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FI Ure: Boundary controllability of a discontinuous initial condition y° - Wave solution y(x, t) for
t=0,3/7,6/7,9/7
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Figure: Boundary controllability of a discontinuous initial condition y° - Wave solution y(x, t) for
t=12/7,15/7,18/7and t = T = 3




Introduction and Notations

Let Q a Lipschitzian bounded domain in RN, N = 1, 2, two functions (y°, y') € H&(Q) x L?(Q)and T > 0. Let

V(yo,y1, T)={w C Q suchthat (3) holds} : (1)

There exists a control function ' v,, € Lz(w % (0, T)) such that the unique solution

y € C([0, T]; H(2)) N €' ([0, T]; L3()) of

Vit — Ay = Vo X,
y=0,
V(- 0), %1 0) = (¥°, "),

satisfies
y(. D =xn(T)=0,

Q x (0,7),

o0 x (0, 7), )
Q,

in Q. (3)

1.J-L. Lions, Controlabilité exacte de systemes distribués, RMA 8, 1988




V(y",y', T)

@ vr>0 Qcvply, !
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V(y",y', T)

@ vr>0 Qcvply,mn!
@ For N =1, any w belongs to V(yo,y1 , T) provided that T > diam(Q\w).

@ ForN=2 assuming Q € C°°, any subset w satisfying the Geometric Control Condition in Q:

"Every ray of geometric optics that propagates in Q2 and is reflected on its boundary enters w in time less
than T"

belongs to V(y°, y', T)




V(y",y', T)

@ vr>0 Qcvply,mn!
@ For N =1, any w belongs to V(yo,y1 , T) provided that T > diam(Q\w).

@ ForN=2 assuming Q € C°°, any subset w satisfying the Geometric Control Condition in Q:

"Every ray of geometric optics that propagates in Q2 and is reflected on its boundary enters w in time less
than T"

belongs to V(y°, y', T)

@ if Qis a rectangular domain (convex ?), any w belongs to V(y°, y', T) provided that T > diam(Q\w) 2

ZAA Haraux, A generalized internal control for the wave equation in a rectangle, J. Math. Anal.- (1990)




Problem Statement

LetL € (0,1) and
vty M ={we vyt y' T, =L} @)

We consider the following NON LINEAR optimal design problem :

. 1
(Pu): inf (), where J(Xo) = 11

w01 (0, T)xw) ®
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Problem Statement

LetL € (0,1) and
vty M ={we vyt y' T, =L} @)

We consider the following NON LINEAR optimal design problem :

(Pw) : inf J(X), where J(X,)=

1 2
wcV (yO.y1,T) EHV“’HLZ((O-,T)Xu) ®)

QUESTIONS -

@ s the problem well-posed in the class of characteristic functions ?

3M. Asch - G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - A

numerical study ; Esaim Cocv, 1998
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1 2
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Problem Statement

LetL € (0,1) and
vty M ={we vyt y' T, =L} @)

We consider the following NON LINEAR optimal design problem :

(Pw) : inf J(X), where J(X,)=
wCV (0.1, T)

1 2
SVl 1y ) ®)
QUESTIONS -

@ s the problem well-posed in the class of characteristic functions ?

@ Usually, the answer is no : the infimum is not reached and the optimal domain is composed of an
infinite number of disjoints components

@ In this case, what is a well-posed relaxation of (P,,) ?

@ Howto approximate an optimal domain ?

3M. Asch - G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - A

numerical study ; Esaim Cocv, 1998
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Link with the optimal stabilization problem

(Pw) is related to the following problem 4

. ) _ T p B B T
(o) ot o ¥y = 5 [ (07 + 19y o)t = [T Emat @

where y is the unique solution of the damped wave equation (a € L°°(Q; R™))

yit — Ay +a(x)Xe,yr =0 in (0,7) xQ,
y=0 on (0, T) x 89, 7)
¥(0,)=y°, y(0,:) =y in Q,

4AM, P. Pedregal, F. Periago, Optimal design of the damping set for the stabilization of the wave equation, J.
Diff. Equations, 2006
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w fixed - HUM control v,, (Overview)

Let us consider the homogeneous equation
it — Ap =0, Q% (0, 7),
¢ =0, 0Q x (0, T), (8)
(2(,0), @1(-,0) = (% ¢"), @,

(Caracterizations of the controls v,,,)

Vi € L3(w x (0, T)) is acontrol for (y°, y') € H}(Q) x L2(Q) iff

T 0 1 0 1 2 —1
v dt =< a1 00 > i) i) = LY P00V, ) € L@ x T @) @
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w fixed - HUM control v,, (Overview)

Let us consider the homogeneous equation
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¢ =0, 0Q x (0, T), (8)
(2(,0), @1(-,0) = (% ¢"), @,

(Caracterizations of the controls v,,,)

Vi € L3(w x (0, T)) is acontrol for (y°, y') € H}(Q) x L2(Q) iff

T 0 1 0 1 2 —1
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(9) is an optimality condition for the critical points of 7 : L2(Q) x H~'(Q) — R:

