Relaxation of optimal design problems

Arnaud MÜNCH

Laboratoire de Mathématiques
Université de Franche-Comté
Besançon, France

TOURS - December 2008

works in collaboration with F. Maestre (Sevilla), P. Pedregal (Ciudad Real) and F. Periago (Cartagena)

Problem I: Optimal design and stabilization of the wave equation

[Fahroo-Ito, 97], [Freitas, 98], [Hebard-Henrot, 03, 05], [Henrot-Maillot, 05], [AM, Pedegral, Periago, JDE 06], [AM, AMCS 09]

Let $\Omega \subset \mathbb{R}^{N}, N=1,2, a \in L^{\infty}\left(\Omega, \mathbb{R}^{+}\right), L \in(0,1), T>0,\left(u^{0}, u^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)^{1}$,

$$
\begin{equation*}
\left(P_{\omega}^{1}\right): \quad \inf _{\mathcal{X}_{\omega}} I\left(\mathcal{X}_{\omega}\right)=\int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|\nabla u|^{2}\right) d x d t \tag{1}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\Delta u+a(\boldsymbol{x}) \mathcal{X}_{\omega} u_{t}=0 & (0, T) \times \Omega \tag{2}\\ u=0 & (0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \{0\} \times \Omega \\ \mathcal{X}_{\omega} \in L^{\infty}(\Omega ;\{0,1\}), & \\ \left\|\mathcal{X}_{\omega}\right\|_{L^{1}(\Omega)} \leq L\left\|\mathcal{X}_{\Omega}\right\|_{L^{1}(\Omega)} & \end{cases}
$$

${ }^{1}$ AM, P. Pedregal, F. Periago, Optimal design of the damping set for the stabilization of the wave equation, JDE (2006)

Optimal (α, β) spatio-temporal distribution for the wave equation

[Maestre-AM-Pedegral, IFB 08] ${ }^{2}$

- Let $\Omega \subset \mathbb{R}, 0<\alpha<\beta<\infty, L \in(0,1), T>0,\left(u^{0}, u^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

$$
\begin{equation*}
\left(P_{\omega}^{2}\right): \quad \inf _{\mathcal{X}_{\boldsymbol{\omega}}} I\left(\mathcal{X}_{\boldsymbol{\omega}}\right)=\int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+a\left(t, \boldsymbol{x}, \mathcal{X}_{\boldsymbol{\omega}}\right)|\nabla u|^{2}\right) d x d t \tag{3}
\end{equation*}
$$

with for instance

$$
\begin{equation*}
a\left(t, \boldsymbol{x}, \mathcal{X}_{\boldsymbol{\omega}}\right)=1 \quad \text { (quadratic) } \quad \text { or } \quad a\left(t, \boldsymbol{x}, \mathcal{X}_{\boldsymbol{\omega}}\right)=\alpha \mathcal{X}_{\boldsymbol{\omega}}+\beta\left(1-\mathcal{X}_{\boldsymbol{\omega}}\right) \quad \text { (compliance) } \tag{4}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\operatorname{div}\left(\left[\alpha \mathcal{X}_{\boldsymbol{\omega}}+\beta\left(1-\mathcal{X}_{\boldsymbol{\omega}}\right)\right] \nabla u\right)=0 & (0, T) \times \Omega \tag{5}\\ u=0 & (0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \Omega, \\ \mathcal{X}_{\boldsymbol{\omega}} \in L^{\infty}((0, T) \times \Omega ;\{0,1\}), & (0, T) \\ \left\|\mathcal{X}_{\boldsymbol{\omega}}\right\|_{L^{1}(\Omega)} \leq L\left\|\mathcal{X}_{\Omega}\right\|_{L^{1}(\Omega)} & \end{cases}
$$

- ω depends on \boldsymbol{x} AND on t : Dynamical material [Lurie 99, 00, 02].
${ }^{2}$ F. Maestre, AM, P. Pedregal, Optimal design under the one-dimensional wave equation, Interfaces and Free Boundaries (2008)

Optimal (α, β) spatio-temporal distribution for the wave equation

[Maestre-AM-Pedegral, IFB 08] ${ }^{2}$

- Let $\Omega \subset \mathbb{R}, 0<\alpha<\beta<\infty, L \in(0,1), T>0,\left(u^{0}, u^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

$$
\begin{equation*}
\left(P_{\omega}^{2}\right): \quad \inf _{\mathcal{X}_{\boldsymbol{\omega}}} I\left(\mathcal{X}_{\boldsymbol{\omega}}\right)=\int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+a\left(t, \boldsymbol{x}, \mathcal{X}_{\boldsymbol{\omega}}\right)|\nabla u|^{2}\right) d x d t \tag{3}
\end{equation*}
$$

with for instance

$$
\begin{equation*}
a\left(t, \boldsymbol{x}, \boldsymbol{\mathcal { X }}_{\boldsymbol{\omega}}\right)=1 \quad \text { (quadratic) } \quad \text { or } \quad a\left(t, \boldsymbol{x}, \boldsymbol{\mathcal { X }}_{\boldsymbol{\omega}}\right)=\alpha \mathcal{X}_{\boldsymbol{\omega}}+\beta\left(1-\mathcal{X}_{\boldsymbol{\omega}}\right) \quad \text { (compliance) } \tag{4}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\operatorname{div}\left(\left[\alpha \mathcal{X}_{\boldsymbol{\omega}}+\beta\left(1-\mathcal{X}_{\boldsymbol{\omega}}\right)\right] \nabla u\right)=0 & (0, T) \times \Omega \tag{5}\\ u=0 & (0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \Omega, \\ \mathcal{X}_{\boldsymbol{\omega}} \in L^{\infty}((0, T) \times \Omega ;\{0,1\}), & (0, T) \\ \left\|\mathcal{X}_{\boldsymbol{\omega}}\right\|_{L^{1}(\Omega)} \leq L\left\|\mathcal{X}_{\Omega}\right\|_{L^{1}(\Omega)} & \end{cases}
$$

- ω depends on \boldsymbol{x} AND on t : Dynamical material [Lurie 99, 00, 02].

[^0]
Optimal (α, β) distribution for the damped wave equation

[Maestre, AM, Pedregal, SIAM Appl. Math. 07] ${ }^{3}$

- Simultaneous optimization w.r.t. to $\omega_{1} \subset(0, T) \times \Omega$ et $\omega_{2} \subset \Omega$

$$
\begin{equation*}
\left(P_{\omega}^{3}\right): \inf _{\mathcal{X}_{\omega_{1}}, \mathcal{X}_{\omega_{2}}} I\left(\mathcal{X}_{\omega_{1}}, \mathcal{X}_{\omega_{2}}\right)=\int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+a\left(t, \boldsymbol{x}, \mathcal{X}_{\omega_{1}}\right)|\nabla u|^{2}\right) d x d t \tag{6}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \left\{\begin{array}{ll}
u_{t t}-\operatorname{div}\left(\left[\alpha \mathcal{X}_{\omega_{1}}+\beta\left(1-\mathcal{X}_{\omega_{1}}\right)\right] \nabla u\right)+a(\boldsymbol{x}) \mathcal{X}_{\omega_{2}} u_{t}=0 & (0, T) \times \Omega, \\
u=0 & (0, T) \times \partial \Omega, \\
u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} \\
\mathcal{X}_{\omega_{1}} \in L^{\infty}(\Omega \times(0, T) ;\{0,1\}), & \{0\} \times \Omega, \\
\mathcal{X}_{\omega_{2}} \in L^{\infty}(\Omega ;\{0,1\}), & (0, T) \\
\left\|\mathcal{X}_{\omega_{1}}(t, \cdot)\right\|_{L^{1}(\Omega)} \leq L_{\text {des }}\left\|\mathcal{X}_{\Omega}\right\|_{L^{1}(\Omega)}, & \\
\left\|\mathcal{X}_{\omega_{2}}\right\|_{L^{1}(\Omega)} \leq L_{\text {dam }}\left\|\mathcal{X}_{\Omega}\right\|_{L^{1}(\Omega)}, & \\
L_{\text {dam }}, L_{\text {des }} \in(0,1) . &
\end{array} .\right.
\end{align*}
$$

[^1]
Formal resolution of $\left(P_{\omega}^{1}\right)$ using the level-set method

[Allaire-Jouve-Toader 03], [Wang-Wang-Zuo 03], [Burger-Osher 05], ...

$$
\begin{gather*}
\left(u^{0}(\boldsymbol{x}), u^{1}(\boldsymbol{x})=\left(\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right), 0\right), \Omega=(0,1)^{2}, T=1, L=1 / 10, a(\boldsymbol{x})=\boldsymbol{a} \mathcal{X}_{\omega}(\boldsymbol{x})\right. \tag{8}\\
E(\omega, \boldsymbol{a}, T)-E(\omega, 0, T)=-\frac{\boldsymbol{a} \alpha}{4}(2 \alpha T-\sin (2 \alpha T)) \int_{\omega}\left(u_{0}(\boldsymbol{x})\right)^{2} d x+o(\boldsymbol{a}), \forall T \geq 0 \tag{9}
\end{gather*}
$$

Figure: $\boldsymbol{a}=\mathbf{1 0}$. - Invariance of $\{\boldsymbol{x} \in \Omega, \psi(\boldsymbol{x})=0\}$ w.r.t. initialization $\{\boldsymbol{x} \in \Omega, \psi(\boldsymbol{x})=0\}$.

Formal resolution of $\left(P_{\omega}^{1}\right)$ using the level-set method

Figure: $\boldsymbol{a}=\mathbf{2 5}$. - Loss of invariance of $\{\boldsymbol{x} \in \Omega, \psi(\boldsymbol{x})=0\}$.

III-posed problem

- Such optimal design problems are usually not well-posed (Murat counter's example in the elliptic case)Infima are not reached in $L^{\infty}(\Omega \times(0, T),\{0,1\})$Minimizing sequences exhibit finer and finer scale.How to compute a relaxed well-posed reformulation, says $\left(R P_{\omega}\right)$, of these problems?How to extract from a minimizer of the relaxed nroblem (RP) a minimizing sequence of (P_{ω}) ?

III-posed problem

- Such optimal design problems are usually not well-posed (Murat counter's example in the elliptic case)
- Infima are not reached in $L^{\infty}(\Omega \times(0, T),\{0,1\})$
- Minimizing sequences exhibit finer and finer scale.
- How to compute a relaxed well-posed reformulation, says $\left(R P_{\omega}\right)$, of these problems?
- How to extract from a minimizer of the relaxed problem ($R P_{\omega}$) a minimizing sequence of (P_{ω}) ?

III-posed problem

- Such optimal design problems are usually not well-posed (Murat counter's example in the elliptic case)
- Infima are not reached in $L^{\infty}(\Omega \times(0, T),\{0,1\})$
- Minimizing sequences exhibit finer and finer scale.
- How to compute a relaxed well-posed reformulation, says $\left(R P_{\omega}\right)$, of these problems ?
- How to extract from a minimizer of the relaxed problem (DD) a minimizing sequence of (P_{W}) ?

III-posed problem

- Such optimal design problems are usually not well-posed (Murat counter's example in the elliptic case)
- Infima are not reached in $L^{\infty}(\Omega \times(0, T),\{0,1\})$
- Minimizing sequences exhibit finer and finer scale.
- How to compute a relaxed well-posed reformulation, says $\left(R P_{\omega}\right)$, of these problems ?
- How to extract from a minimizer of the relaxed problem $\left(R P_{\omega}\right)$ a minimizing sequence of (P_{ω}) ?

III-posed problem

- Such optimal design problems are usually not well-posed (Murat counter's example in the elliptic case)
- Infima are not reached in $L^{\infty}(\Omega \times(0, T),\{0,1\})$
- Minimizing sequences exhibit finer and finer scale.
- How to compute a relaxed well-posed reformulation, says $\left(R P_{\omega}\right)$, of these problems ?
- How to extract from a minimizer of the relaxed problem $\left(R P_{\omega}\right)$ a minimizing sequence of $\left(P_{\omega}\right)$?
- Approach I: Homogeneization (G-convergence, 「- limit,)[Tartar, Murat,]
- Approach II: Vectorial reformulation + Young Measure [Dacorogna, Michaille, Pedregal ${ }^{4}$, ...

[^2]
III-posed problem

- Such optimal design problems are usually not well-posed (Murat counter's example in the elliptic case)
- Infima are not reached in $L^{\infty}(\Omega \times(0, T),\{0,1\})$
- Minimizing sequences exhibit finer and finer scale.
- How to compute a relaxed well-posed reformulation, says $\left(R P_{\omega}\right)$, of these problems ?
- How to extract from a minimizer of the relaxed problem $\left(R P_{\omega}\right)$ a minimizing sequence of (P_{ω}) ?
- Approach I: Homogeneization (G-convergence, Г- limit,)[Tartar, Murat,]
- Approach II: Vectorial reformulation + Young Measure [Dacorogna, Michaille, Pedregal ${ }^{4}$, ...

[^3]- Such optimal design problems are usually not well-posed (Murat counter's example in the elliptic case)
- Infima are not reached in $L^{\infty}(\Omega \times(0, T),\{0,1\})$
- Minimizing sequences exhibit finer and finer scale.
- How to compute a relaxed well-posed reformulation, says $\left(R P_{\omega}\right)$, of these problems ?
- How to extract from a minimizer of the relaxed problem $\left(R P_{\omega}\right)$ a minimizing sequence of $\left(P_{\omega}\right)$?
- Approach I: Homogeneization (G-convergence, Г- limit,)[Tartar, Murat,]
- Approach II: Vectorial reformulation + Young Measure [Dacorogna, Michaille, Pedregal ${ }^{4}, \ldots$]

[^4]
Relaxation for the problem (P_{ω}^{1})

$$
\begin{equation*}
\left(R P_{\omega}^{1}\right): \quad i n f_{s \in L \infty}(\Omega) \int_{0}^{T} \int_{\Omega}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x d t \tag{10}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\Delta u+a(x) s(x) u_{t}=0 & \text { in }(0, T) \times \Omega \tag{11}\\ u=0 & \text { on }(0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \text { in } \Omega \\ 0 \leq s(x) \leq 1, \quad \int_{\Omega} s(x) d x \leq L|\Omega| & \text { in } \Omega\end{cases}
$$

(AM - Pedregal - Periago (06))
Problem $\left(R P_{\omega}^{1}\right)$ is a full relaxation of $\left(P_{\omega}^{1}\right)$ in the sense that

- there are optimal solutions for $\left(R P_{\omega}^{1}\right)$;
- the infimum of $\left(P_{\omega}^{1}\right)$ equals the minimum of $\left(R P_{\omega}^{1}\right)$;
- if s is ontimal for $\left(R P^{1}\right)$, then ontimal seauences of dar ping subsets ω for $\left(P_{\mu}^{1}\right)$ are exactly those for which the Young measure associated with the sequence of their characteristic functions $\mathcal{X}_{\omega_{j}}$ is precisely

$$
\begin{equation*}
s(x) \delta_{1}+(1-s(x)) \delta_{0} \tag{12}
\end{equation*}
$$

Relaxation for the problem (P_{ω}^{1})

$$
\begin{equation*}
\left(R P_{\omega}^{1}\right): \quad i n f_{s \in L \infty}(\Omega) \int_{0}^{T} \int_{\Omega}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x d t \tag{10}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\Delta u+a(x) s(x) u_{t}=0 & \text { in }(0, T) \times \Omega \tag{11}\\ u=0 & \text { on }(0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \text { in } \Omega \\ 0 \leq s(x) \leq 1, \quad \int_{\Omega} s(x) d x \leq L|\Omega| & \text { in } \Omega\end{cases}
$$

(AM - Pedregal - Periago (06))
Problem $\left(R P_{\omega}^{1}\right)$ is a full relaxation of $\left(P_{\omega}^{1}\right)$ in the sense that

- there are optimal solutions for $\left(R P_{\omega}^{1}\right)$;
- the infimum of $\left(P_{\omega}^{1}\right)$ equals the minimum of $\left(R P_{\omega}^{1}\right)$;
- if s is optimal for $\left(R P_{\omega}^{1}\right)$, then optimal sequences of damping subsets ω_{j} for $\left(P_{\omega}^{1}\right)$ are exactly those for which the Young measure associated with the sequence of their characteristic functions $\mathcal{X}_{\omega_{j}}$ is precisely

Relaxation for the problem (P_{ω}^{1})

$$
\begin{equation*}
\left(R P_{\omega}^{1}\right): \quad i n f_{s \in L \infty(\Omega)} \int_{0}^{T} \int_{\Omega}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x d t \tag{10}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\Delta u+a(x) s(x) u_{t}=0 & \text { in }(0, T) \times \Omega \tag{11}\\ u=0 & \text { on }(0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \text { in } \Omega \\ 0 \leq s(x) \leq 1, \quad \int_{\Omega} s(x) d x \leq L|\Omega| & \text { in } \Omega\end{cases}
$$

(AM - Pedregal - Periago (06))
Problem $\left(R P_{\omega}^{1}\right)$ is a full relaxation of $\left(P_{\omega}^{1}\right)$ in the sense that

- there are optimal solutions for $\left(R P_{\omega}^{1}\right)$;
- the infimum of $\left(P_{\omega}^{1}\right)$ equals the minimum of $\left(R P_{\omega}^{1}\right)$;
- if s is optimal for $\left(R P_{\omega}^{1}\right)$, then optimal sequences of damping subsets ω_{j} for $\left(P_{\omega}^{1}\right)$ are exactly those for which the Young measure associated with the sequence of their characteristic functions $\mathcal{X}_{\omega_{j}}$ is precisely

Relaxation for the problem (P_{ω}^{1})

$$
\begin{equation*}
\left(R P_{\omega}^{1}\right): \quad \inf _{s \in L \infty}(\Omega) \int_{0}^{T} \int_{\Omega}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x d t \tag{10}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\Delta u+a(x) s(x) u_{t}=0 & \text { in }(0, T) \times \Omega \tag{11}\\ u=0 & \text { on }(0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \text { in } \Omega \\ 0 \leq s(x) \leq 1, \quad \int_{\Omega} s(x) d x \leq L|\Omega| & \text { in } \Omega\end{cases}
$$

