martingales on the circle with
prescribed final value, see [15]), but these solutions have infinite energy.

Theorem 1 will be proved in two steps. We first prove the existence of
an energy minimizing map (Proposition 3); then we prove that it is a quasi
solution (Proposition 4).

3 Potential analysis

We first adapt to our framework the classical notion of weakly harmonic
maps which are critical points for the energy functional.
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Definition 4 Consider a map h of IDr(N).

1. Let (hε; ε ∈ IR) be a family of maps of IDr(N) such that h0 = h. We
say that (hε) is a good perturbation of h if hε(x) = h(x) when (x, h(x))
is outside a compact set, and (hε−h)/ε converges in (IDr(IRn), E)∩L∞

as ε → 0.

2. We say that h is weakly harmonic if the derivative of EN(hε) at ε = 0
is 0 for any good perturbation (hε).

This definition has been stated in order to be intrinsic.

Proposition 2 The notion of good perturbation, and therefore of weakly har-
monic map, does not depend on the embedding of N in IRn.

Proof. Let J be an isometry between two copies N1 and N2 of N , which is
extended to a smooth function of IRn into itself as in the proof of Proposition
1. Let h be in IDr(N1) and (hε) be a good perturbation; thus

hε − h = ε f + o(ε) (7)

in IDr(IRn)∩L∞. Notice that f is bounded, has compact support, so it is in
the Dirichlet space ID(IRn); notice also that f(x) = 0 when h(x) is outside
a compact set. If dJ is the derivative of J , we can deduce that the function
((dJ) ◦ h, f) is in IDr(IRn) ∩ L∞, and the proposition will be proved if we
check that

J ◦ hε − J ◦ h = ε((dJ) ◦ h, f) + o(ε)

in IDr(IRn) ∩ L∞. From (7), it is sufficient to check that

J ◦ hε − J ◦ h− ((dJ) ◦ h, hε − h) = o(ε). (8)

The left hand side can be written in the form F (h, hε − h), where F (y, z)
is a smooth function with compact support such that F (y, z) = O(|z|2) as
z → 0. The estimation (8) in L∞ is easy. For the estimation in Dirichlet
seminorm, we use the estimates

∂yF (y, z) = O(|z|2), ∂zF (y, z) = O(|z|)
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and deduce

Γ(F (h, hε − h)) ≤ C|hε − h|4Γ(h) + C|hε − h|2Γ(hε − h).

By integrating with respect to µ, we obtain

E(F (h, hε − h)) ≤ C‖hε − h‖4
∞E(h) + C‖hε − h‖2

∞E(hε − h)

= O(ε4) = o(ε2)

so (8) is proved.

The aim of this section is to prove the following result.

Proposition 3 Under the conditions of Theorem 1, there exists a map h
which minimizes f 7→ EN(f) in IDr

U(N). This map is weakly harmonic.

We have to find an energy minimizing map; then the fact that it is weakly
harmonic is evident because the good perturbations do not modify the termi-
nal condition and are therefore in IDr

U(N). A basic step for the proof of this
proposition is the following extension of the classical Rellich compactness
theorem; it is due to [22] and is reproduced here with the kind permission of
its author.

Lemma 1 Assume that (5) holds almost everywhere and let (fk) be a se-
quence of functions which is bounded in (ID, E1) defined in (3). Then there
exists a subsequence which converges almost everywhere.

Proof. Consider the sequence (arctan fk); it is also bounded in (ID, E1), and
if it has a converging subsequence, then the subsequence of (fk) will also
converge from the boundedness in L2(µ). Thus we can suppose that (fk) is
uniformly bounded. Let ν be a probability measure on M with a positive
bounded density with respect to µ; it is sufficient to find a subsequence
converging in L1(ν). If Pt is the semigroup associated to E , the property

d

dt
‖Ptf − f‖2

L2(µ) = 2E(Ptf, f)− 2E(Ptf, Ptf)

≤ 2E(Pt/2f, Pt/2f) ≤ 2E(f, f)

implies
‖Ptfk − fk‖2

L2(µ) ≤ 2E(fk)t ≤ C t,
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so the approximation of fk by Ptfk shows that it is sufficient to prove that
for any t > 0, the sequence (Ptfk) has a converging subsequence. If p(t, x, z)
is the transition density of Pt which exists for almost any x, then

Ptfk(x) =
∫

fk(z)p(t, x, z)µ(dz).

