Optimal design of the support of the control for the wave equation

Arnaud Münch

Laboratoire de Mathématiques
Université de Franche-Comté
Besançon, France
UFRJ, Rio de Janeiro, May 2007,
(to appear in Int. J. Numer. Analysis and Modeling)

Figure: Boundary controllability of a discontinuous initial condition y^{0} - Wave solution $y(x, t)$ for $t=0,3 / 7,6 / 7,9 / 7$

Figure: Boundary controllability of a discontinuous initial condition y^{0} - Wave solution $y(x, t)$ for $t=12 / 7,15 / 7,18 / 7$ and $t=T=3$

Let Ω a Lipschitzian bounded domain in $\mathbb{R}^{N}, N=1,2$, two functions $\left(y^{0}, y^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and $T>0$. Let

$$
\begin{equation*}
V\left(y^{0}, y^{1}, T\right)=\{\omega \subset \Omega \quad \text { such that } \quad \text { (3) holds }\}: \tag{1}
\end{equation*}
$$

There exists a control function ${ }^{1} v_{\omega} \in L^{2}(\omega \times(0, T))$ such that the unique solution $y \in C\left([0, T] ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)$ of

$$
\begin{cases}y_{t t}-\Delta y=v_{\omega} \mathcal{X}_{\omega}, & \Omega \times(0, T) \tag{2}\\ y=0, & \partial \Omega \times(0, T) \\ \left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y^{0}, y^{1}\right), & \Omega\end{cases}
$$

satisfies

$$
\begin{equation*}
y(., T)=y_{t}(., T)=0, \quad \text { in } \quad \Omega \tag{3}
\end{equation*}
$$

${ }^{1}$ J-L. Lions, Contrôlabilité exacte de systèmes distribués, RMA 8, 1988

- $\forall T>0, \quad \Omega \subset V\left(y^{0}, y^{1}, T\right)$!
- For $N=1$, any ω belongs to $V\left(y^{0}, y^{1}, T\right)$ provided that $T>\operatorname{diam}(\Omega \backslash \omega)$.
- For $N=2$, assuming $\Omega \in C^{\infty}$, any subset ω satisfying the Geometric Control Condition in Ω :
"Every ray of geometric optics that propagates in Ω and is reflected on its boundary enters ω in time less than $T^{\prime \prime}$
belongs to $V\left(y^{0}, y^{1}, T\right)$
- If Ω is a rectangular domain (convex ?), any ω belongs to $V\left(y^{0}, y^{1}, T\right)$ provided that $T>\operatorname{diam}(\Omega \backslash \omega)^{2}$
- $\forall T>0, \quad \Omega \subset V\left(y^{0}, y^{1}, T\right)!$
- For $N=1$, any ω belongs to $V\left(y^{0}, y^{1}, T\right)$ provided that $T>\operatorname{diam}(\Omega \backslash \omega)$.
- For $N=2$, assuming $\Omega \in C^{\infty}$, any subset ω satisfying the Geometric Control Condition in Ω :
"Every ray of geometric optics that propagates in Ω and is reflected on its boundary enters ω in tirne less than T"'
belongs to $V\left(y^{0}, y^{1}, T\right)$
- If Ω is a rectangular domain (convex ?), any ω belongs to $V\left(y^{0}, y^{1}, T\right)$ provided that $T>\operatorname{diam}(\Omega \backslash \omega)^{2}$
- $\forall T>0, \quad \Omega \subset V\left(y^{0}, y^{1}, T\right)!$
- For $N=1$, any ω belongs to $V\left(y^{0}, y^{1}, T\right)$ provided that $T>\operatorname{diam}(\Omega \backslash \omega)$.
- For $N=2$, assuming $\Omega \in C^{\infty}$, any subset ω satisfying the Geometric Control Condition in Ω :
"Every ray of geometric optics that propagates in Ω and is reflected on its boundary enters ω in time less than $T^{\prime \prime}$
belongs to $V\left(y^{0}, y^{1}, T\right)$
- If Ω is a rectangular domain (convex ?), any ω belongs to $V\left(y^{0}, y^{1}, T\right)$ provided that $T>\operatorname{diam}(\Omega \backslash \omega)^{2}$

- $\forall T>0, \quad \Omega \subset V\left(y^{0}, y^{1}, T\right)$!
- For $N=1$, any ω belongs to $V\left(y^{0}, y^{1}, T\right)$ provided that $T>\operatorname{diam}(\Omega \backslash \omega)$.
- For $N=2$, assuming $\Omega \in C^{\infty}$, any subset ω satisfying the Geometric Control Condition in Ω :
"Every ray of geometric optics that propagates in Ω and is reflected on its boundary enters ω in time less than $T^{\prime \prime}$
belongs to $V\left(y^{0}, y^{1}, T\right)$
- If Ω is a rectangular domain (convex ?), any ω belongs to $V\left(y^{0}, y^{1}, T\right)$ provided that $T>\operatorname{diam}(\Omega \backslash \omega)^{2}$

[^0]Let $L \in(0,1)$ and

$$
\begin{equation*}
V_{L}\left(y^{0}, y^{1}, T\right)=\left\{\omega \in V\left(y^{0}, y^{1}, T\right), \quad|\omega|=L|\Omega|\right\} \tag{4}
\end{equation*}
$$

We consider the following NON LINEAR optimal design problem :

$$
\begin{equation*}
(\mathcal{P} \omega): \inf _{\omega \subset v_{L}\left(y^{0}, y^{1}, T\right)} J\left(\mathcal{X}_{\omega}\right), \quad \text { where } \quad J\left(\mathcal{X}_{\omega}\right)=\frac{1}{2}\left\|v_{\omega}\right\|_{L^{2}((0, T) \times \omega)}^{2} \tag{5}
\end{equation*}
$$

${ }^{3}$ M. Asch - G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - A numerical study ; Esaim Cocv, 1998

Let $L \in(0,1)$ and

$$
\begin{equation*}
V_{L}\left(y^{0}, y^{1}, T\right)=\left\{\omega \in V\left(y^{0}, y^{1}, T\right), \quad|\omega|=L|\Omega|\right\} \tag{4}
\end{equation*}
$$

We consider the following NON LINEAR optimal design problem :

$$
\begin{equation*}
\left(\mathcal{P}_{\omega}\right): \inf _{\omega \subset V_{L}\left(y^{0}, y^{1}, T\right)} J\left(\mathcal{X}_{\omega}\right), \quad \text { where } \quad J\left(\mathcal{X}_{\omega}\right)=\frac{1}{2}\left\|v_{\omega}\right\|_{L^{2}((0, T) \times \omega)}^{2} \tag{5}
\end{equation*}
$$

Questions -

- Is the problem well-posed in the class of characteristic functions?
- Usually, the answer is no : the infimum is not reached and the optimal domain is composed of an infinite number of disjoints components
- In this case what is a well-nosed relaxation of (\mathcal{P}_{ω}) ?
- How to approximate an optimal domain?

3

[^1]Let $L \in(0,1)$ and

$$
\begin{equation*}
V_{L}\left(y^{0}, y^{1}, T\right)=\left\{\omega \in V\left(y^{0}, y^{1}, T\right), \quad|\omega|=L|\Omega|\right\} \tag{4}
\end{equation*}
$$

We consider the following NON LINEAR optimal design problem :

$$
\begin{equation*}
\left(\mathcal{P}_{\omega}\right): \inf _{\omega \subset V_{L}\left(y^{0}, y^{1}, T\right)} J\left(\mathcal{X}_{\omega}\right), \quad \text { where } \quad J\left(\mathcal{X}_{\omega}\right)=\frac{1}{2}\left\|v_{\omega}\right\|_{L^{2}((0, T) \times \omega)}^{2} \tag{5}
\end{equation*}
$$

Questions -

- Is the problem well-posed in the class of characteristic functions?
- Usually, the answer is no : the infimum is not reached and the optimal domain is composed of an infinite number of disjoints components
- In this case, what is a well-posed relaxation of $\left(\mathcal{P}_{\omega}\right)$?
- How to approximate an optimal domain?

3

[^2]Let $L \in(0,1)$ and

$$
\begin{equation*}
V_{L}\left(y^{0}, y^{1}, T\right)=\left\{\omega \in V\left(y^{0}, y^{1}, T\right), \quad|\omega|=L|\Omega|\right\} \tag{4}
\end{equation*}
$$

We consider the following NON LINEAR optimal design problem :

$$
\begin{equation*}
\left(\mathcal{P}_{\omega}\right): \inf _{\omega \subset v_{L}\left(y^{0}, y^{1}, T\right)} J\left(\mathcal{X}_{\omega}\right), \quad \text { where } \quad J\left(\mathcal{X}_{\omega}\right)=\frac{1}{2}\left\|v_{\omega}\right\|_{L^{2}((0, T) \times \omega)}^{2} \tag{5}
\end{equation*}
$$

Questions -

- Is the problem well-posed in the class of characteristic functions?
- Usually, the answer is no : the infimum is not reached and the optimal domain is composed of an infinite number of disjoints components
- In this case, what is a well-posed relaxation of $\left(\mathcal{P}_{\omega}\right)$?
- How to approximate an optimal domain?

3

[^3]Let $L \in(0,1)$ and

$$
\begin{equation*}
V_{L}\left(y^{0}, y^{1}, T\right)=\left\{\omega \in V\left(y^{0}, y^{1}, T\right), \quad|\omega|=L|\Omega|\right\} \tag{4}
\end{equation*}
$$

We consider the following NON LINEAR optimal design problem :

$$
\begin{equation*}
\left(\mathcal{P}_{\omega}\right): \inf _{\omega \subset V_{L}\left(y^{0}, y^{1}, T\right)} J\left(\mathcal{X}_{\omega}\right), \quad \text { where } \quad J\left(\mathcal{X}_{\omega}\right)=\frac{1}{2}\left\|v_{\omega}\right\|_{L^{2}((0, T) \times \omega)}^{2} \tag{5}
\end{equation*}
$$

Questions -

- Is the problem well-posed in the class of characteristic functions?
- Usually, the answer is no : the infimum is not reached and the optimal domain is composed of an infinite number of disjoints components
- In this case, what is a well-posed relaxation of $\left(\mathcal{P}_{\omega}\right)$?
- How to approximate an optimal domain ?