(AM - Pedregal - Periago (06))

Problem $\left(R P_{\omega}^{1}\right)$ is a full relaxation of $\left(P_{\omega}^{1}\right)$ in the sense that

- there are optimal solutions for $\left(R P_{\omega}^{1}\right)$;
- the infimum of $\left(P_{\omega}^{1}\right)$ equals the minimum of $\left(R P_{\omega}^{1}\right)$;
- if s is optimal for $\left(R P_{\omega}^{1}\right)$, then optimal sequences of damping subsets ω_{j} for $\left(P_{\omega}^{1}\right)$ are exactly those for which the Young measure associated with the sequence of their characteristic functions $\mathcal{X}_{\omega_{j}}$ is precisely

$$
\begin{equation*}
s(x) \delta_{1}+(1-s(x)) \delta_{0} \tag{12}
\end{equation*}
$$

Proof of Theorem 1 for $N=1$ - Step 1: Variational reformulation of $\left(P_{\omega}^{1}\right)$

- Assuming ω time independent, we have (we note Div $=\left(\partial_{t}, \partial_{x}\right)$)

$$
\begin{equation*}
u_{t t}-\Delta u+a(x) \mathcal{X}_{\omega} u_{t}=0 \Longleftrightarrow \operatorname{Div}\left(u_{t}+a(x) \mathcal{X}_{\omega} u,-u_{x}\right)=0 \tag{13}
\end{equation*}
$$

$\Longrightarrow \exists v \in H^{1}((0, T) \times \Omega)$ such that $u_{t}+a(x) \mathcal{X}_{\omega} u=v_{x}$ and $-u_{x}=-v_{t}$

- Let the vector field $U(t, x)=(u(t, x), v(t, x)) \in\left(H^{1}((0, T) \times(0,1))\right)^{2}$ and the two sets of matrices

where $M^{(i)}, i=1,2$ stands for the i-th row of the matrix $M, \lambda \in \mathbb{R}$ and $e_{1}=\binom{1}{0}$

Proof of Theorem 1 for $N=1$ - Step 1: Variational reformulation of $\left(P_{\omega}^{1}\right)$

- Assuming ω time independent, we have (we note Div $=\left(\partial_{t}, \partial_{x}\right)$)

$$
\begin{equation*}
u_{t t}-\Delta u+a(x) \mathcal{X}_{\omega} u_{t}=0 \Longleftrightarrow \operatorname{Div}\left(u_{t}+a(x) \mathcal{X}_{\omega} u,-u_{x}\right)=0 \tag{13}
\end{equation*}
$$

$\Longrightarrow \exists v \in H^{1}((0, T) \times \Omega)$ such that $u_{t}+a(x) \mathcal{X}_{\omega} u=v_{x}$ and $-u_{x}=-v_{t}$

$$
\begin{equation*}
A \nabla u+B \nabla v=-a \mathcal{X}_{\omega} \bar{u} \tag{14}
\end{equation*}
$$

where $\nabla u=\binom{u_{t}}{u_{x}}, \nabla v=\binom{v_{t}}{v_{x}}, \bar{u}=\binom{u}{0}, A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
$\omega=\{x \in \Omega, A \nabla u+B \nabla v=-a(x) \bar{u}\} \quad$ and $\quad \Omega \backslash \omega=\{x \in \Omega, A \nabla u+B \nabla v=0\}$

- Let the vector field $U(t, x$

where $M^{(i)}, i=1,2$ stands for the i-th row of the matrix $M, \lambda \in \mathbb{R}$ and $e_{1}=\binom{1}{0}$

Proof of Theorem 1 for $N=1$ - Step 1: Variational reformulation of $\left(P_{\omega}^{1}\right)$

- Assuming ω time independent, we have (we note Div $=\left(\partial_{t}, \partial_{x}\right)$)

$$
\begin{equation*}
u_{t t}-\Delta u+a(x) \mathcal{X}_{\omega} u_{t}=0 \Longleftrightarrow \operatorname{Div}\left(u_{t}+a(x) \mathcal{X}_{\omega} u,-u_{x}\right)=0 \tag{13}
\end{equation*}
$$

$\Longrightarrow \exists v \in H^{1}((0, T) \times \Omega)$ such that $u_{t}+a(x) \mathcal{X}_{\omega} u=v_{x}$ and $-u_{x}=-v_{t}$

$$
\begin{equation*}
A \nabla u+B \nabla v=-a \mathcal{X}_{\omega} \bar{u} \tag{14}
\end{equation*}
$$

$$
\text { where } \nabla u=\binom{u_{t}}{u_{x}}, \nabla v=\binom{v_{t}}{v_{x}}, \bar{u}=\binom{u}{0}, A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{equation*}
\omega=\{x \in \Omega, A \nabla u+B \nabla v=-a(x) \bar{u}\} \quad \text { and } \quad \Omega \backslash \omega=\{x \in \Omega, A \nabla u+B \nabla v=0\} \tag{15}
\end{equation*}
$$

(1) Let the vector field $U(t, x)=(u(t, x), v(t, x)) \in\left(H^{1}((0, T) \times(0,1))\right)^{2}$ and the two sets of matrices

where $M^{(i)}, i=1,2$ stands for the i-th row of the matrix $M, \lambda \in \mathbb{R}$ and $e_{1}=\binom{1}{0}$

Proof of Theorem 1 for $N=1$ - Step 1: Variational reformulation of $\left(P_{\omega}^{1}\right)$

- Assuming ω time independent, we have (we note Div $=\left(\partial_{t}, \partial_{x}\right)$)

$$
\begin{equation*}
u_{t t}-\Delta u+a(x) \mathcal{X}_{\omega} u_{t}=0 \Longleftrightarrow \operatorname{Div}\left(u_{t}+a(x) \mathcal{X}_{\omega} u,-u_{x}\right)=0 \tag{13}
\end{equation*}
$$

$\Longrightarrow \exists v \in H^{1}((0, T) \times \Omega)$ such that $u_{t}+a(x) \mathcal{X}_{\omega} u=v_{x}$ and $-u_{x}=-v_{t}$

$$
\begin{equation*}
A \nabla u+B \nabla v=-a \mathcal{X}_{\omega} \bar{u} \tag{14}
\end{equation*}
$$

where $\nabla u=\binom{u_{t}}{u_{x}}, \nabla v=\binom{v_{t}}{v_{x}}, \bar{u}=\binom{u}{0}, A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

$$
\begin{equation*}
\omega=\{x \in \Omega, A \nabla u+B \nabla v=-a(x) \bar{u}\} \quad \text { and } \quad \Omega \backslash \omega=\{x \in \Omega, A \nabla u+B \nabla v=0\} \tag{15}
\end{equation*}
$$

- Let the vector field $U(t, x)=(u(t, x), v(t, x)) \in\left(H^{1}((0, T) \times(0,1))\right)^{2}$ and the two sets of matrices

$$
\left\{\begin{array}{l}
\Lambda_{0}=\left\{M \in \mathcal{M}^{2 \times 2}: A M^{(1)}+B M^{(2)}=0\right\} \tag{16}\\
\Lambda_{1, \lambda}=\left\{M \in \mathcal{M}^{2 \times 2}: A M^{(1)}+B M^{(2)}=\lambda e_{1}\right\}
\end{array}\right.
$$

where $M^{(i)}, i=1,2$ stands for the i-th row of the matrix $M, \lambda \in \mathbb{R}$ and $e_{1}=\binom{1}{0}$.
\qquad

Proof of Theorem 1 for $N=1$ - Step 1: Variational reformulation of $\left(P_{\omega}^{1}\right)$

- Assuming ω time independent, we have (we note Div $=\left(\partial_{t}, \partial_{x}\right)$)

$$
\begin{equation*}
u_{t t}-\Delta u+a(x) \mathcal{X}_{\omega} u_{t}=0 \Longleftrightarrow \operatorname{Div}\left(u_{t}+a(x) \mathcal{X}_{\omega} u,-u_{x}\right)=0 \tag{13}
\end{equation*}
$$

$\Longrightarrow \exists v \in H^{1}((0, T) \times \Omega)$ such that $u_{t}+a(x) \mathcal{X}_{\omega} u=v_{x}$ and $-u_{x}=-v_{t}$

$$
\begin{equation*}
A \nabla u+B \nabla v=-a \mathcal{X}_{\omega} \bar{u} \tag{14}
\end{equation*}
$$

where $\nabla u=\binom{u_{t}}{u_{x}}, \nabla v=\binom{v_{t}}{v_{x}}, \bar{u}=\binom{u}{0}, A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

$$
\begin{equation*}
\omega=\{x \in \Omega, A \nabla u+B \nabla v=-a(x) \bar{u}\} \quad \text { and } \quad \Omega \backslash \omega=\{x \in \Omega, A \nabla u+B \nabla v=0\} \tag{15}
\end{equation*}
$$

- Let the vector field $U(t, x)=(u(t, x), v(t, x)) \in\left(H^{1}((0, T) \times(0,1))\right)^{2}$ and the two sets of matrices

$$
\left\{\begin{array}{l}
\Lambda_{0}=\left\{M \in \mathcal{M}^{2 \times 2}: A M^{(1)}+B M^{(2)}=0\right\} \tag{16}\\
\Lambda_{1, \lambda}=\left\{M \in \mathcal{M}^{2 \times 2}: A M^{(1)}+B M^{(2)}=\lambda e_{1}\right\}
\end{array}\right.
$$

where $M^{(i)}, i=1,2$ stands for the i-th row of the matrix $M, \lambda \in \mathbb{R}$ and $e_{1}=\binom{1}{0}$.

$$
\begin{equation*}
\omega=\left\{x \in \Omega, \nabla U \in \Lambda_{1,-a(x) U^{(1)}}\right\}, \quad \Omega \backslash \omega=\left\{x \in \Omega, \nabla U \in \Lambda_{0}\right\} \tag{17}
\end{equation*}
$$

Proof of Theorem 1 for $N=1$ - Step 1: Variational reformulation of P_{ω}^{1}

- Then considering the two following functions $W, V: \mathcal{M}^{2 \times 2} \rightarrow \mathbb{R} \cup\{+\infty\}$

$$
W(x, U, M)=\left\{\begin{array}{ll}
\left|M^{(1)}\right|^{2}, & M \in \Lambda_{0} \cup \Lambda_{1,-a(x)} U^{(1)} \tag{18}\\
+\infty, & \text { else }
\end{array} \quad V(x, U, M)= \begin{cases}1, & M \in \Lambda_{1,-a(x) U^{(1)}} \\
0, & M \in \Lambda_{0} \backslash \Lambda_{1,-a(x) U^{(1)}} \\
+\infty, & \text { else }\end{cases}\right.
$$

the optimization problem $\left(P_{\omega}^{1}\right)$ is equivalent to the following vector variational problem

$$
\left(V P_{\omega}^{1}\right) \quad m \equiv \inf _{U} \int_{0}^{T} \int_{0}^{1} W(x, U(t, x), \nabla U(t, x)) d x d t
$$

subject to

- This procedure transforms the scalar optimization problem $\left(P_{\omega}^{1}\right)$, with differentiable, integrable and pointwise constraints, into a non-convex, vector variational prohlem (VP1) with only nointwise and integral constraints.

Proof of Theorem 1 for $N=1$ - Step 1: Variational reformulation of P_{ω}^{1}

- Then considering the two following functions $W, V: \mathcal{M}^{2 \times 2} \rightarrow \mathbb{R} \cup\{+\infty\}$
$W(x, U, M)=\left\{\begin{array}{ll}\left|M^{(1)}\right|^{2}, & M \in \Lambda_{0} \cup \Lambda_{1,-a(x)} U^{(1)} \\ +\infty, & \text { else }\end{array} \quad V(x, U, M)= \begin{cases}1, & M \in \Lambda_{1,-a(x) U^{(1)}} \\ 0, & M \in \Lambda_{0} \backslash \Lambda_{1,-a(x) U(1)} \\ +\infty, & \text { else }\end{cases}\right.$
- the optimization problem $\left(P_{\omega}^{1}\right)$ is equivalent to the following vector variational problem

$$
\begin{equation*}
\left(V P_{\omega}^{1}\right) \quad m \equiv \inf _{U} \int_{0}^{T} \int_{0}^{1} W(x, U(t, x), \nabla U(t, x)) d x d t \tag{19}
\end{equation*}
$$

subject to

$$
\begin{cases}U=(u, v) \in\left(H^{1}((0, T) \times(0,1))\right)^{2} & \tag{20}\\ U^{(1)}(t, 0)=U^{(1)}(t, 1)=0, & t \in(0, T) \\ U^{(1)}(0, x)=u^{0}(x), \quad U_{t}^{(1)}(0, x)=u^{1}(x), & x \in \Omega \\ \int_{0}^{1} V(x, U(t, x), \nabla U(t, x)) d x \leq L|\Omega|, & t \in(0, T) .\end{cases}
$$

- This procedure transforms the scalar optimization problem $\left(P_{\omega}^{1}\right)$, with differentiable, integrable and pointurise constraints, into a non-conves, vector variational prohlem (VI) with only pointwise and integral constraints.

Proof of Theorem 1 for $N=1$ - Step 1: Variational reformulation of P_{ω}^{1}

- Then considering the two following functions $W, V: \mathcal{M}^{2 \times 2} \rightarrow \mathbb{R} \cup\{+\infty\}$
$W(x, U, M)=\left\{\begin{array}{ll}\left|M^{(1)}\right|^{2}, & M \in \Lambda_{0} \cup \Lambda_{1,-a(x) U^{(1)}} \\ +\infty, & \text { else }\end{array} \quad V(x, U, M)= \begin{cases}1, & M \in \Lambda_{1,-a(x)} U^{(1)} \\ 0, & M \in \Lambda_{0} \backslash \Lambda_{1,-a(x)} U^{(1)} \\ +\infty, & \text { else }\end{cases}\right.$
- the optimization problem $\left(P_{\omega}^{1}\right)$ is equivalent to the following vector variational problem

$$
\begin{equation*}
\left(V P_{\omega}^{1}\right) \quad m \equiv \inf _{U} \int_{0}^{T} \int_{0}^{1} W(x, U(t, x), \nabla U(t, x)) d x d t \tag{19}
\end{equation*}
$$

subject to

$$
\begin{cases}U=(u, v) \in\left(H^{1}((0, T) \times(0,1))\right)^{2} & \tag{20}\\ U^{(1)}(t, 0)=U^{(1)}(t, 1)=0, & t \in(0, T) \\ U^{(1)}(0, x)=u^{0}(x), \quad U_{t}^{(1)}(0, x)=u^{1}(x), & x \in \Omega \\ \int_{0}^{1} V(x, U(t, x), \nabla U(t, x)) d x \leq L|\Omega|, & t \in(0, T) .\end{cases}
$$

- This procedure transforms the scalar optimization problem $\left(P_{\omega}^{1}\right)$, with differentiable, integrable and pointwise constraints, into a non-convex, vector variational problem $\left(V P_{\omega}^{1}\right)$ with only pointwise and integral constraints.

Young measures (basic property)

- A Young measure is a family of probability measures $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ associated with a sequence of functions $f_{j}: \Omega \subset \mathbb{R}^{N} \rightarrow A$, such that $\operatorname{supp}\left(\nu_{x}\right) \subset A$, depending measurably on $x \in \Omega$, i.e. for any continuous $\phi: A \rightarrow R$, the function

$$
\begin{equation*}
x \rightarrow \bar{\phi}(x)=\int_{A} \phi(\lambda) d \nu_{x}(\lambda) \quad \text { is measurable } \tag{21}
\end{equation*}
$$

- Example : let $f(x)=2 \mathcal{X}_{[0,1 / 2[}-1$ for $x \in[0,1] 1$-periodic and $f_{j}(x)=f(j x), j \in \mathbb{N}$. For any $\phi: \mathbb{R} \rightarrow \mathbb{R}$ continuous

$$
\lim \int_{0}^{1} \phi\left(f_{j}(x)\right) d x=\frac{1}{2}(\phi(1)+\phi(-1)), \quad v=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)
$$

- For any sequel $\left\{\phi\left(f_{j}\right)\right\}(\phi: A \rightarrow R)$ weakly convergent in $L^{\infty}(\Omega)-\star$, the weak-limit is expressed in terms of ν :

$$
\lim \int_{\Omega} \phi(f) h(x) d x=\int_{\Omega} h(x) \int_{A} \phi(\lambda) d v_{x}(x) d x \quad \forall h \in L^{1}(\Omega) .
$$

Young measures (basic property)

- A Young measure is a family of probability measures $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ associated with a sequence of functions $f_{j}: \Omega \subset \mathbb{R}^{N} \rightarrow A$, such that $\operatorname{supp}\left(\nu_{x}\right) \subset A$, depending measurably on $x \in \Omega$, i.e. for any continuous $\phi: A \rightarrow R$, the function

$$
\begin{equation*}
x \rightarrow \bar{\phi}(x)=\int_{A} \phi(\lambda) d \nu_{x}(\lambda) \quad \text { is measurable } \tag{21}
\end{equation*}
$$

- Example : let $f(x)=2 \mathcal{X}_{[0,1 / 2[}-1$ for $x \in[0,1] 1$-periodic and $f_{j}(x)=f(j x), j \in \mathbb{N}$. For any $\phi: \mathbb{R} \rightarrow \mathbb{R}$ continuous

$$
\begin{equation*}
\lim _{j} \int_{0}^{1} \phi\left(f_{j}(x)\right) d x=\frac{1}{2}(\phi(1)+\phi(-1)), \quad \nu=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right) \tag{22}
\end{equation*}
$$

- For any sequel $\left\{\phi\left(f_{j}\right)\right\}(\phi: A \rightarrow R)$ weakly convergent in $L^{\infty}(\Omega)-\star$, the weak-limit is expressed in terms of ν :

$$
\lim _{j} \int_{\Omega} \phi\left(f_{j}\right) h(x) d x=\int_{\Omega} h(x) \int_{A} \phi(\lambda) d \nu_{x}(\lambda) d x \quad \forall h \in L^{1}(\Omega) .
$$

Young measures (basic property)

