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Problem |: Optimal design and stabilization of the wave equation

[Fahroo-lto, 97], [Freitas, 98], [Hebard-Henrot, 03, 05], [Henrot-Maillot, 05], [AM, Pedegral, Periago, JDE 06], [AM,
AMCS 09]

LetQ C RV, N=1,2,a€ L®(Q,R"), L€ (0,1), T > 0, (%, u") € H} () x L3(Q)

(PLY: ot I(x) / / ug? + | Vul?)dxat )
subject to
ug — Au+ a(x) X, up =0 0, 7T) xQ,
u=0 (0, T) x 89,
u(0,) =%, u0,) =u {0} x Q, @
Xow € L7(2{0,1}),
1%l 1 gy < LIXall 1 (g

! AM, P. Pedregal, F. Periago, Optimal design of the damping set for the stabilization of the wave equation, JDE
(2006)
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) spatio-temporal distribution for the wave equation

[Maestre-AM-Pedegral, IFB 08]2

@ LetQCR 0<a<fB<oo, LE(0,1), T>0, (W, u') € H(Q) x LB(%).

.

(P2): inf I(Xy) = / /(\u,\2+a(1,x, X0)|Vul?)dat ®)
Xw Jo Ja
with for instance
a(t,x, X,) =1 (quadraticy or a(t,x,X,)=aX, + B(1 — X,) (compliance) (4)

subject to
uyg — div([ax‘.J + 8(1 — Xu)]Vu> =0 (0, 7) x Q,
u=20 (0, T) x 89,
u(0,) = u°, u(o,") =u' Q, )
X € L7((0,T) x 2;{0,1}),
Xl 1 © < LliXall,1 @ (0, 7)

2F. Maestre, AM, P. Pedregal, Optimal design under the one-dimensional wave equation, Interfaces and Free
Boundaries (2008)
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) spatio-temporal distribution for the wave equation

[Maestre-AM-Pedegral, IFB 08]2

@ LetQCR 0<a<fB<oo, LE(0,1), T>0, (W, u') € H(Q) x LB(%).

.

(P2): inf I(Xy) = / /(\u,\2+a(1,x, X0)|Vul?)dat ®)
Xw Jo Ja
with for instance
a(t,x, X,) =1 (quadraticy or a(t,x,X,)=aX, + B(1 — X,) (compliance) (4)

subject to
uyg — div([ax‘.J + 8(1 — Xu)]Vu> =0 (0, 7) x Q,
u=20 (0, T) x 89,
u(0,) = u°, u(o,") =u' Q, )
X € L7((0,T) x 2;{0,1}),
Xl 1 © < LliXall,1 @ (0, 7)

@ . depends on x AND on t: Dynamical material [Lurie 99, 00, 02].

2F. Maestre, AM, P. Pedregal, Optimal design under the one-dimensional wave equation, Interfaces and Free
Boundaries (2008)
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) distribution for the damped wave equation

[Maestre, AM, Pedregal, SIAM Appl. Math. 07®

@ Simultaneous optimization w.rt. to wy C (0, T) X Qetwy C Q

;
3 . 2 2
P’ f Xy, X, = t,x, X, v dxadt 6

(P it s Xg) = [ [ (Qul® 4 alt x, %oy ) V)0 ©)
subject to

uy — div([oz.?c'w1 +B(1 — Xuy )]Vu) +a(X)Xw,ur =0 0,7T) x Q,

u=0 (0, 7) x 89,

u(0,) = u(0,) =1 {0} x Q,

X“,1 € L°°(Q x (0, T);{0,1}),

Xuy € L°(R:{0,1}),

1%y (& )10y < Laes 1 ¥all,1 g ©.7)
1%y l,1gy < Loamll Xal

@)

Loam: Loes € (0,1).

