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Figure: Boundary controllability of a discontinuous initial condition y0 - Wave solution y(x, t) for
t = 0, 3/7, 6/7, 9/7
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Figure: Boundary controllability of a discontinuous initial condition y0 - Wave solution y(x, t) for
t = 12/7, 15/7, 18/7 and t = T = 3
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Introduction and Notations

Let Ω a Lipschitzian bounded domain in RN , N = 1, 2, two functions (y0, y1) ∈ H1
0 (Ω)× L2(Ω) and T > 0. Let

V (y0
, y1

, T ) = {ω ⊂ Ω such that (3) holds} : (1)

There exists a control function 1 vω ∈ L2(ω × (0, T )) such that the unique solution
y ∈ C([0, T ]; H1

0 (Ω)) ∩ C1([0, T ]; L2(Ω)) of

8<:
ytt − ∆y = vωXω , Ω× (0, T ),
y = 0, ∂Ω× (0, T ),

(y(·, 0), yt (·, 0)) = (y0, y1), Ω,

(2)

satisfies
y(., T ) = yt (., T ) = 0, in Ω. (3)

1
J-L. Lions, Contrôlabilité exacte de systèmes distribués, RMA 8, 1988
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V (y0, y1, T )

∀T > 0, Ω ⊂ V (y0, y1, T ) !

For N = 1, any ω belongs to V (y0, y1, T ) provided that T > diam(Ω\ω).

For N = 2, assuming Ω ∈ C∞ , any subset ω satisfying the Geometric Control Condition in Ω:

"Every ray of geometric optics that propagates in Ω and is reflected on its boundary enters ω in time less
than T"

belongs to V (y0, y1, T )

If Ω is a rectangular domain (convex ?), any ω belongs to V (y0, y1, T ) provided that T > diam(Ω\ω) 2

2
A. Haraux, A generalized internal control for the wave equation in a rectangle, J. Math. Anal. (1990)
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Problem Statement

Let L ∈ (0, 1) and
VL(y0

, y1
, T ) = {ω ∈ V (y0

, y1
, T ), |ω| = L|Ω|} (4)

We consider the following NON LINEAR optimal design problem :

(Pω) : inf
ω⊂VL(y0,y1,T )

J(Xω), where J(Xω) =
1

2
||vω||2L2((0,T )×ω)

(5)

QUESTIONS -

Is the problem well-posed in the class of characteristic functions ?

Usually, the answer is no : the infimum is not reached and the optimal domain is composed of an
infinite number of disjoints components

In this case, what is a well-posed relaxation of (Pω) ?

How to approximate an optimal domain ?

3

3
M. Asch - G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - A

numerical study ; Esaim Cocv, 1998
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Link with the optimal stabilization problem

(Pω) is related to the following problem 4

(Dω) : inf
ω∈Ω,|ω|=L|Ω|

J2(Xω) ≡
1

2

Z T

0

Z
Ω

(|yt (x, t)|2 + |∇y(x, t)|2)dxdt =

Z T

0
E(t)dt (6)

where y is the unique solution of the damped wave equation (a ∈ L∞(Ω; R+))

8<:
ytt − ∆y + a(x)Xωyt = 0 in (0, T )× Ω,
y = 0 on (0, T )× ∂Ω,

y(0, ·) = y0, yt (0, ·) = y1 in Ω,
(7)

4
AM, P. Pedregal, F. Periago, Optimal design of the damping set for the stabilization of the wave equation, J.

Diff. Equations, 2006
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ω fixed - HUM control vω (Overview)
Let us consider the homogeneous equation8><>:

ϕtt − ∆ϕ = 0, Ω× (0, T ),

ϕ = 0, ∂Ω× (0, T ),

(ϕ(·, 0), ϕt (·, 0) = (ϕ0, ϕ1), Ω,

(8)

Lemma (Caracterizations of the controls vω )

vω ∈ L2(ω × (0, T )) is a control for (y0, y1) ∈ H1
0 (Ω)× L2(Ω) iff

Z T

0

Z
ω
ϕvω dxdt =< ϕt (·, 0), y0

>
H−1(Ω),H1

0 (Ω)
−

Z
Ω

y1
ϕ(·, 0)dx, ∀(ϕ0

, ϕ
1) ∈ L2(Ω)× H−1(Ω) (9)

(9) is an optimality condition for the critical points of J : L2(Ω)× H−1(Ω) → R:

J (ϕ0
, ϕ

1) =
1

2

Z T

0

Z
ω
ϕ

2dtdx+ < ϕt (·, 0), y0
>

H−1(Ω),H1
0 (Ω)

−
Z

Ω
y1
ϕ(·, 0)dx, (10)

Theorem

If J has a minimizer (ϕ0, ϕ1) ∈ L2 × H−1, then vω = −ϕXω is a control.