3

[^4]$\left(\mathcal{P}_{\omega}\right)$ is related to the following problem ${ }^{4}$
\[

$$
\begin{equation*}
\left(\mathcal{D}_{\omega}\right): \quad \inf _{\omega \in \Omega,|\omega|=L|\Omega|} J_{2}\left(\mathcal{X}_{\omega}\right) \equiv \frac{1}{2} \int_{0}^{T} \int_{\Omega}\left(\left|y_{t}(x, t)\right|^{2}+|\nabla y(x, t)|^{2}\right) d x d t=\int_{0}^{T} E(t) d t \tag{6}
\end{equation*}
$$

\]

where y is the unique solution of the damped wave equation $\left(a \in L^{\infty}\left(\Omega ; \mathbb{R}^{+}\right)\right)$

$$
\begin{cases}y_{t t}-\Delta y+a(x) \mathcal{X}_{\omega} y_{t}=0 & \text { in }(0, T) \times \Omega \tag{7}\\ y=0 & \text { on }(0, T) \times \partial \Omega \\ y(0, \cdot)=y^{0}, \quad y_{t}(0, \cdot)=y^{1} & \text { in } \Omega\end{cases}
$$

[^5] Diff. Equations, 2006

Let us consider the homogeneous equation

$$
\begin{cases}\varphi_{t t}-\Delta \varphi=0, & \Omega \times(0, T) \tag{8}\\ \varphi=0, & \partial \Omega \times(0, T) \\ \left(\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)=\left(\varphi^{0}, \varphi^{1}\right),\right. & \Omega\end{cases}
$$

Lemma (Caracterizations of the controls v_{ω})
$v_{\omega} \in L^{2}(\omega \times(0, T))$ is a control for $\left(y^{0}, y^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ iff

$$
\begin{equation*}
\int_{0}^{T} \int_{\omega} \varphi v_{\omega} d x d t=<\varphi_{t}(\cdot, 0), y^{0}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}-\int_{\Omega} y^{1} \varphi(\cdot, 0) d x, \forall\left(\varphi^{0}, \varphi^{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \tag{9}
\end{equation*}
$$

(9) is an optimality condition for the critical points of $\mathcal{J}: L^{2}(\Omega)$

Let us consider the homogeneous equation

$$
\begin{cases}\varphi_{t t}-\Delta \varphi=0, & \Omega \times(0, T) \tag{8}\\ \varphi=0, & \partial \Omega \times(0, T) \\ \left(\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)=\left(\varphi^{0}, \varphi^{1}\right),\right. & \Omega\end{cases}
$$

Lemma (Caracterizations of the controls v_{ω})
$v_{\omega} \in L^{2}(\omega \times(0, T))$ is a control for $\left(y^{0}, y^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ iff

$$
\begin{equation*}
\int_{0}^{T} \int_{\omega} \varphi v_{\omega} d x d t=<\varphi_{t}(\cdot, 0), y^{0}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}-\int_{\Omega} y^{1} \varphi(\cdot, 0) d x, \forall\left(\varphi^{0}, \varphi^{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \tag{9}
\end{equation*}
$$

(9) is an optimality condition for the critical points of $\mathcal{J}: L^{2}(\Omega)$

Let us consider the homogeneous equation

$$
\begin{cases}\varphi_{t t}-\Delta \varphi=0, & \Omega \times(0, T) \tag{8}\\ \varphi=0, & \partial \Omega \times(0, T) \\ \left(\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)=\left(\varphi^{0}, \varphi^{1}\right),\right. & \Omega\end{cases}
$$

Lemma (Caracterizations of the controls v_{ω})
$v_{\omega} \in L^{2}(\omega \times(0, T))$ is a control for $\left(y^{0}, y^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ iff

$$
\begin{equation*}
\int_{0}^{T} \int_{\omega} \varphi v_{\omega} d x d t=<\varphi_{t}(\cdot, 0), y^{0}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}-\int_{\Omega} y^{1} \varphi(\cdot, 0) d x, \forall\left(\varphi^{0}, \varphi^{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \tag{9}
\end{equation*}
$$

(9) is an optimality condition for the critical points of $\mathcal{J}: L^{2}(\Omega) \times H^{-1}(\Omega) \rightarrow \mathbb{R}$:

$$
\begin{equation*}
\mathcal{J}\left(\varphi^{0}, \varphi^{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\omega} \varphi^{2} d t d x+\left\langle\varphi_{t}(\cdot, 0), y^{0}\right\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}-\int_{\Omega} y^{1} \varphi(\cdot, 0) d x \tag{10}
\end{equation*}
$$

If \mathcal{J} has a minimizer $\left(\varphi^{0}, \varphi^{1}\right) \in L^{2} \times H^{-1}$, then $v_{\omega}=-\varphi \mathcal{X}_{\omega}$ is a control.
Observability inequality (Lions, Haraux)

Let us consider the homogeneous equation

$$
\begin{cases}\varphi_{t t}-\Delta \varphi=0, & \Omega \times(0, T) \tag{8}\\ \varphi=0, & \partial \Omega \times(0, T) \\ \left(\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)=\left(\varphi^{0}, \varphi^{1}\right),\right. & \Omega\end{cases}
$$

Lemma (Caracterizations of the controls v_{ω})
$v_{\omega} \in L^{2}(\omega \times(0, T))$ is a control for $\left(y^{0}, y^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ iff

$$
\begin{equation*}
\int_{0}^{T} \int_{\omega} \varphi v_{\omega} d x d t=<\varphi_{t}(\cdot, 0), y^{0}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}-\int_{\Omega} y^{1} \varphi(\cdot, 0) d x, \forall\left(\varphi^{0}, \varphi^{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \tag{9}
\end{equation*}
$$

(9) is an optimality condition for the critical points of $\mathcal{J}: L^{2}(\Omega) \times H^{-1}(\Omega) \rightarrow \mathbb{R}$:

$$
\begin{equation*}
\mathcal{J}\left(\varphi^{0}, \varphi^{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\omega} \varphi^{2} d t d x+\left\langle\varphi_{t}(\cdot, 0), y^{0}\right\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}-\int_{\Omega} y^{1} \varphi(\cdot, 0) d x \tag{10}
\end{equation*}
$$

If \mathcal{J} has a minimizer $\left(\varphi^{0}, \varphi^{1}\right) \in L^{2} \times H^{-1}$, then $v_{\omega}=-\varphi \mathcal{X}_{\omega}$ is a control.
Observability inequality (Lions, Haraux)

Let us consider the homogeneous equation

$$
\begin{cases}\varphi_{t t}-\Delta \varphi=0, & \Omega \times(0, T) \tag{8}\\ \varphi=0, & \partial \Omega \times(0, T) \\ \left(\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)=\left(\varphi^{0}, \varphi^{1}\right),\right. & \Omega\end{cases}
$$

(Caracterizations of the controls v_{ω})
$v_{\omega} \in L^{2}(\omega \times(0, T))$ is a control for $\left(y^{0}, y^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ iff

$$
\begin{equation*}
\int_{0}^{T} \int_{\omega} \varphi v_{\omega} d x d t=<\varphi_{t}(\cdot, 0), y^{0}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}-\int_{\Omega} y^{1} \varphi(\cdot, 0) d x, \forall\left(\varphi^{0}, \varphi^{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega) \tag{9}
\end{equation*}
$$

(9) is an optimality condition for the critical points of $\mathcal{J}: L^{2}(\Omega) \times H^{-1}(\Omega) \rightarrow \mathbb{R}$:

$$
\begin{equation*}
\mathcal{J}\left(\varphi^{0}, \varphi^{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\omega} \varphi^{2} d t d x+<\varphi_{t}(\cdot, 0), y^{0}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}-\int_{\Omega} y^{1} \varphi(\cdot, 0) d x \tag{10}
\end{equation*}
$$

If \mathcal{J} has a minimizer $\left(\varphi^{0}, \varphi^{1}\right) \in L^{2} \times H^{-1}$, then $v_{\omega}=-\varphi \mathcal{X}_{\omega}$ is a control.
Observability inequality (Lions, Haraux):

$$
\begin{equation*}
\left\|\left(\varphi^{0}, \varphi^{1}\right)\right\|_{L^{2}(\Omega) \times H^{-1}(\Omega)}^{2} \leq C(T, \omega) \int_{0}^{T} \int_{\omega}|\varphi|^{2} d x d t, \quad \forall\left(\varphi^{0}, \varphi^{1}\right) \tag{11}
\end{equation*}
$$

IN PRACTICE, ω being fixed such a control is determined by introducing the isomorphism Λ from $L^{2}(\Omega) \times H^{-1}(\Omega)$ onto $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ defined by $\Lambda\left(\varphi^{0}, \varphi^{1}\right):=\left(\psi_{t}(0),-\psi(0)\right)$ as follows :

$$
\left\{\begin{array} { l l }
{ \varphi _ { t t } - \Delta \varphi = 0 , } & { \Omega \times (0 , T) , } \tag{12}\\
{ \varphi = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (\varphi (\cdot , 0) , \varphi _ { t } (\cdot , 0) = (\varphi ^ { 0 } , \varphi ^ { 1 }) , } & { \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
\psi_{t t}-\Delta \psi=-\varphi \mathcal{X}_{\omega}, & \Omega \times(0, T) \\
\psi=0, \\
\left(\psi(\cdot, T), \psi_{t}(\cdot, T)\right)=(0,0), & \Omega \Omega \times(0, T)
\end{array}\right.\right.
$$

and then solve the linear problem

$$
\begin{equation*}
\Lambda\left(\varphi^{0}, \varphi^{1}\right)=\left(y^{1},-y^{0}\right) \tag{13}
\end{equation*}
$$

The HUM control is $v_{\omega}=-\varphi \mathcal{X}_{\omega}$ and $y=\psi$

IN PRACTICE, ω being fixed such a control is determined by introducing the isomorphism Λ from $L^{2}(\Omega) \times H^{-1}(\Omega)$ onto $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ defined by $\Lambda\left(\varphi^{0}, \varphi^{1}\right):=\left(\psi_{t}(0),-\psi(0)\right)$ as follows :

$$
\left\{\begin{array} { l l }
{ \varphi _ { t t } - \Delta \varphi = 0 , } & { \Omega \times (0 , T) , } \tag{12}\\
{ \varphi = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (\varphi (\cdot , 0) , \varphi _ { t } (\cdot , 0) = (\varphi ^ { 0 } , \varphi ^ { 1 }) , } & { \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
\psi_{t t}-\Delta \psi=-\varphi \mathcal{X}_{\omega}, & \Omega \times(0, T), \\
\psi=0, \\
\left(\psi(\cdot, T), \psi_{t}(\cdot, T)\right)=(0,0), & \Omega \Omega \times(0, T),
\end{array}\right.\right.
$$

and then solve the linear problem

$$
\begin{equation*}
\Lambda\left(\varphi^{0}, \varphi^{1}\right)=\left(y^{1},-y^{0}\right) \tag{13}
\end{equation*}
$$

The HUM control is $v_{\omega}=-\varphi \mathcal{X}_{\omega}$ and $y=\psi$

The HUM control v_{ω} is of minimal $L^{2}(0, T)$ norm !!
\Longrightarrow Problem $\left(\mathcal{P}_{\omega}\right)$ is then "reduced" to find the best HUM control !

Let $\boldsymbol{\theta} \in W^{1, \infty}\left(\Omega, \mathbb{R}^{2}\right), \eta>0$ and the perturbation $\omega^{\eta}=(I+\eta \boldsymbol{\theta})(\omega)$. The Frechet derivative of J in the direction $\boldsymbol{\theta}$ is defined by

$$
\begin{equation*}
\frac{\partial J\left(\mathcal{X}_{\omega}\right)}{\partial \omega} \cdot \boldsymbol{\theta} \equiv \lim _{\eta \rightarrow 0} \frac{J\left(\mathcal{X}_{\omega} \eta\right)-J\left(\mathcal{X}_{\omega}\right)}{\eta} \tag{14}
\end{equation*}
$$

Let $\boldsymbol{\theta} \in W^{1, \infty}\left(\Omega, \mathbb{R}^{2}\right), \eta>0$ and the perturbation $\omega^{\eta}=(I+\eta \boldsymbol{\theta})(\omega)$. The Frechet derivative of J in the direction $\boldsymbol{\theta}$ is defined by

$$
\begin{equation*}
\frac{\partial J\left(\mathcal{X}_{\omega}\right)}{\partial \omega} \cdot \boldsymbol{\theta} \equiv \lim _{\eta \rightarrow 0} \frac{J\left(\mathcal{X}_{\omega} \eta\right)-J\left(\mathcal{X}_{\omega}\right)}{\eta} \tag{14}
\end{equation*}
$$

Let $\left(y^{0}, y^{1}\right) \in\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega)$ and $\omega \in C^{1}(\Omega)$. The derivative of J with respect to ω in the θ-direction exists and is given by the following expression:

$$
\begin{equation*}
\frac{\partial J\left(\mathcal{X}_{\omega}\right)}{\partial \omega} \cdot \boldsymbol{\theta}=\frac{1}{2} \int_{\omega} \int_{0}^{T}\left(2 v_{\omega} V_{\omega}+v_{\omega}^{2} \operatorname{div} \theta\right) d t d x \tag{15}
\end{equation*}
$$

where V_{ω} is the HUM control (of minimal L^{2}-norm) with support ω associated to the following system :

$$
\begin{cases}Y_{t t}-\Delta Y-\nabla(\operatorname{div} \theta) \cdot \nabla y+\operatorname{div}\left(\left(\nabla \boldsymbol{\theta}+\nabla \boldsymbol{\theta}^{T}\right) \cdot \nabla y\right)=V_{\omega} \mathcal{X}_{\omega}, & \Omega \times(0, T), \tag{16}\\ Y=0, & \partial \Omega \times(0, T), \\ \left(Y(\cdot, 0), Y_{t}(\cdot, 0)\right)=\left(\nabla y^{0} \cdot \boldsymbol{\theta}, \nabla y^{1} \cdot \theta\right), & \Omega .\end{cases}
$$