3 F. Maestre, AM, P. Pedregal A spatio-temporal design problem for a damped wave equation, SIAM Appl. Math
(2007)
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Formal resolution of (P!) using the level-set method

[Allaire-Jouve-Toader 03], [Wang-Wang-Zuo 03], [Burger-Osher 05], ...

(WO(x), u" (x) = (sin(mx;) sin(wx),0), @ =(0,1)%, T=1, L=1/10, a(x) = aX,,(x). ®)
a
E(w,a, T) — E(w,0,T) = 7704(2047' — sin(2aT)) / (up(x))2dx + o(a), VT > 0. 9)
Jw

FigUre: a = 10. - Invariance of {x € Q, 1(x) = 0} w.rt. initialization {x € Q, ¥(x) = 0}.
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Formal resolution of (P!) using the level-set method
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. - Loss of invariance of {x € Q, 1) (x) = 0}.
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lll-posed problem

@ Ssuch optimal design problems are usually not well-posed (Murat counter’s example in the elliptic case)
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@ Ssuch optimal design problems are usually not well-posed (Murat counter’s example in the elliptic case)
@ Infima are not reached in L>(Q x (0, T), {0, 1})

Arnaud MUNCH Optimal desig



lll-posed problem

@ Ssuch optimal design problems are usually not well-posed (Murat counter’s example in the elliptic case)
@ Infima are not reached in L>(Q x (0, T), {0, 1})

@ Minimizing sequences exhibit finer and finer scale.
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@ Minimizing sequences exhibit finer and finer scale.
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lll-posed problem

Such optimal design problems are usually not well-posed (Murat counter’s example in the elliptic case)

Infima are not reached in L°>°(Q2 x (0, T), {0, 1})

@ Minimizing sequences exhibit finer and finer scale.

@ How to compute a relaxed well-posed reformulation, says (RP,,), of these problems ?
@ How to extract from a minimizer of the relaxed problem (RP,,) a minimizing sequence of (P,,) ?

@ Approach I: Homogeneization (G-convergence, I'- limit, ....)[Tartar, Murat, ....]

@ Approach II: Vectorial reformulation + Young Measure [Dacorogna, Michaille, Pedregal4, -]

4 Pedregal, P., Vector variational problems and applications to optimal design; COCV;+(2005)
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Relaxation for the problem (P!)

(RPL) : infseio0(q) /OT/Q(U,2 + |Vul?) dx ot (10)
subject to
ug — Au+ a(x)s(x)uy =0 in (0,7) x Q,
u=0 on (0, T) x 89,
u©0,) =®, ul(0,-)=1d in Q, (1)
0<s(x) <1, fos(x)dx < L|Q| in Q.

(AM - Pedregal - Periago (06))

Problem (RPL) is a full relaxation of (PL) in the sense that

Arnaud MUNCH Optimal design



Relaxation for the problem (P!)

(RPL) : infseio0(q) /OT/Q(U,2 + |Vul?) dx ot (10)
subject to
ug — Au+ a(x)s(x)uy =0 in (0,7) x Q,
u=0 on (0, T) x 89,
u©0,) =®, ul(0,-)=1d in Q, (1)
0<s(x) <1, fos(x)dx < L|Q| in Q.

(AM - Pedregal - Periago (06))

Problem (RPL) is a full relaxation of (PL) in the sense that

@ there are optimal solutions for (RP.);
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Relaxation for the problem (P!)

(RPL) : infseio0(q) /OT/Q(U,2 + |Vul?) dx ot (10)
subject to
ug — Au+ a(x)s(x)uy =0 in (0,7) x Q,
u=0 on (0, T) x 89,
u©0,) =®, ul(0,-)=1d in Q, (1)
0<s(x) <1, fos(x)dx < L|Q| in Q.

(AM - Pedregal - Periago (06))

Problem (RPL) is a full relaxation of (PL) in the sense that
@ there are optimal solutions for (RP.);

@ the infimum of (P),) equals the minimum of (RP].);
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Relaxation for the problem (P!)