Bounded subsets of L∞(µ) are sequentially relatively compact for the topol-
ogy σ(L∞, L1), so (fk) has a subsequence (fk(j)) converging for this topology,
and therefore Ptfk(j)(x) converges for almost any x; since it is uniformly
bounded, we deduce that Ptfk(j) converges in L1(ν).

Consider the subspace IDr
0 of functions of IDr with terminal condition 0;

this is the extended Dirichlet space; actually, IDr is the E-orthogonal sum
of IDr

0 and of the space of harmonic functions IEx[U ], for U in the universal
Dirichlet space ([20, 3]). In particular, the transience implies that (IDr

0, E) is
a Hilbert space, and that

∫
|f(x)|µ(dx) ≤ E(f)1/2 (9)

for any f ∈ IDr
0 and for a measure µ such that µ and µ are mutually absolutely

continuous (Theorem 1.5.3 of [6]).

Lemma 2 Let (fk) be a sequence which is bounded in (IDr
0, E). Then there

exists a subsequence (fk(j)) which converges µ-almost everywhere to a function
f of IDr

0 such that
E(f) ≤ lim inf E(fk). (10)

Proof. Let φ be a bounded function of ID with compact support; then the
sequence (φ arctan fk) is bounded in (ID, E1), and has therefore a converging
subsequence from Lemma 1; moreover, for any x of M , one can choose φ
so that it is 1 in a neighbourhood of x, so there exists a subsequence (fk(j))
such that (arctan fk(j)) converges almost everywhere; the sequence (fk(j))
is bounded in L1(µ) from (9), so it also converges almost everywhere to a
function f . On the other hand, the space (IDr

0, E) is a Hilbert space, so one
can choose the subsequence so that it converges weakly to some f̃ in IDr

0

satisfying (10). There exists a convex combination of (fk(j)) which converges

almost everywhere to f , and strongly in IDr
0 to f̃ ; from (9), it converges also

in L1(µ) to f̃ , so f = f̃ almost everywhere and the lemma is proved.
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Proof of Proposition 3. Consider the harmonic function g0(x) = IEx[U ] which
is in IDr

U(IRn); then g0 is E-orthogonal to IDr
0(IR

n). Consider also a sequence
hk in IDr

U(N) such that

lim E(hk) = inf
{
E(f); f ∈ IDr

U(N)
}
.

The sequence (hk − g0) is bounded in (IDr
0(IR

n), E), so Lemma 2 says that
there exists a subsequence (hk(j)−g0) converging almost everywhere to some
function of IDr

0(IR
n), that we write in the form h− g0, and which satisfies

E(h− g0) ≤ lim inf E(hk − g0). (11)

Thus (hk(j)) converges almost everywhere to h and h is in IDr
U(IRn). The

functions hk(j) take their values in N and N is closed, so there exists a
quasi continuous modification of h taking its values in N . The function
h is therefore in IDr

U(N). Moreover, the functions hk − g0 and h − g0 are
E-orthogonal to g0, so

E(hk) = E(hk − g0) + E(g0), E(h) = E(h− g0) + E(g0),

and we deduce from (11) that

E(h) ≤ lim inf E(hk(j)) = inf
{
E(f); f ∈ IDr

U(N)
}
.

Thus h is energy minimizing.

4 Stochastic analysis

The aim of this section is to prove the following result which will complete
the proof of Theorem 1. It is not necessary to suppose that N is complete
in this section.

Proposition 4 Assume the conditions of Theorem 1, except that N is not
necessarily complete. Let h be a quasi continuous map of IDr(N). Then h is
quasi harmonic if and only if it is weakly harmonic.

We will need the following reduction of the problem.
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Lemma 3 The proof of Proposition 4 can be reduced to the case where the
diffusion is conservative (ζ = ∞).

Proof. We are going to slow down the diffusion so that it does not explode.
Let Gk be relatively compact open subsets of M such that Gk ⊂ Gk+1 and
Gk ↑ M , and let τk be the first exit time of Gk. Consider the function

ρ(x) =
∑

k

ρk1Gk\Gk−1
(x)

where ρk > 0 is chosen sufficiently large so that

IEµ
[
1Gk

(X0) exp−
∫ τk

0
ρ(Xs)ds

]
≤ 1/k.