- A Young measure is a family of probability measures $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ associated with a sequence of functions $f_{j}: \Omega \subset \mathbb{R}^{N} \rightarrow A$, such that $\operatorname{supp}\left(\nu_{x}\right) \subset A$, depending measurably on $x \in \Omega$, i.e. for any continuous $\phi: A \rightarrow R$, the function

$$
\begin{equation*}
x \rightarrow \bar{\phi}(x)=\int_{A} \phi(\lambda) d \nu_{x}(\lambda) \quad \text { is measurable } \tag{21}
\end{equation*}
$$

- Example : let $f(x)=2 \mathcal{X}_{[0,1 / 2[}-1$ for $x \in[0,1] 1$-periodic and $f_{j}(x)=f(j x), j \in \mathbb{N}$. For any $\phi: \mathbb{R} \rightarrow \mathbb{R}$ continuous

$$
\begin{equation*}
\lim _{j} \int_{0}^{1} \phi\left(f_{j}(x)\right) d x=\frac{1}{2}(\phi(1)+\phi(-1)), \quad \nu=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right) \tag{22}
\end{equation*}
$$

- For any sequel $\left\{\phi\left(f_{j}\right)\right\}(\phi: A \rightarrow R)$ weakly convergent in $L^{\infty}(\Omega)-\star$, the weak-limit is expressed in terms of ν :

$$
\begin{equation*}
\lim _{j} \int_{\Omega} \phi\left(f_{j}\right) h(x) d x=\int_{\Omega} h(x) \int_{\boldsymbol{A}} \phi(\boldsymbol{\lambda}) d \nu_{x}(\boldsymbol{\lambda}) d x \quad \forall h \in L^{1}(\Omega) \tag{23}
\end{equation*}
$$

Young measures

(Fundamental theorem of the Young measures)

Let $\Omega \subset \mathbb{R}^{N}$ be a measurable set and let $z_{j}: \Omega \rightarrow \mathbb{R}^{m}$ be measurable functions such that $\sup _{j} \int_{\Omega} g\left(\left|z_{j}\right|\right) d x<\infty$, where $g:[0, \infty) \rightarrow[0, \infty)$ is a continuous, nondecreasing function such that $\lim _{t \rightarrow \infty} g(t)=\infty$. There exist a subsequence, not relabeled, and a family of probability measures $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ depending measurably on x with the property that whenever the sequence $\left\{\psi\left(x, z_{j}(x)\right)\right\}$ is weakly convergent in $L^{1}(\Omega)$ for any Carathéodory function $\psi(x, \lambda): \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{\star}$, the weak limit is the function

$$
\begin{equation*}
\int_{\mathbb{R}^{m}} \psi(x, \lambda) d \nu_{x}(\lambda) \tag{24}
\end{equation*}
$$

Assume that $\left\{W\left(\nabla U_{j}\right)\right\}$ is weakly convergent in $L^{1}((0, T) \times \Omega)$ where U_{j} is a minimizing sequence for the cost, we have

where $\nu=\left\{\nu_{x}, t\right\}$ is the Young measure associated with $\left\{\nabla U_{j}\right\}$. [Kinderleher-Pedregal, 92].

Morever, if $\int_{\mathcal{M}^{2 \times 2}} W(x, t, A) d \nu_{x, t}(A) \geq W\left(x, t, \int_{\mathcal{M}^{2 \times 2}} A d \nu_{x, t}(A)\right)$ then

(26)

Young measures

(Fundamental theorem of the Young measures)

Let $\Omega \subset \mathbb{R}^{N}$ be a measurable set and let $z_{j}: \Omega \rightarrow \mathbb{R}^{m}$ be measurable functions such that $\sup _{j} \int_{\Omega} g\left(\left|z_{j}\right|\right) d x<\infty$, where $g:[0, \infty) \rightarrow[0, \infty)$ is a continuous, nondecreasing function such that $\lim _{t \rightarrow \infty} g(t)=\infty$. There exist a subsequence, not relabeled, and a family of probability measures $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ depending measurably on x with the property that whenever the sequence $\left\{\psi\left(x, z_{j}(x)\right)\right\}$ is weakly convergent in $L^{1}(\Omega)$ for any Carathéodory function $\psi(x, \lambda): \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{\star}$, the weak limit is the function

$$
\begin{equation*}
\int_{\mathbb{R}^{m}} \psi(x, \lambda) d \nu_{x}(\lambda) \tag{24}
\end{equation*}
$$

Assume that $\left\{W\left(\nabla U_{j}\right)\right\}$ is weakly convergent in $L^{1}((0, T) \times \Omega)$ where U_{j} is a minimizing sequence for the cost, we have

where $\nu=\left\{\nu_{x}, t\right\}$ is the Young measure associated with $\left\{\nabla U_{j}\right\}$. [Kinderleher-Pedregal, 92].

Morever, if $\int_{\mathcal{M}^{2 \times 2}} W(x, t, A) d \nu_{x, t}(A) \geq W\left(x, t, \int_{\mathcal{M}^{2 \times 2}} A d \nu_{x, t}(A)\right)$ then

(26)

Young measures

(Fundamental theorem of the Young measures)

Let $\Omega \subset \mathbb{R}^{N}$ be a measurable set and let $z_{j}: \Omega \rightarrow \mathbb{R}^{m}$ be measurable functions such that $\sup _{j} \int_{\Omega} g\left(\left|z_{j}\right|\right) d x<\infty$, where $g:[0, \infty) \rightarrow[0, \infty)$ is a continuous, nondecreasing function such that $\lim _{t \rightarrow \infty} g(t)=\infty$. There exist a subsequence, not relabeled, and a family of probability measures $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ depending measurably on x with the property that whenever the sequence $\left\{\psi\left(x, z_{j}(x)\right)\right\}$ is weakly convergent in $L^{1}(\Omega)$ for any Carathéodory function $\psi(x, \lambda): \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{\star}$, the weak limit is the function

$$
\begin{equation*}
\int_{\mathbb{R}^{m}} \psi(x, \lambda) d \nu_{x}(\lambda) \tag{24}
\end{equation*}
$$

Assume that $\left\{W\left(\nabla U_{j}\right)\right\}$ is weakly convergent in $L^{1}((0, T) \times \Omega)$ where U_{j} is a minimizing sequence for the cost, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{0}^{T} \int_{\Omega} W\left(x, t, \nabla U_{j}(x, t)\right) d x d t=\int_{0}^{T} \int_{\Omega} \int_{\mathcal{M}^{2 \times 2}} W(x, t, A) d \nu_{x, t}(A) d x d t \tag{25}
\end{equation*}
$$

where $\nu=\left\{\nu_{x, t}\right\}$ is the Young measure associated with $\left\{\nabla U_{j}\right\}$. [Kinderleher-Pedregal, 92].

Morever, if $\int_{\mathcal{M}^{2 \times 2}} W(x, t, A) d \nu_{x, t}(A) \geq W\left(x, t, \int_{\mathcal{M}^{2 \times 2}} A d \nu_{x, t}(A)\right)$ then

Young measures

(Fundamental theorem of the Young measures)

Let $\Omega \subset \mathbb{R}^{N}$ be a measurable set and let $z_{j}: \Omega \rightarrow \mathbb{R}^{m}$ be measurable functions such that $\sup _{j} \int_{\Omega} g\left(\left|z_{j}\right|\right) d x<\infty$, where $g:[0, \infty) \rightarrow[0, \infty)$ is a continuous, nondecreasing function such that $\lim _{t \rightarrow \infty} g(t)=\infty$. There exist a subsequence, not relabeled, and a family of probability measures $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ depending measurably on x with the property that whenever the sequence $\left\{\psi\left(x, z_{j}(x)\right)\right\}$ is weakly convergent in $L^{1}(\Omega)$ for any Carathéodory function $\psi(x, \lambda): \Omega \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{\star}$, the weak limit is the function

$$
\begin{equation*}
\int_{\mathbb{R}^{m}} \psi(x, \lambda) d \nu_{x}(\lambda) \tag{24}
\end{equation*}
$$

Assume that $\left\{W\left(\nabla U_{j}\right)\right\}$ is weakly convergent in $L^{1}((0, T) \times \Omega)$ where U_{j} is a minimizing sequence for the cost, we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{0}^{T} \int_{\Omega} W\left(x, t, \nabla U_{j}(x, t)\right) d x d t=\int_{0}^{T} \int_{\Omega} \int_{\mathcal{M}^{2 \times 2}} W(x, t, A) d \nu_{x, t}(A) d x d t \tag{25}
\end{equation*}
$$

where $\nu=\left\{\nu_{x, t}\right\}$ is the Young measure associated with $\left\{\nabla U_{j}\right\}$. [Kinderleher-Pedregal, 92].

Morever, if $\int_{\mathcal{M}^{2 \times 2}} W(x, t, A) d \nu_{x, t}(A) \geq W\left(x, t, \int_{\mathcal{M}^{2 \times 2}} A d \nu_{x, t}(A)\right)$ then

$$
\begin{equation*}
\lim _{j} \int_{0}^{T} \int_{\Omega} W\left(x, t, \nabla U_{j}\right) d x d t \geq \int_{0}^{T} \int_{\Omega} W\left(x, t, \int_{\mathcal{M}^{2 \times 2}} A d \nu_{x, t}(A)\right)=\int_{0}^{T} \int_{\Omega} W(x, t, \nabla U) d x d t \tag{26}
\end{equation*}
$$

since $\left(\nabla U=\int_{\mathcal{M}^{2 \times 2}} A d \nu_{x, t}(A)\right.$ is the weak limit of $\left\{\nabla U_{j}\right\}$).

Characterization of the gradient Young measures

```
(Kinderleher-Pedregal, 92)
Let \(\left\{u_{j}\right\}\) a sequel in \(W^{1, p}(\Omega), p>1\) and \(\nu=\left\{\nu_{x}\right\}_{x \in \Omega}\) a family of probability measures such that \(\operatorname{supp}\left(\nu_{x}\right) \in \mathbb{R}^{n \times m} . \nu\) is a Young measure generated by the sequel \(\left\{\nabla u_{j}\right\}\) if and and only if:
- \(\nabla u(x)=\int_{\mathbb{R} n \times m} A d v_{x}(A)\) for some \(u \in W^{1, p}(\Omega)\);
- \(\int_{\mathbb{R} n \times m} \phi(A) d \nu_{x}(A) \geq \phi(\nabla u(x))\) a.e. \(x \in \Omega\) and any quasi-convexe function \(\phi\) with a polynomial growth of order \(p\);
(1) \(\int_{\Omega} \int_{\mathbb{R} n \times m}|A|^{P} d v_{x}(A) d x\)
```

This caracterization allows to express the quasi-convex hull of any ϕ in term of ν
$Q \phi(Y)=\inf _{\nu}\left\{\int_{\mathbb{R} n \times m} \phi(A) d \nu(A) ; \nu\right.$ is an homogeneous gradient Young measure; $\left.\int_{\mathbb{R} n \times m} A d \nu(A)=Y\right\} . \quad$ (27)

Characterization of the gradient Young measures

(Kinderleher-Pedregal, 92)
Let $\left\{u_{j}\right\}$ a sequel in $W^{1, p}(\Omega), p>1$ and $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ a family of probability measures such that $\operatorname{supp}\left(\nu_{x}\right) \in \mathbb{R}^{n \times m} . \nu$ is a Young measure generated by the sequel $\left\{\nabla u_{j}\right\}$ if and and only if:

- $\nabla u(x)=\int_{\mathbb{R}^{n \times m}} A d \nu_{x}(A)$ for some $u \in W^{1, p}(\Omega)$;
- $\int_{R n \times m} \phi(A) d \nu_{x}(A) \geq \phi(\nabla u(x))$ a.e. $x \in \Omega$ and any quasi-convexe function ϕ with a polynomial growth of order p :
- $\ln \int_{m \times m \times m}|A|^{P d v_{x}(A) d x}$

This caracterization allows to express the quasi-convex hull of any ϕ in term of ν
$Q \phi(Y)=\inf _{\nu}\left\{\int_{\mathbb{R} n \times m} \phi(A) d \nu(A) ; \nu\right.$ is an homogeneous gradient Young measure; $\left.\int_{\mathbb{R} n \times m} A d \nu(A)=Y\right\} . \quad$ (27)

Characterization of the gradient Young measures

(Kinderleher-Pedregal, 92)
Let $\left\{u_{j}\right\}$ a sequel in $W^{1, p}(\Omega), p>1$ and $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ a family of probability measures such that $\operatorname{supp}\left(\nu_{x}\right) \in \mathbb{R}^{n \times m} . \nu$ is a Young measure generated by the sequel $\left\{\nabla u_{j}\right\}$ if and and only if:

- $\nabla u(x)=\int_{\mathbb{R}^{n \times m}} A d \nu_{x}(A)$ for some $u \in W^{1, p}(\Omega)$;
- $\int_{\mathbb{R}^{n \times m}} \phi(A) d \nu_{x}(A) \geq \phi(\nabla u(x))$ a.e. $x \in \Omega$ and any quasi-convexe function ϕ with a polynomial growth of order p;

This caracterization allows to express the quasi-convex hull of any ϕ in term of ν
$Q \phi(Y)=\inf _{\nu}\left\{\int_{\mathbb{R}} n \times m\right.$ $\phi(A) d \nu(A) ; \nu$ is an homogeneous gradient Young measure; $\left.\int_{\mathbb{R}} n \times m \quad A d \nu(A)=Y\right\}$

Characterization of the gradient Young measures

(Kinderleher-Pedregal, 92)
Let $\left\{u_{j}\right\}$ a sequel in $W^{1, p}(\Omega), p>1$ and $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ a family of probability measures such that $\operatorname{supp}\left(\nu_{x}\right) \in \mathbb{R}^{n \times m} . \nu$ is a Young measure generated by the sequel $\left\{\nabla u_{j}\right\}$ if and and only if:

- $\nabla u(x)=\int_{\mathbb{R}^{n \times m}} A d \nu_{x}(A)$ for some $u \in W^{1, p}(\Omega)$;
- $\int_{\mathbb{R}^{n \times m}} \phi(A) d \nu_{x}(A) \geq \phi(\nabla u(x))$ a.e. $x \in \Omega$ and any quasi-convexe function ϕ with a polynomial growth of order p;
- $\int_{\Omega} \int_{\mathbb{R}^{n \times m}}|A|^{p} d \nu_{x}(A) d x<\infty$.

This caracterization allows to express the quasi-convex hull of any ϕ in term of ν
$Q \phi(Y)=\inf _{\nu}\left\{\int_{\mathbb{R}} n \times m\right.$ $\phi(A) d \nu(A) ; \nu$ is an homogeneous gradient Young measure; $\int_{\mathbb{R}} n \times m$ $\left.A d \nu(A)=Y\right\}$

Characterization of the gradient Young measures

(Kinderleher-Pedregal, 92)
Let $\left\{u_{j}\right\}$ a sequel in $W^{1, p}(\Omega), p>1$ and $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ a family of probability measures such that $\operatorname{supp}\left(\nu_{x}\right) \in \mathbb{R}^{n \times m} . \nu$ is a Young measure generated by the sequel $\left\{\nabla u_{j}\right\}$ if and and only if:

- $\nabla u(x)=\int_{\mathbb{R}^{n \times m}} A d \nu_{x}(A)$ for some $u \in W^{1, p}(\Omega)$;
- $\int_{\mathbb{R}^{n \times m}} \phi(A) d \nu_{x}(A) \geq \phi(\nabla u(x))$ a.e. $x \in \Omega$ and any quasi-convexe function ϕ with a polynomial growth of order p;
- $\int_{\Omega} \int_{\mathbb{R}^{n \times m}}|A|^{p} d \nu_{x}(A) d x<\infty$.

This caracterization allows to express the quasi-convex hull of any ϕ in term of ν
$Q \phi(Y)=\inf _{\nu}\left\{\int_{\mathbb{R}} n \times m\right.$ $\phi(A) d \nu(A) ; \nu$ is an homogeneous gradient Young measure; $\int_{\mathbb{R}} n \times m$ $\left.A d \nu(A)=Y\right\}$

Characterization of the gradient Young measures

(Kinderleher-Pedregal, 92)

Let $\left\{u_{j}\right\}$ a sequel in $W^{1, p}(\Omega), p>1$ and $\nu=\left\{\nu_{x}\right\}_{x \in \Omega}$ a family of probability measures such that $\operatorname{supp}\left(\nu_{x}\right) \in \mathbb{R}^{n \times m} . \nu$ is a Young measure generated by the sequel $\left\{\nabla u_{j}\right\}$ if and and only if:

- $\nabla u(x)=\int_{\mathbb{R}^{n \times m}} A d \nu_{x}(A)$ for some $u \in W^{1, p}(\Omega)$;
- $\int_{\mathbb{R}^{n \times m}} \phi(A) d \nu_{x}(A) \geq \phi(\nabla u(x))$ a.e. $x \in \Omega$ and any quasi-convexe function ϕ with a polynomial growth of order p;
- $\int_{\Omega} \int_{\mathbb{R}^{n \times m}}|A|^{p} d \nu_{x}(A) d x<\infty$.