Observability inequality (Lions, Haraux):

|| (ϕ0
, ϕ

1) ||2
L2(Ω)×H−1(Ω)

≤ C(T , ω)

Z T

0

Z
ω
| ϕ |2 dxdt, ∀(ϕ0

, ϕ
1) (11)

Arnaud Münch Optimal design and Controllability



ω fixed - HUM control vω (Overview)
Let us consider the homogeneous equation8><>:

ϕtt − ∆ϕ = 0, Ω× (0, T ),

ϕ = 0, ∂Ω× (0, T ),

(ϕ(·, 0), ϕt (·, 0) = (ϕ0, ϕ1), Ω,

(8)

Lemma (Caracterizations of the controls vω )

vω ∈ L2(ω × (0, T )) is a control for (y0, y1) ∈ H1
0 (Ω)× L2(Ω) iff

Z T

0

Z
ω
ϕvω dxdt =< ϕt (·, 0), y0

>
H−1(Ω),H1

0 (Ω)
−

Z
Ω

y1
ϕ(·, 0)dx, ∀(ϕ0

, ϕ
1) ∈ L2(Ω)× H−1(Ω) (9)

(9) is an optimality condition for the critical points of J : L2(Ω)× H−1(Ω) → R:

J (ϕ0
, ϕ

1) =
1

2

Z T

0

Z
ω
ϕ

2dtdx+ < ϕt (·, 0), y0
>

H−1(Ω),H1
0 (Ω)

−
Z

Ω
y1
ϕ(·, 0)dx, (10)

Theorem

If J has a minimizer (ϕ0, ϕ1) ∈ L2 × H−1, then vω = −ϕXω is a control.

Observability inequality (Lions, Haraux):

|| (ϕ0
, ϕ

1) ||2
L2(Ω)×H−1(Ω)

≤ C(T , ω)

Z T

0

Z
ω
| ϕ |2 dxdt, ∀(ϕ0

, ϕ
1) (11)

Arnaud Münch Optimal design and Controllability



ω fixed - HUM control vω (Overview)
Let us consider the homogeneous equation8><>:

ϕtt − ∆ϕ = 0, Ω× (0, T ),

ϕ = 0, ∂Ω× (0, T ),

(ϕ(·, 0), ϕt (·, 0) = (ϕ0, ϕ1), Ω,

(8)

Lemma (Caracterizations of the controls vω )

vω ∈ L2(ω × (0, T )) is a control for (y0, y1) ∈ H1
0 (Ω)× L2(Ω) iff

Z T

0

Z
ω
ϕvω dxdt =< ϕt (·, 0), y0

>
H−1(Ω),H1

0 (Ω)
−

Z
Ω

y1
ϕ(·, 0)dx, ∀(ϕ0

, ϕ
1) ∈ L2(Ω)× H−1(Ω) (9)

(9) is an optimality condition for the critical points of J : L2(Ω)× H−1(Ω) → R:

J (ϕ0
, ϕ

1) =
1

2

Z T

0

Z
ω
ϕ

2dtdx+ < ϕt (·, 0), y0
>

H−1(Ω),H1
0 (Ω)

−
Z

Ω
y1
ϕ(·, 0)dx, (10)

Theorem

If J has a minimizer (ϕ0, ϕ1) ∈ L2 × H−1, then vω = −ϕXω is a control.

Observability inequality (Lions, Haraux):

|| (ϕ0
, ϕ

1) ||2
L2(Ω)×H−1(Ω)

≤ C(T , ω)

Z T

0

Z
ω
| ϕ |2 dxdt, ∀(ϕ0

, ϕ
1) (11)

Arnaud Münch Optimal design and Controllability



ω fixed - HUM control vω (Overview)
Let us consider the homogeneous equation8><>:

ϕtt − ∆ϕ = 0, Ω× (0, T ),

ϕ = 0, ∂Ω× (0, T ),

(ϕ(·, 0), ϕt (·, 0) = (ϕ0, ϕ1), Ω,

(8)

Lemma (Caracterizations of the controls vω )

vω ∈ L2(ω × (0, T )) is a control for (y0, y1) ∈ H1
0 (Ω)× L2(Ω) iff

Z T

0

Z
ω
ϕvω dxdt =< ϕt (·, 0), y0

>
H−1(Ω),H1

0 (Ω)
−

Z
Ω

y1
ϕ(·, 0)dx, ∀(ϕ0

, ϕ
1) ∈ L2(Ω)× H−1(Ω) (9)

(9) is an optimality condition for the critical points of J : L2(Ω)× H−1(Ω) → R:

J (ϕ0
, ϕ

1) =
1

2

Z T

0

Z
ω
ϕ

2dtdx+ < ϕt (·, 0), y0
>

H−1(Ω),H1
0 (Ω)

−
Z

Ω
y1
ϕ(·, 0)dx, (10)

Theorem

If J has a minimizer (ϕ0, ϕ1) ∈ L2 × H−1, then vω = −ϕXω is a control.