Idea of the Proof. Let assume that $\omega^{\eta}=(I+\eta \theta)(\omega) \in V\left(y^{0}, y^{1}, T\right)$ and let $\left(y^{\eta}(x), v^{\eta}(x)\right)=\left(y\left(x^{\eta}\right), v\left(x^{\eta}\right)\right)$. Let $\mathcal{A}^{\eta}(\boldsymbol{\theta})=\operatorname{det}\left(\nabla \mathcal{F}^{\eta}\right)(I d+\eta \nabla \boldsymbol{\theta})^{-1} \cdot(l d+\eta \nabla \boldsymbol{\theta})^{-T} \cdot\left(y^{\eta}, v^{\eta}\right)$ is solution of

$$
\begin{cases}y_{t t}^{\eta}-\operatorname{det}\left(\nabla \mathcal{F}^{\eta}\right)^{-1} \operatorname{div}\left(\mathcal{A}^{\eta}(\boldsymbol{\theta}) \cdot \nabla y^{\eta}\right)=v^{\eta} \mathcal{X}_{\omega}, & \Omega \times(0, T) \tag{17}\\ y^{\eta}=0, & \partial \Omega \times(0, T), \\ \left(y^{\eta}(\cdot, 0), y_{t}^{\eta}(\cdot, 0)\right)=\left(y^{0}+\eta \nabla y^{0} \cdot \boldsymbol{\theta}, y^{1}+\eta \nabla y^{1} \cdot \boldsymbol{\theta}\right), & \Omega\end{cases}
$$

such that $y^{\eta}(\cdot, T)=0, y_{t}^{\eta}(\cdot, T)=0$ on Ω. This system is controllable thanks to

$$
\begin{equation*}
\operatorname{det}\left(\nabla \mathcal{F}^{\eta}\right)^{-1} \operatorname{div}\left(\mathcal{A}^{\eta}(\boldsymbol{\theta}) \cdot \nabla y^{\eta}\right)=-\Delta y^{\eta}+\eta O\left(\operatorname{div}\left(\nabla y^{\eta}, \boldsymbol{\theta}, \nabla \boldsymbol{\theta}, \nabla^{2} \boldsymbol{\theta}, \ldots\right)\right) \tag{18}
\end{equation*}
$$

The function $-\left(\phi^{\eta}-\phi\right) \mathcal{X}_{\omega}$ associated to the initial condition $\left(\phi^{0 \eta}-\phi^{0}, \phi^{1 \eta}-\phi^{1}\right)$ is a control for the system

such that $\left(\left(y^{\eta}-y\right)(\cdot, T),\left(y^{\eta}-y\right)_{t}(\cdot, T)\right)=(\mathbf{0}, \mathbf{0})$.
We then conclude that $y^{\eta}-y-O(\eta)$, write $y^{\eta}-y+\eta y+O\left(\eta^{2}\right)$ and identify the first Lagrangian derivative Y.

Idea of the Proof. Let assume that $\omega^{\eta}=(I+\eta \theta)(\omega) \in V\left(y^{0}, y^{1}, T\right)$ and let $\left(y^{\eta}(x), v^{\eta}(x)\right)=\left(y\left(x^{\eta}\right), v\left(x^{\eta}\right)\right)$. Let $\mathcal{A}^{\eta}(\boldsymbol{\theta})=\operatorname{det}\left(\nabla \mathcal{F}^{\eta}\right)(I d+\eta \nabla \boldsymbol{\theta})^{-1} \cdot(l d+\eta \nabla \boldsymbol{\theta})^{-T} \cdot\left(y^{\eta}, v^{\eta}\right)$ is solution of

$$
\begin{cases}y_{t t}^{\eta}-\operatorname{det}\left(\nabla \mathcal{F}^{\eta}\right)^{-1} \operatorname{div}\left(\mathcal{A}^{\eta}(\boldsymbol{\theta}) \cdot \nabla y^{\eta}\right)=v^{\eta} \mathcal{X}_{\omega}, & \Omega \times(0, T) \tag{17}\\ y^{\eta}=0, & \partial \Omega \times(0, T) \\ \left(y^{\eta}(\cdot, 0), y_{t}^{\eta}(\cdot, 0)\right)=\left(y^{0}+\eta \nabla y^{0} \cdot \boldsymbol{\theta}, y^{1}+\eta \nabla y^{1} \cdot \boldsymbol{\theta}\right), & \Omega\end{cases}
$$

such that $y^{\eta}(\cdot, T)=0, y_{t}^{\eta}(\cdot, T)=0$ on Ω. This system is controllable thanks to

$$
\begin{equation*}
\operatorname{det}\left(\nabla \mathcal{F}^{\eta}\right)^{-1} \operatorname{div}\left(\mathcal{A}^{\eta}(\boldsymbol{\theta}) \cdot \nabla y^{\eta}\right)=-\Delta y^{\eta}+\eta O\left(\operatorname{div}\left(\nabla y^{\eta}, \boldsymbol{\theta}, \nabla \boldsymbol{\theta}, \nabla^{2} \boldsymbol{\theta}, \ldots\right)\right) \tag{18}
\end{equation*}
$$

The function $-\left(\phi^{\eta}-\phi\right) \mathcal{X}_{\omega}$ associated to the initial condition $\left(\phi^{0 \eta}-\phi^{0}, \phi^{1 \eta}-\phi^{1}\right)$ is a control for the system

$$
\begin{cases}\left(y^{\eta}-y\right)_{t t}-\Delta\left(y^{\eta}-y\right)+\eta F\left(y^{\eta}, \theta\right)=\left(v^{\eta}-v\right) \mathcal{X}_{\omega}, & \Omega \times(0, T) \tag{19}\\ y^{\eta}-y=0, & \partial \Omega \times(0, T) \\ \left(\left(y^{\eta}-y\right)(\cdot, 0),\left(y^{\eta}-y\right)_{t}(\cdot, 0)\right)=\eta\left(\nabla y^{0} \cdot \theta, \nabla y^{1} \cdot \theta\right), & \Omega\end{cases}
$$

such that $\left(\left(y^{\eta}-y\right)(\cdot, T),\left(y^{\eta}-y\right)_{t}(\cdot, T)\right)=(\mathbf{0}, \mathbf{0})$.
We then conclude that $y^{\eta}-y=O(\eta)$, write $y^{\eta}=y+\eta Y+O\left(\eta^{2}\right)$ and identify the first Lagrangian derivative γ

Idea of the Proof. Let assume that $\omega^{\eta}=(I+\eta \theta)(\omega) \in V\left(y^{0}, y^{1}, T\right)$ and let $\left(y^{\eta}(x), v^{\eta}(x)\right)=\left(y\left(x^{\eta}\right), v\left(x^{\eta}\right)\right)$. Let $\mathcal{A}^{\eta}(\boldsymbol{\theta})=\operatorname{det}\left(\nabla \mathcal{F}^{\eta}\right)(I d+\eta \nabla \boldsymbol{\theta})^{-1} \cdot(l d+\eta \nabla \boldsymbol{\theta})^{-T} \cdot\left(y^{\eta}, v^{\eta}\right)$ is solution of

$$
\begin{cases}y_{t t}^{\eta}-\operatorname{det}\left(\nabla \mathcal{F}^{\eta}\right)^{-1} \operatorname{div}\left(\mathcal{A}^{\eta}(\boldsymbol{\theta}) \cdot \nabla y^{\eta}\right)=v^{\eta} \mathcal{X}_{\omega}, & \Omega \times(0, T) \tag{17}\\ y^{\eta}=0, & \partial \Omega \times(0, T), \\ \left(y^{\eta}(\cdot, 0), y_{t}^{\eta}(\cdot, 0)\right)=\left(y^{0}+\eta \nabla y^{0} \cdot \boldsymbol{\theta}, y^{1}+\eta \nabla y^{1} \cdot \boldsymbol{\theta}\right), & \Omega,\end{cases}
$$

such that $y^{\eta}(\cdot, T)=0, y_{t}^{\eta}(\cdot, T)=0$ on Ω. This system is controllable thanks to

$$
\begin{equation*}
\operatorname{det}\left(\nabla \mathcal{F}^{\eta}\right)^{-1} \operatorname{div}\left(\mathcal{A}^{\eta}(\boldsymbol{\theta}) \cdot \nabla y^{\eta}\right)=-\Delta y^{\eta}+\eta O\left(\operatorname{div}\left(\nabla y^{\eta}, \boldsymbol{\theta}, \nabla \boldsymbol{\theta}, \nabla^{2} \boldsymbol{\theta}, \ldots\right)\right) \tag{18}
\end{equation*}
$$

The function $-\left(\phi^{\eta}-\phi\right) \mathcal{X}_{\omega}$ associated to the initial condition $\left(\phi^{0 \eta}-\phi^{0}, \phi^{1 \eta}-\phi^{1}\right)$ is a control for the system

$$
\begin{cases}\left(y^{\eta}-y\right)_{t t}-\Delta\left(y^{\eta}-y\right)+\eta F\left(y^{\eta}, \theta\right)=\left(v^{\eta}-v\right) \mathcal{X}_{\omega}, & \Omega \times(0, T) \tag{19}\\ y^{\eta}-y=0, & \partial \Omega \times(0, T) \\ \left(\left(y^{\eta}-y\right)(\cdot, 0),\left(y^{\eta}-y\right)_{t}(\cdot, 0)\right)=\eta\left(\nabla y^{0} \cdot \theta, \nabla y^{1} \cdot \theta\right), & \Omega\end{cases}
$$

such that $\left(\left(y^{\eta}-y\right)(\cdot, T),\left(y^{\eta}-y\right)_{t}(\cdot, T)\right)=(\mathbf{0}, \mathbf{0})$.
We then conclude that $y^{\eta}-y=O(\eta)$, write $y^{\eta}=y+\eta Y+O\left(\eta^{2}\right)$ and identify the first Lagrangian derivative Y.

Let ν be the outward normal derivative of ω. The derivative of J with respect to ω is given by the following expression:

$$
\begin{equation*}
\frac{\partial J\left(\mathcal{X}_{\omega}\right)}{\partial \omega} \cdot \boldsymbol{\theta}=-\frac{1}{2} \int_{\partial \omega} \int_{0}^{T} v_{\omega}^{2}(x, t) d t \boldsymbol{\theta} \cdot \boldsymbol{\nu} d \sigma \tag{20}
\end{equation*}
$$

where v_{ω} is the HUM control (of minimal L^{2}-norm) with support on ω which drives to the rest at time $t=T$ the solution y of (46).

Theorem

Let ν be the outward normal derivative of ω. The derivative of J with respect to ω is given by the following expression:

$$
\begin{equation*}
\frac{\partial J\left(\mathcal{X}_{\omega}\right)}{\partial \omega} \cdot \boldsymbol{\theta}=-\frac{1}{2} \int_{\partial \omega} \int_{0}^{T} v_{\omega}^{2}(x, t) d t \boldsymbol{\theta} \cdot \boldsymbol{\nu} d \sigma \tag{20}
\end{equation*}
$$

where v_{ω} is the HUM control (of minimal L^{2}-norm) with support on ω which drives to the rest at time $t=T$ the solution y of (46).

The derivative is independent of any adjoint problem !