This caracterization allows to express the quasi-convex hull of any ϕ in term of ν :

$$
\begin{equation*}
Q \phi(Y)=\inf _{\nu}\left\{\int_{\mathbb{R}^{n \times m}} \phi(A) d \nu(A) ; \nu \text { is an homogeneous gradient Young measure; } \int_{\mathbb{R}^{n \times m}} A d \nu(A)=Y\right\} \tag{27}
\end{equation*}
$$

Relaxation via Constrained Quasi-Convexification of W

- From Dacorogna ${ }^{5}$, a relaxed formulation of $\left(V P_{\omega}^{1}\right)$ is where

$$
\begin{equation*}
\bar{m}=\min _{U, s}\left\{\int_{0}^{T} \int_{\Omega} \operatorname{CQW}(t, x, \nabla U(t, x), s(x)) d x d t\right\} \quad(=m) \tag{28}
\end{equation*}
$$

where the minimum is taken over the fields $U \in\left(H^{1}((0, T) \times(0,1))\right)^{2}$ which satisfy the initial and boundary conditions and the function s verifies the constraints

$$
\begin{equation*}
0 \leq s(x) \leq 1 \quad \forall x \in \Omega, \quad \text { and } \quad \int_{\Omega} s(x) d x \leq L|\Omega| \tag{29}
\end{equation*}
$$

- The expression CQW $(t, x, \nabla U(t, x), s(x))$ stands for the constrained quasi-convexification of the density W and for a fixed $(F, s) \in \mathcal{M}^{2 \times 2} \times \mathbb{R}$ is defined as

$$
\operatorname{CQW}(t, x, F, s)=\inf _{\nu}\left\{\int_{\mathcal{M}^{2} \times 2} W(t, x, M) d \nu(M): \nu \in \mathcal{A}(F, s)\right\}
$$

where

[^5]
Relaxation via Constrained Quasi-Convexification of W

- From Dacorogna ${ }^{5}$, a relaxed formulation of $\left(V P_{\omega}^{1}\right)$ is where

$$
\begin{equation*}
\bar{m}=\min _{U, s}\left\{\int_{0}^{T} \int_{\Omega} \operatorname{CQW}(t, x, \nabla U(t, x), s(x)) d x d t\right\} \quad(=m) \tag{28}
\end{equation*}
$$

where the minimum is taken over the fields $U \in\left(H^{1}((0, T) \times(0,1))\right)^{2}$ which satisfy the initial and boundary conditions and the function s verifies the constraints

$$
\begin{equation*}
0 \leq s(x) \leq 1 \quad \forall x \in \Omega, \quad \text { and } \quad \int_{\Omega} s(x) d x \leq L|\Omega| \tag{29}
\end{equation*}
$$

- The expression $\operatorname{CQW}(t, x, \nabla U(t, x), s(x))$ stands for the constrained quasi-convexification of the density W and for a fixed $(F, s) \in \mathcal{M}^{2 \times 2} \times \mathbb{R}$ is defined as

$$
\begin{equation*}
\operatorname{CQW}(t, x, F, s)=\inf _{\nu}\left\{\int_{\mathcal{M}^{2 \times 2}} W(t, x, M) d \nu(M): \nu \in \mathcal{A}(F, s)\right\} \tag{30}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{A}(F, s)= & \left\{\nu: \nu \text { is a homogeneous } H^{1}-\right.\text { Young measure, } \\
& \left.F=\int_{\mathcal{M}^{2 \times 2}} M d \nu(M) \text { and } \int_{\mathcal{M}^{2 \times 2}} V(M) d \nu(M)=s\right\} .
\end{aligned}
$$

[^6]
Computation of CQW

The class $\mathcal{A}(F, s)$ of Gradient Young Measure is NOT explicit. The strategy is as follows : [Kohn-Strang 86], [Fonseca-Muller 00], [Pedregal 05] :

- Minimize over $\nu \in \mathcal{A}^{\star}$, the class of polyconvex measures such that

$$
\begin{equation*}
\mathcal{A}(F, s) \subset \mathcal{A}^{\star}(F, s), \forall F, s \tag{31}
\end{equation*}
$$

$$
\begin{gather*}
\mathcal{A}^{\star}(F, s)=\{\nu: \nu \text { is an homogeneous Young measure }, \nu \text { commute with det } \\
\left.F=\int_{\mathcal{M}^{2 \times 2}} M d \nu(M), s=\int_{\mathcal{M}^{2 \times 2}} V(U, M) d \nu(M)\right\} \tag{32}\\
C P W(F, s)=\min _{\nu}\left\{\int_{\mathcal{M}^{2 \times 2}} W(M) d \nu(M): \nu \in \mathcal{A}^{\star}\right\} \leq C Q W(F, s) \tag{33}
\end{gather*}
$$

- Study if the optimal measure $\nu_{\text {opt }} \in \mathcal{A}^{\star}$ satisfies a rank one condition, in which case, $\nu_{\text {opt }}$ belongs to the class of laminates \mathcal{A}_{\star} such that
- This implies that $\nu_{o p t} \in \mathcal{A}$ and gives $C Q W=C P W$ and m.

Computation of CQW

The class $\mathcal{A}(F, s)$ of Gradient Young Measure is NOT explicit. The strategy is as follows : [Kohn-Strang 86], [Fonseca-Muller 00], [Pedregal 05] :

- Minimize over $\nu \in \mathcal{A}^{\star}$, the class of polyconvex measures such that

$$
\begin{equation*}
\mathcal{A}(F, s) \subset \mathcal{A}^{\star}(F, s), \forall F, s \tag{31}
\end{equation*}
$$

$$
\begin{array}{r}
\mathcal{A}^{\star}(F, s)=\{\nu: \nu \text { is an homogeneous Young measure }, \nu \text { commute with det }, \\
\left.F=\int_{\mathcal{M}^{2 \times 2}} M d \nu(M), s=\int_{\mathcal{M}^{2 \times 2}} V(U, M) d \nu(M)\right\} . \\
C P W(F, s)=\min _{\nu}\left\{\int_{\mathcal{M}^{2 \times 2}} W(M) d \nu(M): \nu \in \mathcal{A}^{\star}\right\} \leq \operatorname{CQW}(F, s) \tag{33}
\end{array}
$$

- Study if the optimal measure $\nu_{o p t} \in \mathcal{A}^{\star}$ satisfies a rank one condition, in which case, $\nu_{o p t}$ belongs to the class of laminates \mathcal{A}_{\star} such that

$$
\begin{equation*}
\mathcal{A}_{\star}(F, s) \subset \mathcal{A}(F, s), \quad \forall F, s \tag{34}
\end{equation*}
$$

- This implies that $\nu_{o p t} \in \mathcal{A}$ and gives $C Q W=C P W$ and m.

Computation of CQW

The class $\mathcal{A}(F, s)$ of Gradient Young Measure is NOT explicit. The strategy is as follows : [Kohn-Strang 86], [Fonseca-Muller 00], [Pedregal 05] :

- Minimize over $\nu \in \mathcal{A}^{\star}$, the class of polyconvex measures such that

$$
\begin{equation*}
\mathcal{A}(F, s) \subset \mathcal{A}^{\star}(F, s), \forall F, s \tag{31}
\end{equation*}
$$

$$
\begin{array}{r}
\mathcal{A}^{\star}(F, s)=\{\nu: \nu \text { is an homogeneous Young measure }, \nu \text { commute with det }, \\
\left.F=\int_{\mathcal{M}^{2 \times 2}} M d \nu(M), s=\int_{\mathcal{M}^{2 \times 2}} V(U, M) d \nu(M)\right\} . \\
C P W(F, s)=\min _{\nu}\left\{\int_{\mathcal{M}^{2 \times 2}} W(M) d \nu(M): \nu \in \mathcal{A}^{\star}\right\} \leq \operatorname{CQW}(F, s) \tag{33}
\end{array}
$$

- Study if the optimal measure $\nu_{o p t} \in \mathcal{A}^{\star}$ satisfies a rank one condition, in which case, $\nu_{o p t}$ belongs to the class of laminates \mathcal{A}_{\star} such that

$$
\begin{equation*}
\mathcal{A}_{\star}(F, s) \subset \mathcal{A}(F, s), \quad \forall F, s \tag{34}
\end{equation*}
$$

- This implies that $\nu_{o p t} \in \mathcal{A}$ and gives $C Q W=C P W$ and m.

Step 2: Minimization over \mathcal{A}^{\star} - Computation of CPW

$$
\begin{equation*}
C P W(F, s)=\min _{\nu}\left\{\int_{\mathcal{M}^{2 \times 2}} W(M) d \nu(M): \nu \in \mathcal{A}^{\star}\right\} \leq \operatorname{CQW}(F, s) \tag{35}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathcal{A}^{\star}(F, s)=\{\nu: \nu \text { is a homogeneous Young measure, } \nu \text { commutes with the determinant } \\
\left.\qquad F=\int_{\mathcal{M}^{2 \times 2}} M d \nu(M), s=\int_{\mathcal{M}^{2 \times 2}} V(U, M) d \nu(M)\right\} \tag{36}
\end{gather*}
$$

- From the volume constraint $\left(s=\int_{M^{2} \times 2} V(U, M) d \nu(M)\right)$, the measure has the form
\qquad
and hence for each pair (F, s), the constrained polyconvexification $C P W(F, s)$ is computed by solving
$\operatorname{CPW}(F, s)=\min _{\nu}\left\{s \int_{\Lambda_{1}}\left|M^{(1)}\right|^{2} d \nu_{1}(M)+(1-s) \int_{\Lambda_{0}}\left|M^{(1)}\right|^{2} d \nu_{0}(M)\right\}$
subject to

Step 2: Minimization over \mathcal{A}^{\star} - Computation of CPW

$$
\begin{equation*}
\operatorname{CPW}(F, s)=\min _{\nu}\left\{\int_{\mathcal{M}^{2 \times 2}} W(M) d \nu(M): \nu \in \mathcal{A}^{\star}\right\} \leq \operatorname{CQW}(F, s) \tag{35}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathcal{A}^{\star}(F, s)=\{\nu: \nu \text { is a homogeneous Young measure, } \nu \text { commutes with the determinant, } \\
\left.F=\int_{\mathcal{M}^{2 \times 2}} M d \nu(M), s=\int_{\mathcal{M}^{2 \times 2}} V(U, M) d \nu(M)\right\} . \tag{36}
\end{gather*}
$$

- From the volume constraint ($s=\int_{\mathcal{M}^{2 \times 2}} V(U, M) d \nu(M)$), the measure has the form

$$
\begin{equation*}
\nu=s \nu_{1}+(1-s) \nu_{0}, \quad \text { with } \operatorname{supp}\left(\nu_{j}\right) \subset \Lambda_{j}, j=0,1, \tag{37}
\end{equation*}
$$

and hence for each pair (F, s), the constrained polyconvexification CPW (F, s) is computed by solving

$$
\begin{equation*}
\operatorname{CPW}(F, s)=\min _{\nu}\left\{s \int_{\Lambda_{1}}\left|M^{(1)}\right|^{2} d \nu_{1}(M)+(1-s) \int_{\Lambda_{0}}\left|M^{(1)}\right|^{2} d \nu_{0}(M)\right\} \tag{38}
\end{equation*}
$$

subject to

$$
\left\{\begin{array}{l}
\nu=s \nu_{1}+(1-s) \nu_{0} \text { commutes with det, } \tag{39}\\
\operatorname{supp}\left(\nu_{j}\right) \subset \Lambda_{j}, j=0,1, \\
F=s \int_{\Lambda_{1}} M d \nu_{1}(M)+(1-s) \int_{\Lambda_{0}} M d \nu_{0}(M)
\end{array}\right.
$$

Step 2: Minimization over \mathcal{A}^{\star} - Computation of CPW

Let us introduce the following variables

$$
\begin{equation*}
S_{i}=\int_{\mathbb{R}}\left(M_{1 i}\right)^{2} d \nu^{(1 i)}, \quad i=1,2 \tag{40}
\end{equation*}
$$

where $\nu^{(1 i)}$ stands for the projection of ν onto the (1i) -th component, and

$$
\begin{equation*}
F^{j}=\int_{\Lambda_{j}} M d \nu_{j}(M), \quad j=0,1 \tag{41}
\end{equation*}
$$

Since $F^{j} \in \Lambda_{j}$, we have

$$
\begin{equation*}
F_{11}^{0}=F_{22}^{0}, F_{12}^{0}=F_{21}^{0} \quad \text { and } \quad F_{11}^{1}=F_{22}^{1}+\lambda, F_{12}^{1}=F_{21}^{1} \tag{42}
\end{equation*}
$$

On the other hand, from the third condition in (39) it follows that

$$
\begin{cases}F_{11}=s F_{11}^{1}+(1-s) F_{11}^{0}, & F_{12}=s F_{12}^{1}+(1-s) F_{12}^{0} \\ F_{21}=s F_{21}^{1}+(1-s) F_{21}^{0}, & F_{22}=s F_{22}^{1}+(1-s) F_{22}^{0}\end{cases}
$$

Substituting (42) into (43) we obtain the system

which has a solution if and only if the compatibility condition

$$
F_{12}=F_{21}, \quad r_{11}=F_{22}+s \lambda
$$

holds. In this case, the solution is given by

Step 2: Minimization over \mathcal{A}^{\star} - Computation of CPW

Let us introduce the following variables

$$
\begin{equation*}
S_{i}=\int_{\mathbb{R}}\left(M_{1 i}\right)^{2} d \nu^{(1 i)}, \quad i=1,2 \tag{40}
\end{equation*}
$$

where $\nu^{(1 i)}$ stands for the projection of ν onto the (1i) -th component, and

$$
\begin{equation*}
F^{j}=\int_{\Lambda_{j}} M d \nu_{j}(M), \quad j=0,1 \tag{41}
\end{equation*}
$$

Since $F^{j} \in \Lambda_{j}$, we have

$$
\begin{equation*}
F_{11}^{0}=F_{22}^{0}, F_{12}^{0}=F_{21}^{0} \quad \text { and } \quad F_{11}^{1}=F_{22}^{1}+\lambda, F_{12}^{1}=F_{21}^{1} \tag{42}
\end{equation*}
$$

On the other hand, from the third condition in (39) it follows that

$$
\begin{cases}F_{11}=s F_{11}^{1}+(1-s) F_{11}^{0}, & F_{12}=s F_{12}^{1}+(1-s) F_{12}^{0} \\ F_{21}=s F_{21}^{1}+(1-s) F_{21}^{0}, & F_{22}=s F_{22}^{1}+(1-s) F_{22}^{0}\end{cases}
$$

Substituting (42) into (43) we obtain the system

which has a solution if and only if the compatibility condition

$$
F_{12}=F_{21}, \quad r_{11}=F_{22}+s \lambda
$$

holds. In this case, the solution is given by

Step 2: Minimization over \mathcal{A}^{\star} - Computation of CPW

Let us introduce the following variables

$$
\begin{equation*}
S_{i}=\int_{\mathbb{R}}\left(M_{1 i}\right)^{2} d \nu^{(1 i)}, \quad i=1,2 \tag{40}
\end{equation*}
$$

where $\nu^{(1 i)}$ stands for the projection of ν onto the (1i) -th component, and

$$
\begin{equation*}
F^{j}=\int_{\Lambda_{j}} M d \nu_{j}(M), \quad j=0,1 \tag{41}
\end{equation*}
$$

Since $F^{j} \in \Lambda_{j}$, we have

$$
\begin{equation*}
F_{11}^{0}=F_{22}^{0}, F_{12}^{0}=F_{21}^{0} \quad \text { and } \quad F_{11}^{1}=F_{22}^{1}+\lambda, F_{12}^{1}=F_{21}^{1} \tag{42}
\end{equation*}
$$

On the other hand, from the third condition in (39) it follows that

$$
\begin{cases}F_{11}=s F_{11}^{1}+(1-s) F_{11}^{0}, & F_{12}=s F_{12}^{1}+(1-s) F_{12}^{0} \tag{43}\\ F_{21}=s F_{21}^{1}+(1-s) F_{21}^{0}, & F_{22}=s F_{22}^{1}+(1-s) F_{22}^{0}\end{cases}
$$

Substituting (42) into (43) we obtain the system

which has a solution if and only if the compatibility condition

$$
F_{12}=F_{21}, \quad F_{11}=F_{22}+s \lambda
$$

holds. In this case, the solution is given by

Step 2: Minimization over \mathcal{A}^{\star} - Computation of CPW

- Let us introduce the following variables

$$
\begin{equation*}
S_{i}=\int_{\mathbb{R}}\left(M_{1 i}\right)^{2} d \nu^{(1 i)}, \quad i=1,2 \tag{40}
\end{equation*}
$$

where $\nu^{(1 i)}$ stands for the projection of ν onto the (1i) -th component, and

$$
\begin{equation*}
F^{j}=\int_{\Lambda_{j}} M d \nu_{j}(M), \quad j=0,1 . \tag{41}
\end{equation*}
$$

Since $F^{j} \in \Lambda_{j}$, we have

$$
\begin{equation*}
F_{11}^{0}=F_{22}^{0}, F_{12}^{0}=F_{21}^{0} \quad \text { and } \quad F_{11}^{1}=F_{22}^{1}+\lambda, F_{12}^{1}=F_{21}^{1} \tag{42}
\end{equation*}
$$

On the other hand, from the third condition in (39) it follows that

$$
\begin{cases}F_{11}=s F_{11}^{1}+(1-s) F_{11}^{0}, & F_{12}=s F_{12}^{1}+(1-s) F_{12}^{0} \tag{43}\\ F_{21}=s F_{21}^{1}+(1-s) F_{21}^{0}, & F_{22}=s F_{22}^{1}+(1-s) F_{22}^{0}\end{cases}
$$

Substituting (42) into (43) we obtain the system

$$
\begin{cases}F_{11}=s F_{11}^{1}+(1-s) F_{11}^{0}, & F_{12}=s F_{12}^{1}+(1-s) F_{12}^{0} \tag{44}\\ F_{21}=s F_{12}^{1}+(1-s) F_{12}^{0}, & F_{22}+s \lambda=s F_{11}^{1}+(1-s) F_{11}^{0}\end{cases}
$$

which has a solution if and only if the compatibility condition

$$
\begin{equation*}
F_{12}=F_{21}, \quad F_{11}=F_{22}+s \lambda \tag{45}
\end{equation*}
$$

holds. In this case, the solution is given by

Step 2: Minimization over \mathcal{A}^{\star} - Computation of CPW

- Let us introduce the following variables

$$
\begin{equation*}
S_{i}=\int_{\mathbb{R}}\left(M_{1 i}\right)^{2} d \nu^{(1 i)}, \quad i=1,2 \tag{40}
\end{equation*}
$$

where $\nu^{(1 i)}$ stands for the projection of ν onto the (1i) -th component, and

$$
\begin{equation*}
F^{j}=\int_{\Lambda_{j}} M d \nu_{j}(M), \quad j=0,1 . \tag{41}
\end{equation*}
$$

Since $F^{j} \in \Lambda_{j}$, we have

$$
\begin{equation*}
F_{11}^{0}=F_{22}^{0}, F_{12}^{0}=F_{21}^{0} \quad \text { and } \quad F_{11}^{1}=F_{22}^{1}+\lambda, F_{12}^{1}=F_{21}^{1} \tag{42}
\end{equation*}
$$