Observability inequality (Lions, Haraux):

|| (ϕ0
, ϕ

1) ||2
L2(Ω)×H−1(Ω)

≤ C(T , ω)

Z T

0

Z
ω
| ϕ |2 dxdt, ∀(ϕ0

, ϕ
1) (11)

Arnaud Münch Optimal design and Controllability



ω fixed - HUM control vω (Overview)
Let us consider the homogeneous equation8><>:

ϕtt − ∆ϕ = 0, Ω× (0, T ),

ϕ = 0, ∂Ω× (0, T ),

(ϕ(·, 0), ϕt (·, 0) = (ϕ0, ϕ1), Ω,

(8)

Lemma (Caracterizations of the controls vω )

vω ∈ L2(ω × (0, T )) is a control for (y0, y1) ∈ H1
0 (Ω)× L2(Ω) iff

Z T

0

Z
ω
ϕvω dxdt =< ϕt (·, 0), y0

>
H−1(Ω),H1

0 (Ω)
−

Z
Ω

y1
ϕ(·, 0)dx, ∀(ϕ0

, ϕ
1) ∈ L2(Ω)× H−1(Ω) (9)

(9) is an optimality condition for the critical points of J : L2(Ω)× H−1(Ω) → R:

J (ϕ0
, ϕ

1) =
1

2

Z T

0

Z
ω
ϕ

2dtdx+ < ϕt (·, 0), y0
>

H−1(Ω),H1
0 (Ω)

−
Z

Ω
y1
ϕ(·, 0)dx, (10)

Theorem

If J has a minimizer (ϕ0, ϕ1) ∈ L2 × H−1, then vω = −ϕXω is a control.

Observability inequality (Lions, Haraux):

|| (ϕ0
, ϕ

1) ||2
L2(Ω)×H−1(Ω)

≤ C(T , ω)

Z T

0

Z
ω
| ϕ |2 dxdt, ∀(ϕ0

, ϕ
1) (11)

Arnaud Münch Optimal design and Controllability



ω fixed - HUM control vω (Overview)

IN PRACTICE, ω being fixed such a control is determined by introducing the isomorphism Λ from L2(Ω)× H−1(Ω)

onto H1
0 (Ω)× L2(Ω) defined by Λ(ϕ0, ϕ1) := (ψt (0),−ψ(0)) as follows :

8><>:
ϕtt − ∆ϕ = 0, Ω× (0, T ),

ϕ = 0, ∂Ω× (0, T ),

(ϕ(·, 0), ϕt (·, 0) = (ϕ0, ϕ1), Ω,

8<:
ψtt − ∆ψ = −ϕXω, Ω× (0, T ),

ψ = 0, ∂Ω× (0, T ),

(ψ(·, T ), ψt (·, T )) = (0, 0), Ω,

(12)
and then solve the linear problem

Λ(ϕ0
, ϕ

1) = (y1
,−y0). (13)

The HUM control is vω = −ϕXω and y = ψ

Theorem

The HUM control vω is of minimal L2(0, T ) norm !!

=⇒ Problem (Pω) is then "reduced" to find the best HUM control !
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Shape derivative for J

Let θ ∈ W 1,∞(Ω,R2), η > 0 and the perturbation ωη = (I + ηθ)(ω). The Frechet derivative of J in the direction
θ is defined by

∂J(Xω)

∂ω
· θ ≡ lim

η→0

J(Xωη )− J(Xω)

η
(14)

Theorem

Let (y0, y1) ∈ (H2(Ω)∩ H1
0 (Ω))× H1

0 (Ω) and ω ∈ C1(Ω). The derivative of J with respect to ω in the θ-direction
exists and is given by the following expression:

∂J(Xω)

∂ω
· θ =

1

2

Z
ω

Z T

0
(2vωVω + v2

ωdivθ)dtdx (15)

where Vω is the HUM control (of minimal L2-norm) with support ω associated to the following system :

8>><>>:
Ytt − ∆Y −∇(divθ).∇y + div((∇θ +∇θT ).∇y) = VωXω, Ω× (0, T ),

Y = 0, ∂Ω× (0, T ),

(Y (·, 0), Yt (·, 0)) = (∇y0.θ,∇y1.θ), Ω.

(16)

�
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Proof

Idea of the Proof. Let assume that ωη = (I + ηθ)(ω) ∈ V (y0, y1, T ) and let (yη(x), vη(x)) = (y(xη), v(xη)).
LetAη(θ) = det(∇Fη)(Id + η∇θ)−1 · (Id + η∇θ)−T . (yη, vη) is solution of8>>><>>>:

yη
tt − det(∇Fη)−1div(Aη(θ) · ∇yη) = vηXω, Ω× (0, T ),

yη = 0, ∂Ω× (0, T ),

(yη(·, 0), yη
t (·, 0)) = (y0 + η∇y0 · θ, y1 + η∇y1 · θ), Ω,

(17)

such that yη(·, T ) = 0, yη
t (·, T ) = 0 on Ω. This system is controllable thanks to
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such that ((yη − y)(·, T ), (yη − y)t (·, T )) = (0, 0).