1 /T
o 1,_ 1 2 . 0 -~ 1
T(e ,¢') = p /0 /w @ dtdx+ < ¢t(-,0), ¥ >H—1(Q),H(1)(Q) /ﬂy (-, 0)dx, (10)

If T has a minimizer (o°, ') € L2 x H™', thenv,, = —@X,, is a control.
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w fixed - HUM control v,, (Overview)

Let us consider the homogeneous equation
it — Ap =0, Q% (0, 7),
¢ =0, 0Q x (0, T), (8)
(2(,0), @1(-,0) = (% ¢"), @,

(Caracterizations of the controls v,,,)

Vi € L3(w x (0, T)) is acontrol for (y°, y') € H}(Q) x L2(Q) iff

T 0 1 0 1 2 —1
v dt =< a1 00 > i) i) = LY P00V, ) € L@ x T @) @

(9) is an optimality condition for the critical points of 7 : L2(Q) x H~'(Q) — R:

1 /T
o 1,_ 1 2 . 0 -~ 1
T(e ,¢') = p /0 /w @ dtdx+ < ¢t(-,0), ¥ >H—1(Q),H(1)(Q) /ﬂy (-, 0)dx, (10)

If T has a minimizer (o°, ') € L2 x H™', thenv,, = —@X,, is a control.

Observability inequality (Lions, Haraux):

.
1% ") Wy =ty < OT2) [ 1 Pt (6%, 1) (an
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w fixed - HUM control v,, (Overview)

IN PRACTICE, w being fixed such a control is determined by introducing the isomorphism A from LZ(Q) x H™! (Q)
onto H§ () x L2(£2) defined by A(¢?, o) := (14(0), —%(0)) as follows :

et —Dp =0, Qx (0,7), bt — AP = —pXy,, Qx(0,7),
¢ =0, o2 x (0, T), { Y =0, o0 x (0, T),
(¢(-,0), 21(,0) = (6% ¢"), @ (G T, T) = (0,0),

and then solve the linear problem
M%) = (', =50, (13)

The HUM controlis v, = —p X, and y = ¥
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w fixed - HUM control v,, (Overview)

IN PRACTICE, w being fixed such a control is determined by introducing the isomorphism A from LZ(Q) x H™! (Q)
onto H§ () x L2(£2) defined by A(¢?, o) := (14(0), —%(0)) as follows :

et —Dp =0, Qx (0,7), bt — AP = —pXy,, Qx(0,7),
¢ =0, o2 x (0, T), { Y =0, o0 x (0, T),
(¢(-,0), 21(,0) = (6% ¢"), @ (G T, T) = (0,0),

and then solve the linear problem
M%) = (', =50, (13)

The HUM controlis v, = —p X, and y = ¥

The HUM control v, is of minimal L2(0, T) norm !!

= Problem (P,,) is then "reduced" to find the best HUM control !

Optimal design



Shape derivative for J

Let® € W' (Q,R?), n > 0 and the perturbation w™ = (/ + 10)(w). The Frechet derivative of J in the direction
0 is defined by

aJ(Xw) _ J(Xuﬂ?) - J(Xw)
0= lm ———~ (14)

Ow n—0 n
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Shape derivative for J

Let® € W' (Q,R?), n > 0 and the perturbation w™ = (/ + 10)(w). The Frechet derivative of J in the direction

0 is defined by
aJ(Xw) J(Xwn) - J(Xw) (14)

-0 = lim
Ow n—0 n

Let(y°, y') € (H?(Q) N H}(Q)) x H3(Q) andw € C'(R). The derivative of J with respect to w in the 6-direction
exists and is given by the following expression:

aJ(x, 1 T
X)) 5 1 / / (2Vio Vi + V2 dlve) dtdx (15)
Ow 2JwlJo

where V,, is the HUM control (of minimal 2 -norm) with support w associated to the following system :

Yy — AY — V(dive).Vy + div((V6 + VOT).Vy) = VX, QX (0,T),
Y=o, a9 x (0, T), (16)
Q.

(Y(,0), ¥1(-,0)) = (vy°.0,Vy'.0),

Optimal desig




Idea of the Proof. Let assume that w” = (I + n0)(w) € (yo,y , T)andlet (y"(x), v (x)) = (y(x™), v(x")).
Let A"(8) = det(VF")(Id + nVO)~' . (Id + nve)~ (y", v') is solution of

i — det(VFM) T div(AT(0) - VyT) = v X, Q % (0, T),
Y1 =0, 09 x (0, T), (17)
"¢,0),5,0) = (P +nvy° -6,y + vyl - 6), Q,

such that y"(-, T) = 0, y{’(~, T) = 0 on Q. This system is controllable thanks to

det(VF") " div(A"(8) - Vy") = —Ay" + nO(div(Vy", 0,V8, V30, ...)) (18)
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"¢,0),5,0) = (P +nvy° -6,y + vyl - 6), Q,

such that y"(-, T) = 0, y{’(~, T) = 0 on Q. This system is controllable thanks to

det(VF") " div(A"(8) - Vy") = —Ay" + nO(div(Vy", 0,V8, V30, ...)) (18)