Theorem

Let ν be the outward normal derivative of ω. The derivative of J with respect to ω is given by the following expression:

$$
\begin{equation*}
\frac{\partial J\left(\mathcal{X}_{\omega}\right)}{\partial \omega} \cdot \boldsymbol{\theta}=-\frac{1}{2} \int_{\partial \omega} \int_{0}^{T} v_{\omega}^{2}(x, t) d t \boldsymbol{\theta} \cdot \boldsymbol{\nu} d \sigma \tag{20}
\end{equation*}
$$

where v_{ω} is the HUM control (of minimal L^{2}-norm) with support on ω which drives to the rest at time $t=T$ the solution y of (46).The derivative is independent of any adjoint problem !

Let ν be the outward normal derivative of ω. The derivative of J with respect to ω is given by the following expression:

$$
\begin{equation*}
\frac{\partial J\left(\mathcal{X}_{\omega}\right)}{\partial \omega} \cdot \boldsymbol{\theta}=-\frac{1}{2} \int_{\partial \omega} \int_{0}^{T} v_{\omega}^{2}(x, t) d t \boldsymbol{\theta} \cdot \boldsymbol{\nu} d \sigma \tag{20}
\end{equation*}
$$

where v_{ω} is the HUM control (of minimal L^{2}-norm) with support on ω which drives to the rest at time $t=T$ the solution y of (46).
-
The derivative is independent of any adjoint problem !

- $\omega_{1} \subset \omega_{2} \subset \Omega \Longrightarrow J\left(\mathcal{X}_{\omega_{2}}\right) \leq J\left(\mathcal{X}_{\omega_{1}}\right)$ (because a descent direction is given by $\theta=c \nu$ with $c \geq 0$)

Proof. [Cea Method, ${ }^{5}$]

$$
\begin{equation*}
\mathcal{L}(\omega, \varphi, \psi, p, q)=\frac{1}{2} \int_{\omega} \int_{0}^{T} \varphi^{2} d x d t+\int_{\Omega} \int_{0}^{T}\left(\varphi_{t t}-\Delta \varphi\right) p d x d t+\int_{\Omega} \int_{0}^{T}\left(\psi_{t t}-\Delta \psi+\mathcal{X}_{\omega} \varphi\right) q d x d t \tag{21}
\end{equation*}
$$

${ }^{5}$ J. Cea, Conception optimale ou identification de formes- calcul rapide de la dérivée directionnelle de la fonction cout, Math. Model. Num. Anal, 1986

Arnaud Münch

Proof. [Cea Method, ${ }^{5}$]

$$
\begin{equation*}
\mathcal{L}(\omega, \varphi, \psi, p, q)=\frac{1}{2} \int_{\omega} \int_{0}^{T} \varphi^{2} d x d t+\int_{\Omega} \int_{0}^{T}\left(\varphi_{t t}-\Delta \varphi\right) p d x d t+\int_{\Omega} \int_{0}^{T}\left(\psi_{t t}-\Delta \psi+\mathcal{X}_{\omega} \varphi\right) q d x d t \tag{21}
\end{equation*}
$$

-

$$
\begin{align*}
\frac{d \mathcal{L}}{d \omega}(\boldsymbol{\theta})= & \left.\frac{\partial}{\partial \omega} \mathcal{L}(\omega, \varphi, \psi, p, q) \cdot \theta+<\frac{\partial}{\partial \varphi} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial \varphi}{\partial \omega} \cdot \boldsymbol{\theta}\right)> \\
& \left.\left.+<\frac{\partial}{\partial \psi} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial \psi}{\partial \omega} \cdot \boldsymbol{\theta}\right)>+<\frac{\partial}{\partial p} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial p}{\partial \omega} \cdot \boldsymbol{\theta}\right)> \tag{22}\\
& \left.+<\frac{\partial}{\partial q} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial q}{\partial \omega} \cdot \boldsymbol{\theta}\right)>
\end{align*}
$$

$$
=\frac{1}{2} \int_{\omega} \int_{0}^{T} \operatorname{div}\left(\varphi^{2} \theta\right) d t d x+\int_{\omega} \int_{0}^{T} \operatorname{div}(\varphi q \theta) d t d x
$$

- $p \in C\left(0, T ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap C^{1}\left(0, T ; H_{0}^{1}(\Omega)\right)$? and $q \in C\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left(0, T ; L^{2}(\Omega)\right)$ such that

for all φ^{1}, ψ^{1} first lagrangian derivatives of φ and ψ
${ }^{5}$ J. Cea, Conception optimale ou identification de formes- calcul rapide de la dérivée directionnelle de la fonction cout, Math. Model. Num. Anal, 1986

Proof. [Cea Method, ${ }^{5}$]

$$
\begin{equation*}
\mathcal{L}(\omega, \varphi, \psi, p, q)=\frac{1}{2} \int_{\omega} \int_{0}^{T} \varphi^{2} d x d t+\int_{\Omega} \int_{0}^{T}\left(\varphi_{t t}-\Delta \varphi\right) p d x d t+\int_{\Omega} \int_{0}^{T}\left(\psi_{t t}-\Delta \psi+\mathcal{X}_{\omega} \varphi\right) q d x d t \tag{21}
\end{equation*}
$$

$$
\begin{align*}
\frac{d \mathcal{L}}{d \omega}(\boldsymbol{\theta})= & \left.\frac{\partial}{\partial \omega} \mathcal{L}(\omega, \varphi, \psi, p, q) \cdot \theta+<\frac{\partial}{\partial \varphi} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial \varphi}{\partial \omega} \cdot \boldsymbol{\theta}\right)> \\
& \left.\left.+<\frac{\partial}{\partial \psi} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial \psi}{\partial \omega} \cdot \boldsymbol{\theta}\right)>+<\frac{\partial}{\partial p} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial p}{\partial \omega} \cdot \boldsymbol{\theta}\right)> \tag{22}\\
& \left.+<\frac{\partial}{\partial q} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial q}{\partial \omega} \cdot \boldsymbol{\theta}\right)>
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial \omega} \mathcal{L}(\omega, \varphi, \psi, p, q) \cdot \theta=\frac{1}{2} \int_{\omega} \int_{0}^{T} \operatorname{div}\left(\varphi^{2} \boldsymbol{\theta}\right) d t d x+\int_{\omega} \int_{0}^{T} \operatorname{div}(\varphi q \boldsymbol{\theta}) d t d x \tag{23}
\end{equation*}
$$

(-) $p \in C\left(0, T ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap C^{1}\left(0, T ; H_{0}^{1}(\Omega)\right)$? and $q \in C\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left(0, T ; L^{2}(\Omega)\right)$ such that
for all φ^{1}, ψ^{1} first lagrangian derivatives of φ and ψ.
${ }^{5}$ J. Cea, Conception optimale ou identification de formes- calcul rapide de la dérivée directionnelle de la fonction cout, Math. Model. Num. Anal, 1986

Proof. [Cea Method, ${ }^{5}$]

$$
\begin{equation*}
\mathcal{L}(\omega, \varphi, \psi, p, q)=\frac{1}{2} \int_{\omega} \int_{0}^{T} \varphi^{2} d x d t+\int_{\Omega} \int_{0}^{T}\left(\varphi_{t t}-\Delta \varphi\right) p d x d t+\int_{\Omega} \int_{0}^{T}\left(\psi_{t t}-\Delta \psi+\mathcal{X}_{\omega} \varphi\right) q d x d t \tag{21}
\end{equation*}
$$

$$
\begin{align*}
\frac{d \mathcal{L}}{d \omega}(\boldsymbol{\theta})= & \left.\frac{\partial}{\partial \omega} \mathcal{L}(\omega, \varphi, \psi, p, q) \cdot \theta+<\frac{\partial}{\partial \varphi} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial \varphi}{\partial \omega} \cdot \boldsymbol{\theta}\right)> \\
& \left.\left.+<\frac{\partial}{\partial \psi} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial \psi}{\partial \omega} \cdot \boldsymbol{\theta}\right)>+<\frac{\partial}{\partial p} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial p}{\partial \omega} \cdot \boldsymbol{\theta}\right)> \tag{22}\\
& \left.+<\frac{\partial}{\partial q} \mathcal{L}(\omega, \varphi, \psi, p, q), \frac{\partial q}{\partial \omega} \cdot \boldsymbol{\theta}\right)>
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial \omega} \mathcal{L}(\omega, \varphi, \psi, p, q) \cdot \theta=\frac{1}{2} \int_{\omega} \int_{0}^{T} \operatorname{div}\left(\varphi^{2} \theta\right) d t d x+\int_{\omega} \int_{0}^{T} \operatorname{div}(\varphi q \theta) d t d x \tag{23}
\end{equation*}
$$

- $p \in C\left(0, T ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap C^{1}\left(0, T ; H_{0}^{1}(\Omega)\right)$? and $q \in C\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left(0, T ; L^{2}(\Omega)\right)$ such that

$$
\begin{equation*}
\left.<\frac{\partial}{\partial \varphi} \mathcal{L}(\omega, \varphi, \psi, p, q), \varphi^{1}>+<\frac{\partial}{\partial \psi} \mathcal{L}(\omega, \varphi, \psi, p, q), \psi^{1}\right)>=0 \tag{24}
\end{equation*}
$$

for all φ^{1}, ψ^{1} first lagrangian derivatives of φ and ψ.
${ }^{5}$ J. Cea, Conception optimale ou identification de formes- calcul rapide de la dérivée directionnelle de la fonction cout, Math. Model. Num. Anal, 1986

Shape derivative - Adjoint solutions (p, q)

- The initial condition $\left(q^{0}, q^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ are such that the solution

$$
\begin{aligned}
& \left\{\begin{array} { l l }
{ q _ { t t } - \Delta q = 0 , } & { \Omega \times (0 , T) , } \\
{ q = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (q (\cdot , 0) , q _ { t } (\cdot , 0)) = (q ^ { 0 } , q ^ { 1 }) , } & { \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
p_{t t}-\Delta p=-(\varphi+q) \mathcal{X}_{\omega}, & \Omega \times(0, T), \\
p=0, \\
\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0), & \Omega \Omega \times(0, T),
\end{array}\right.\right. \\
& \text { ensures }\left(p(\cdot, 0), p_{t}(\cdot, 0)\right)=(0,0) \text { or equivalently, (defining } F
\end{aligned}
$$

Shape derivative - Adjoint solutions (p, q)

- The initial condition $\left(q^{0}, q^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ are such that the solution

$$
\begin{aligned}
& \left\{\begin{array} { l l }
{ q _ { t t } - \Delta q = 0 , } & { \Omega \times (0 , T) , } \\
{ q = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (q (\cdot , 0) , q _ { t } (\cdot , 0)) = (q ^ { 0 } , q ^ { 1 }) , } & { \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
p_{t t}-\Delta p=-(\varphi+q) \mathcal{X}_{\omega}, & \Omega \times(0, T), \\
p=0, \\
\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0), & \Omega \Omega \times(0, T),
\end{array}\right.\right. \\
& \text { ensures }\left(p(\cdot, 0), p_{t}(\cdot, 0)\right)=(0,0) \text { or equivalently, (defining } F
\end{aligned}
$$

Shape derivative - Adjoint solutions (p, q)

- The initial condition $\left(q^{0}, q^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ are such that the solution

$$
\left\{\begin{array} { l l }
{ q _ { t t } - \Delta q = 0 , } & { \Omega \times (0 , T) , } \tag{25}\\
{ q = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (q (\cdot , 0) , q _ { t } (\cdot , 0)) = (q ^ { 0 } , q ^ { 1 }) , } & { \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
p_{t t}-\Delta p=-(\varphi+q) \mathcal{X}_{\omega}, & \Omega \times(0, T) \\
p=0, \\
\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0), & \Omega \Omega \times(0, T)
\end{array}\right.\right.
$$

ensures $\left(p(\cdot, 0), p_{t}(\cdot, 0)\right)=(0,0)$ or equivalently, (defining $\left.F=\varphi+q\right)$
$\left\{\begin{array}{l}F_{t t}-\Delta F=0, \\ F=0, \\ \left(F(\cdot, 0), F_{t}(\cdot, 0)\right)=\left(\varphi^{0}+q^{0}, \varphi^{1}+q^{1}\right),\end{array}\right.$
$\Omega \times(0, T)$,
$\partial \Omega \times(0, T)$,
Ω,$\quad\left\{\begin{array}{l}p_{t t}-\Delta p=-F \mathcal{X}_{\omega}, \\ p=0, \\ \left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0),\end{array}\right.$
$\Omega \times(0, T)$, $\partial \Omega \times(0, T)$, Ω,
(26)