By letting k ↑ ∞, it appears that

At =
∫ t

0
ρ(Xs)ds

diverges IPµ almost surely as t ↑ ζ. Consider now the change of time associ-
ated to the additive functional At (Section 6.2 of [6]); then the new diffusion
has infinite lifetime. The measure µ is replaced by the measure µ1 with
density ρ (this is the Revuz measure of At), and the carré du champ is di-
vided by ρ, so the values of E are not modified. The new Dirichlet space is
IDr

0 ∩ L2(µ1), and the reflected Dirichlet space IDr is not modified. The sets
of weakly harmonic and quasi harmonic maps are also unchanged.

The main probabilistic tool for the proof of Proposition 4 is the stochastic
calculus for Dirichlet processes which has been worked out for conservative
symmetric diffusions in [12, 11]; this calculus is based on a decomposition of
Dirichlet processes used in the construction of Nelson diffusions ([13]), and
enables to study a stochastic integral which was previously introduced in
[14]. Functions of ID or IDr have a quasi continuous modification, so we will
always choose such a modification. Consider the measure IPµ on the subset of
Ω consisting of paths with infinite lifetime; it is reversible. If ψ is in ID, then
the additive functional ψ(Xt) − ψ(X0) is the sum of a martingale additive
functional and of an additive functional with zero energy; this means that
ψ(Xt) is a Dirichlet process (the sum of a martingale and of a process with
zero quadratic variation), but it has also another interesting decomposition.
More precisely, for any fixed T > 0, there exist a square integrable martingale
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(Zt; t ≤ T ) for the filtration of Xt and a square integrable martingale (Z?
t ; t ≤

T ) for the filtration of XT−t such that Z0 = Z?
0 = 0 and

ψ(Xt)− ψ(X0) =
1

2
Zt − 1

2
(Z?

T − Z?
T−t). (12)

Moreover

〈Z,Z〉t =
∫ t

0
Γ(ψ)(Xs)ds

and 〈Z?, Z?〉t satisfies a similar relation, so

IEµ〈Z,Z〉T = IEµ〈Z?, Z?〉T = 2T E(ψ). (13)

This decomposition made possible in [12, 11] the definition of a stochastic
integral of bounded processes φ(Xt) with respect to the process ψ(Xt); the
symmetric (or Stratonovich) integral is defined from Ito integrals by

∫ t

0
φ(Xs) ◦ dψ(Xs) =

1

2

(∫ t

0
φ(Xs)dZs −

∫ T

T−t
φ(XT−s)dZ

?
s

)
. (14)

The result does not depend on T , and from (13), it is in L2(IPµ). More
precisely,

IEµ
[
sup
t≤T

∣∣∣
∫ t

0
φ(Xs) ◦ dψ(Xs)

∣∣∣
2] ≤ C IEµ

∫ T

0
φ(Xs)

2Γ(ψ)(Xs)ds

≤ 2C T‖φ‖2
∞E(ψ).

If φ has compact support, this relation enables to extend the integral to
functions ψ in IDr; one indeed first defines the integral for functions ψ which
are locally in ID (by considering a function in ID which coincides with ψ on
the support of φ), and one notices that these functions are dense in IDr for
E .

Consider again a bounded function φ with compact support, and suppose
moreover that it is in ID; we want to prove that the integral is in L1(IPµ)
(recall that µ is not finite, so L1(IPµ) is not included in L2(IPµ)). Since φ is
in ID, it has a decomposition similar to (12), and the analogue of (13) enables
to show that

IEµ
[
sup
s≤t
|φ(Xs)− φ(X0)|2

]
≤ C t E(φ),

so
IEµ

[
sup
s≤t
|φ(Xs)|2

]
≤ C(1 + t)E1(φ).
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Thus, from the Burkholder-Davis-Gundy inequalities,

IEµ
∣∣∣
∫ t

0
φ(Xs)dZs

∣∣∣ ≤ CIEµ
[
sup
s≤t
|φ(Xs)|2

]1/2
IEµ

[
〈Z, Z〉t

]1/2

≤ C ′(t +
√

t)E1(φ)1/2E(ψ)1/2.

Moreover, since Z is a martingale, the IPµ expectation of this integral is 0.
The integral with respect to Z? satisfies a similar estimate, so the integral of
(14) is in L1(IPµ) and

IEµ
∫ t

0
φ(Xs) ◦ dψ(Xs) = 0,

IEµ
∣∣∣
∫ t

0
φ(Xs) ◦ dψ(Xs)

∣∣∣ ≤ C(t +
√

t)E1(φ)1/2E(ψ)1/2.