On the other hand, from the third condition in (39) it follows that

$$
\begin{cases}F_{11}=s F_{11}^{1}+(1-s) F_{11}^{0}, & F_{12}=s F_{12}^{1}+(1-s) F_{12}^{0} \tag{43}\\ F_{21}=s F_{21}^{1}+(1-s) F_{21}^{0}, & F_{22}=s F_{22}^{1}+(1-s) F_{22}^{0}\end{cases}
$$

Substituting (42) into (43) we obtain the system

$$
\begin{cases}F_{11}=s F_{11}^{1}+(1-s) F_{11}^{0}, & F_{12}=s F_{12}^{1}+(1-s) F_{12}^{0} \tag{44}\\ F_{21}=s F_{12}^{1}+(1-s) F_{12}^{0}, & F_{22}+s \lambda=s F_{11}^{1}+(1-s) F_{11}^{0}\end{cases}
$$

which has a solution if and only if the compatibility condition

$$
\begin{equation*}
F_{12}=F_{21}, \quad F_{11}=F_{22}+s \lambda \tag{45}
\end{equation*}
$$

holds. In this case, the solution is given by

$$
\begin{equation*}
F_{11}^{0}=\alpha, \quad F_{12}^{0}=\beta \quad F_{11}^{1}=\frac{1}{s}\left(F_{11}-(1-s) \alpha\right) \quad F_{12}^{1}=\frac{1}{s}\left(F_{12}-(1-s) \beta\right) \tag{46}
\end{equation*}
$$

where $(\alpha, \beta) \in \mathbb{R}^{2}$ are two parameters. Notice then that there is no restriction on F_{11}^{1}, as it can take on

Step 2: Minimization over \mathcal{A}^{\star} - Computation of CPW

Moreover, the constraint on the commutation with det yields to

$$
\begin{aligned}
\operatorname{det} F & =s \int_{\Lambda_{1}} \operatorname{det} M d \nu_{1}(M)+(1-s) \int_{\Lambda_{0}} \operatorname{det} M d \nu_{0}(M) \\
& =s_{1}-s_{2}-s \lambda F_{11}^{1}
\end{aligned}
$$

since

$$
\operatorname{det} M=\left\{\begin{array}{lll}
\left(M_{11}\right)^{2}-\left(M_{12}\right)^{2} & \text { if } & M \in \Lambda_{0} \tag{47}\\
\left(M_{11}\right)^{2}-\lambda M_{11}-\left(M_{12}\right)^{2} & \text { if } & M \in \Lambda_{1}
\end{array}\right.
$$

Finally, from Jensen's inequality we obtain the conditions

$$
\begin{equation*}
S_{i} \geq\left|F_{1 i}\right|^{2}, \quad i=1,2 \tag{48}
\end{equation*}
$$

To sum up, we have to solve the mathematical programming problem

$$
\begin{equation*}
\text { Minimize in }\left(S_{j}, F_{11}^{1}\right): \quad\left(S_{1}+S_{2}\right) \tag{49}
\end{equation*}
$$

subject to

$$
\left\{\begin{array}{l}
S_{1}-S_{2}-s \lambda F_{11}^{1}=\operatorname{det} F \tag{50}\\
S_{i} \geq\left|F_{1 i}\right|^{2}, \quad i=1,2
\end{array}\right.
$$

We obtain easily that the solution is

This implies that

Step 2: Minimization over \mathcal{A}^{\star} - Computation of CPW

Moreover, the constraint on the commutation with det yields to

$$
\begin{aligned}
\operatorname{det} F & =s \int_{\Lambda_{1}} \operatorname{det} M d \nu_{1}(M)+(1-s) \int_{\Lambda_{0}} \operatorname{det} M d \nu_{0}(M) \\
& =s_{1}-s_{2}-s \lambda F_{11}^{1}
\end{aligned}
$$

since

$$
\operatorname{det} M=\left\{\begin{array}{lll}
\left(M_{11}\right)^{2}-\left(M_{12}\right)^{2} & \text { if } & M \in \Lambda_{0} \tag{47}\\
\left(M_{11}\right)^{2}-\lambda M_{11}-\left(M_{12}\right)^{2} & \text { if } & M \in \Lambda_{1}
\end{array}\right.
$$

Finally, from Jensen's inequality we obtain the conditions

$$
\begin{equation*}
S_{i} \geq\left|F_{1 i}\right|^{2}, \quad i=1,2 \tag{48}
\end{equation*}
$$

To sum up, we have to solve the mathematical programming problem

$$
\begin{equation*}
\text { Minimize in }\left(S_{j}, F_{11}^{1}\right): \quad\left(S_{1}+S_{2}\right) \tag{49}
\end{equation*}
$$

subject to

$$
\left\{\begin{array}{l}
S_{1}-S_{2}-s \lambda F_{11}^{1}=\operatorname{det} F \tag{50}\\
S_{i} \geq\left|F_{1 i}\right|^{2}, \quad i=1,2
\end{array}\right.
$$

We obtain easily that the solution is

This implies that

Step 2: Minimization over \mathcal{A}^{\star} - Computation of CPW

Moreover, the constraint on the commutation with det yields to

$$
\begin{aligned}
\operatorname{det} F & =s \int_{\Lambda_{1}} \operatorname{det} M d \nu_{1}(M)+(1-s) \int_{\Lambda_{0}} \operatorname{det} M d \nu_{0}(M) \\
& =s_{1}-s_{2}-s \lambda F_{11}^{1}
\end{aligned}
$$

since

$$
\operatorname{det} M=\left\{\begin{array}{lll}
\left(M_{11}\right)^{2}-\left(M_{12}\right)^{2} & \text { if } & M \in \Lambda_{0} \tag{47}\\
\left(M_{11}\right)^{2}-\lambda M_{11}-\left(M_{12}\right)^{2} & \text { if } & M \in \Lambda_{1}
\end{array}\right.
$$

Finally, from Jensen's inequality we obtain the conditions

$$
\begin{equation*}
S_{i} \geq\left|F_{1 i}\right|^{2}, \quad i=1,2 \tag{48}
\end{equation*}
$$

To sum up, we have to solve the mathematical programming problem

$$
\begin{equation*}
\text { Minimize in }\left(S_{j}, F_{11}^{1}\right): \quad\left(S_{1}+S_{2}\right) \tag{49}
\end{equation*}
$$

subject to

$$
\left\{\begin{array}{l}
S_{1}-S_{2}-s \lambda F_{11}^{1}=\operatorname{det} F \tag{50}\\
S_{i} \geq\left|F_{1 i}\right|^{2}, \quad i=1,2
\end{array}\right.
$$

We obtain easily that the solution is

$$
\begin{equation*}
S_{i}=\left|F_{1 i}\right|^{2}, \quad i=1,2 \tag{51}
\end{equation*}
$$

This implies that

$$
C P W(F, s)= \begin{cases}\left|F^{(1)}\right|^{2} & \text { if }(45) \text { holds } \tag{52}\\ +\infty & \text { else } .\end{cases}
$$

$$
\begin{equation*}
C P W(F, s)=\min _{\nu}\left\{\int_{\mathcal{M}^{2 \times 2}} W(M) d \nu(M): \nu \in \mathcal{A}^{\star}\right\} \leq \operatorname{CQW}(F, s) \tag{53}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathcal{A}^{\star}(F, s)=\{\nu: \nu \text { is a homogeneous Young measure, } \nu \text { commutes with the determinant } \\
\left.\qquad F=\int_{\mathcal{M}^{2 \times 2}} M d \nu(M), s=\int_{\mathcal{M}^{2 \times 2}} V(U, M) d \nu(M)\right\} \tag{54}
\end{gather*}
$$

- We have

$$
C P W(F, s)= \begin{cases}\left|F^{(1)}\right|^{2} & \text { if } F_{21}=F_{12}, F_{11}=F_{22}+s \lambda \tag{55}\\ +\infty & \text { else }\end{cases}
$$

- The optimal , unique, measure ν is
where

$$
\begin{equation*}
\operatorname{CPW}(F, s)=\min _{\nu}\left\{\int_{\mathcal{M}^{2 \times 2}} W(M) d \nu(M): \nu \in \mathcal{A}^{\star}\right\} \leq \operatorname{CQW}(F, s) \tag{53}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathcal{A}^{\star}(F, s)=\{\nu: \nu \text { is a homogeneous Young measure, } \nu \text { commutes with the determinant, } \\
\left.\qquad F=\int_{\mathcal{M}^{2 \times 2}} \operatorname{Md\nu }(M), s=\int_{\mathcal{M}^{2 \times 2}} V(U, M) d \nu(M)\right\} \tag{54}
\end{gather*}
$$

- We have

$$
\operatorname{CPW}(F, s)= \begin{cases}\left|F^{(1)}\right|^{2} & \text { if } F_{21}=F_{12}, F_{11}=F_{22}+s \lambda \tag{55}\\ +\infty & \text { else. }\end{cases}
$$

- The optimal, unique, measure ν is

$$
\begin{equation*}
\nu=(1-s) \delta_{G^{0}}+s \delta_{G^{1}}, \tag{56}
\end{equation*}
$$

where

$$
G^{0}=\left(\begin{array}{ll}
F_{11} & F_{12} \tag{57}\\
F_{12} & F_{11}
\end{array}\right) \quad \text { and } \quad G^{1}=\left(\begin{array}{ll}
F_{11} & F_{12} \\
F_{12} & F_{11}+\lambda
\end{array}\right)
$$

Step 3 : Rank-one condition on $\nu_{\text {opt }}$? $-\nu_{\text {opt }} \in \mathcal{A}_{\star}$?

- From

$$
\nu_{\text {opt }}=(1-s) \delta_{G^{0}}+s \delta_{G^{1}},
$$

where

$$
G^{0}=\left(\begin{array}{ll}
F_{11} & F_{12} \tag{58}\\
F_{12} & F_{11}
\end{array}\right) \quad \text { and } \quad G^{1}=\left(\begin{array}{ll}
F_{11} & F_{12} \\
F_{12} & F_{11}+\lambda
\end{array}\right) .
$$

we get that

$$
\begin{equation*}
G^{1}-G^{0}=b \otimes n, \quad \text { with } \quad b=(0, \lambda) \quad \text { and } \quad n=(0,1) \tag{59}
\end{equation*}
$$

$$
\operatorname{Rank}\left(G^{1}-G^{0}\right)=1
$$

- The optimal measure $\nu_{o p t}$ belongs to \mathcal{A}_{\star}, and $\nu_{o p t}$ is a first order laminate with normal n
- Conclusion: $y_{\text {opt }} \in \mathcal{A}$ and COMMF s) $=$ Coimpr s)

Step 3 : Rank-one condition on $\nu_{\text {opt }}$? $-\nu_{\text {opt }} \in \mathcal{A}_{\star}$?

- From

$$
\nu_{o p t}=(1-s) \delta_{G^{0}}+s \delta_{G^{1}},
$$

where

$$
G^{0}=\left(\begin{array}{ll}
F_{11} & F_{12} \tag{58}\\
F_{12} & F_{11}
\end{array}\right) \quad \text { and } \quad G^{1}=\left(\begin{array}{ll}
F_{11} & F_{12} \\
F_{12} & F_{11}+\lambda
\end{array}\right)
$$

we get that

$$
\begin{equation*}
G^{1}-G^{0}=b \otimes n, \quad \text { with } \quad b=(0, \lambda) \quad \text { and } \quad n=(0,1) \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Rank}\left(G^{1}-G^{0}\right)=1 \tag{60}
\end{equation*}
$$

$\Longrightarrow \nu_{\text {opt }}$ satisfies a rank one condition.The optimal measure $\nu_{\text {opt }}$ belongs to \mathcal{A}_{\star}, and $\nu_{\text {opt }}$ is a first order laminate with normal nConclusion: $\nu_{\text {opt }} \in \mathcal{A}$ and $\operatorname{CQW}(F, s)=\operatorname{CPW}(F, s)$

Step 3 : Rank-one condition on $\nu_{\text {opt }}$? $-\nu_{\text {opt }} \in \mathcal{A}_{\star}$?

- From

$$
\nu_{o p t}=(1-s) \delta_{G^{0}}+s \delta_{G^{1}},
$$

where

$$
G^{0}=\left(\begin{array}{ll}
F_{11} & F_{12} \tag{58}\\
F_{12} & F_{11}
\end{array}\right) \quad \text { and } \quad G^{1}=\left(\begin{array}{ll}
F_{11} & F_{12} \\
F_{12} & F_{11}+\lambda
\end{array}\right)
$$

we get that

$$
\begin{equation*}
G^{1}-G^{0}=b \otimes n, \quad \text { with } \quad b=(0, \lambda) \quad \text { and } \quad n=(0,1) \tag{59}
\end{equation*}
$$

-

$$
\begin{equation*}
\operatorname{Rank}\left(G^{1}-G^{0}\right)=1 \tag{60}
\end{equation*}
$$

$\Longrightarrow \nu_{\text {opt }}$ satisfies a rank one condition.

- The optimal measure $\nu_{\text {opt }}$ belongs to \mathcal{A}_{\star}, and $\nu_{\text {opt }}$ is a first order laminate with normal nConclusion: $\nu_{\text {opt }} \in \mathcal{A}$ and $\operatorname{CQW}(F, s)=\operatorname{CPW}(F, s)$

Step 3 : Rank-one condition on $\nu_{\text {opt }}$? $-\nu_{\text {opt }} \in \mathcal{A}_{\star}$?

- From

$$
\nu_{o p t}=(1-s) \delta_{G^{0}}+s \delta_{G^{1}},
$$

where

$$
G^{0}=\left(\begin{array}{ll}
F_{11} & F_{12} \tag{58}\\
F_{12} & F_{11}
\end{array}\right) \quad \text { and } \quad G^{1}=\left(\begin{array}{ll}
F_{11} & F_{12} \\
F_{12} & F_{11}+\lambda
\end{array}\right)
$$

we get that

$$
\begin{equation*}
G^{1}-G^{0}=b \otimes n, \quad \text { with } \quad b=(0, \lambda) \quad \text { and } \quad n=(0,1) \tag{59}
\end{equation*}
$$

0

$$
\begin{equation*}
\operatorname{Rank}\left(G^{1}-G^{0}\right)=1 \tag{60}
\end{equation*}
$$

$\Longrightarrow \nu_{\text {opt }}$ satisfies a rank one condition.

- The optimal measure $\nu_{\text {opt }}$ belongs to \mathcal{A}_{\star}, and $\nu_{\text {opt }}$ is a first order laminate with normal n
- Conclusion: $\nu_{o p t} \in \mathcal{A}$ and $\operatorname{CQW}(F, s)=\operatorname{CPW}(F, s)$
- From $\lambda=-a(x) U^{(1)}(t, x)$ and

$$
\begin{align*}
& F=\left(\begin{array}{ll}
F_{11} & F_{21} \\
F_{12} & F_{22}
\end{array}\right)=\nabla U=\left(\begin{array}{cc}
u_{t} & v_{t} \\
u_{x} & v_{x}
\end{array}\right) . \tag{61}\\
& \operatorname{CQW}(F, s)= \begin{cases}\left|F^{(1)}\right|^{2} & \text { if } F_{21}=F_{12}, F_{11}=F_{22}+s \lambda \\
+\infty & \text { else. }\end{cases} \tag{62}
\end{align*}
$$

becomes

$$
\operatorname{CQW}(\nabla U, s)= \begin{cases}u_{t}^{2}(t, x)+u_{x}^{2}(t, x) & \text { if } u_{x}=v_{t}, u_{t}=v_{x}-a(x) s(x) u(t, x) \tag{63}\\ +\infty & \text { else } .\end{cases}
$$

equivalently

$$
\operatorname{CQW}(\nabla U, s)= \begin{cases}u_{t}^{2}(t, x)+u_{x}^{2}(t, x) & \text { if } u_{t t}-u_{x x}+a(x) s(x) u_{t}=0 \tag{64}\\ +\infty & \text { else. }\end{cases}
$$

- minu,s $\int_{0}^{T} \int_{\Omega} \operatorname{CQW}(\nabla U, s) d x d t$ then leads to $\left(R P_{\omega}^{1}\right)$
- From $\lambda=-a(x) U^{(1)}(t, x)$ and

$$
\begin{align*}
& F=\left(\begin{array}{ll}
F_{11} & F_{21} \\
F_{12} & F_{22}
\end{array}\right)=\nabla U=\left(\begin{array}{cc}
u_{t} & v_{t} \\
u_{x} & v_{x}
\end{array}\right) . \tag{61}\\
& \operatorname{CQW}(F, s)= \begin{cases}\left|F^{(1)}\right|^{2} & \text { if } F_{21}=F_{12}, F_{11}=F_{22}+s \lambda \\
+\infty & \text { else. }\end{cases} \tag{62}
\end{align*}
$$

becomes

$$
\operatorname{CQW}(\nabla U, s)= \begin{cases}u_{t}^{2}(t, x)+u_{x}^{2}(t, x) & \text { if } u_{x}=v_{t}, u_{t}=v_{x}-a(x) s(x) u(t, x) \tag{63}\\ +\infty & \text { else } .\end{cases}
$$

equivalently

$$
\operatorname{CQW}(\nabla U, s)= \begin{cases}u_{t}^{2}(t, x)+u_{x}^{2}(t, x) & \text { if } u_{t t}-u_{x x}+a(x) s(x) u_{t}=0 \tag{64}\\ +\infty & \text { else. }\end{cases}
$$

- $\min _{U, s} \int_{0}^{T} \int_{\Omega} \operatorname{CQW}(\nabla U, s) d x d t$ then leads to $\left(R P_{\omega}^{1}\right)$

Some numerical results for ($R P_{\omega}^{1}$)

$$
\begin{equation*}
\Omega=(0,1), \quad\left(u^{0}(x), u^{1}(x)\right)=(\sin (\pi x), 0), \quad L=1 / 5, \quad T=1 \tag{65}
\end{equation*}
$$

Optimal density for $a(x)=1$ (Left) and $a(x)=10$ (Right)