We then conclude that yη − y = O(η), write yη = y + ηY + O(η2) and identify the first Lagrangian derivative Y .
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Shape derivative (curvilinear expression)

Theorem

Let ν be the outward normal derivative of ω. The derivative of J with respect to ω is given by the following
expression:

∂J(Xω)

∂ω
· θ = −

1

2

Z
∂ω

Z T

0
v2
ω(x, t)dt θ · νdσ (20)

where vω is the HUM control (of minimal L2-norm) with support on ω which drives to the rest at time t = T the
solution y of (46). �

Remark

The derivative is independent of any adjoint problem !

ω1 ⊂ ω2 ⊂ Ω =⇒ J(Xω2 ) ≤ J(Xω1 ) (because a descent direction is given by θ = cν with c ≥ 0)
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Shape derivative (curvilinear expression)

Proof. [Cea Method ,5 ]

L(ω, ϕ, ψ, p, q) =
1

2

Z
ω

Z T

0
ϕ

2dxdt +

Z
Ω

Z T

0
(ϕtt − ∆ϕ)pdxdt +

Z
Ω

Z T

0
(ψtt − ∆ψ + Xωϕ)qdxdt (21)

dL
dω

(θ) =
∂

∂ω
L(ω, ϕ, ψ, p, q) · θ +<

∂

∂ϕ
L(ω, ϕ, ψ, p, q),

∂ϕ

∂ω
· θ) >

+ <
∂

∂ψ
L(ω, ϕ, ψ, p, q),

∂ψ

∂ω
· θ) > +<

∂

∂p
L(ω, ϕ, ψ, p, q),

∂p

∂ω
· θ) >

+<
∂

∂q
L(ω, ϕ, ψ, p, q),

∂q

∂ω
· θ) >

(22)

∂

∂ω
L(ω, ϕ, ψ, p, q) · θ =

1

2

Z
ω

Z T

0
div(ϕ2

θ)dtdx +

Z
ω

Z T

0
div(ϕqθ)dtdx (23)

p ∈ C(0, T ; H2(Ω) ∩ H1
0 (Ω)) ∩ C1(0, T ; H1

0 (Ω)) ? and q ∈ C(0, T ; H1
0 (Ω)) ∩ C1(0, T ; L2(Ω)) such that

<
∂

∂ϕ
L(ω, ϕ, ψ, p, q), ϕ1

> + <
∂

∂ψ
L(ω, ϕ, ψ, p, q), ψ1) > = 0 (24)

for all ϕ1, ψ1 first lagrangian derivatives of ϕ and ψ.

5
J. Cea, Conception optimale ou identification de formes- calcul rapide de la dérivée directionnelle de la

fonction cout, Math. Model. Num. Anal, 1986
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Shape derivative - Adjoint solutions (p, q)

The initial condition (q0, q1) ∈ H1
0 (Ω)× L2(Ω) are such that the solution

8><>:
qtt − ∆q = 0, Ω× (0, T ),

q = 0, ∂Ω× (0, T ),

(q(·, 0), qt (·, 0)) = (q0, q1), Ω,

8<:
ptt − ∆p = −(ϕ + q)Xω, Ω× (0, T ),

p = 0, ∂Ω× (0, T ),

(p(·, T ), pt (·, T )) = (0, 0), Ω,

(25)
ensures (p(·, 0), pt (·, 0)) = (0, 0) or equivalently, (defining F = ϕ + q)

8><>:
Ftt − ∆F = 0, Ω× (0, T ),

F = 0, ∂Ω× (0, T ),

(F (·, 0), Ft (·, 0)) = (ϕ0 + q0, ϕ1 + q1), Ω,

8<:
ptt − ∆p = −FXω, Ω× (0, T ),

p = 0, ∂Ω× (0, T ),

(p(·, T ), pt (·, T )) = (0, 0), Ω,

(26)

−FXω is then the HUM-control which drives the solution p

FROM (p(·, 0), pt (·, 0)) = (0, 0) TO (p(·, T ), pt (·, T )) = (0, 0) !