- The initial condition $\left(q^{0}, q^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ are such that the solution

$$
\left\{\begin{array} { l l }
{ q _ { t t } - \Delta q = 0 , } & { \Omega \times (0 , T) , } \tag{25}\\
{ q = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (q (\cdot , 0) , q _ { t } (\cdot , 0)) = (q ^ { 0 } , q ^ { 1 }) , } & { \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
p_{t t}-\Delta p=-(\varphi+q) \mathcal{X}_{\omega}, & \Omega \times(0, T) \\
p=0, \\
\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0), & \Omega \Omega \times(0, T)
\end{array}\right.\right.
$$

ensures $\left(p(\cdot, 0), p_{t}(\cdot, 0)\right)=(0,0)$ or equivalently, (defining $\left.F=\varphi+q\right)$

$$
\left\{\begin{array} { l l }
{ F _ { t t } - \Delta F = 0 , } & { \Omega \times (0 , T) , } \tag{26}\\
{ F = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (F (\cdot , 0) , F _ { t } (\cdot , 0)) = (\varphi ^ { 0 } + q ^ { 0 } , \varphi ^ { 1 } + q ^ { 1 }) , } & { \Omega , }
\end{array} \left\{\begin{array}{ll}
p_{t t}-\Delta p=-F \mathcal{X}_{\omega}, & \Omega \times(0, T), \\
p=0, \\
\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0), & \Omega \Omega \times(0, T),
\end{array}\right.\right.
$$

- $-F \mathcal{X}_{\omega}$ is then the HUM-control which drives the solution p

$$
\text { FROM } \quad\left(p(\cdot, 0), p_{t}(\cdot, 0)\right)=(0,0) \quad \text { TO } \quad\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0)!
$$

$\Longrightarrow F=0$ on $\omega \times(0, T)$ and then (using H
$\Longrightarrow q=-\varphi$ and $p=0$ on $\omega \times(0, T)$ and

- The initial condition $\left(q^{0}, q^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ are such that the solution

$$
\left\{\begin{array} { l l }
{ q _ { t t } - \Delta q = 0 , } & { \Omega \times (0 , T) , } \tag{25}\\
{ q = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (q (\cdot , 0) , q _ { t } (\cdot , 0)) = (q ^ { 0 } , q ^ { 1 }) , } & { \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
p_{t t}-\Delta p=-(\varphi+q) \mathcal{X}_{\omega}, & \Omega \times(0, T) \\
p=0, \\
\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0), & \partial \Omega \times(0, T)
\end{array}\right.\right.
$$

ensures $\left(p(\cdot, 0), p_{t}(\cdot, 0)\right)=(0,0)$ or equivalently, (defining $\left.F=\varphi+q\right)$

$$
\left\{\begin{array} { l l }
{ F _ { t t } - \Delta F = 0 , } & { \Omega \times (0 , T) , } \tag{26}\\
{ F = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (F (\cdot , 0) , F _ { t } (\cdot , 0)) = (\varphi ^ { 0 } + q ^ { 0 } , \varphi ^ { 1 } + q ^ { 1 }) , } & { \Omega , }
\end{array} \left\{\begin{array}{l}
p_{t t}-\Delta p=-F \mathcal{X}_{\omega} \\
p=0, \\
\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0)
\end{array}\right.\right.
$$

$$
\Omega \times(0, T)
$$

$$
\partial \Omega \times(0, T)
$$

$$
\Omega
$$

- $-F \mathcal{X}_{\omega}$ is then the HUM-control which drives the solution p

$$
\text { FROM } \quad\left(p(\cdot, 0), p_{t}(\cdot, 0)\right)=(0,0) \quad \text { TO } \quad\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0)!
$$

$0 \Longrightarrow F=0$ on $\omega \times(0, T)$ and then (using Holmgren Theorem) $F=0$ on $\Omega \times(0, T)$.
$\Longrightarrow q=-\varphi$ and $p=0$ on $\omega \times(0, T)$ and

- The initial condition $\left(q^{0}, q^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ are such that the solution

$$
\left\{\begin{array} { l l }
{ q _ { t t } - \Delta q = 0 , } & { \Omega \times (0 , T) , } \tag{25}\\
{ q = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (q (\cdot , 0) , q _ { t } (\cdot , 0)) = (q ^ { 0 } , q ^ { 1 }) , } & { \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
p_{t t}-\Delta p=-(\varphi+q) \mathcal{X}_{\omega}, & \Omega \times(0, T) \\
p=0, \\
\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0), & \Omega \Omega \times(0, T)
\end{array}\right.\right.
$$

ensures $\left(p(\cdot, 0), p_{t}(\cdot, 0)\right)=(0,0)$ or equivalently, (defining $\left.F=\varphi+q\right)$

$$
\left\{\begin{array} { l l }
{ F _ { t t } - \Delta F = 0 , } & { \Omega \times (0 , T) , } \tag{26}\\
{ F = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (F (\cdot , 0) , F _ { t } (\cdot , 0)) = (\varphi ^ { 0 } + q ^ { 0 } , \varphi ^ { 1 } + q ^ { 1 }) , } & { \Omega , }
\end{array} \left\{\begin{array}{ll}
p_{t t}-\Delta p=-F \mathcal{X}_{\omega}, & \Omega \times(0, T), \\
p=0, \\
\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0), & \Omega \Omega \times(0, T), \\
\end{array}\right.\right.
$$

- $-F \mathcal{X}_{\omega}$ is then the HUM-control which drives the solution p

$$
\text { FROM } \quad\left(p(\cdot, 0), p_{t}(\cdot, 0)\right)=(0,0) \quad \text { TO } \quad\left(p(\cdot, T), p_{t}(\cdot, T)\right)=(0,0)!
$$

$0 \Longrightarrow F=0$ on $\omega \times(0, T)$ and then (using Holmgren Theorem) $F=0$ on $\Omega \times(0, T)$.
$\Longrightarrow q=-\varphi$ and $p=0$ on $\omega \times(0, T)$ and
$\frac{\partial}{\partial \omega} \mathcal{L}(\omega, \varphi, \psi, p, q) \cdot \theta=\frac{1}{2} \int_{0}^{T} \int_{\omega} \operatorname{div}\left(\varphi^{2} \boldsymbol{\theta}\right) d t d x+\int_{0}^{T} \int_{\omega} \operatorname{div}(\varphi q \boldsymbol{\theta}) d t d x=-\frac{1}{2} \int_{0}^{T} \int_{\omega} \operatorname{div}\left(\varphi^{2} \boldsymbol{\theta}\right) d t d x$

Let λ be a Lagrange multiplier and

$$
\begin{equation*}
J_{\lambda}\left(\mathcal{X}_{\omega}\right)=J\left(\mathcal{X}_{\omega}\right)+\lambda\left(\int_{\omega} d x-L \int_{\Omega} d x\right) \tag{28}
\end{equation*}
$$

The derivative of J_{λ} with respect to ω is given by the following expression:

$$
\begin{equation*}
\frac{\partial J_{\lambda}\left(\mathcal{X}_{\omega}\right)}{\partial \omega} \cdot \boldsymbol{\theta}=-\frac{1}{2} \int_{\partial \omega} \int_{0}^{T} v_{\omega}^{2}(x, t) d t \boldsymbol{\theta} \cdot \boldsymbol{\nu} d \sigma+\lambda \int_{\partial \omega} \boldsymbol{\theta} \cdot \boldsymbol{\nu} d \sigma \tag{29}
\end{equation*}
$$

ALGORITHM ${ }^{6} \omega^{(0)} \in V_{L}\left(y^{0}, y^{1}, T\right), \omega^{(k+1)}=\left(I+\eta \theta^{k}\right) \omega^{(k)}, \quad k \geq 0$ with

$$
\begin{equation*}
\theta^{(k)}=\left(\frac{1}{2} \int_{0}^{T} v_{\omega}^{2}(k)(\boldsymbol{x}, t) d t-\lambda^{(k)}\right) \nu^{(\boldsymbol{k})}, \forall x \in \Omega \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{(k)}=\frac{1}{2} \int_{\omega(k)} \operatorname{div}\left(\int_{0}^{T} v_{\omega}^{2}(k)(\boldsymbol{x}, t) d t \boldsymbol{\nu}^{(\boldsymbol{k})}\right) d x / \int_{\omega^{(k)}} \operatorname{div}\left(\boldsymbol{\nu}^{(\boldsymbol{k})}\right) d x \tag{31}
\end{equation*}
$$

${ }^{6}$ M. Burger, A survey on level set methods for inverse problems and optimal design, Eur. J. Appl. Math., 2005

Let λ be a Lagrange multiplier and

$$
\begin{equation*}
J_{\lambda}\left(\mathcal{X}_{\omega}\right)=J\left(\mathcal{X}_{\omega}\right)+\lambda\left(\int_{\omega} d x-L \int_{\Omega} d x\right) \tag{28}
\end{equation*}
$$

The derivative of J_{λ} with respect to ω is given by the following expression:

$$
\begin{equation*}
\frac{\partial J_{\lambda}\left(\mathcal{X}_{\omega}\right)}{\partial \omega} \cdot \boldsymbol{\theta}=-\frac{1}{2} \int_{\partial \omega} \int_{0}^{T} v_{\omega}^{2}(x, t) d t \boldsymbol{\theta} \cdot \boldsymbol{\nu} d \sigma+\lambda \int_{\partial \omega} \boldsymbol{\theta} \cdot \boldsymbol{\nu} d \sigma \tag{29}
\end{equation*}
$$

ALGORITHM ${ }^{6} \omega^{(0)} \in V_{L}\left(y^{0}, y^{1}, T\right), \omega^{(k+1)}=\left(I+\eta \theta^{k}\right) \omega^{(k)}, \quad k \geq 0$ with

$$
\begin{equation*}
\theta^{(k)}=\left(\frac{1}{2} \int_{0}^{T} v_{\omega(k)}^{2}(\boldsymbol{x}, t) d t-\lambda^{(k)}\right) \boldsymbol{\nu}^{(\boldsymbol{k})}, \forall x \in \Omega \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{(k)}=\frac{1}{2} \int_{\omega^{(k)}} \operatorname{div}\left(\int_{0}^{T} v_{\omega^{(k)}}^{2}(\boldsymbol{x}, t) d t \boldsymbol{\nu}^{(\boldsymbol{k})}\right) d x / \int_{\omega}(k) \operatorname{div}\left(\boldsymbol{\nu}^{(\boldsymbol{k})}\right) d x \tag{31}
\end{equation*}
$$

(Fundamental)

if $\omega^{(k)} \in V\left(y^{0}, y^{1}, T\right)$, then $\omega^{(k+1)} \in V\left(y^{0}, y^{1}, T\right)$ because $J\left(\mathcal{X}_{\omega}(k+1)\right) \leq J\left(\mathcal{X}_{\omega}(k)\right)<\infty$
${ }^{6}$ M. Burger, A survey on level set methods for inverse problems and optimal design, Eur. J. Appl. Math., 2005

For any $x_{0} \in \Omega \subset \mathbb{R}^{2}$ and ρ such that $D\left(x_{0}, \rho\right) \subset \Omega$, the functional associated to $\Omega \backslash D\left(x_{0}, \rho\right)$ may be expressed as follows :

$$
\begin{equation*}
J_{\lambda}\left(\mathcal{X}_{\Omega \backslash D\left(x_{0}, \rho\right)}\right)=J_{\lambda}\left(\mathcal{X}_{\Omega}\right)+\pi \rho^{2}(\underbrace{\frac{1}{2} \int_{0}^{T} v_{\Omega}^{2}\left(x_{0}, t\right) d t-\lambda}_{\equiv f\left(x_{0}\right)})+o\left(\rho^{2}\right) \tag{32}
\end{equation*}
$$

in term only of the HUM control v_{Ω} associated to (46) with $\omega=\Omega$.