The function — (6" — ¢)X,, associated to the initial condition (¢ — ¢°, ¢! — ¢') is a control for the system
0" =Y — AYT —y) +nF(y",0) = (v = V)X, Q% (0,7),

yhT—y=0, oQ x (0, T), (19)

(V7T =90, 7 =y, 0) =n(Vy° - 6,9y - 0), Q

such that ((y” — y)(-» T), (v — ¥)i(-, T)) = (0, 0).
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Idea of the Proof. Let assume that w” = (I + n0)(w) € (yo,y , T)andlet (y"(x), v (x)) = (y(x™), v(x")).
Let A"(8) = det(VF")(Id + nVO)~' . (Id + nve)~ (y", v') is solution of

i — det(VFM) T div(AT(0) - VyT) = v X, Q % (0, T),
Y1 =0, 90 x (0, T), (17)

"¢,0),5,0) = (P +nvy° -6,y + vyl - 6), Q,

such that y"(-, T) = 0, y{’(~, T) = 0 on Q. This system is controllable thanks to
det(VF") " div(A"(8) - Vy") = —Ay" + nO(div(Vy", 0,V8, V30, ...)) (18)
The function — (6" — ¢)X,, associated to the initial condition (¢ — ¢°, ¢! — ¢') is a control for the system

" =Y = AYT —y)+nF(",0) = (v - V)X, Qx(0,7),
yhT—y=0, oQ x (0, T), (19)

(V7T =90, 7 =y, 0) =n(Vy° - 6,9y - 0), Q

such that (y" — y)(-, T), (¥ — y)i(+, T)) = (0,0).
We then conclude that y” — y = O(n), write y" = y + nY + O(n?) and identify the first Lagrangian derivative Y.
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hape derivative (curvilinear expression)

Let v be the outward normal derivative of w. The derivative of J with respect to w is given by the following

expression:

J(X, 1 T

8(X) o ,7/ / VR (x, 1)t 6 - vdo (20)
Ow 2 Jow

where v,,, is the HUM control (of minimal 1z -norm) with support on w which drives to the rest at timet = T the
solution y of (46). |




hape derivative (curvilinear expression)

Let v be the outward normal derivative of w. The derivative of J with respect to w is given by the following

expression:

BJ(X“,

- / / (x, 1)t 0 - vdo 20)
Ow Ow

where v,,, is the HUM control (of minimal 1z -norm) with support on w which drives to the rest at timet = T the
solution y of (46). |

\ | \
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hape derivative (curvilinear expression)

Let v be the outward normal derivative of w. The derivative of J with respect to w is given by the following

expression:

BJ(X“,

- / / (x, 1)t 0 - vdo 20)
Ow Ow

where v,,, is the HUM control (of minimal 1z -norm) with support on w which drives to the rest at timet = T the
solution y of (46). |

V.

@ The derivative is independent of any adjoint problem !
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hape derivative (curvilinear expression)

Let v be the outward normal derivative of w. The derivative of J with respect to w is given by the following

expression:

BJ(X“,

- / / (x, 1)t 0 - vdo 20)
Ow Ow

where v,,, is the HUM control (of minimal 1z -norm) with support on w which drives to the rest at timet = T the
solution y of (46). |

V.

@ The derivative is independent of any adjoint problem !

Q@ vicwco= J(Xw,) < J(Xoy ) (because a descent direction is given by @ = cv withc > 0)
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Shape derivative (curvilinear expressio

Proof. [Cea Method .5 |

1 T T T
L(w,%w,p,q):gj/o “’2"’*””*/9/0 mfAsa)pdde/Q/o (i — A + Xup)qaxdt (21)
v . .

5.J. Cea, Conception optimale ou identification de formes- calcul rapide de la dérivée directionnelle de la

fonction cout, Math. Model. Num. Anal, 1986
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Shape derivative (curvilinear expressio

Proof. [Cea Method .5 |

1 T T T
L(w,%w,p,q):gj/o “’2"’*””*/9/0 mfAsa)pdde/Q/o (i — A + Xup)qaxdt (21)
v . .

9L (9) = t< P rwovpa) 2 0y
dw o2 T Ow

+ < iE(w, ®, P, P, Q) o 10) >+ < 2ﬁ(w, @, P, Py q), o 1 0) > (22)
oY Ow op ‘ Ow

q

+< 2 L( ) 2 6)
< L(w 9., p.q), — - 6) >
og Sl @ P @), o

5.J. Cea, Conception optimale ou identification de formes- calcul rapide de la dérivée directionnelle de la
fonction cout, Math. Model. Num. Anal, 1986
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Shape derivative (curvilinear expressio