If we again suppose that φ is bounded, in ID and has compact support,
then φ(Xt) is a Dirichlet process, and the processes φ(Xt) and ψ(Xt) have a
quadratic covariation given by

〈φ(X), ψ(X)〉t =
∫ t

0
Γ(φ, ψ)(Xs)ds.

We can define the forward (or Ito) integral by

∫ t

0
φ(Xs)dψ(Xs) =

∫ t

0
φ(Xs) ◦ dψ(Xs)− 1

2
〈φ(X), ψ(X)〉t. (15)

It is in L1(IPµ) and satisfies

IEµ
∫ t

0
φ(Xs)dψ(Xs) = −t E(φ, ψ), (16)

IEµ
∣∣∣
∫ t

0
φ(Xs)dψ(Xs)

∣∣∣ ≤ C(t +
√

t)E1(φ)1/2E(ψ)1/2. (17)

The symmetric and forward integrals can also be defined as limits of Riemann
sums (see Theorem 2.3.1 of [11] for the symmetric integral, the forward in-
tegral is obtained by discretizing the quadratic variation). In particular,
if ψ(Xt) is a semimartingale, then the forward integral coincides with the
classical Ito integral.
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Lemma 4 Let L be the generator of the diffusion Xt in L2(µ). Let ` be a
bounded function which is in L2(µ), and let

`1(x) = λ(λ− L)−1`(x) = λ IEx
∫ ∞

0
e−λt`(Xt)dt

for some λ > 0. For φ ∈ ID bounded with compact support, and ψ in IDr,
one has

∫ ∞

0
e−λtIEµ

[
`(X0)

∫ t

0
φ(Xs)dψ(Xs)

]
dt

=
∫ ∞

0
e−λtIEµ

[∫ t

0
`1(Xs)φ(Xs)dψ(Xs)

]
dt. (18)

Proof. First notice that `1 is bounded and in ID, so `1φ is also bounded,
in ID, and it has compact support. The stochastic integrals involved in the
lemma are therefore well defined, and the two sides of (18) have a sense from
(17). If ψ is in the domain of L, then ψ(Xt) is a semimartingale and

IEµ
[
`(X0)

∫ t

0
φ(Xs)dψ(Xs)

]
= IEµ

[
`(X0)

∫ t

0
φ(Xs)Lψ(Xs)ds

]

= IEµ
[
`(Xt)

∫ t

0
φ(Xs)Lψ(Xs)ds

]

from the reversibility of the process (Xt) under IPµ. Thus

∫ ∞

0
e−λtIEµ

[
`(X0)

∫ t

0
φ(Xs)dψ(Xs)

]
dt

= IEµ
∫ ∞

0
IE

[∫ ∞

s
e−λt`(Xt)dt

∣∣∣ Xs

]
φ(Xs)Lψ(Xs)ds

= λ−1IEµ
∫ ∞

0
`1(Xs)φ(Xs)Lψ(Xs)e

−λsds

which is the right-hand side of (18). If now ψ is in IDr
0, we can approximate

it in (IDr
0, E) by functions in the domain of L; from (17), the two sides of (18)

are robust with respect to this approximation, so (18) again holds. Finally,
if ψ is only in IDr, we can replace it by a function of IDr

0 taking the same
values on the support of φ, and both sides of (18) are unchanged.

We now introduce the stochastic integrals for manifold-valued processes.
If h is in IDr(N) and if f is a bounded Borel function such that f(x) is in
the tangent space Th(x)(N) (which is embedded in IRn), we can consider its
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adjoint f ?(x) ∈ T ?
h(x)(N) with respect to the Riemannian metric, and we

define the symmetric integral by

∫ t

0
f ?(Xs) ◦ dh(Xs) =

n∑

j=1

∫ t

0
fj(Xs) ◦ dhj(Xs).

One can actually verify that this stochastic integral does not depend on the
embedding of N in IRn (this is because it satisfies the rules of the classical
differential calculus, see [14] for a particular case). If moreover f is in ID(IRn)
and has compact support, then we can consider the quadratic covariation
〈f(X), h(X)〉 (the sum of the quadratic covariations of their components),
and the forward integral can be defined as in (15). Properties (16) and (17)
are of course also satisfied.

Lemma 5 If h ∈ IDr(N) is quasi harmonic, then it is weakly harmonic.