- The best support of the form $\Omega \backslash D\left(x_{0}, \rho\right)$ is for x_{0} minimizing $f\left(x_{0}\right)$
- Consequently, the best support of the control is the points maximizing f
$\omega^{0}=\left\{x \in \Omega, \frac{1}{2} \int_{0}^{T} v_{\Omega}^{2}(x, t) d t>\lambda\right\}$ with λ such that $\left|\omega^{0}\right|=L|\Omega|$
${ }^{7}$ Sokolowski J, Zochowski A, On the topological derivative in shape optimization, SIAM J. Control. Optim, 1999
Arnaud Münch Optimal design and Controllability

For any $x_{0} \in \Omega \subset \mathbb{R}^{2}$ and ρ such that $D\left(x_{0}, \rho\right) \subset \Omega$, the functional associated to $\Omega \backslash D\left(x_{0}, \rho\right)$ may be expressed as follows :

$$
\begin{equation*}
J_{\lambda}\left(\mathcal{X}_{\Omega \backslash D\left(x_{0}, \rho\right)}\right)=J_{\lambda}\left(\mathcal{X}_{\Omega}\right)+\pi \rho^{2}(\underbrace{\frac{1}{2} \int_{0}^{T} v_{\Omega}^{2}\left(x_{0}, t\right) d t-\lambda}_{\equiv f\left(x_{0}\right)})+o\left(\rho^{2}\right) \tag{32}
\end{equation*}
$$

in term only of the HUM control v_{Ω} associated to (46) with $\omega=\Omega$.

- The best support of the form $\Omega \backslash D\left(\boldsymbol{x}_{\mathbf{0}}, \rho\right)$ is for $\boldsymbol{x}_{\mathbf{0}}$ minimizing $f\left(\boldsymbol{x}_{\mathbf{0}}\right)$
- Consequently, the best support of the control is the points maximizing f
$\omega^{0}=\left\{x \in \Omega, \frac{1}{2} \int_{0}^{T} v_{\Omega}^{2}(x, t) d t>\lambda\right\}$ with λ such that $\left|\omega^{0}\right|=L|\Omega|$.
${ }^{7}$ Sokolowski J, Zochowski A, On the topological derivative in shape optimization, SIAM J. Control. Optim, 1999

For any $x_{0} \in \Omega \subset \mathbb{R}^{2}$ and ρ such that $D\left(x_{0}, \rho\right) \subset \Omega$, the functional associated to $\Omega \backslash D\left(x_{0}, \rho\right)$ may be expressed as follows :

$$
\begin{equation*}
J_{\lambda}\left(\mathcal{X}_{\Omega \backslash D\left(x_{0}, \rho\right)}\right)=J_{\lambda}\left(\mathcal{X}_{\Omega}\right)+\pi \rho^{2}(\underbrace{\frac{1}{2} \int_{0}^{T} v_{\Omega}^{2}\left(x_{0}, t\right) d t-\lambda}_{\equiv f\left(x_{0}\right)})+o\left(\rho^{2}\right) \tag{32}
\end{equation*}
$$

in term only of the HUM control v_{Ω} associated to (46) with $\omega=\Omega$.

- The best support of the form $\Omega \backslash D\left(x_{0}, \rho\right)$ is for $\boldsymbol{x}_{\mathbf{0}}$ minimizing $f\left(\boldsymbol{x}_{\mathbf{0}}\right)$
- Consequently, the best support of the control is the points maximizing f;
$\omega^{0}=\left\{\boldsymbol{x} \in \Omega, \frac{1}{2} \int_{0}^{T} v_{\Omega}^{2}(\boldsymbol{x}, t) d t>\lambda\right\}$ with λ such that $\left|\omega^{0}\right|=L|\Omega|$.
${ }^{7}$ Sokolowski J, Zochowski A, On the topological derivative in shape optimization, SIAM J. Control. Optim, 1999

For any $x_{0} \in \Omega \subset \mathbb{R}^{2}$ and ρ such that $D\left(x_{0}, \rho\right) \subset \Omega$, the functional associated to $\Omega \backslash D\left(x_{0}, \rho\right)$ may be expressed as follows :

$$
\begin{equation*}
J_{\lambda}\left(\mathcal{X}_{\Omega \backslash D\left(x_{0}, \rho\right)}\right)=J_{\lambda}\left(\mathcal{X}_{\Omega}\right)+\pi \rho^{2}(\underbrace{\frac{1}{2} \int_{0}^{T} v_{\Omega}^{2}\left(x_{0}, t\right) d t-\lambda}_{\equiv f\left(x_{0}\right)})+o\left(\rho^{2}\right) \tag{32}
\end{equation*}
$$

in term only of the HUM control v_{Ω} associated to (46) with $\omega=\Omega$.

- The best support of the form $\Omega \backslash D\left(x_{0}, \rho\right)$ is for $\boldsymbol{x}_{\mathbf{0}}$ minimizing $f\left(\boldsymbol{x}_{\mathbf{0}}\right)$
- Consequently, the best support of the control is the points maximizing f;
- INItiALIZATION OF the ALgorithm -

$$
\omega^{0}=\left\{\boldsymbol{x} \in \Omega, \frac{1}{2} \int_{0}^{T} v_{\Omega}^{2}(\boldsymbol{x}, t) d t>\lambda\right\} \text { with } \lambda \text { such that }\left|\omega^{0}\right|=L|\Omega| .
$$

[^6]Find $\left(\varphi_{\boldsymbol{h}}^{0}, \varphi_{\boldsymbol{h}}^{1}\right) \in l_{h}^{2} \times h_{h}^{-1}$ such that $\boldsymbol{\Lambda}_{\boldsymbol{h}}\left(\varphi_{\boldsymbol{h}}^{0}, \varphi_{\boldsymbol{h}}^{1}\right)=\left(\boldsymbol{\psi}_{\boldsymbol{h}}^{1},-\boldsymbol{\psi}_{\boldsymbol{h}}^{\mathbf{0}}\right)=\left(\boldsymbol{y}_{\boldsymbol{h}}^{1},-\boldsymbol{y}_{\boldsymbol{h}}^{0}\right)$ where

$$
\left\{\begin{array} { l l }
{ (\varphi _ { \boldsymbol { h } }) _ { t t } - \Delta _ { \boldsymbol { h } } \varphi _ { \boldsymbol { h } } = 0 , } & { \Omega \times (0 , T) , } \tag{33}\\
{ \boldsymbol { \varphi } _ { \boldsymbol { h } } = 0 , } & { \partial \Omega \times (0 , T) , } \\
{ (\varphi _ { \boldsymbol { h } } (\cdot , 0) , (\boldsymbol { \varphi } _ { \boldsymbol { h } }) _ { t } (\cdot , 0) = (\boldsymbol { \varphi } _ { \boldsymbol { h } } ^ { 0 } , \boldsymbol { \varphi } _ { \boldsymbol { h } } ^ { 1 }) , } & { \Omega , }
\end{array} \quad \left\{\begin{array}{ll}
\left(\boldsymbol{\psi}_{\boldsymbol{h}}\right)_{t t}-\Delta_{\boldsymbol{h}} \boldsymbol{\psi}_{\boldsymbol{h}}=-\boldsymbol{\varphi}_{\boldsymbol{h}} \mathcal{X}_{\omega_{\boldsymbol{h}}}, & \Omega \times(0, T), \\
\boldsymbol{\psi}_{\boldsymbol{h}}=0, \\
\left(\boldsymbol{\psi}_{\boldsymbol{h}}(\cdot, T),\left(\psi_{\boldsymbol{h}}\right)_{t}(\cdot, T)\right)=(0,0), & \partial \Omega \times(0, T),
\end{array}\right.\right.
$$

leading to $\boldsymbol{v}_{\boldsymbol{h}}=-\boldsymbol{\varphi}_{\boldsymbol{h}} \mathcal{X}_{\omega} \in I_{h}^{2}((0, T) \times \omega)$.
Usual finite element method or finite difference method may leads to a divergence of $v_{h}{ }^{8}$:

$$
\begin{equation*}
\left\|v-P\left(v_{\boldsymbol{h}}\right)\right\|_{L^{2}(\Omega)}>C \exp (1 / h) \tag{34}
\end{equation*}
$$

and to a very bad conditioning number:

$$
\begin{equation*}
\operatorname{cond}\left(\boldsymbol{\Lambda}_{\boldsymbol{h}}\right)=O(\exp (1 / h)) \tag{35}
\end{equation*}
$$

\Longrightarrow Problem comes from the spurious high frequencies components.

[^7]The convergence of v_{h} is restored if we use, for instance, the following scheme to solve φ (and the same for ψ):

$$
\begin{equation*}
\left(I+\frac{h^{2}}{4} \partial_{x h}^{2}\right)\left(I+\frac{h^{2}}{4} \partial_{y h}^{2}\right)\left(\boldsymbol{\varphi}_{\boldsymbol{h}}\right)_{t t}-\boldsymbol{\Delta}_{\boldsymbol{h}} \boldsymbol{\varphi}_{\boldsymbol{h}}=0 \tag{36}
\end{equation*}
$$

We observe that $\operatorname{cond}\left(\boldsymbol{\Lambda}_{\boldsymbol{h}}\right)=O\left(h^{-2}\right)$ and

The semi-discrete scheme (36) is uniformly controllable with respect to h.

$$
\begin{equation*}
\left\|\left(\varphi_{h}^{0}, \varphi_{h}^{1}\right)\right\|_{L_{h}^{2} \times H_{h}^{-1}}^{2} \leq C_{h} \int_{0}^{T} \int_{\omega_{h}}\left|\varphi_{h}\right|^{2} d x d t \tag{37}
\end{equation*}
$$

In addition, if $\left(P\left(\boldsymbol{y}_{\boldsymbol{h}}^{\mathbf{0}}\right), P\left(\boldsymbol{y}_{\boldsymbol{h}}^{1}\right)\right)$ converges strongly toward $\left(y^{0}, y^{1}\right)$ in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ as h goes to 0 , then the corresponding control $\tilde{\mathbf{v}}_{\boldsymbol{h}}$ of minimal l^{2}-norm is such that $\lim _{h \rightarrow 0}\left\|P\left(\tilde{\mathbf{v}}_{\boldsymbol{h}}\right)-v\right\|_{L^{2}(((0, T) \times \omega)}=0$.
(see ${ }^{9}$ for the boundary case using mixed finite element).
${ }^{9}$ Castro C., AM, Micu S., Numerical approximations of the boundary control of the 2-D wave equation with mixed finite elements, IMA J. Numer. Analysis, (2007).