Proof. [Cea Method .5 |

1 T T T
L(w,%w,p,q):gj/o “’2"’*””*/9/0 mfAsa)pdde/Q/o (i — A + Xup)qaxdt (21)
v . .

9L 6y = < 2w o), 22 6) >
0= 5 L e vp @)
< 2 2% ey s < L ), 2P o) ©2)
= L(w, iy, P, Q) — - L 2w,y 0, P Q) = - 0) >
5y Clr e P a) o 5p S 0 :p.0)
4e 15} £ ) aq 0)
L L(w, e, q)s — - 0) >
P CR L
o
1 T 2 T
:7// div(e 9)dtdx+// div(2q0)altdx (23)
2JwJo w Jo

5.J. Cea, Conception optimale ou identification de formes- calcul rapide de la dérivée directionnelle de la
fonction cout, Math. Model. Num. Anal, 1986
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Shape derivative (curvilinear expressio

Proof. [Cea Method .5 |

1 T T T
L(w,¢,w,p,q):§//0 <p2dxdt+/ﬂ/0 mfAsa)pdde/Q/o (i — At + Xo)qgadt (21)
v . .

9L 6y = < 2w o), 22 6) >
0= 5 Eloronbipaa), 2
t< 2 rwevma 2 ey s+ < L P ey s )
L L(w, 00, P @)y o - ZL(w, 00, Py Q)s — -
5y Eler o P @) o 5p C 0P )
4e 15} £ ) aq 0)
L L(w, 0,0, p,q)s — - 0) >
g Ce 0P @)
o
1 T 2 T
:7// div(e 9)dtdx+// div(2q0)altdx (23)
2JwJo w Jo

@ pc CO, T, H3(Q) N HY(Q)) N C1(0, T; H}(Q)) ? and g € C(0, T; H}(2)) N C'(0, T; L2(R)) such that

o a
< L(w, 0, ,P Q)0 >+ < ——L(w, 0, %,P,q), 3" ) > =0 (24)
dp oY

forall o', " first lagrangian derivatives of ¢ and 1.

5.J. Cea, Conception optimale ou identification de formes- calcul rapide de la dérivée directionnelle de la
fonction cout, Math. Model. Num. Anal, 1986
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Shape derivative - Adjoint solutions (p, q)

@ The initial condition (qo, q1) S Hg(Q) X LZ(Q) are such that the solution

g — Ag =0, Q x (0, T), pit —Ap=—(p+q)X,, Qx(0,T),
qg=0, oQ x (0, T), { p=0, o2 x (0, T),
(a(,0), qi(+,0) = (¢°. q"), @, (o(-, T), pt(-, 7)) = (0,0),

(25)
ensures (p(-, 0), pt(-, 0)) = (0, 0)
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@ The initial condition (qo, q1) S Hg(Q) X LZ(Q) are such that the solution
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ensures (p(-, 0), p¢(+, 0)) = (0, 0) or equivalently, (defining F = ¢ + q)
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FROM  (p(-,0), pt(,0)) = (0,0) ~ TO  (p(-, T), pt(:» 7)) = (0,0)!




Shape derivative - Adjoint solutions (p, q)

@ The initial condition (qo, q1) S Hg(Q) X LZ(Q) are such that the solution

qw — Ag =0, Q % (0, 7), pit —Ap=—(p+q)X,, Qx(0,T),
q=0, 992 x (0, 7), p=0, aQ x (0, T),
(a(,0), q(-,0)) = (¢°,a"), @, (b(, ), pr(+, 1) = (0,0),
(25)
ensures (p(-, 0), p¢(+, 0)) = (0, 0) or equivalently, (defining F = ¢ + q)
Fit — AF =0, Qx(0,7), py — Ap = —FX,,, Qx (0,7),
F=0, 99 x (0, T), { p=0, a0 x (0, T),
(F,0), R, 0) = (¢ + ¢ @' +d"), @ (e T), pe(, T)) = (0,0), @,
(26)

@ _FXx, is then the HUM-control which drives the solution p
FROM  (p(-,0), pt(,0)) = (0,0) ~ TO  (p(-, T), pt(:» 7)) = (0,0)!

@ — F=0onw x (0, T) and then (using Holmgren Theorem) F = 0 on Q x (0, T).
= qg=—pandp=0onw x (0, T) and
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Shape derivative - Adjoint solutions (p, q)

@ The initial condition (qo, q1) S Hg(Q) X LZ(Q) are such that the solution

qw — Ag =0, Q % (0, 7), pit —Ap=—(p+q)X,, Qx(0,T),
q=0, 992 x (0, 7), p=0, aQ x (0, T),
(a(,0), q(-,0)) = (¢°,a"), @, (b(, ), pr(+, 1) = (0,0),
(25)
ensures (p(-, 0), p¢(+, 0)) = (0, 0) or equivalently, (defining F = ¢ + q)
Fit — AF =0, Qx(0,7), py — Ap = —FX,,, Qx (0,7),
F=0, 99 x (0, T), { p=0, a0 x (0, T),
(F,0), R, 0) = (¢ + ¢ @' +d"), @ (e T), pe(, T)) = (0,0), @,
(26)

@ _FXx, is then the HUM-control which drives the solution p
FROM  (p(-,0), pt(,0)) = (0,0) ~ TO  (p(-, T), pt(:» 7)) = (0,0)!