- If $a \leq a^{\star}\left(\Omega, L, u^{0}, u^{1}\right),\{x \in \Omega, 0<s(x)<1\}=\emptyset,\left(P_{\omega}^{1}\right)=\left(R P_{\omega}^{1}\right)$ and is well-posed - If $a>a^{*}\left(\Omega, L, u^{0}, u^{1}\right),\{x \in \Omega, 0<s(x)<1\} \neq \emptyset,\left(P_{\omega}^{1}\right) \neq\left(R P_{\omega}^{1}\right)$ and is NOT well-posed
(This property is related to the over-damping phenomena)

Some numerical results for ($R P_{\omega}^{1}$)

$$
\begin{equation*}
\Omega=(0,1), \quad\left(u^{0}(x), u^{1}(x)\right)=(\sin (\pi x), 0), \quad L=1 / 5, \quad T=1 \tag{65}
\end{equation*}
$$

Optimal density for $a(x)=1$ (Left) and $a(x)=10$ (Right)

- If $a \leq a^{\star}\left(\Omega, L, u^{0}, u^{1}\right),\{x \in \Omega, 0<s(x)<1\}=\emptyset,\left(P_{\omega}^{1}\right)=\left(R P_{\omega}^{1}\right)$ and is well-posed
- If $a>a^{\star}\left(\Omega, L, u^{0}, u^{1}\right),\{x \in \Omega, 0<s(x)<1\} \neq \emptyset,\left(P_{\omega}^{1}\right) \neq\left(R P_{\omega}^{1}\right)$ and is NOT well-posed
(This property is related to the over-damping phenomena)

$$
\begin{equation*}
\Omega=(0,1), \quad\left(u^{0}(x), u^{1}(x)\right)=(\sin (\pi x), 0), \quad L=1 / 5, \quad T=1 \tag{66}
\end{equation*}
$$

$\sharp \omega_{j}$	10	20	30	40
$I\left(\mathcal{X}_{\omega_{j}}\right)$	4.1331	3.7216	3.5413	3.4313

$\lim _{\sharp \omega_{j} \rightarrow \infty} I\left(\mathcal{X}_{\omega_{j}}\right)=I\left(s_{\text {opt }}\right)=3.4212$

The 2-D case ($\mathrm{N}=2$)

- Similarly, the damped wave equation may be written as

$$
\begin{equation*}
u_{t t}-\Delta u+a\left(x_{1}, x_{2}\right) \mathcal{X}_{\omega} u_{t}=0 \Longleftrightarrow \operatorname{Div}\left(u_{t}+a \mathcal{X}_{\omega} u,-u_{x_{1}},-u_{x_{2}}\right)=0 \quad \text { in } \quad(0, T) \times \Omega \tag{67}
\end{equation*}
$$

and so there exist two Clebsch's potentials ${ }^{6} v_{1}=v_{1}\left(t, x_{1}, x_{2}\right)$ and $v_{2}=v_{2}\left(t, x_{1}, x_{2}\right)$ such that

$$
\begin{equation*}
\left(u_{t}+a \mathcal{X}_{\omega} u,-u_{x_{1}},-u_{x_{2}}\right)=\nabla v_{1} \times \nabla v_{2} . \tag{68}
\end{equation*}
$$

- Let the vector field $U=\left(u, v_{1}, v_{2}\right) \in\left(H^{1}((0, T) \times \Omega)\right)^{3}$ and the two non-linear manifolds

where $\lambda \in \mathbb{R}$ and

- Similarly, the damped wave equation may be written as

$$
\begin{equation*}
u_{t t}-\Delta u+a\left(x_{1}, x_{2}\right) \mathcal{X}_{\omega} u_{t}=0 \Longleftrightarrow \operatorname{Div}\left(u_{t}+a \mathcal{X}_{\omega} u,-u_{x_{1}},-u_{x_{2}}\right)=0 \quad \text { in } \quad(0, T) \times \Omega \tag{67}
\end{equation*}
$$

and so there exist two Clebsch's potentials ${ }^{6} v_{1}=v_{1}\left(t, x_{1}, x_{2}\right)$ and $v_{2}=v_{2}\left(t, x_{1}, x_{2}\right)$ such that

$$
\begin{equation*}
\left(u_{t}+a \mathcal{X}_{\omega} u,-u_{x_{1}},-u_{x_{2}}\right)=\nabla v_{1} \times \nabla v_{2} \tag{68}
\end{equation*}
$$

- Let the vector field $U=\left(u, v_{1}, v_{2}\right) \in\left(H^{1}((0, T) \times \Omega)\right)^{3}$ and the two non-linear manifolds

$$
\begin{align*}
& \Lambda_{0}=\left\{M \in \mathcal{M}^{3 \times 3}: A M^{(1)}-M^{(2)} \times M^{(3)}=0\right\} \tag{69}\\
& \Lambda_{1, \lambda}=\left\{M \in \mathcal{M}^{3 \times 3}: A M^{(1)}-M^{(2)} \times M^{(3)}=\lambda e_{1}\right\}
\end{align*}
$$

where $\lambda \in \mathbb{R}$ and

$$
e_{1}=\left(\begin{array}{l}
1 \tag{70}\\
0 \\
0
\end{array}\right), \quad A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

[^7]
A numerical illustration in 2-D: $\Omega=(0,1)^{2}$

Figure: Iso-values of the optimal s in Ω for $a(\boldsymbol{x})=25 \mathcal{X}_{\Omega}(\boldsymbol{x})$ (Left) and $a(\boldsymbol{x})=50 \mathcal{X}_{\Omega}(\boldsymbol{x})$ (Right) - $T=1$

Optimal (α, β) spatio-temporal distribution for the wave equation

[Maestre-AM-Pedegral, IFB 08] ${ }^{7}$

- Let $\Omega \subset \mathbb{R}, 0<\alpha<\beta<\infty, L \in(0,1), T>0,\left(u^{0}, u^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

$$
\begin{equation*}
\left(P_{\omega}^{2}\right): \quad \inf _{\boldsymbol{\mathcal { X }}}^{\boldsymbol{\omega}} \boldsymbol{} I\left(\mathcal{X}_{\boldsymbol{\omega}}\right)=\int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+a\left(t, x, \mathcal{X}_{\boldsymbol{\omega}}\right)|\nabla u|^{2}\right) d x d t \tag{71}
\end{equation*}
$$

with

$$
\begin{equation*}
a\left(t, x, \mathcal{X}_{\omega}\right)=a_{\alpha}(t, x) \mathcal{X}_{\omega}+a_{\beta}(t, x)\left(1-\mathcal{X}_{\omega}\right) \tag{72}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\operatorname{div}\left(\left[\alpha \mathcal{X}_{\omega}+\beta\left(1-\mathcal{X}_{\omega}\right)\right] \nabla u\right)=0 & (0, T) \times \Omega, \tag{73}\\ u=0 & (0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \\ \mathcal{X}_{\omega} \in L^{\infty}((0, T) \times \Omega ;\{0,1\}), & (0, T) \\ \left\|\mathcal{X}_{\omega}\right\|_{L^{1}(\Omega)} \leq L\left\|\mathcal{X}_{\Omega}\right\|_{L^{1}(\Omega)} & \end{cases}
$$

${ }^{7}$ F. Maestre, AM, P. Pedregal, Optimal design under the one-dimensional wave equation, Interfaces and Free Boundaries (2008)

Problem $\left(P_{\omega}^{2}\right)$: Optimal (α, β) distribution - The result

- $h(t, x)=\beta a_{\alpha}(t, x)-\alpha a_{\beta}(t, x), \quad a(t, x, \mathcal{X})=\mathcal{X}(t, x) a_{\alpha}(t, x)+(1-\mathcal{X}(t, x)) a_{\beta}(t, x)$ $\left(R P_{\omega}^{2}\right): \quad \min _{U, s} \int_{0}^{T} \int_{\Omega} \operatorname{CQW}(t, x, \nabla U(t, x), s(t, x)) d x d t$

- $\operatorname{CQW}(t, \boldsymbol{x}, F, s)$ is defined by

Problem $\left(P_{\omega}^{2}\right)$: Optimal (α, β) distribution - The result

- $h(t, x)=\beta a_{\alpha}(t, x)-\alpha a_{\beta}(t, x), \quad a(t, x, \mathcal{X})=\mathcal{X}(t, x) a_{\alpha}(t, x)+(1-\mathcal{X}(t, x)) a_{\beta}(t, x)$ 0

$$
\begin{aligned}
& \left(R P_{\omega}^{2}\right): \quad \min _{U, s} \int_{0}^{T} \int_{\Omega} \operatorname{CQW}(t, \boldsymbol{x}, \nabla U(t, \boldsymbol{x}), s(t, \boldsymbol{x})) d x d t \\
& \left\{\begin{array}{l}
U=(u, v) \in H^{1}([0, T] \times \Omega)^{2}, \operatorname{tr}(\nabla U(t, \boldsymbol{x}))=0, \\
U^{(1)}(0, \boldsymbol{x})=u_{0}(\boldsymbol{x}), U_{t}^{(1)}(0, \boldsymbol{x})=u_{1}(\boldsymbol{x}) \text { in } \Omega, \\
U^{(1)}(t, 1)=U^{(1)}(t, 0)=0 \text { in }[0, T], \\
0 \leq s(t, \boldsymbol{x}) \leq 1, \int_{\Omega} s(t, \boldsymbol{x}) d x \leq V_{\alpha}|\Omega| \forall t \in[0, T],
\end{array}\right.
\end{aligned}
$$

$\operatorname{CQW}(t, \boldsymbol{x}, F, s)$ is defined by

Problem $\left(P_{\omega}^{2}\right)$: Optimal (α, β) distribution - The result

- $h(t, x)=\beta a_{\alpha}(t, x)-\alpha a_{\beta}(t, x), \quad a(t, x, \mathcal{X})=\mathcal{X}(t, x) a_{\alpha}(t, x)+(1-\mathcal{X}(t, x)) a_{\beta}(t, x)$

0

$$
\begin{aligned}
& \left(R P_{\omega}^{2}\right): \quad \min _{U, s} \int_{0}^{T} \int_{\Omega} \operatorname{CQW}(t, \boldsymbol{x}, \nabla U(t, \boldsymbol{x}), s(t, \boldsymbol{x})) d x d t \\
& \left\{\begin{array}{l}
U=(u, v) \in H^{1}([0, T] \times \Omega)^{2}, \operatorname{tr}(\nabla U(t, \boldsymbol{x}))=0, \\
U^{(1)}(0, \boldsymbol{x})=u_{0}(\boldsymbol{x}), U_{t}^{(1)}(0, \boldsymbol{x})=u_{1}(\boldsymbol{x}) \text { in } \Omega, \\
U^{(1)}(t, 1)=U^{(1)}(t, 0)=0 \text { in }[0, T], \\
0 \leq s(t, \boldsymbol{x}) \leq 1, \int_{\Omega} s(t, \boldsymbol{x}) d x \leq V_{\alpha}|\Omega| \forall t \in[0, T],
\end{array}\right.
\end{aligned}
$$

- $\operatorname{CQW}(t, \boldsymbol{x}, F, s)$ is defined by

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{h}{s \beta(\beta-\alpha)^{2}}\left(\beta^{2}\left|F_{12}\right|^{2}+\left|F_{21}\right|^{2}+2 \beta F_{12} F_{21}\right)+\left|F_{11}\right|^{2}-\frac{a_{\beta}}{\beta} F_{12} F_{21} \quad \text { if } \boldsymbol{h}(\boldsymbol{t}, \boldsymbol{x}) \geq \mathbf{0}, \boldsymbol{\psi}(\boldsymbol{F}, \boldsymbol{s}) \leq \mathbf{0} \\
\frac{-h}{(1-s) \alpha(\beta-\alpha)^{2}}\left(\alpha^{2}\left|F_{12}\right|^{2}+\left|F_{21}\right|^{2}+2 \alpha F_{12} F_{21}\right)+\left|F_{11}\right|^{2}-\frac{a_{\alpha}}{\alpha} F_{12} F_{21}, \quad \text { if } \boldsymbol{h}(\boldsymbol{t}, \boldsymbol{x}) \leq \mathbf{0}, \boldsymbol{\psi}(\boldsymbol{F}, \boldsymbol{s}) \leq \mathbf{0} \\
-\operatorname{det} F+\frac{1}{s(1-s)(\beta-\alpha)^{2}}\left(\left((1-s) \beta^{2}\left(\alpha+a_{\alpha}\right)+s \alpha^{2}\left(\beta+a_{\beta}\right)\right)\left|F_{12}\right|^{2}\right. \\
\left.\quad+\left((1-s)\left(\alpha+a_{\alpha}\right)+s\left(\beta+a_{\beta}\right)\right)\left|F_{21}\right|^{2}+2\left(\left(\alpha+a_{\alpha}\right) \beta-s h\right) F_{12} F_{21}\right) \quad \text { if } \boldsymbol{\psi}(\boldsymbol{F}, \boldsymbol{s}) \geq \mathbf{0} . \\
\quad \text { if } \operatorname{Tr}(F) \neq \mathbf{0}
\end{array}\right. \\
& +\infty \quad \begin{array}{l}
\psi(F, s)=\frac{(\alpha(1-s)+\beta s)}{(\beta-\alpha)}\left(F_{21}+\lambda_{\alpha, \beta}^{-}(s) F_{12}\right)\left(F_{21}+\lambda_{\alpha, \beta}^{+}(s) F_{12}\right)
\end{array}
\end{aligned}
$$

The relaxation for $\left(P_{\omega}^{3}\right)$: First order laminate

$$
\left(R P_{\omega}^{3}\right): \quad \min _{U, s, r} \int_{0}^{T} \int_{\Omega} C Q W(t, \boldsymbol{x}, \nabla U(t, x), s(t, \boldsymbol{x}), r(x)) d x d t
$$

soumis à

$$
\left\{\begin{array}{l}
U=(u, v) \in H^{1}([0, T] \times \Omega)^{2}, \quad \psi(t, \boldsymbol{x}, \nabla U, s, r)=0 \\
\operatorname{tr}(\nabla U(t, \boldsymbol{x}))=u_{t}+v_{x}=a(x) r(x) u(t, x), \text { dans }(0, T) \times \Omega \\
U^{(1)}(0, \boldsymbol{x})=u_{0}(\boldsymbol{x}), U_{t}^{(1)}(0, \boldsymbol{x})=u_{1}(\boldsymbol{x}) \text { dans } \Omega, \\
U^{(1)}(t, 1)=U^{(1)}(t, 0)=0 \text { dans }[0, T], \\
0 \leq s(t, x) \leq 1, \int_{\Omega} s(t, x) d x \leq L_{\alpha}|\Omega| \forall t \in[0, T] \\
0 \leq r(x) \leq 1, \int_{\Omega} r(x) d x \leq L_{d}|\Omega|
\end{array}\right.
$$

- $\operatorname{CQW}(t, \boldsymbol{x}, F, s, r)$ is given by
$\operatorname{CQW}(U, F, s, r)=\left|F_{11}\right|^{2}+\frac{a_{\alpha}}{s(\beta-\alpha)^{2}}\left|\beta F_{12}+F_{21}\right|^{2}+\frac{a_{\beta}}{(1-s)(\beta-\alpha)^{2}}\left|\alpha F_{12}+F_{21}\right|^{2} \quad$ (74) $\psi(F, s, r)=\frac{(\alpha(1-s)+\beta s)}{(\beta-\alpha)}\left(F_{21}+\lambda_{\alpha, \beta}^{-}(s) F_{12}\right)\left(F_{21}+\lambda_{\alpha, \beta}^{+}(s) F_{12}\right)$

First order laminate \Longrightarrow (Regular effect on the ontimal micro-structure) or (no second order laminates for ($\left.R P_{\omega}^{2}\right)$).

$$
\left(R P_{\omega}^{3}\right): \quad \min _{U, s, r} \int_{0}^{T} \int_{\Omega} C Q W(t, \boldsymbol{x}, \nabla U(t, x), s(t, \boldsymbol{x}), r(x)) d x d t
$$

soumis à

$$
\left\{\begin{array}{l}
U=(u, v) \in H^{1}([0, T] \times \Omega)^{2}, \quad \psi(t, \boldsymbol{x}, \nabla U, s, r)=0 \\
\operatorname{tr}(\nabla U(t, \boldsymbol{x}))=u_{t}+v_{x}=a(x) r(x) u(t, x), \text { dans }(0, T) \times \Omega \\
U^{(1)}(0, \boldsymbol{x})=u_{0}(\boldsymbol{x}), U_{t}^{(1)}(0, \boldsymbol{x})=u_{1}(\boldsymbol{x}) \text { dans } \Omega \\
U^{(1)}(t, 1)=U^{(1)}(t, 0)=0 \text { dans }[0, T] \\
0 \leq s(t, x) \leq 1, \int_{\Omega} s(t, x) d x \leq L_{\alpha}|\Omega| \forall t \in[0, T] \\
0 \leq r(x) \leq 1, \quad \int_{\Omega} r(x) d x \leq L_{d}|\Omega|
\end{array}\right.
$$

- $C Q W(t, \boldsymbol{x}, F, s, r)$ is given by

$$
\begin{gather*}
\operatorname{CQW}(U, F, s, r)=\left|F_{11}\right|^{2}+\frac{a_{\alpha}}{s(\beta-\alpha)^{2}}\left|\beta F_{12}+F_{21}\right|^{2}+\frac{a_{\beta}}{(1-s)(\beta-\alpha)^{2}}\left|\alpha F_{12}+F_{21}\right|^{2} \tag{74}\\
\psi(F, s, r)=\frac{(\alpha(1-s)+\beta s)}{(\beta-\alpha)}\left(F_{21}+\lambda_{\alpha, \beta}^{-}(s) F_{12}\right)\left(F_{21}+\lambda_{\alpha, \beta}^{+}(s) F_{12}\right)
\end{gather*}
$$

First order laminate \Longrightarrow (Regular effect on the optimal micro-structure) or (no second order laminates for $\left(R P_{\omega}^{2}\right)$).

$$
\left(R P_{\omega}^{3}\right): \quad \min _{U, s, r} \int_{0}^{T} \int_{\Omega} C Q W(t, \boldsymbol{x}, \nabla U(t, x), s(t, \boldsymbol{x}), r(x)) d x d t
$$

soumis à

$$
\left\{\begin{array}{l}
U=(u, v) \in H^{1}([0, T] \times \Omega)^{2}, \quad \psi(t, \boldsymbol{x}, \nabla U, s, r)=0 \\
\operatorname{tr}(\nabla U(t, \boldsymbol{x}))=u_{t}+v_{x}=a(x) r(x) u(t, x), \text { dans }(0, T) \times \Omega \\
U^{(1)}(0, \boldsymbol{x})=u_{0}(\boldsymbol{x}), U_{t}^{(1)}(0, \boldsymbol{x})=u_{1}(\boldsymbol{x}) \text { dans } \Omega \\
U^{(1)}(t, 1)=U^{(1)}(t, 0)=0 \text { dans }[0, T] \\
0 \leq s(t, x) \leq 1, \int_{\Omega} s(t, x) d x \leq L_{\alpha}|\Omega| \forall t \in[0, T] \\
0 \leq r(x) \leq 1, \quad \int_{\Omega} r(x) d x \leq L_{d}|\Omega|
\end{array}\right.
$$

- $\operatorname{CQW}(t, \boldsymbol{x}, F, s, r)$ is given by

$$
\begin{gather*}
\operatorname{CQW}(U, F, s, r)=\left|F_{11}\right|^{2}+\frac{a_{\alpha}}{s(\beta-\alpha)^{2}}\left|\beta F_{12}+F_{21}\right|^{2}+\frac{a_{\beta}}{(1-s)(\beta-\alpha)^{2}}\left|\alpha F_{12}+F_{21}\right|^{2} \tag{74}\\
\psi(F, s, r)=\frac{(\alpha(1-s)+\beta s)}{(\beta-\alpha)}\left(F_{21}+\lambda_{\alpha, \beta}^{-}(s) F_{12}\right)\left(F_{21}+\lambda_{\alpha, \beta}^{+}(s) F_{12}\right)
\end{gather*}
$$

- First order laminate \Longrightarrow (Regular effect on the optimal micro-structure) or (no second order laminates for $\left(R P_{\omega}^{2}\right)$).