- Very efficient finite difference scheme in 1D: ${ }^{10}$:

$$
\begin{equation*}
\Delta_{\Delta t} \phi_{h, \Delta t}+\frac{1}{4}\left(h^{2}-\Delta t^{2}\right) \Delta_{h} \Delta_{\Delta t} \phi_{h, \Delta t}-\Delta_{h} \phi_{h, \Delta t}=0 \tag{38}
\end{equation*}
$$

uniformly controllable (with respect to h and Δt) IIF $\Delta t \leq h \sqrt{T / 2}$

- Very efficient finite difference scheme in 2D (same in 3D) ${ }^{11}$:
+ Newmark strategy is uniformly (with respect to h and Δt) IIF $\Delta t \leq h / \sqrt{2}$.
${ }^{10}$ AM, A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN (2005)

Arnaud Münch
Optimal design and Controllability

- Very efficient finite difference scheme in 1D: ${ }^{10}$:

$$
\begin{equation*}
\Delta_{\Delta t} \phi_{h, \Delta t}+\frac{1}{4}\left(h^{2}-\Delta t^{2}\right) \Delta_{h} \Delta_{\Delta t} \phi_{h, \Delta t}-\Delta_{h} \phi_{h, \Delta t}=0 \tag{38}
\end{equation*}
$$

uniformly controllable (with respect to h and Δt) IIF $\Delta t \leq h \sqrt{T / 2}$

- Very efficient finite difference scheme in 2D (same in 3D) ${ }^{11}$:

$$
\begin{equation*}
\left(I+\frac{h^{2}}{4} \partial_{x h}^{2}\right)\left(I+\frac{h^{2}}{4} \partial_{y h}^{2}\right) \boldsymbol{\Delta}_{\boldsymbol{\Delta} \boldsymbol{t}} \boldsymbol{\varphi}_{\boldsymbol{h}, \boldsymbol{\Delta} \boldsymbol{t}}-\left(I+\frac{h^{2}}{4} \partial_{x h}^{2}\right) \partial_{y h}^{2}-\left(I+\frac{h^{2}}{4} \partial_{y h}^{2}\right) \partial_{x h}^{2}=0 \tag{39}
\end{equation*}
$$

+ Newmark strategy is uniformly (with respect to h and Δt) IIF $\Delta t \leq h / \sqrt{2}$.

[^8]\[

$$
\begin{equation*}
y^{0}(\boldsymbol{x})=\exp ^{-100\left(x_{1}-0.3\right)^{2}-100\left(x_{2}-0.3\right)^{2}} ; \quad y^{1}(\boldsymbol{x})=0, \quad \boldsymbol{x} \in \Omega=(0,1)^{2} \tag{40}
\end{equation*}
$$

\]

Figure: $y_{0}(\boldsymbol{x})$
${ }^{12}$ For numerical animations, see www-math.univ-fcomte.fr/amunch/gallery.htm.

Arnaud Münch

Figure: $T=3$ - Zeros of the initial level set $\psi_{p=3}^{0}$ and of the limit one $\psi_{p=3}^{\lim }-J\left(\mathcal{X}_{\omega_{3}^{0}}\right) \approx 12.50$, $J\left(\mathcal{X}_{\omega_{3}^{\text {lim }}}\right) \approx 6.42$

Figure: $T=3-$ Zeros of the initial level set $\psi_{p=3}^{0}$ and of the limit one $\psi_{p=5^{-}}^{\lim ^{-}} J\left(\mathcal{X}_{\omega_{5}^{0}}\right) \approx 8.47$, $J\left(\mathcal{X}_{\omega_{5}^{\text {lim }}}\right) \approx 5.07$

Figure: $T=3$ - Energy $E(y, t)$ of the system (left) and $\left\|v_{\omega}\right\|_{L^{2}(\omega)}$ (right) vs. t $E(y, T) / E(y, 0) \approx 2.40 \times 10^{-6}$ corresponding to the initial level set function $\psi_{p=3}^{0}(--)$ and to the limit one $\psi_{p=3}^{\lim }(-)$.

Figure: $T=3$ - Evolution of $J_{0}\left(\mathcal{X}_{\omega} k\right)$ (top) and corresponding ratio (41) (bottom) vs. k.

Figure: $T=3$ - Left: Iso-values of $\int_{0}^{T} v_{\Omega}^{2}(\boldsymbol{x}, t) d t$ on Ω - Right :
$\partial \omega^{0}=\left\{\boldsymbol{x} \in \Omega, 1 / 2 \int_{0}^{T}\left(v_{\Omega}(\boldsymbol{x}, t)\right)^{2} d t-\lambda=0\right\}, \lambda \approx 1.5, \omega^{0} \in V\left(y^{0}, y^{1}, T\right)$.

Figure: $T=10$ - Left: Iso-values of $1 / 2 \int_{0}^{T} v_{\Omega}^{2}(\boldsymbol{x}, t) d t$ on Ω - Right :
$\partial \omega^{0} \equiv\left\{\boldsymbol{x} \in \Omega, 1 / 2 \int_{0}^{T}\left(v_{\Omega}(\boldsymbol{x}, t)\right)^{2} d t-\lambda=0\right\}, \lambda \approx 0.82, \omega^{0} \in V\left(y^{0}, y^{1}, T\right)$

Figure: $T=1$ - Left: Iso-values of $1 / 2 \int_{0}^{T} v_{\Omega}^{2}(\boldsymbol{x}, t) d t$ on Ω - Right :
$\partial \omega^{0}=\left\{\boldsymbol{x} \in \Omega, 1 / 2 \int_{0}^{T}\left(v_{\Omega}(\boldsymbol{x}, t)\right)^{2} d t-\lambda=0\right\}, \lambda \approx 5.30, \omega^{0} \notin V\left(T, y^{0}, y^{1}\right)$

Figure: Limit of $\partial \omega_{k}=\left\{\boldsymbol{x} \in \Omega, \psi_{k}(\boldsymbol{x})=0\right\}$ vs. k for $T=1-J\left(\mathcal{X}_{\omega_{p=5}^{0}}\right) \approx 29.321, J\left(\mathcal{X}_{\omega_{p=5}}\right) \approx 15.314$

$$
\begin{equation*}
\left(R P_{\omega}\right): \inf _{s \in L^{\infty}(\Omega)} \frac{1}{2} \int_{\Omega} s(\boldsymbol{x}) \int_{0}^{T} v_{s}^{2}(\boldsymbol{x}, t) d t d x \tag{42}
\end{equation*}
$$

where v_{s} (function of the density s) is such that $s v_{s}$ if the HUM control associated to the unique solution of

$$
\begin{cases}y_{t t}-\Delta y=s(x) v_{s} & \text { in }(0, T) \times \Omega \\ y=0 & \text { on }(0, T) \times \partial \Omega \tag{43}\\ y(0, \cdot)=y^{0}, \quad y_{t}(0, \cdot)=y^{1} & \text { in } \Omega \\ 0 \leq s(x) \leq 1, \quad \int_{\Omega} s(x) d x=L|\Omega| & \text { in } \Omega\end{cases}
$$

\Longrightarrow The set $\left\{\mathcal{X}_{\omega} \in L^{\infty}(\Omega,\{0,1\})\right\}$ is replaced by it convex envelopp $\left\{s \in L^{\infty}(\Omega,[0,1])\right\}$ for the weak-» topology.

Problem $\left(R P_{\omega}\right)$ is a full relaxation of $\left(\mathcal{P}_{\omega}\right)$ in the sense that
there are optimal solutions for (RP ω);
the infimum of $\left(\mathcal{P}_{\omega}\right)$ equals the minimum of $\left(R P_{\omega}\right)$;
if s ic ontimal for (RD), then ontimal sequances of damping subsets ωj for $(\mathcal{P} \omega$) are exactly those for
which the Young measure associated with the sequence of their characteristic functions $\chi_{\omega j}$ is precisely
$s(x) \delta_{1}+(1-s(x)) \delta_{0}$

13
${ }^{13}$ AM., A shape optimal design problem related to the exact controllability of the 2-D wave equation. C.R.Acad. Sci. Paris Serie I (2006)

$$
\begin{equation*}
\left(R P_{\omega}\right): \inf _{s \in L^{\infty}(\Omega)} \frac{1}{2} \int_{\Omega} s(\boldsymbol{x}) \int_{0}^{T} v_{s}^{2}(\boldsymbol{x}, t) d t d x \tag{42}
\end{equation*}
$$

where v_{s} (function of the density s) is such that $s v_{s}$ if the HUM control associated to the unique solution of

$$
\begin{cases}y_{t t}-\Delta y=s(x) v_{s} & \text { in }(0, T) \times \Omega \\ y=0 & \text { on }(0, T) \times \partial \Omega \tag{43}\\ y(0, \cdot)=y^{0}, \quad y_{t}(0, \cdot)=y^{1} & \text { in } \Omega \\ 0 \leq s(x) \leq 1, \quad \int_{\Omega} s(x) d x=L|\Omega| & \text { in } \Omega\end{cases}
$$

\Longrightarrow The set $\left\{\mathcal{X}_{\omega} \in L^{\infty}(\Omega,\{0,1\})\right\}$ is replaced by it convex envelopp $\left\{s \in L^{\infty}(\Omega,[0,1])\right\}$ for the weak- \star topology.

Problem $\left(R P_{\omega}\right)$ is a full relaxation of $\left(\mathcal{P}_{\omega}\right)$ in the sense that

- there are optimal solutions for $\left(R P_{\omega}\right)$;
- the infimum of $\left(\mathcal{P}_{\omega}\right)$ equals the minimum of $\left(R P_{\omega}\right)$;
- if s is optimal for $\left(R P_{\omega}\right)$, then optimal sequences of damping subsets ω_{j} for $\left(\mathcal{P}_{\omega}\right)$ are exactly those for
which the Young measure associated with the sequence of their characteristic functions $\mathcal{X}_{\omega j}$ is precisely
$s(x) \delta_{1}+(1-s(x)) \delta_{0}$

13
${ }^{13}$ AM., A shape optimal design problem related to the exact controllability of the 2-D wave equation. C.R.Acad. Sci. Paris Serie I (2006)

$$
\begin{equation*}
\left(R P_{\omega}\right): \inf _{s \in L^{\infty}(\Omega)} \frac{1}{2} \int_{\Omega} s(\boldsymbol{x}) \int_{0}^{T} v_{s}^{2}(\boldsymbol{x}, t) d t d x \tag{42}
\end{equation*}
$$

where v_{S} (function of the density s) is such that $s v_{S}$ if the HUM control associated to the unique solution of

$$
\begin{cases}y_{t t}-\Delta y=s(x) v_{s} & \text { in }(0, T) \times \Omega \\ y=0 & \text { on }(0, T) \times \partial \Omega \tag{43}\\ y(0, \cdot)=y^{0}, \quad y_{t}(0, \cdot)=y^{1} & \text { in } \Omega \\ 0 \leq s(x) \leq 1, \quad \int_{\Omega} s(x) d x=L|\Omega| & \text { in } \Omega\end{cases}
$$

\Longrightarrow The set $\left\{\mathcal{X}_{\omega} \in L^{\infty}(\Omega,\{0,1\})\right\}$ is replaced by it convex envelopp $\left\{s \in L^{\infty}(\Omega,[0,1])\right\}$ for the weak-* topology.

Problem $\left(R P_{\omega}\right)$ is a full relaxation of $\left(\mathcal{P}_{\omega}\right)$ in the sense that

- there are optimal solutions for $\left(R P_{\omega}\right)$;
- the infimum of $\left(\mathcal{P}_{\omega}\right)$ equals the minimum of $\left(R P_{\omega}\right)$;
- if s is optimal for ($R P_{\omega}$), then optimal sequences of damping subsets ω_{j} for ($\mathcal{P} \omega$) are exactly those for
which the Young measure associated with the sequence of their characteristic functions \mathcal{X}_{ω} is precisely
$s(x) \delta_{1}+(1-s(x)) \delta_{0}$

13
${ }^{13}$ AM., A shape optimal design problem related to the exact controllability of the 2-D wave equation. C.R.Acad. Sci. Paris Serie I (2006)

$$
\begin{equation*}
\left(R P_{\omega}\right): \inf _{s \in L^{\infty}(\Omega)} \frac{1}{2} \int_{\Omega} s(\boldsymbol{x}) \int_{0}^{T} v_{s}^{2}(\boldsymbol{x}, t) d t d x \tag{42}
\end{equation*}
$$

where v_{s} (function of the density s) is such that $s v_{s}$ if the HUM control associated to the unique solution of

$$
\begin{cases}y_{t t}-\Delta y=s(x) v_{s} & \text { in }(0, T) \times \Omega \\ y=0 & \text { on }(0, T) \times \partial \Omega \tag{43}\\ y(0, \cdot)=y^{0}, \quad y_{t}(0, \cdot)=y^{1} & \text { in } \Omega \\ 0 \leq s(x) \leq 1, \quad \int_{\Omega} s(x) d x=L|\Omega| & \text { in } \Omega\end{cases}
$$

\Longrightarrow The set $\left\{\mathcal{X}_{\omega} \in L^{\infty}(\Omega,\{0,1\})\right\}$ is replaced by it convex envelopp $\left\{s \in L^{\infty}(\Omega,[0,1])\right\}$ for the weak- \star topology.