@ — F=0onw x (0, T) and then (using Holmgren Theorem) F = 0 on Q x (0, T).
= qg=—pandp=0onw x (0, T) and

1 T . 2 T 1 T 2
- 7/ / div(e B)dtdx+/ / div(q8)didx = —7/ / div(20)dtax
2JoJw 0 Jw 2JoJw @7)
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Algorithm

Let X be a Lagrange multiplier and

JA(XW):J(XW)+>\(/; ax — L/Q dx) 28)

The derivative of Jy, with respect to w is given by the following expression:

By (X, 1 T
(%) -9:77/ / vi(x,!)dte-uda+>\/ 0 - vdo 29)
w JO Ow

ow 2

ALGORITHM - & w(©® € v, (0, ', T), KD = (1 + n6F)w®), Kk > 0 with

1 T
oK) = (5 / V2 4y (x. 1)t — A(k))u(k),VX cQ (30)
by Ve

K _ 1 . T 2 K k)
A0 = 2 /w(kl d/v(/o V2 o (x, D€ ))dx//w(k) div(e®))ax @1)

and

6MA Burger, A survey on level set methods for inverse problems and optimal design, Eur. J. Appl. Math., 2005
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Algorithm

Let X be a Lagrange multiplier and

JA(XW):J(XW)+>\(/; ax — L/Q dx) 28)

The derivative of Jy, with respect to w is given by the following expression:

By (X, 1 T
(%) -9:77/ / vi(x,!)dte-uda+>\/ 0 - vdo 29)
w JO Ow

ow 2

ALGORITHM - & w(©® € v, (0, ', T), KD = (1 + n6F)w®), Kk > 0 with

1 T
oK) = (5 / V2 4y (x. 1)t — A(k))u(k),VX cQ (30)
by Ve

K _ 1 . T 2 K k)
A0 = 2 /w(kl d/v(/o V2 o (x, D€ ))dx//w(k) div(e®))ax @1)

and

(Fundamental)

ifw® e v(yO,y', T), then w1 c v(y°, y', T) because J(X_ k1)) < J(X_ (k) < o0

6M. Burger, A survey on level set methods for inverse problems and optimal design, Eur. J. Appl. Math., 2005




Use of the Topological derivative for Jy

Foranyxg € Q C R? and p such that D(xg, p) C Q, the functional associated to 2\ D(Xg, p) may be expressed

as follows :
o1 (T 5 2
(X Diag.) = S (Xa) + 7% (5 [T B ra, Dt = 1) + o) @)
N, e
=f(xg)
in term only of the HUM control vq, associated to (46) with w = Q. |

7Sokolowski J, Zochowski A, On the topological derivative in shape optimization, SIAM J. Control. Optim, 1999
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Use of the Topological derivative for Jy

Foranyxg € Q C R? and p such that D(xg, p) C Q, the functional associated to 2\ D(Xg, p) may be expressed

as follows :
o1 (T 5 2
(X Diag.) = S (Xa) + 7% (5 [T B ra, Dt = 1) + o) @)
N, e
=f(xg)
in term only of the HUM control vq, associated to (46) with w = Q. |

@ The best support of the form Q\D(xg, p) is for xo minimizing f(Xg)

7Sokolowski J, Zochowski A, On the topological derivative in shape optimization, SIAM J. Control. Optim, 1999
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Use of the Topological derivative for Jy

Foranyxg € Q C R? and p such that D(xg, p) C Q, the functional associated to 2\ D(Xg, p) may be expressed

as follows :
o1 (T 5 2
(X Diag.) = S (Xa) + 7% (5 [T B ra, Dt = 1) + o) @)
N, e
=f(xg)
in term only of the HUM control vq, associated to (46) with w = Q. |

@ The best support of the form Q\D(xg, p) is for xo minimizing f(Xg)

o Consequently, the best support of the control is the points maximizing f ;

7Sokolowski J, Zochowski A, On the topological derivative in shape optimization, SIAM J. Control. Optim, 1999
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Use of the Topological derivative for Jy

Foranyxg € Q C R? and p such that D(xg, p) C Q, the functional associated to 2\ D(Xg, p) may be expressed

as follows :
o1 (T 5 2
(X Diag.) = S (Xa) + 7% (5 [T B ra, Dt = 1) + o) @)
N, e
=f(xg)
in term only of the HUM control vq, associated to (46) with w = Q. |

@ The best support of the form Q\D(xg, p) is for xo minimizing f(Xg)
o Consequently, the best support of the control is the points maximizing f ;

° INITIALIZATION OF THE ALGORITHM -
={x e} [ v3(x,t)dt > A} with X such that |0 = L|Q].