Simplification of $\left(R P_{\omega}^{2}\right)$

$$
\begin{equation*}
\psi(F, s)=0 \Rightarrow\left(F_{21}+\frac{\lambda^{+}(s)+\lambda^{-}(s)}{2} F_{12}\right)^{2}=\frac{1}{4}\left(\lambda^{+}(s)-\lambda^{-}(s)\right)^{2}\left|F_{12}\right|^{2} \tag{75}
\end{equation*}
$$

Simplification of $\left(R P_{\omega}^{2}\right)$

$$
\begin{gather*}
\psi(F, s)=0 \Rightarrow\left(F_{21}+\frac{\lambda^{+}(s)+\lambda^{-}(s)}{2} F_{12}\right)^{2}=\frac{1}{4}\left(\lambda^{+}(s)-\lambda^{-}(s)\right)^{2}\left|F_{12}\right|^{2} \tag{75}\\
F_{21}=m(x, t)\left(\frac{\lambda^{+}(s)-\lambda^{-}(s)}{2}\right)\left|F_{12}\right|-\left(\frac{\lambda^{+}(s)+\lambda^{-}(s)}{2}\right) F_{12}, \quad m(x, t)= \pm 1 \text { in }(0, T) \times \Omega \tag{76}
\end{gather*}
$$

Simplification of ($\left.A P_{\omega}^{2}\right)$

$$
\begin{gather*}
\psi(F, s)=0 \Rightarrow\left(F_{21}+\frac{\lambda^{+}(s)+\lambda^{-}(s)}{2} F_{12}\right)^{2}=\frac{1}{4}\left(\lambda^{+}(s)-\lambda^{-}(s)\right)^{2}\left|F_{12}\right|^{2} \tag{75}\\
F_{21}=m(x, t)\left(\frac{\lambda^{+}(s)-\lambda^{-}(s)}{2}\right)\left|F_{12}\right|-\left(\frac{\lambda^{+}(s)+\lambda^{-}(s)}{2}\right) F_{12}, \quad m(x, t)= \pm 1 \mathrm{in}(0, T) \times \Omega \tag{76}
\end{gather*}
$$

The relaxed formulation $\left(R P_{\omega}^{2}\right)$ is equivalent

$$
\left(R P_{\omega}^{2}\right): \quad \min _{u, s, m} \int_{0}^{T} \int_{\Omega} C Q W(x, t, u, s, m) d x d t
$$

subject to

$$
\begin{cases}u_{t t}-\operatorname{div}\left(\frac{\lambda^{+}(s)+\lambda^{-}(s)}{2} \nabla u-m(x, t)\left(\frac{\lambda^{+}(s)-\lambda^{-}(s)}{2}\right)|\nabla u|\right)=0 & (0, T) \times \Omega \tag{77}\\ u=0 & (0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \Omega, \\ s \in L^{\infty}((0, T) \times \Omega ;\{0,1\}), \quad|m(x, t)|=1 & (0, T)\end{cases}
$$

Problem $\left(P_{\omega}^{2}\right)$: Particular case : $\left(a_{\alpha}, a_{\beta}\right)=(\alpha, \beta)$

The relaxed formulation of

$$
\begin{equation*}
\left(P_{\omega}^{2}\right): \inf _{\mathcal{X}_{\omega}} I\left(\mathcal{X}_{\omega}\right)=\int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+\left[\alpha \mathcal{X}_{\omega}+\beta\left(1-\mathcal{X}_{\omega}\right)\right]|\nabla u|^{2}\right) d x d t \tag{78}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\operatorname{div}\left(\left[\alpha \mathcal{X}_{\boldsymbol{\omega}}+\beta\left(1-\mathcal{X}_{\boldsymbol{\omega}}\right)\right] \nabla u\right)=0 & (0, T) \times \Omega \tag{79}\\ u=0 & (0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \\ \mathcal{X}_{\boldsymbol{\omega}} \in L^{\infty}((0, T) \times \Omega ;\{0,1\}), & (0, T)\end{cases}
$$

Problem $\left(P_{\omega}^{2}\right)$: Particular case : $\left(a_{\alpha}, a_{\beta}\right)=(\alpha, \beta)$

The relaxed formulation of

$$
\begin{equation*}
\left(P_{\omega}^{2}\right): \quad \inf _{\mathcal{X}_{\omega}} I\left(\mathcal{X}_{\omega}\right)=\int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+\left[\alpha \mathcal{X}_{\omega}+\beta\left(1-\mathcal{X}_{\omega}\right)\right]|\nabla u|^{2}\right) d x d t \tag{78}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\operatorname{div}\left(\left[\alpha \mathcal{X}_{\boldsymbol{\omega}}+\beta\left(1-\mathcal{X}_{\boldsymbol{\omega}}\right)\right] \nabla u\right)=0 & (0, T) \times \Omega \tag{79}\\ u=0 & (0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \\ \mathcal{X}_{\boldsymbol{\omega}} \in L^{\infty}((0, T) \times \Omega ;\{0,1\}), & (0, T)\end{cases}
$$

$$
\begin{equation*}
m=\min _{u, s} \int_{0}^{T} \int_{\Omega}\left(u_{t}(t, x)^{2}+\frac{1}{\left(\alpha^{-1} s+\beta^{-1}(1-s)\right)} u_{x}(t, x)^{2}\right) d x d t \tag{80}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\operatorname{div}\left(\frac{1}{\alpha^{-1} s(t, x)+\beta^{-1}(1-s(t, x))} \nabla u\right)=0 & \text { in }(0, T) \times \Omega \tag{81}\\ u=0 & \text { on }(0, T) \times \partial \Omega \\ u(0, x)=u^{0}(x), u_{t}(0, x)=u^{1}(x) & \text { in } \Omega, \\ 0 \leq s(t, x) \leq 1, \int_{\Omega} s(t, x) d x \leq L|\Omega| & \text { in }[0, T]\end{cases}
$$

and the optimal measure is recovered with first order laminates with normal $(0,1)$.

The relaxed formulation of

$$
\begin{equation*}
\left(P_{\omega}^{2}\right): \quad \inf _{\mathcal{X}_{\omega}} l\left(\mathcal{X}_{\omega}\right)=\int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|\nabla u|^{2}\right) d x d t \tag{82}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\operatorname{div}\left(\left[\alpha \mathcal{X}_{\boldsymbol{\omega}}+\beta\left(1-\mathcal{X}_{\boldsymbol{\omega}}\right)\right] \nabla u\right)=0 & (0, T) \times \Omega, \tag{83}\\ u=0 & (0, T) \times \partial \Omega, \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \Omega, \\ \mathcal{X}_{\boldsymbol{\omega}} \in L^{\infty}((0, T) \times \Omega ;\{0,1\}), & (0, T) \\ \left\|\mathcal{X}_{\boldsymbol{\omega}}\right\|_{L^{1}(\Omega)} \leq L\left\|\mathcal{X}_{\Omega}\right\|_{L^{1}(\Omega)} & \end{cases}
$$

Problem $\left(P_{\omega}^{2}\right)$: Particular case : $\left(a_{\alpha}, a_{\beta}\right)=(1,1)$

The relaxed formulation of

$$
\begin{equation*}
\left(P_{\omega}^{2}\right): \quad \inf _{\mathcal{X}_{\boldsymbol{\omega}}} I\left(\mathcal{X}_{\omega}\right)=\int_{0}^{T} \int_{\Omega}\left(\left|u_{t}\right|^{2}+|\nabla u|^{2}\right) d x d t \tag{82}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\operatorname{div}\left(\left[\alpha \mathcal{X}_{\boldsymbol{\omega}}+\beta\left(1-\mathcal{X}_{\boldsymbol{\omega}}\right)\right] \nabla u\right)=0 & (0, T) \times \Omega \tag{83}\\ u=0 & (0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \\ \mathcal{X}_{\boldsymbol{\omega}} \in L^{\infty}((0, T) \times \Omega ;\{0,1\}), & (0, T)\end{cases}
$$

$$
\begin{equation*}
m=\min _{u, s} \int_{0}^{T} \int_{\Omega}\left(u_{t}(t, x)^{2}+[\alpha s(t, x)+\beta(1-s(t, x))] u_{x}(t, x)^{2}\right) d x d t \tag{84}
\end{equation*}
$$

subject to

$$
\begin{cases}u_{t t}-\operatorname{div}([\alpha s(t, x)+\beta(1-s(t, x))] \nabla u)=0 & \text { in }(0, T) \times \Omega \tag{85}\\ u=0 & \text { on }(0, T) \times \partial \Omega \\ u(0, x)=u^{0}(x), u_{t}(0, x)=u^{1}(x) & \text { in } \Omega, \\ 0 \leq s(t, x) \leq 1, \int_{\Omega} s(t, x) d x \leq L|\Omega| & \text { in }[0, T]\end{cases}
$$

and the optimal measure is recovered with first order laminates with normal $(1,0)$.

Some numerical results for $\left(R P_{\omega}^{2}\right)$
Let $\Omega=(0,1), T=2$ and $\left(u^{0}, u^{1}\right)=(\sin (\pi x), 0)$ and $L=1 / 2$

Iso-values of the optimal density s on $(0, T) \times \Omega$ Top: $(\alpha, \beta)=(1,1.1)$-Bottom: $(\alpha, \beta)=(1,10)$

Some numerical results for $\left(R P_{\omega}^{2}\right)$
Let $\Omega=(0,1), T=2$ and $\left(u^{0}, u^{1}\right)=\left(e^{-0.5(x-0.5)^{2}}, 0\right)$ and $L=1 / 2$

Iso-values of the optimal density s on $(0, T) \times \Omega$ Top: $(\alpha, \beta)=(1,1.1)$-Bottom: $(\alpha, \beta)=(1,10)$

Optimization of the heat flux: Div-Rot Young Measure

$$
\begin{align*}
& \left(\mathrm{P}_{t}\right) \quad \text { Minimize over } \mathcal{X}: \quad J_{t}(\mathcal{X})=\frac{1}{2} \int_{0}^{T} \int_{\Omega} K(t, x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t \\
& \begin{cases}(\beta(t, x) u(t, x))^{\prime}-\operatorname{div}(K(t, x) \nabla u(t, x))=f(t, x) & \text { in } \\
u=0 & (0, T) \times \Omega, \\
u(0, x)=u_{0}(x) & \text { on } \\
(0, T) \times \partial \Omega,\end{cases} \tag{86}
\end{align*}
$$

with

$$
\beta(t, x)=\mathcal{X}(t, x) \beta_{1}+(1-\mathcal{X}(t, x)) \beta_{2}, K(t, x)=\mathcal{X}(t, x) k_{1} I_{N}+(1-\mathcal{X}(t, x)) k_{2} I_{N},
$$

(AM, Pedregal, Periago, JMPA 2008)

$\left(R P_{t}\right) \quad$ Minimize over $(\theta, \bar{G}, u): \quad \bar{J}_{t}(\theta, \bar{G}, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[k_{1} \frac{\left|\bar{G}-k_{2} \nabla u\right|^{2}}{\theta\left(k_{1}-k_{2}\right)^{2}}+k_{2} \frac{\left|\bar{G}-k_{1} \nabla u\right|^{2}}{(1-\theta)\left(k_{2}-k_{1}\right)^{2}}\right] d x d t$

$$
\begin{cases}G \in L^{2}\left((0, T) \times \Omega ; \mathbb{R}^{N+1}\right), & u \in H^{1}((0, T) \times \Omega ; \mathbb{R}), \\ \left(\left(\theta \beta_{1}+(1-\theta) \beta_{2}\right) u\right)^{\prime}-\operatorname{div} \bar{G}=0 & \text { dans } H^{-1}((0, T) \times \Omega), \\ \left.u\right|_{\partial \Omega}=0 \quad \text { p.p. } t \in[0, T], & u(0)=u_{0} \quad \text { dans } \Omega, \\ \theta \in L^{\infty}((0, T) \times \Omega ;[0,1]), \quad \int_{\Omega} \theta(t, x) d x=L|\Omega| \quad \text { p.p. } t \in(0, T) . & \end{cases}
$$

is a relaxation of $\left(P_{t}\right)$ in the following sense :
$\left(R P_{t}\right)$ is well-posed,
the infimum of $\left(V P_{t}\right)$ equals the minimum of $\left(R P_{t}\right)$, and
the Young measure associated with $\left(R P_{t}\right)$ (et donc la micro-structure optimale de $\left(V P_{t}\right)$) is expressed in term of an explicit first order laminate.

Optimization of the heat flux: Div-Rot Young Measure

$$
\begin{align*}
& \left(\mathrm{P}_{t}\right) \quad \text { Minimize over } \mathcal{X}: \quad J_{t}(\mathcal{X})=\frac{1}{2} \int_{0}^{T} \int_{\Omega} K(t, x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t \\
& \begin{cases}(\beta(t, x) u(t, x))^{\prime}-\operatorname{div}(K(t, x) \nabla u(t, x))=f(t, x) & \text { in } \\
u=0 & (0, T) \times \Omega, \\
u(0, x)=u_{0}(x) & \text { on } \\
(0, T) \times \partial \Omega,\end{cases} \tag{86}
\end{align*}
$$

with

$$
\beta(t, x)=\mathcal{X}(t, x) \beta_{1}+(1-\mathcal{X}(t, x)) \beta_{2}, K(t, x)=\mathcal{X}(t, x) k_{1} I_{N}+(1-\mathcal{X}(t, x)) k_{2} I_{N},
$$

(AM, Pedregal, Periago, JMPA 2008)

$\left(R P_{t}\right) \quad$ Minimize over $(\theta, \bar{G}, u): \quad \bar{J}_{t}(\theta, \bar{G}, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[k_{1} \frac{\left|\bar{G}-k_{2} \nabla u\right|^{2}}{\theta\left(k_{1}-k_{2}\right)^{2}}+k_{2} \frac{\left|\bar{G}-k_{1} \nabla u\right|^{2}}{(1-\theta)\left(k_{2}-k_{1}\right)^{2}}\right] d x d t$

$$
\begin{cases}G \in L^{2}\left((0, T) \times \Omega ; \mathbb{R}^{N+1}\right), & u \in H^{1}((0, T) \times \Omega ; \mathbb{R}), \\ \left(\left(\theta \beta_{1}+(1-\theta) \beta_{2}\right) u\right)^{\prime}-\operatorname{div} \bar{G}=0 & \text { dans } H^{-1}((0, T) \times \Omega), \\ \left.u\right|_{\partial \Omega}=0 \quad \text { p.p. } t \in[0, T], & u(0)=u_{0} \quad \text { dans } \Omega, \\ \theta \in L^{\infty}((0, T) \times \Omega ;[0,1]), \quad \int_{\Omega} \theta(t, x) d x=L|\Omega| \quad \text { p.p. } t \in(0, T) . & \end{cases}
$$

is a relaxation of $\left(P_{t}\right)$ in the following sense :
(i) $\left(R P_{t}\right)$ is well-posed,
(ii) the infimum of $\left(V P_{t}\right)$ equals the minimum of $\left(R P_{t}\right)$, and
(iii) the Young measure associated with $\left(R P_{t}\right)$ (et donc la micro-structure optimale de $\left(V P_{t}\right)$) is expressed in term of an explicit first order laminate.