Proof. Let (hε) be a good perturbation of h, and let f be the limit of
(hε − h)/ε; then f is bounded, has compact support, is in ID(IRn), and
moreover f(x) is in the tangent space Th(x)(N). The derivative of the energy
EN(hε) at ε = 0 is 2E(f, h), so we have to prove that E(f, h) = 0. We
can consider the forward integral of f ?(Xt) with respect to h(Xt), and (16)
becomes

IEµ
∫ t

0
f ?(Xs)dh(Xs) = −tE(f, h).

It is therefore sufficient to prove that the IPx expectation of the forward in-
tegral is 0 for almost any x. But h(Xt) is a semimartingale in IRn, so the
forward integral is an Ito integral computed in IRn; by using the Riemannian
structure of N , it is also the Ito integral of the form f ?(Xt) along the martin-
gale h(Xt), so it is a local martingale (see (7.35) in [5]); it is square integrable
for almost any x (because it is in L2(IPµ)), so it has zero expectation.

Proof of Proposition 4. A part of the proof has been made in Lemma 5, so we
now have to prove that if h is a weakly harmonic map, then Yt = h(Xt) is a IPµ

martingale. Thus we consider smooth real-valued functions F on N and prove
that F (Yt) is a semimartingale (this implies that Yt is a semimartingale), and
that the process ΛF

t of (1) is a local martingale. It is sufficient to consider
functions F with compact support. We apply the above construction of
stochastic integrals with respect to h(X). We choose functions f of the form

f(x) = −ψ(x)(∇F ◦ h)(x) (19)
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where ψ is a bounded function with compact support which is in ID, and ∇F
is the gradient of F computed for the Riemannian metric (it is the adjoint
of the derivative dF ); then f is in ID(IRn) and f(x) is in Th(x)(N). Notice
that F can be extended to a smooth function with compact support on IRn

which, in a neighbourhood of N , is the composition of F with the orthogonal
projection on N ; then, the gradient of F computed in IRn at y ∈ N can
be identified with ∇F (y); similarly, the Hessian matrix of F computed in
IRn at y ∈ N coincides on Ty(N) × Ty(N) with the Hessian bilinear form
Hess F associated to the Riemannian metric. We consider the perturbation
of h defined by

d

dε
hε(x) = −ψ(x)(∇F ◦ hε)(x), h0(x) = h(x). (20)

This equation has a N -valued solution for ε ∈ IR because ∇F is Lipschitz
and the perturbation only acts on a compact part of N ; the function hε(x)
is a Lipschitz function of ψ(x) and h(x), so hε is in IDr(N); notice also that
hε(x) = h(x) when x is outside the support of ψ, or h(x) is outside the
support of F . Moreover

hε(x) = h(x)− ψ(x)
∫ ε

0
(∇F ◦ hη)(x)dη

= h(x) + εf(x)− ψ(x)
∫ ε

0
(∇F ◦ hη −∇F ◦ h)(x)dη

= h(x) + εf(x)− ψ(x)
∫ ε

0
Gη(ψ(x), h(x))dη

where Gη(u, y) is a C1 function on [−C, C] × N (C is an upper bound of
|ψ|) such that Gη(0, y) = 0. Since F is smooth with compact support, one
can check that Gη and its first order derivatives converge uniformly to 0 as
η → 0; this implies

hε − h = εf + o(ε)

in (IDr(IRn), E) ∩ L∞. Thus (hε) is a good perturbation of h. The map h is
weakly harmonic, so E(f, h) is zero. Thus, for these functions f , the relation
(16) becomes

IEµ
∫ t

0
f ?(Xs)dh(Xs) = 0.

If ` is a real-valued bounded function of L2(µ), and if `1 is defined as in
Lemma 4 for some λ > 0, we can replace f(x) by `1(x)f(x) which has the
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same form (replace ψ by ψ`1 which is bounded and in ID); thus

IEµ
∫ t

0
`1(Xs)f

?(Xs)dh(Xs) = 0.

We deduce from Lemma 4 that

IEµ
[
`(X0)

∫ t

0
f ?(Xs)dh(Xs)

]
= 0

because it is continuous in t and its Laplace transform is 0. We can deduce
from this relation and the Markov property that the process

∫ t
0 f ?(Xs)dh(Xs)

is a IPµ martingale. On the other hand, an application of Ito’s formula for
Dirichlet processes (see [12, 11]) shows that

(F ◦ h)(Xt)− (F ◦ h)(X0) =
∫ t

0
(dF ◦ h)(Xs) ◦ dh(Xs).