7Sokolowski J, Zochowski A, On the topological derivative in shape optimization, SIAM J. Control. Optim, 1999
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(Semi-Discrete in space) approximation of the HUM-control -

Find (9, ¢ }) € 2 x h" such that An(e}, wh) = (¥h, —%)) = (v}, —y}) where

(en)t — Bhen =0, Qx(0,7), (¥n)t — Broh = —PrXwy, Qx(0,7),
®h=0, 0 x (0, T), Pp =0, a0 x (0, T),
(en(-:0), (en)i(-:0) = (¢h, 0h), @, (¥n( T), (a)(-, 7)) =(0,0), Q,

(33)

leadingto vy = —pp X, € /,27((0, T) X w).
Usual finite element method or finite difference method may leads to a divergence of vy, 8.

IV = Pl 2y > Cexp(1/h) (34)

and to a very bad conditioning number:
cond(Np) = O(exp(1/h)) (35)

—> Problem comes from the spurious high frequencies components.

8GIowinski-Li-Lions, A numerical approach to exact boundary controllability of the wave equation, Int. J. Numer.
Methods. Eng., 1989
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(Semi-Discrete in space) approximation of the HUM-control (w fixed)

The convergence of v}, is restored if we use, for instance, the following scheme to solve ¢ (and the same for 1)):

P, ",
I+ O+ - 0yn)(@n)i — Bnen =0 (36)

We observe that cond(Ap) = O(h_z) and

The semi-discrete scheme (36) is uniformly controllable with respect to h.

@ eh 1% < [ [ lenl?oat @7)
h>*h 2xH 1= 0 Jup

In addition, if (P( yg), P( y,1,)) converges strongly toward ( ¥, y‘) in Hg () x L2(Q) as h goes to 0, then the
corresponding control ¥y, of minimal I?-norm is such thatlimp,_,q || P(¥p) — v || L2(((0,T) xw)™ 0. |

(see for the boundary case using mixed finite element).

9Castro C., AM, Micu S., Numerical approximations of the boundary control of the 2-D wave equation with
mixed finite elements, IMA J. Numer. Analysis, (2007).
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Fully-Discrete approximation of the HU

@ Very efficient finite difference scheme in 1D: 10,
1
Apntdn,at + Z(NZ — AP)ApAprdh AL — Apopat =0 (38)

uniformly controllable (with respect to hand At) IIF At < hy/T/2

1OAM, A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN (2005)
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Fully-Discrete approximation of the HUM-control -

@ Very efficient finite difference scheme in 1D: 10,
1
Apntdn,at + Z(NZ — AP)ApAprdh AL — Apopat =0 (38)

uniformly controllable (with respect to hand At) IIF At < hy/T/2

o Very efficient finite difference scheme in 2D (same in 3D) .
2 2 2 h2

h 2 h* 2 h o2 2.2
(4 5 000+ O Barenar = 1+ 5 0595 — 1+ - 95)0% =0 (39)

+ Newmark strategy is uniformly (with respect to hand At) IIF At < h/V/2.

1OAM, A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN (2005)
11

AM, An implicit scheme uniformly controllable for the 2-D wave equation, J. Sci. Comp.




Numerical simulations

—100(x; —0.3)2 —100(xp —0.3)2 |

¥O(x) = exp y'x) =0, xeq=(0,1)>2 (40)

Figure: yo(x)

12For numerical animations, see www-math.univ-fcomte.fr/amunch/gallery.htm:

Optimal design and Controllabili



two initializations -

1 1
PN PN PN
77N N N N <
h v
08 oLt 08
RN RN N s
07| o7p ¢ [ [ v
05| 08
N T . PN PN PN
Yos ' Yos ¢ ) O O
L ~- .- .-
04 04
=y s 4
03 osf ¢ ) O v
~- .- N
02| . BN 77N 02
. '
d g ' - - - -
o1 4 AN AN o1 ST R 7N 7N
v v
N N < <
0 01 02z 08 04 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09 1

x1 x1

FIgU €. T = 3- Zeros of the initial level set Figure: T = 3 - Zeros of the initial level set

$5_g and of the limit one /™3~ J(X_o) & 12.50, w3_g and of the limit one s J(X o) ~ 8.47,
3 5

J(Xwg’”) ~ 6.42 J(Xwg"’) ~ 5.07




3500) 4

3000) . 4

2500] N 4

2000) s 9

1500 N B

1000 4

500 > 4

Figure: T = 3 - Energy E(y, t) of the system (left) and ||v,, | \Lz(_)) (right) vs. t-

E(y,T)/E(y,0) =~ 2.40 x 106 corresponding to the initial level set function ‘Z’gza (——) and to the limit one
lim

Pimy ().

trollability



Observability constant

0 2 1 2 .
Nk lli2g) T 112k lT—1q) " Figure: 7 = s- Evolution of Jo(_) (top) and

Ik ij(dzwk(x, t))2dt dx corresponding ratio (41) (bottom) vs. k.
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Topological derivative -