=⇒ F = 0 on ω × (0, T ) and then (using Holmgren Theorem) F = 0 on Ω× (0, T ).
=⇒ q = −ϕ and p = 0 on ω × (0, T ) and

∂

∂ω
L(ω, ϕ, ψ, p, q) · θ =

1

2

Z T

0

Z
ω

div(ϕ2
θ)dtdx +

Z T

0

Z
ω

div(ϕqθ)dtdx = −
1

2

Z T

0

Z
ω

div(ϕ2
θ)dtdx

(27)
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Shape derivative - Adjoint solutions (p, q)

The initial condition (q0, q1) ∈ H1
0 (Ω)× L2(Ω) are such that the solution

8><>:
qtt − ∆q = 0, Ω× (0, T ),

q = 0, ∂Ω× (0, T ),

(q(·, 0), qt (·, 0)) = (q0, q1), Ω,

8<:
ptt − ∆p = −(ϕ + q)Xω, Ω× (0, T ),

p = 0, ∂Ω× (0, T ),

(p(·, T ), pt (·, T )) = (0, 0), Ω,

(25)
ensures (p(·, 0), pt (·, 0)) = (0, 0) or equivalently, (defining F = ϕ + q)

8><>:
Ftt − ∆F = 0, Ω× (0, T ),

F = 0, ∂Ω× (0, T ),

(F (·, 0), Ft (·, 0)) = (ϕ0 + q0, ϕ1 + q1), Ω,

8<:
ptt − ∆p = −FXω, Ω× (0, T ),

p = 0, ∂Ω× (0, T ),

(p(·, T ), pt (·, T )) = (0, 0), Ω,

(26)

−FXω is then the HUM-control which drives the solution p

FROM (p(·, 0), pt (·, 0)) = (0, 0) TO (p(·, T ), pt (·, T )) = (0, 0) !

=⇒ F = 0 on ω × (0, T ) and then (using Holmgren Theorem) F = 0 on Ω× (0, T ).
=⇒ q = −ϕ and p = 0 on ω × (0, T ) and

∂

∂ω
L(ω, ϕ, ψ, p, q) · θ =

1

2

Z T

0

Z
ω

div(ϕ2
θ)dtdx +

Z T

0

Z
ω

div(ϕqθ)dtdx = −
1

2

Z T

0

Z
ω

div(ϕ2
θ)dtdx

(27)
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Algorithm
Let λ be a Lagrange multiplier and

Jλ(Xω) = J(Xω) + λ

„ Z
ω

dx − L
Z

Ω
dx

«
(28)

Theorem

The derivative of Jλ with respect to ω is given by the following expression:

∂Jλ(Xω)

∂ω
· θ = −

1

2

Z
∂ω

Z T

0
v2
ω(x, t)dt θ · νdσ + λ

Z
∂ω
θ · νdσ (29)

�

ALGORITHM - 6 ω(0) ∈ VL(y0, y1, T ), ω(k+1) = (I + ηθk )ω(k) , k ≥ 0 with

θ
(k) =

„ 1

2

Z T

0
v2
ω(k) (x, t)dt − λ

(k)
«
ν

(k)
, ∀x ∈ Ω (30)

and

λ
(k) =

1

2

Z
ω(k)

div
„Z T

0
v2
ω(k) (x, t)dtν(k)

«
dx

ffiZ
ω(k)

div(ν(k))dx (31)

Remark (Fundamental)

if ω(k) ∈ V (y0, y1, T ), then ω(k+1) ∈ V (y0, y1, T ) because J(X
ω(k+1) ) ≤ J(X

ω(k) ) <∞

6
M. Burger, A survey on level set methods for inverse problems and optimal design, Eur. J. Appl. Math., 2005
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Use of the Topological derivative for Jλ

7

Theorem

For any x0 ∈ Ω ⊂ R2 and ρ such that D(x0, ρ) ⊂ Ω, the functional associated to Ω\D(x0, ρ) may be expressed
as follows :

Jλ(XΩ\D(x0,ρ)) = Jλ(XΩ) + πρ2
„ 1

2

Z T

0
v2
Ω(x0, t)dt − λ| {z }
≡f (x0)

«
+ o(ρ2) (32)

in term only of the HUM control vΩ associated to (46) with ω = Ω. �

The best support of the form Ω\D(x0, ρ) is for x0 minimizing f (x0)

Consequently, the best support of the control is the points maximizing f ;

INITIALIZATION OF THE ALGORITHM -

ω0 = {x ∈ Ω, 1
2

R T
0 v2

Ω(x, t)dt > λ} with λ such that |ω0| = L|Ω|.

7
Sokolowski J, Zochowski A, On the topological derivative in shape optimization, SIAM J. Control. Optim, 1999
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(Semi-Discrete in space) approximation of the HUM-control -

Find (ϕ0
h,ϕ

1
h) ∈ l2h × h−1

h such that Λh(ϕ0
h,ϕ

1
h) = (ψ1

h,−ψ
0
h) = (y1

h ,−y0
h ) where

8><>:
(ϕh)tt − ∆hϕh = 0, Ω× (0, T ),

ϕh = 0, ∂Ω× (0, T ),

(ϕh(·, 0), (ϕh)t (·, 0) = (ϕ0
h,ϕ

1
h), Ω,

8><>:
(ψh)tt − ∆hψh = −ϕhXωh , Ω× (0, T ),

ψh = 0, ∂Ω× (0, T ),

(ψh(·, T ), (ψh)t (·, T )) = (0, 0), Ω,

(33)
leading to vh = −ϕhXω ∈ l2h ((0, T )× ω).