Optimization of the heat flux: Div-Rot Young Measure

$$
\begin{align*}
& \left(\mathrm{P}_{t}\right) \quad \text { Minimize over } \mathcal{X}: \quad J_{t}(\mathcal{X})=\frac{1}{2} \int_{0}^{T} \int_{\Omega} K(t, x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t \\
& \begin{cases}(\beta(t, x) u(t, x))^{\prime}-\operatorname{div}(K(t, x) \nabla u(t, x))=f(t, x) & \text { in }(0, T) \times \Omega, \\
u=0 & \text { on } \\
u(0, x)=u_{0}(x) & \text { in } \Omega, T) \times \partial \Omega,\end{cases} \tag{86}
\end{align*}
$$

with

$$
\beta(t, x)=\mathcal{X}(t, x) \beta_{1}+(1-\mathcal{X}(t, x)) \beta_{2}, K(t, x)=\mathcal{X}(t, x) k_{1} I_{N}+(1-\mathcal{X}(t, x)) k_{2} I_{N},
$$

(AM, Pedregal, Periago, JMPA 2008)

$\left(R P_{t}\right) \quad$ Minimize over $(\theta, \bar{G}, u): \quad \bar{J}_{t}(\theta, \bar{G}, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[k_{1} \frac{\left|\bar{G}-k_{2} \nabla u\right|^{2}}{\theta\left(k_{1}-k_{2}\right)^{2}}+k_{2} \frac{\left|\bar{G}-k_{1} \nabla u\right|^{2}}{(1-\theta)\left(k_{2}-k_{1}\right)^{2}}\right] d x d t$

$$
\begin{cases}G \in L^{2}\left((0, T) \times \Omega ; \mathbb{R}^{N+1}\right), & u \in H^{1}((0, T) \times \Omega ; \mathbb{R}), \\ \left(\left(\theta \beta_{1}+(1-\theta) \beta_{2}\right) u\right)^{\prime}-\operatorname{div} \bar{G}=0 & \text { dans } H^{-1}((0, T) \times \Omega), \\ \left.u\right|_{\partial \Omega}=0 \quad \text { p.p. } t \in[0, T], & u(0)=u_{0} \quad \text { dans } \Omega, \\ \theta \in L^{\infty}((0, T) \times \Omega ;[0,1]), \quad \int_{\Omega} \theta(t, x) d x=L|\Omega| \quad \text { p.p. } t \in(0, T) . & \end{cases}
$$

is a relaxation of $\left(P_{t}\right)$ in the following sense :
(i) $\left(R P_{t}\right)$ is well-posed,
(ii) the infimum of $\left(V P_{t}\right)$ equals the minimum of $\left(R P_{t}\right)$, and

Optimization of the heat flux: Div-Rot Young Measure

$$
\begin{align*}
& \left(\mathrm{P}_{t}\right) \quad \text { Minimize over } \mathcal{X}: \quad J_{t}(\mathcal{X})=\frac{1}{2} \int_{0}^{T} \int_{\Omega} K(t, x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t \\
& \left\{\begin{array}{lll}
(\beta(t, x) u(t, x))^{\prime}-\operatorname{div}(K(t, x) \nabla u(t, x))=f(t, x) & \text { in } & (0, T) \times \Omega \\
u=0 & \text { on } & (0, T) \times \partial \Omega \\
u(0, x)=u_{0}(x) & \text { in } & \Omega,
\end{array}\right. \tag{86}
\end{align*}
$$

with

$$
\beta(t, x)=\mathcal{X}(t, x) \beta_{1}+(1-\mathcal{X}(t, x)) \beta_{2}, K(t, x)=\mathcal{X}(t, x) k_{1} I_{N}+(1-\mathcal{X}(t, x)) k_{2} I_{N}
$$

(AM, Pedregal, Periago, JMPA 2008)

$\left(R P_{t}\right)$ Minimize over $(\theta, \bar{G}, u): \quad \overline{J_{t}}(\theta, \bar{G}, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[k_{1} \frac{\left|\bar{G}-k_{2} \nabla u\right|^{2}}{\theta\left(k_{1}-k_{2}\right)^{2}}+k_{2} \frac{\left|\bar{G}-k_{1} \nabla u\right|^{2}}{(1-\theta)\left(k_{2}-k_{1}\right)^{2}}\right] d x d t$

$$
\begin{cases}G \in L^{2}\left((0, T) \times \Omega ; \mathbb{R}^{N+1}\right), & u \in H^{1}((0, T) \times \Omega ; \mathbb{R}) \\ \left(\left(\theta \beta_{1}+(1-\theta) \beta_{2}\right) u\right)^{\prime}-\operatorname{div} \bar{G}=0 & \text { dans } H^{-1}((0, T) \times \Omega) \\ \left.u\right|_{\partial \Omega}=0 \quad \text { p.p. } t \in[0, T], & u(0)=u_{0} \quad \text { dans } \Omega \\ \theta \in L^{\infty}((0, T) \times \Omega ;[0,1]), \quad \int_{\Omega} \theta(t, x) d x=L|\Omega| & \text { p.p. } t \in(0, T) .\end{cases}
$$

is a relaxation of $\left(P_{t}\right)$ in the following sense :
(i) $\left(R P_{t}\right)$ is well-posed,
(ii) the infimum of $\left(V P_{t}\right)$ equals the minimum of $\left(R P_{t}\right)$, and
(iii) the Young measure associated with $\left(R P_{t}\right)$ (et donc la micro-structure optimale de $\left(V P_{t}\right)$) is expressed in term of an explicit first order laminate.

Problem 4: Optimal design and exact controllability

[AM 06,07,08] [Asch-Lebeau 99], [Chambolle-Santosa 03], [Periago 09]

- Let $\Omega \subset \mathbb{R}^{N}, N=1,2,\left(u^{0}, u^{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega), L \in(0,1), T>0^{8}$

$$
\begin{equation*}
\left(P_{\omega}^{4}\right): \quad \inf _{\mathcal{X}_{\omega}}\left\|v_{\omega}\right\|_{L^{2}(\omega \times(0, T))}^{2} \tag{87}
\end{equation*}
$$

where v_{ω} is an exact control, supported on $\omega \times(0, T)$ for

$$
\begin{cases}u_{t t}-\Delta u=v_{\omega} \mathcal{X}_{\omega} & \text { in }(0, T) \times \Omega \tag{88}\\ u=0 & \text { on }(0, T) \times \partial \Omega \\ u(0, \cdot)=u^{0}, \quad u_{t}(0, \cdot)=u^{1} & \text { in } \Omega\end{cases}
$$

and subject to

$$
\left\{\begin{array}{l}
\text { The system (88) may be observed from } \omega \times(0, T) \tag{89}\\
\left\|\mathcal{X}_{\omega}\right\|_{L^{1}(\Omega)} \leq L\left\|\mathcal{X}_{\Omega}\right\|_{L^{1}(\Omega)}
\end{array}\right.
$$

[^8]
Some numerical results for $\left(R P_{\omega}^{4}\right)$

$$
\text { Let } \Omega=(0,1)^{2} \text {, and }\left(u^{0}, u^{1}\right)=\left(e^{-80\left(x_{1}-0.3\right)^{2}-80\left(x_{2}-0.3\right)^{2}}, 0\right) \text { and } L=1 / 10
$$

Iso-value of the optimal density s on Ω for $T=0.5, T=1, T=3$

- $\{x \in \Omega, 0<s(x)<1\}=\emptyset,\left(P_{\omega}^{4}\right)=\left(R P_{\omega}^{4}\right)$ and is well-posed

Domain with a crack : Reduction of the singularity

[Ph. Destuynder 87,88,89]

- Let $\omega \subset \Omega \in \mathbb{R}^{2}, 0<\alpha \leq \beta, u_{0} \in H^{1 / 2}\left(\Gamma_{0}\right), g \in L^{2}\left(\Gamma_{g}\right)$ et u solution de

$$
\left\{\begin{array}{lr}
-\operatorname{div}\left(a_{\mathcal{X}}{ }_{\omega} \nabla u\right)=0, \quad a_{\mathcal{X}_{\omega}}=\alpha \mathcal{X}_{\omega}+\beta\left(1-\mathcal{X}_{\omega}\right) & \Omega, \tag{90}\\
u=u_{0} & \Gamma_{0} \subset \partial \Omega, \\
\beta \nabla u \cdot \nu=g & \Gamma_{g} \subset \partial \Omega
\end{array}\right.
$$

- For any $L \in(0,1)$, the problem is (P)

g_{ψ} - Energy release rate

Figure: Domain Ω with a cut Γ_{0} - Optimization of the distribution (α, β).

Domain with a crack : Reduction of the singularity

[Ph. Destuynder 87,88,89]

- Let $\omega \subset \Omega \in \mathbb{R}^{2}, 0<\alpha \leq \beta, u_{0} \in H^{1 / 2}\left(\Gamma_{0}\right), g \in L^{2}\left(\Gamma_{g}\right)$ et u solution de

$$
\left\{\begin{array}{lr}
-\operatorname{div}\left(a_{\mathcal{X}}{ }_{\omega} \nabla u\right)=0, \quad a_{\mathcal{X}_{\omega}}=\alpha \mathcal{X}_{\omega}+\beta\left(1-\mathcal{X}_{\omega}\right) & \Omega, \tag{90}\\
u=u_{0} & \Gamma_{0} \subset \partial \Omega, \\
\beta \nabla u \cdot \nu=g & \Gamma_{g} \subset \partial \Omega
\end{array}\right.
$$

- For any $L \in(0,1)$, the problem is
$(P): \quad \inf _{\omega \in \mathcal{X}_{L}} g_{\boldsymbol{\psi}}\left(u, \mathcal{X}_{\omega}\right)=\int_{\Omega} a_{\mathcal{X}_{\omega}}(\boldsymbol{x})\left(A_{\boldsymbol{\psi}}(\boldsymbol{x}) \nabla u, \nabla u\right) d x, \quad A_{\psi}=\frac{1}{2}\left(\begin{array}{cc}\psi_{1,1} & 2 \psi_{1,2} \\ 0 & -\psi_{1,1}\end{array}\right)$,

$$
\begin{equation*}
\mathcal{X}_{L}=\left\{\mathcal{X} \in L^{\infty}(\Omega,\{0,1\}), \mathcal{X}=0 \text { on } \mathcal{D} \cup \partial \Omega,\|\mathcal{X}\|_{L^{1}(\Omega)}=L|\Omega|\right\} \tag{91}
\end{equation*}
$$

g_{ψ} - Energy release rate

Figure: Domain Ω with a cut Γ_{0} - Optimization of the distribution (α, β).

Domain with a crack : Reduction of the singularity - The relaxation

(AM, Pedregal (COCV 09))

The problem

$$
\begin{equation*}
(R P): \quad \min _{s, t} I(s, t)=\int_{\Omega} g_{\psi}(\bar{u}, s) d x \tag{92}
\end{equation*}
$$

subject to

$$
\left\{\begin{array}{l}
s \in L^{\infty}(\Omega,[0,1]), s=0 \text { in } \mathcal{D} \cup \partial \Omega,\|s\|_{L^{1}(\Omega)}=L|\Omega|, \tag{93}\\
t \in L^{\infty}\left(\Omega, \mathbb{R}^{2}\right), \quad|t|=1,
\end{array}\right.
$$

where $\bar{u}=\bar{u}(s, t)$ is solution of the nonlinear problem

$$
\begin{cases}\operatorname{div}(A(s) \nabla \bar{u}+B(s)|\nabla \bar{u}| t)=0, & \text { in } \Omega, \tag{94}\\ \bar{u}=u_{0}, & \text { on } \Gamma_{0}, \\ \beta \nabla \bar{u} \cdot \nu=g, & \text { on } \Gamma_{g} .\end{cases}
$$

$$
\begin{equation*}
A(s)=\frac{\lambda^{+}(s)+\lambda^{-}(s)}{2}=\frac{2 \alpha \beta+s(1-s)(\beta-\alpha)^{2}}{2(\alpha(1-s)+\beta s)}, \quad B(s)=\frac{\lambda^{+}(s)-\lambda^{-}(s)}{2}=\frac{s(1-s)(\beta-\alpha)^{2}}{2(\alpha(1-s)+\beta s)} . \tag{95}
\end{equation*}
$$

is a relaxion of the initial problem (P).

Domain with a crack : Reduction of the singularity - The relaxation

(AM, Pedregal (COCV 09))

The problem

$$
\begin{equation*}
(R P): \quad \min _{s, t} I(s, t)=\int_{\Omega} g_{\psi}(\bar{u}, s) d x \tag{92}
\end{equation*}
$$

subject to

$$
\left\{\begin{array}{l}
s \in L^{\infty}(\Omega,[0,1]), s=0 \text { in } \mathcal{D} \cup \partial \Omega,\|s\|_{L^{1}(\Omega)}=L|\Omega| \tag{93}\\
t \in L^{\infty}\left(\Omega, \mathbb{R}^{2}\right), \quad|t|=1
\end{array}\right.
$$

where $\bar{u}=\bar{u}(s, t)$ is solution of the nonlinear problem

$$
\begin{cases}\operatorname{div}(A(s) \nabla \bar{u}+B(s)|\nabla \bar{u}| t)=0, & \text { in } \Omega, \tag{94}\\ \bar{u}=u_{0}, & \text { on } \Gamma_{0}, \\ \beta \nabla \bar{u} \cdot \nu=g, & \text { on } \Gamma_{g} .\end{cases}
$$

$$
\begin{equation*}
A(s)=\frac{\lambda^{+}(s)+\lambda^{-}(s)}{2}=\frac{2 \alpha \beta+s(1-s)(\beta-\alpha)^{2}}{2(\alpha(1-s)+\beta s)}, \quad B(s)=\frac{\lambda^{+}(s)-\lambda^{-}(s)}{2}=\frac{s(1-s)(\beta-\alpha)^{2}}{2(\alpha(1-s)+\beta s)} . \tag{95}
\end{equation*}
$$

is a relaxion of the initial problem (P).

$$
\text { If } s \in\{0,1\} \text {, then } A(s)=\alpha s+\beta(1-s)=a_{\mathcal{X}_{\omega}}, B(s)=0 \text { and } u \equiv \bar{u}
$$

Domain with a crack : Reduction of the singularity

$$
\begin{equation*}
\Omega=(0,1), \gamma=[0.5,1] \times\{1 / 2\}, L=2 / 5, u=0 \text { on }\{0\} \times[0,1], u=1 / 2 \text { on }[0.5,0.8] \times\{1\} \tag{96}
\end{equation*}
$$

Figure: Iso-values of the optimal density : $(\alpha, \beta)=(1,2)$ and $(\alpha, \beta)=(1,10)$.

Two related works in progress

- Non linear heat equation [Fernandez-Cara, Zuazua $(00,01)$]

$$
\begin{gather*}
\Omega \subset \mathbb{R}^{N}, \omega \subset \Omega, \tag{97}\\
\left\{\begin{array}{lr}
u_{t}-\Delta u+f(u)=v \mathcal{X}_{\omega}, & (0, T) \times \Omega, \\
u=0 & (0, T) \times \partial \Omega, \\
u=u^{0} \in L^{2}(\Omega) & \{0\} \times \Omega
\end{array}\right. \tag{98}
\end{gather*}
$$

\Rightarrow Optimal position of the support of the control v in order to prevent the blow up of u :
$\inf _{\mathcal{X}_{\omega}}\|v\|_{L^{2}((0, T) \times \omega)}$

Two related works in progress

- Non linear heat equation [Fernandez-Cara, Zuazua $(00,01)$]

$$
\begin{gather*}
\Omega \subset \mathbb{R}^{N}, \omega \subset \Omega, \tag{97}\\
\left\{\begin{array}{lr}
u_{t}-\Delta u+f(u)=v \mathcal{X}_{\omega}, & (0, T) \times \Omega, \\
u=0 & (0, T) \times \partial \Omega, \\
u=u^{0} \in L^{2}(\Omega) & \{0\} \times \Omega
\end{array}\right. \tag{98}
\end{gather*}
$$

\Rightarrow Optimal position of the support of the control v in order to prevent the blow up of u :
$\inf _{\mathcal{X}_{\omega}}\|v\|_{L^{2}((0, T) \times \omega)}$

- Null controllability of shell $-\Omega \subset \mathbb{R}^{2}, \omega \subset \Omega$

$$
\left\{\begin{array}{lr}
\boldsymbol{y}_{\boldsymbol{\epsilon}}^{\prime \prime}+\boldsymbol{A}_{\boldsymbol{M}} \boldsymbol{y}_{\boldsymbol{\epsilon}}+\epsilon^{2} \boldsymbol{A}_{\boldsymbol{F}} \boldsymbol{y}_{\boldsymbol{\epsilon}}=0 & (0, T) \times \Omega \tag{99}\\
\left(\boldsymbol{y}_{\boldsymbol{\epsilon}}^{0}, \boldsymbol{y}_{\boldsymbol{\epsilon}}^{\mathbf{1}}\right) & \{0\} \times \Omega \\
\boldsymbol{y}_{\boldsymbol{\epsilon}}=\boldsymbol{v}_{\boldsymbol{\epsilon}} & (0, T) \times \partial \Omega
\end{array}\right.
$$

$(\lambda(\boldsymbol{\xi}), \mu(\boldsymbol{\xi}))=\left(\lambda_{\alpha}, \mu_{\alpha}\right) \mathcal{X}_{\omega}(\boldsymbol{\xi})+\left(\lambda_{\beta}, \mu_{\beta}\right)\left(1-\mathcal{X}_{\omega}(\boldsymbol{\xi})\right), \quad \boldsymbol{\xi} \in \omega, \quad \omega \subset \Omega$

$$
\begin{equation*}
\inf _{\omega \subset \Omega} \sup _{\phi^{0}, \phi^{1}} \frac{\left\|\boldsymbol{\phi}^{0}, \phi^{\mathbf{1}}\right\|_{\boldsymbol{V} \times \boldsymbol{H}}^{2}}{\int_{0}^{T} \int_{\partial \Omega} b_{M}(\boldsymbol{\phi}, \boldsymbol{\phi}) d \sigma d t} \tag{100}
\end{equation*}
$$

[^0]: ${ }^{2}$ F. Maestre, AM, P. Pedregal, Optimal design under the one-dimensional wave equation, Interfaces and Free Boundaries (2008)

[^1]: ${ }^{3}$ F. Maestre, AM, P. Pedregal A spatio-temporal design problem for a damped wave equation, SIAM Appl. Math (2007)

[^2]:

[^3]:

[^4]: ${ }^{4}$ Pedregal, P., Vector variational problems and applications to optimal design, $\operatorname{COCV}_{\text {: }}$ (2005)

[^5]: ${ }^{5}$ Dacorogna, B., Direct method in the calculus of variations, 1989

[^6]: ${ }^{5}$ Dacorogna, B., Direct method in the calculus of variations, 1989

[^7]: ${ }^{6}$ Kotiuga, P.R, Clebsch potentials and the vizualisation of three-dimensional solenoidal vectors fields,=1991.

[^8]: ${ }^{8}$ AM, Optimal design of the support of the control for the 2-D wave equation, G.R.Acad Sci., Paris Serie I (2006)