0 o1 0z 03 04 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09 1
x1 x1

Figure: T = 3- Left: Iso-values of [ v3(x, f)dt on Q - Right :
0wl = {x € Q,1/2 [ (va(x, ))%dt — XA = 0}, A = 15,0 € V(y0,y!, T).
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Topological derivative - T = 10

S 9,

08

08

Yos

: ﬁ o .
NG o)

0 o1 0z 03 04 05 06 07 08 09 1
x1

0 o1 0z 03 04 05 06 07 08 09 1
x1

Figure: 1 =10- Left: Iso-values of 1/2 [T v3(x, t)dt on Q - Right :
Jo Q
0wl = {x € ,1/2 [ (va(x, ))%dt — X = 0}, A =~ 0.82, w0 € V(y0,y', T)
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0 o1 0z 03 04 05 06 07 08 09 1
x1

02 03 04 05 06 07
x1

Flgure T = 1- Left: Iso-values of 1/2 [ v3(x, t)dt on Q - Right :
0wl = {x € Q,1/2 [ (va(x, ))%dt — X = 0}, A = 5.30, w0 & V(T, ), y")

Optimal design
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Level set- T

, s -
> ek 4
N - N ~
0.8} 1
.~ N .~ e
o7t ¢ [ [ Vo
N - N - N - ~ -
06} ]
= .= = 27N 7
A A
YosF ¢ [ [ v \ 0, B
A D - ~ ~ -
0.4t 1
= PRaRN
Al A)
03 @, ’ v 1
N - - ~ -
02 1
s 'i\ PN ’
01 l@ ©o v v ]
N\ N - ~ - ~ -
0 . . . . . . . .

0O 01 02 03 04 05 06 07 08 09 1
x1

Figure: Limit of owy = {x € @, wy(x) = 0} vs. kfor T = 1-J(X_o ) 29321 (X ) ~ 15314
p= p=




Well-Posed Relaxation of (P,,)

RP,,) : v (x, t)dtdx 42
P o) 2 / / ) “2
where v (function of the density s) is such that sy if the HUM control associated to the unique solution of

Yit — By = s(x)vs in (0,7) x Q,

y=0 on (0, T) x 89, 43)

y(0,) =% wn(0,) =y in Q,

0<s(x) <1, [os(x)dx=1L|Q| in Q.

—> The set { X, € L°(Q, {0, 1})} is replaced by it convex envelopp {s € L*° (€, [0, 1])} for the weak-*
topology.

Problem (RP.,) is a full relaxation of (P.,) in the sense that

13

13AM., A shape optimal design problem related to the exact controllability of the 2-D wave equation. C.R.Acad.

Sci. Paris Serie | (2006)
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Well-Posed Relaxation of (P,,)

RP,,) : v (x, t)dtdx 42
P o) 2 / / ) “2
where v (function of the density s) is such that sy if the HUM control associated to the unique solution of

Yit — By = s(x)vs in (0,7) x Q,

y=0 on (0, T) x 89, 43)

y(0,) =% wn(0,) =y in Q,

0<s(x) <1, [os(x)dx=1L|Q| in Q.

—> The set { X, € L°(Q, {0, 1})} is replaced by it convex envelopp {s € L*° (€, [0, 1])} for the weak-*
topology.

Problem (RP.,) is a full relaxation of (P.,) in the sense that

@ there are optimal solutions for (RP.);

13

13AM., A shape optimal design problem related to the exact controllability of the 2-D wave equation. C.R.Acad.

Sci. Paris Serie | (2006)
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Well-Posed Relaxation of (P,,)

RP,,) : t)dta; 42
APy it oo st AR “2)
where v (function of the density s) is such that sy if the HUM control associated to the unique solution of

Yit — By = s(x)vs in (0,7) x Q,

y=0 on (0, T) x 89, 43)

y(0,) =% wn(0,) =y in Q,

0<s(x) <1, [os(x)dx=1L|Q| in Q.

—> The set { X, € L°(Q, {0, 1})} is replaced by it convex envelopp {s € L*° (€, [0, 1])} for the weak-*
topology.

Problem (RP.,) is a full relaxation of (P.,) in the sense that

@ there are optimal solutions for (RP.);

@ the infimum of (Pw ) equals the minimum of (RP.,);

13

13AM., A shape optimal design problem related to the exact controllability of the 2-D wave equation. C.R.Acad.

Sci. Paris Serie | (2006)
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Well-Posed Relaxation of (P,,)

RP,,) : t)dta; 42
APy it oo st AR “2)
where v (function of the density s) is such that sy if the HUM control associated to the unique solution of

Yit — By = s(x)vs in (0,7) x Q,

y=0 on (0, T) x 89, 43)

y(0,) =% wn(0,) =y in Q,

0<s(x) <1, [os(x)dx=1L|Q| in Q.

—> The set { X, € L°(Q, {0, 1})} is replaced by it convex envelopp {s € L*° (€, [0, 1])} for the weak-*
topology.