Usual finite element method or finite difference method may leads to a divergence of vh
8 :

||v − P(vh)||L2(Ω)
> C exp(1/h) (34)

and to a very bad conditioning number:
cond(Λh) = O(exp(1/h)) (35)

=⇒ Problem comes from the spurious high frequencies components.

8
Glowinski-Li-Lions, A numerical approach to exact boundary controllability of the wave equation, Int. J. Numer.

Methods. Eng., 1989
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(Semi-Discrete in space) approximation of the HUM-control (ω fixed)

The convergence of vh is restored if we use, for instance, the following scheme to solve ϕ (and the same for ψ):

(I +
h2

4
∂

2
xh)(I +

h2

4
∂

2
yh)(ϕh)tt − ∆hϕh = 0 (36)

We observe that cond(Λh) = O(h−2) and

Theorem

The semi-discrete scheme (36) is uniformly controllable with respect to h.

|| (ϕ0
h,ϕ

1
h) ||2

L2
h×H−1

h
≤ Ch

Z T

0

Z
ωh

| ϕh |
2 dxdt (37)

In addition, if (P(y0
h ), P(y1

h )) converges strongly toward (y0, y1) in H1
0 (Ω)× L2(Ω) as h goes to 0, then the

corresponding control ṽh of minimal l2-norm is such that limh→0 || P(ṽh)− v ||L2(((0,T )×ω)
= 0. �

(see 9for the boundary case using mixed finite element).

9
Castro C., AM, Micu S., Numerical approximations of the boundary control of the 2-D wave equation with

mixed finite elements, IMA J. Numer. Analysis, (2007).
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Fully-Discrete approximation of the HUM-control -

Very efficient finite difference scheme in 1D: 10 :

∆∆tφh,∆t +
1

4
(h2 − ∆t2)∆h∆∆tφh,∆t − ∆hφh,∆t = 0 (38)

uniformly controllable (with respect to h and ∆t) IIF ∆t ≤ h
p

T/2

Very efficient finite difference scheme in 2D (same in 3D) 11 :

(I +
h2

4
∂

2
xh)(I +

h2

4
∂

2
yh)∆∆tϕh,∆t − (I +

h2

4
∂

2
xh)∂2

yh − (I +
h2

4
∂

2
yh)∂2

xh = 0 (39)

+ Newmark strategy is uniformly (with respect to h and ∆t) IIF ∆t ≤ h/
√

2.

10
AM, A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN (2005)

11
AM, An implicit scheme uniformly controllable for the 2-D wave equation, J. Sci. Comp.
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∂
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∂

2
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AM, A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN (2005)

11
AM, An implicit scheme uniformly controllable for the 2-D wave equation, J. Sci. Comp.
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Numerical simulations

y0(x) = exp−100(x1−0.3)2−100(x2−0.3)2 ; y1(x) = 0, x ∈ Ω = (0, 1)2 (40)
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Figure: y0(x)

12
12

For numerical animations, see www-math.univ-fcomte.fr/amunch/gallery.htm.
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Level set with two initializations -
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Figure: T = 3 - Zeros of the initial level set

ψ0
p=3 and of the limit one ψlim

p=3- J(X
ω0

3
) ≈ 12.50 ,

J(X
ωlim

3
) ≈ 6.42
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Figure: T = 3 - Zeros of the initial level set

ψ0
p=3 and of the limit one ψlim

p=5- J(X
ω0

5
) ≈ 8.47 ,

J(X
ωlim

5
) ≈ 5.07
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Energy and L2 norm -
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Figure: T = 3 - Energy E(y, t) of the system (left) and ||vω||L2(ω)
(right) vs. t-

E(y, T )/E(y, 0) ≈ 2.40× 10−6 corresponding to the initial level set function ψ0
p=3 (−−) and to the limit one

ψlim
p=3 (−).
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Observability constant

||φ0
ωk ||

2
L2(Ω)

+ ||φ1
ωk ||

2
H−1(Ω)R

ωk
R T

0 (φ
ωk (x, t))2dt dx

(41)
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Figure: T = 3- Evolution of J0(X
ωk ) (top) and

corresponding ratio (41) (bottom) vs. k .
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Topological derivative -
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Figure: T = 3 - Left: Iso-values of
R T

0 v2
Ω(x, t)dt on Ω - Right :

∂ω0 = {x ∈ Ω, 1/2
R T

0 (vΩ(x, t))2dt − λ = 0}, λ ≈ 1.5, ω0 ∈ V (y0, y1, T ).
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Topological derivative - T = 10