Consider relatively compact open subsets Gj of M such that Gj ↑ M ; the
regularity of E implies the existence of bounded non negative functions ψj

in ID, with compact support, and such that ψj = 1 on Gj; the function fj

associated to ψj by (19) is equal to (−∇F ◦ h) on Gj, so

(F ◦ h)(Xt)− (F ◦ h)(X0) = −
∫ t

0
f ?

j (Xs) ◦ dh(Xs)

= −
∫ t

0
f ?

j (Xs)dh(Xs) + V F
t (21)

up to the first exit time τj of Gj, with

V F
t = −1

2
〈fj(X), h(X)〉t =

1

2
〈∇F ◦ h(X), h(X)〉t.

In particular, the process (F ◦ h)(Xt) is a semimartingale on [0, τj] and its
finite variation part if V F

t . Thus h(Xt) is a N -valued semimartingale on
[0, τj], and we can apply the classical Ito formula

∇F ◦ h(Xt) = ∇F ◦ h(X0) +
∫ t

0
(Hess F ◦ h)(Xs) ◦ dh(Xs)

to obtain

V F
t =

1

2

∫ t

0
(Hess F ◦ h)(Xs)(dh(Xs), dh(Xs)) (22)

up to τj. This expression proves that the process ΛF
t of (1) is a martingale

on [0, τj]; thus h(Xt) is a martingale on the same time interval. By letting
j →∞, one has τj ↑ ζ, so h(Xt) is actually a martingale on [0, ζ).
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5 The non complete case

We want to extend Theorem 1 to the case where N is not complete. Recall
that in this case we have supposed that N is embedded in a manifold Ñ with
the same dimension. We are going to make a convexity assumption on N .

Theorem 2 Assume the conditions of Theorem 1 except the completeness of
N . Suppose that N is relatively compact in Ñ . Suppose also that there exists
a smooth function γ on Ñ such that γ is convex on N and N = {γ < 0}.
Then the Dirichlet problem has again a quasi solution in IDr

U(N).

Example. This theorem can be applied to the manifolds

N = Sn−1
ε = {z ∈ IRn; |z| = 1, zn > ε}, ε ≥ 0

up to the open hemisphere Sn−1
0 .

The problem is to prove the existence of an energy minimizing map in
IDr

U(N); then this map will be weakly harmonic, and Proposition 4 will show
that it is a quasi solution. The method of Proposition 3 can be used to prove
the existence of an energy minimizing map in IDr

U(N). Thus Theorem 2 is a
consequence of the following result.

Lemma 6 If h is a quasi continuous energy minimizing map in IDr
U(N),

then h has a quasi modification taking its values in N .

Proof. We can let γ be constant outside a compact subset of Ñ . Suppose
that we have proved that (γ ◦ h)(Xt) is a IPµ submartingale on [0, ζ); then it
converges to γ(U) as t ↑ ζ, so

(γ ◦ h)(x) ≤ IEx[γ(U)] < 0

almost everywhere; the set {h ∈ N \ N} = {γ ◦ h = 0} is invariant for the
process Xt (a non positive submartingale which hits 0 must remain at 0)
and is negligible; thus it has zero capacity and the lemma holds. Let us now
prove the submartingale property for the process (γ ◦ h)(Xt). We consider
the conservative case, and apply the method used in the proof of Proposition
4 by choosing F = γ on Ñ . The perturbations hε of (20) corresponding to
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ψ = ψj ≥ 0 are in IDr
U(Ñ). The function ε 7→ (γ ◦ hε)(x) is non increasing,

and is decreasing except when ε 7→ hε(x) is constant; thus hε remains in
IDr

U(N) for ε ≥ 0. Since h minimizes the energy in this space, the derivative
of EN(hε) at ε = 0 is non negative, so E(f, h) is non negative. We deduce
from (16) that

IEµ
∫ t

0
f ?(Xs)dh(Xs) ≤ 0,

and by proceeding as in Proposition 4 that

IEµ
[
`(X0)

∫ t

0
f ?(Xs)dh(Xs)

]
≤ 0

for non negative `. Thus
∫ t
0 f ?(Xs)dh(Xs) is a supermartingale. The process

(γ ◦h)(Xt) stopped at τj ↑ ζ is therefore a semimartingale which is from (21)
the sum of a submartingale and of V γ

t given by (22); the process V γ
t is non

decreasing because γ is convex on N , so (γ ◦ h)(Xt) is a submartingale.
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