Problem $\left(R P_{\omega}\right)$ is a full relaxation of $\left(\mathcal{P}_{\omega}\right)$ in the sense that

- there are optimal solutions for $\left(R P_{\omega}\right)$;
- the infimum of $\left(\mathcal{P}_{\omega}\right)$ equals the minimum of $\left(R P_{\omega}\right)$;
- if s is optimal for $\left(R P_{\omega}\right)$, then optimal sequences of damping subsets ω_{j} for $\left(\mathcal{P}_{\omega}\right)$ are exactly those for which the Young measure associated with the sequence of their characteristic functions $\mathcal{X}_{\omega_{j}}$ is precisely

$$
\begin{equation*}
s(x) \delta_{1}+(1-s(x)) \delta_{0} \tag{44}
\end{equation*}
$$

13
${ }^{13}$ AM., A shape optimal design problem related to the exact controllability of the 2-D wave equation. C.R.Acad. Sci. Paris Serie I (2006)

Let $\Omega=(0,1)^{2}$, and $\left(u^{0}, u^{1}\right)=\left(e^{-80\left(x_{1}-0.3\right)^{2}-80\left(x_{2}-0.3\right)^{2}}, 0\right)$ and $L=1 / 10$

Iso-value of the optimal density s on Ω for $T=0.5, T=1, T=3$

- $\{x \in \Omega, 0<s(x)<1\}=\emptyset,\left(P_{\omega}\right)=\left(R P_{\omega}\right)$ and is well-posed

Let $\Omega=(0,1)^{2}$, and $\left(u^{0}, u^{1}\right)=\left(e^{-80\left(x_{1}-0.3\right)^{2}-80\left(x_{2}-0.3\right)^{2}}, 0\right)$ and $L=1 / 10$

Figure: Limit density function $s^{\text {lim }}$ for $T=0.5$ (top left), $T=1.5$ (top right), $T=2.5$ (bottom left) and $T=3$ (bottom right) initialized with $s^{0}=L=0.15$ on $\Omega=(0,1)$

Optimal design + Approximate controllability for the heat equation

For any $u^{0}, u_{T} \in L^{2}(\Omega), \epsilon, \epsilon_{1}, T$ (u_{T} is the target)

$$
\begin{equation*}
\left(\mathcal{P}_{\omega}\right): \inf _{\omega \subset \Omega,|\omega|=L|\Omega|} I\left(\mathcal{X}_{\omega}\right), \quad \text { where } \quad I\left(\mathcal{X}_{\omega}\right)=\frac{1}{2}\left\|v_{\omega}\right\|_{L^{2}((0, T) \times \omega)}^{2}+\frac{\epsilon^{-1}}{2}\left\|u_{T}-u(T)\right\|_{L^{2}(\Omega)}^{2} \tag{45}
\end{equation*}
$$

where $v_{\omega} \in L^{2}(\omega \times(0, T))$ is the approximate control for

$$
\begin{cases}u_{t}-\Delta u=v_{\omega} \mathcal{X}_{\omega}, & \Omega \times(0, T), \tag{46}\\ u=0, & \partial \Omega \times(0, T), \\ u(\cdot, 0)=u^{0}, & \Omega,\end{cases}
$$

so that $\left\|u(., T)-u_{T}\right\|_{L^{2}(\Omega)} \leq \epsilon_{1}$.

$$
\begin{equation*}
u^{0}(x)=\sin (\pi x), \quad u_{T}(x)=e^{-100(x-0.5)^{2}}, \quad \epsilon^{-1}=5 \times 10^{-4}, \quad L=1 / 5, \quad T=0.5 \tag{47}
\end{equation*}
$$

Characteristic functions associated to the optimal density: $I\left(\mathcal{X}_{\omega}\right) \approx 22.4597 I\left(s^{\text {opt }}\right) \approx 22.4479$

For instance, for the HEAT equation, the problem is :

$$
\begin{equation*}
\left(\mathcal{C}_{\omega}\right) \inf _{\omega \subset \Omega} \underbrace{\sup _{T \in L^{2}(\Omega)} \frac{\int_{\Omega} \varphi^{2}(x, 0) d x}{\int_{\omega} \int_{0}^{T} \varphi^{2}(x, t) d x d t}}_{c_{o b s}(\omega, T)} \tag{48}
\end{equation*}
$$

where φ is solution of (the backward heat equation)

$$
\begin{cases}\varphi_{t}+\Delta \varphi=0, & \Omega \times(0, T) \tag{49}\\ \varphi(x, t)=0, & \partial \Omega \times(0, T) \\ \varphi(x, T)=\varphi_{T}(x) & \Omega\end{cases}
$$

Introducing the solution y of

$$
\begin{cases}y_{t}-\Delta y=\mathcal{X}_{\omega} \varphi, & \Omega \times(0, T) \tag{50}\\ y=0, & \partial \Omega \times(0, T) \\ y(\cdot, 0)=0, & \Omega\end{cases}
$$

we arrive at

$$
\begin{equation*}
\int_{\omega} \int_{0}^{T} \varphi^{2}(x, t) d x d t=\int_{\Omega} y(T) \varphi_{T} d x \tag{51}
\end{equation*}
$$

If we note $\Lambda\left(\varphi_{T}\right)=y(T)$ and $A\left(\varphi_{T}\right)=\varphi(0)$, then

$$
\begin{equation*}
C_{o b s}(\omega, T)=\sup _{\varphi_{T} \in L^{2}(\Omega)} \frac{\int_{\Omega} A\left(\varphi_{T}\right) A\left(\varphi_{T}\right) d x}{\int_{\Omega} \Lambda\left(\varphi_{T}\right) \varphi_{T} d x} \equiv \sup _{\varphi_{T} \in L^{2}(\Omega)} \frac{\left(A^{2}\left(\varphi_{T}\right), \varphi_{T}\right)}{\left(\Lambda\left(\varphi_{T}\right), \varphi_{T}\right)} \tag{52}
\end{equation*}
$$

14
${ }^{14}$ Work in progress with F. Hubert and F. Boyer (Marseille, LATP, France)
$N=1-\Omega=(0,1)$

Figure: $T=1$; Eigenfunction φ_{T} for $\omega=(0.2,0.4)$
$C_{o b s}(\omega, T) \approx 19.12$

$$
\begin{equation*}
\frac{\partial C_{o b s}(\omega)}{\partial \omega} \cdot \theta=-C(\phi, \omega) \int_{\omega} \operatorname{div}\left(\int_{0}^{T} \phi^{2}(x, t) d t \theta\right) d x \tag{53}
\end{equation*}
$$

with

$$
\begin{equation*}
C(\phi, \omega)=\frac{\|\phi(\cdot, 0)\|_{L^{2}(\Omega)}^{2}}{\|\phi\|_{L^{2}(\omega \times(0, T))}^{4}} \tag{54}
\end{equation*}
$$

\Longrightarrow Once again, a restriction on $|\omega|=L|\Omega|$ is necessary in order to avoid the optimal trivial solution $\omega=\Omega$

(Topological Derivative)

Let $\Omega \subset \operatorname{mon}^{N}$ Let $x_{0} \in \Omega$ and $D\left(x_{0}, p\right)$ the ball of center x_{0} and radius p. Then,

$$
C_{o b s}\left(\Omega \backslash D\left(x_{0}, \rho\right)\right)=C_{o b s}(\Omega)+\left|D\left(x_{0}, \rho\right)\right| C(\phi, \Omega) \int_{0}^{T} \phi^{2}\left(x_{0}, t\right) d t+o\left(\rho^{N}\right)
$$

Theorem (Shape derivative)

$$
\begin{equation*}
\frac{\partial C_{o b s}(\omega)}{\partial \omega} \cdot \theta=-C(\phi, \omega) \int_{\omega} \operatorname{div}\left(\int_{0}^{T} \phi^{2}(x, t) d t \theta\right) d x \tag{53}
\end{equation*}
$$

with

$$
\begin{equation*}
C(\phi, \omega)=\frac{\|\phi(\cdot, 0)\|_{L^{2}(\Omega)}^{2}}{\|\phi\|_{L^{2}(\omega \times(0, T))}^{4}} \tag{54}
\end{equation*}
$$

\Longrightarrow Once again, a restriction on $|\omega|=L|\Omega|$ is necessary in order to avoid the optimal trivial solution $\omega=\Omega$

(Topological Derivative)

Let $\Omega \subset \mathbb{R}^{N}$. Let $x_{0} \in \Omega$ and $D\left(x_{0}, \rho\right)$ the ball of center \boldsymbol{x}_{0} and radius ρ. Then,

$$
\begin{equation*}
C_{o b s}\left(\Omega \backslash D\left(x_{0}, \rho\right)\right)=C_{o b s}(\Omega)+\left|D\left(x_{0}, \rho\right)\right| C(\phi, \Omega) \int_{0}^{T} \phi^{2}\left(x_{0}, t\right) d t+o\left(\rho^{N}\right) \tag{55}
\end{equation*}
$$

Figure: $|\omega|=1 / 5-h=1 / 200-T=1-c=0.1-$ Optimal density and characteristic function $C_{S^{\text {opt }, T}} \approx 1.1792$
\Longrightarrow The optimal position is approximatively uniformly distributed on Ω

M	1	2	3	4	5	7	9	$+\infty$
$C_{o b s}\left(\omega_{M}\right)$	2.3160	3.1713	1.5812	1.4429	1.3430	1.2774	1.2385	$\mathbf{1 . 1 7 9 2}$

Table: $|\omega|=1 / 5-h=1 / 200-T=1-c=0.1$ - Convergence of the observability constant toward the optimal one

- The ultimate (open but challenging!) goal is to consider TIME-DEPENDENT support of the form

$$
\begin{equation*}
\{\omega(t)\} \times(0, T), \quad \text { with } \quad \omega(t) \subset \Omega, \forall t \in(0, T) \tag{56}
\end{equation*}
$$

[^0]: ${ }^{2}$ A. Haraux, A generalized internal control for the wave equation in a rectangle, J. Math. Anal:(1990)

[^1]: ${ }^{3}$ M. Asch - G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - A numerical study ; Esaim Cocv, 1998

[^2]: ${ }^{3}$ M. Asch - G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - A numerical study ; Esaim Cocv, 1998

[^3]: ${ }^{3}$ M. Asch - G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - A numerical study ; Esaim Cocv, 1998

[^4]: ${ }^{3}$ M. Asch - G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - A numerical study ; Esaim Cocv, 1998

[^5]: ${ }^{4}$ AM, P. Pedregal, F. Periago, Optimal design of the damping set for the stabilization of the wave equation, J.

[^6]: ${ }^{7}$ Sokolowski J, Zochowski A, On the topological derivative in shape optimization, SIAM J. Control. Optim, 1999

[^7]: ${ }^{8}$ Glowinski-Li-Lions, A numerical approach to exact boundary controllability of the wave equation, Int. J. Numer. Methods. Eng., 1989

[^8]: ${ }^{10}$ AM, A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN (2005)
 ${ }^{11}$ AM, An implicit scheme uniformly controllable for the 2-D wave equation, J. Sci. Comp.