1.3

1.2

1.1

1  

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

Figure: T = 10 - Left: Iso-values of 1/2
R T

0 v2
Ω(x, t)dt on Ω - Right :

∂ω0 ≡ {x ∈ Ω, 1/2
R T

0 (vΩ(x, t))2dt − λ = 0}, λ ≈ 0.82, ω0 ∈ V (y0, y1, T )
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Topological derivative - T = 1
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Figure: T = 1 - Left: Iso-values of 1/2
R T

0 v2
Ω(x, t)dt on Ω - Right :

∂ω0 = {x ∈ Ω, 1/2
R T

0 (vΩ(x, t))2dt − λ = 0}, λ ≈ 5.30, ω0 6∈ V (T , y0, y1)
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Level set - T = 1
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Figure: Limit of ∂ωk = {x ∈ Ω, ψk (x) = 0} vs. k for T = 1 - J(X
ω0

p=5
) ≈ 29.321 , J(X

ωlim
p=5

) ≈ 15.314
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Well-Posed Relaxation of (Pω)

(RPω) : inf
s∈L∞(Ω)

1

2

Z
Ω

s(x)

Z T

0
v2

s (x, t)dtdx (42)

where vs (function of the density s) is such that svs if the HUM control associated to the unique solution of8>><>>:
ytt − ∆y = s(x)vs in (0, T )× Ω,
y = 0 on (0, T )× ∂Ω,

y(0, ·) = y0, yt (0, ·) = y1 in Ω,
0 ≤ s(x) ≤ 1,

R
Ω s(x) dx = L |Ω| in Ω.

(43)

=⇒ The set {Xω ∈ L∞(Ω, {0, 1})} is replaced by it convex envelopp {s ∈ L∞(Ω, [0, 1])} for the weak-?
topology.

Theorem

Problem (RPω) is a full relaxation of (Pω) in the sense that

there are optimal solutions for (RPω);

the infimum of (Pω) equals the minimum of (RPω);

if s is optimal for (RPω), then optimal sequences of damping subsets ωj for (Pω) are exactly those for
which the Young measure associated with the sequence of their characteristic functions Xωj is precisely

s(x)δ1 + (1− s(x))δ0. (44)

13
13

AM., A shape optimal design problem related to the exact controllability of the 2-D wave equation. C.R.Acad.
Sci. Paris Serie I (2006)
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Z T

0
v2

s (x, t)dtdx (42)

where vs (function of the density s) is such that svs if the HUM control associated to the unique solution of8>><>>:
ytt − ∆y = s(x)vs in (0, T )× Ω,
y = 0 on (0, T )× ∂Ω,

y(0, ·) = y0, yt (0, ·) = y1 in Ω,
0 ≤ s(x) ≤ 1,

R
Ω s(x) dx = L |Ω| in Ω.

(43)

=⇒ The set {Xω ∈ L∞(Ω, {0, 1})} is replaced by it convex envelopp {s ∈ L∞(Ω, [0, 1])} for the weak-?
topology.

Theorem

Problem (RPω) is a full relaxation of (Pω) in the sense that

there are optimal solutions for (RPω);

the infimum of (Pω) equals the minimum of (RPω);

if s is optimal for (RPω), then optimal sequences of damping subsets ωj for (Pω) are exactly those for
which the Young measure associated with the sequence of their characteristic functions Xωj is precisely

s(x)δ1 + (1− s(x))δ0. (44)

13
13

AM., A shape optimal design problem related to the exact controllability of the 2-D wave equation. C.R.Acad.
Sci. Paris Serie I (2006)
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Some numerical results for (RPω)

Let Ω = (0, 1)2, and (u0, u1) = (e−80(x1−0.3)2−80(x2−0.3)2 , 0) and L = 1/10
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Iso-value of the optimal density s on Ω for T = 0.5, T = 1, T = 3

{x ∈ Ω, 0 < s(x) < 1} = ∅, (Pω) = (RPω) and is well-posed
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Resolution of (RPω) in 1-D: y0(x) = e−100(x−0.3)2

Let Ω = (0, 1)2, and (u0, u1) = (e−80(x1−0.3)2−80(x2−0.3)2 , 0) and L = 1/10
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Figure: Limit density function slim for T = 0.5 (top left), T = 1.5 (top right), T = 2.5 (bottom left) and T = 3

(bottom right) initialized with s0 = L = 0.15 on Ω = (0, 1)

Remark

T AND |ω| MAY BE ARBITRARILY SMALL !!!
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Optimal design + Approximate controllability for the heat equation
For any u0, uT ∈ L2(Ω), ε, ε1, T (uT is the target)

(Pω) : inf
ω⊂Ω,|ω|=L|Ω|

I(Xω), where I(Xω) =
1

2
||vω||2L2((0,T )×ω)