Problem (RP.,) is a full relaxation of (P.,) in the sense that

@ there are optimal solutions for (RP,,);
@ the infimum of (Pw ) equals the minimum of (RP.,);

@ isis optimal for (RP,, ), then optimal sequences of damping subsets w; for (P.,) are exactly those for
which the Young measure associated with the sequence of their characteristic functions X, i is precisely

s(x)81 + (1 — s(x))dp- (44)

13

13AM., A shape optimal design problem related to the exact controllability of the 2-D wave equation. C.R.Acad.

Sci. Paris Serie | (2006)
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Some numerical results for (RP,,)

Let @ = (0, 1)2, and («°, u') = (e—80(x1 —0-3° —800 0.3 ) ang | — 1/10

N ® o »
—~
I i@

Iso-value of the optimal density son Qfor T =05, T =1,T =3

@ {xeQ,0<s(x) <1} =0,(P,) = (RP.,) and is well-posed




Resolution of (RP,,) in

Let © = (0, 1)2, and (0, u') = (e—80(x1 —0-82—8005=0.3 0y ang | — 1/10

I
I

Figure: Limit density function s'™ for T = 0.5 (top left), T = 1.5 (top right), T = 2.5 (bottom left) and T = 3
(bottom right) initialized with P =L=0.150nQ = (0,1)

T AND |w| MAY BE ARBITRARILY SMALL !!!
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rollability for the heat equation

For any u?, ur € Lz(Q), €, €1, T (ur is the target)

. 1 2 e
(Po)i | g o ), where (X) = 211l o 7y + 5 lor = Ty 49

where v, € Lz(w % (0, T)) is the approximate control for

u=0, oQ x (0, 7), (46)

up— Au=v,X,, Qx(0,T),
u(-,0) =, Q,

sothat [|u(., T) — UTHLz(Q) < €.

—100(x—0.5)2

L (x) = sin(rx), ur(x)=e “T-5%x107% L=1/5, T=05 47




For instance, for the HEAT equation, the problem is :

(Cw) inf sup

Ja <p2 x, 0)dx

where ¢ is solution of (the backward heat equation)

pt+Ap =0,

w(x, 1) =0,

#(x, T) = 7(x)
Introducing the solution y of

y=0,

{ Yo — Ay = Xup,
y(-,0) =0,

we arrive at

W ei2) Ju Jo ©P(x, tyaxat
chs(w,T)
Qx(0,7),
a9 x (0, T),
Q,
Qx(0,7),
a9 x (0, T),
Q,
[ vTyerax
Q

o
/ / 2(x, t)dxdt =
w J0

If we note A(¢7) = y(T)and A(¢T) = «(0), then

Cobs(w, T) = sup

Jo AleT)AlpT)dx _

ere2@ JaNererd T o ci2@

14Work in progress with F. Hubert and F. Boyer (Marseille, LATP, France)

Optimal design

Minimization of the observability constant (Work in Progress)

(A7), 1)

y (Aer)se7)

(48)

(49)

(50)

(51)




w fixed - Computation of Cops(w, T)(Work in Progress)

N=1-Q=(0,1)

Figure: T = 1; Eigenfunction o1 for w = (0.2, 0.4)

Cops(w, T) = 19.12
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Optimization of Cops(

(Shape derivative)

acobs( )
o . qb,w)/ le(/ q> X, t)dtﬂ) (53)
with ;
o 1160 0l 22 o6
¢, w —
H¢”L2 (wx(0,T))
|

= Once again, a restrictionon | w |= L | Q | is necessary in order to avoid the optimal trivial solution w = Q
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Optimization of Cops(

(Shape derivative)

acobs( )
o . qb,w)/ le(/ q> X, t)dtﬂ) (53)
with ;
o 1160 0l 22 o6
¢, w —
H¢”L2 (wx(0,T))
|

= Once again, a restrictionon | w |= L | Q | is necessary in order to avoid the optimal trivial solution w = Q

(Topological Derivative)

LetQ C RN, Let Xp € Q and D(xg, p) the ball of center Xg and radius p. Then,

_ T 2 N
Cobs(2\D(Xp, p)) = Cops() + |D(Xo, P)\C(%Q)/O ¢°(Xp, t)at + o(p™) (55)

Optimal design Controllability



Figure: |w| =1/5-h=1/200-T = 1-c = 0.1 - Optimal density and characteristic function -

Cyopt 7 ~ 1.1792

= The optimal position is approximatively uniformly distributed on

[ 2 3 7 5 7 9 Foo
Cobs(@m) | 2.3160 _ 3.1713 15812 14429 1.3430 _ 1.2774 _ 1.2385__ 1.1792

Table: |w| =1/5-h=1/200-T = 1-c¢ = 0.1- Convergence of the observability constant toward the
optimal one

Optimal design



An Open Problem

@ The ultimate (open but challenging ! ) goal is to consider
TIME-DEPENDENT support of the form

(W)} x (0,T),  with w(t)cQVie (0, T) (56)

Arnaud Miinch Optimal design and Controllability