+
ε−1

2
||uT − u(T )||2

L2(Ω)
(45)

where vω ∈ L2(ω × (0, T )) is the approximate control for8<:
ut − ∆u = vωXω, Ω× (0, T ),
u = 0, ∂Ω× (0, T ),

u(·, 0) = u0, Ω,

(46)

so that ||u(., T )− uT ||L2(Ω)
≤ ε1.

u0(x) = sin(πx), uT (x) = e−100(x−0.5)2
, ε

−1 = 5× 10−4
, L = 1/5, T = 0.5 (47)
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Characteristic functions associated to the optimal density: I(Xω) ≈ 22.4597 I(sopt ) ≈ 22.4479
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Minimization of the observability constant (Work in Progress)
For instance, for the HEAT equation, the problem is :

(Cω) inf
ω⊂Ω

sup
ϕT∈L2(Ω)

R
Ω ϕ

2(x, 0)dxR
ω

R T
0 ϕ2(x, t)dxdt| {z }

Cobs (ω,T )

(48)

where ϕ is solution of (the backward heat equation)

8<:
ϕt + ∆ϕ = 0, Ω× (0, T ),

ϕ(x, t) = 0, ∂Ω× (0, T ),

ϕ(x, T ) = ϕT (x) Ω,

(49)

Introducing the solution y of 8<:
yt − ∆y = Xωϕ, Ω× (0, T ),

y = 0, ∂Ω× (0, T ),

y(·, 0) = 0, Ω,

(50)

we arrive at Z
ω

Z T

0
ϕ

2(x, t)dxdt =

Z
Ω

y(T )ϕT dx (51)

If we note Λ(ϕT ) = y(T ) and A(ϕT ) = ϕ(0), then

Cobs(ω, T ) = sup
ϕT∈L2(Ω)

R
Ω A(ϕT )A(ϕT )dxR

Ω Λ(ϕT )ϕT dx
≡ sup

ϕT∈L2(Ω)

(A2(ϕT ), ϕT )

(Λ(ϕT ), ϕT )
(52)

14
14

Work in progress with F. Hubert and F. Boyer (Marseille, LATP, France)
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ω fixed - Computation of Cobs(ω, T )(Work in Progress)

N = 1 - Ω = (0, 1)
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Figure: T = 1; Eigenfunction ϕT for ω = (0.2, 0.4)

Cobs(ω, T ) ≈ 19.12
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Optimization of Cobs(ω, T ) w.r.t. ω

Theorem (Shape derivative)

∂Cobs(ω)

∂ω
· θ = −C(φ, ω)

Z
ω

div
„Z T

0
φ

2(x, t)dtθ
«

dx (53)

with

C(φ, ω) =
||φ(·, 0)||2

L2(Ω)

||φ||4
L2(ω×(0,T ))

(54)

�

=⇒ Once again, a restriction on | ω |= L | Ω | is necessary in order to avoid the optimal trivial solution ω = Ω

Theorem (Topological Derivative)

Let Ω ⊂ RN . Let x0 ∈ Ω and D(x0, ρ) the ball of center x0 and radius ρ. Then,

Cobs(Ω\D(x0, ρ)) = Cobs(Ω) + |D(x0, ρ)|C(φ,Ω)

Z T

0
φ

2(x0, t)dt + o(ρN ) (55)

�
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Optimization of Cobs(ω, T ) w.r.t. ω

Theorem (Shape derivative)
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· θ = −C(φ, ω)
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div
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2(x, t)dtθ
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dx (53)

with

C(φ, ω) =
||φ(·, 0)||2

L2(Ω)

||φ||4
L2(ω×(0,T ))

(54)

�

=⇒ Once again, a restriction on | ω |= L | Ω | is necessary in order to avoid the optimal trivial solution ω = Ω

Theorem (Topological Derivative)

Let Ω ⊂ RN . Let x0 ∈ Ω and D(x0, ρ) the ball of center x0 and radius ρ. Then,

Cobs(Ω\D(x0, ρ)) = Cobs(Ω) + |D(x0, ρ)|C(φ,Ω)

Z T

0
φ

2(x0, t)dt + o(ρN ) (55)
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Numerical application: Optimal observability for T = 1 and L = 1/5
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Figure: |ω| = 1/5 - h = 1/200 - T = 1 - c = 0.1 - Optimal density and characteristic function -
Csopt ,T ≈ 1.1792

=⇒ The optimal position is approximatively uniformly distributed on Ω

M 1 2 3 4 5 7 9 +∞
Cobs(ωM ) 2.3160 3.1713 1.5812 1.4429 1.3430 1.2774 1.2385 1.1792

Table: |ω| = 1/5 - h = 1/200 - T = 1 - c = 0.1 - Convergence of the observability constant toward the
optimal one
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An Open Problem

The ultimate (open but challenging ! ) goal is to consider
TIME-DEPENDENT support of the form

{ω(t)} × (0, T ), with ω(t) ⊂ Ω,∀t ∈ (0, T ) (56)
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