(RPL) : infseio0(q) /OT/Q(U,2 + |Vul?) dx ot (10)
subject to
ug — Au+ a(x)s(x)uy =0 in (0,7) x Q,
u=0 on (0, T) x 89,
u©0,) =®, ul(0,-)=1d in Q, (1)
0<s(x) <1, fos(x)dx < L|Q| in Q.

(AM - Pedregal - Periago (06))

Problem (RPL) is a full relaxation of (PL) in the sense that
@ there are optimal solutions for (RP.);
@ the infimum of (P),) equals the minimum of (RP].);

@ ifs is optimal for (HPL ), then optimal sequences of damping subsets w; for (Pl,) are exactly those for
which the Young measure associated with the sequence of their characteristic functions X“’i is precisely

s(x)81 + (1 — s(x))dg- (12)
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Proof of Theorem 1 for N = 1 - Step 1: Variational reformulation of (P)

o Assuming w time independent, we have (we note Div = (8, dx))
U — Au+ a(x) X, up = 0 <= Div(us + a(x) X, u, —ux) =0 (13)

— 3v e H'((0, T) x Q) such that u; + a(x) X, u = vy and —uy = —Vv;
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Proof of Theorem 1 for N = 1 - Step 1: Variational reformulation of (P)

o Assuming w time independent, we have (we note Div = (8, dx))

U — Au+ a(x) X, up = 0 <= Div(us + a(x) X, u, —ux) =0 (13)
— 3v e H'((0, T) x Q) such that u; + a(x) X, u = vy and —uy = —Vv;
(]
AVU+ BVV = —aX,u (14)

_ ut _ Vi — u _ 1 0 _ 0o -1
weevu— (U Yoo (8 Yoo (8 )a-( 0 % )e-(0 3 )
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Proof of Theorem 1 for N = 1 - Step 1: Variational reformulation of (P)

o Assuming w time independent, we have (we note Div = (8, dx))

U — Au+ a(x) X, up = 0 <= Div(us + a(x) X, u, —ux) =0 (13)
— 3v e H'((0, T) x Q) such that u; + a(x) X, u = vy and —uy = —Vv;
(]
AVu+ BVv = —aX,u (14)
_ ut _ Vi — u _ 1 0 _ o -1
N D R (B I (R I (R Y A
(]
w={Xx€ENAVU+BVYV=—a(x)u} ad Q\w={x € Q,AVU+BVv =0} (15)

@ Let the vector field U (t, x) = (u(t, x), v(t, X)) € (H1 ((0, T) x (0, 1)))2 and the two sets of matrices

{AO = {M e M?*2 . am() 4 BM®@ = o}

Mox = {Me rmP2au) 1 BM® = xe; }

where M), j = 1, 2 stands for the i-th row of the matrix M, A € Rand e; = ( (1) )
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Proof of Theorem 1 for N = 1 - Step 1: Variational reformulation of (P)

o Assuming w time independent, we have (we note Div = (8, dx))

U — Au+ a(x) X, up = 0 <= Div(us + a(x) X, u, —ux) =0 (13)
— 3v e H'((0, T) x Q) such that u; + a(x) X, u = vy and —uy = —Vv;
(]
AVu+ BVv = —aX,u (14)
_ ut _ Vi — u _ 1 0 _ o -1
N D R (B I (R I (R Y A
(]
w={Xx€ENAVU+BVYV=—a(x)u} ad Q\w={x € Q,AVU+BVv =0} (15)

@ Let the vector field U (t, x) = (u(t, x), v(t, X)) € (H1 ((0, T) x (0, 1)))2 and the two sets of matrices

{AO = {M e M?*2 . am() 4 BM®@ = o}

Mox = {Me rmP2au) 1 BM® = xe; }
where M), j = 1, 2 stands for the i-th row of the matrix M, A € Rand e; = ( (1) )

w={xeQVUEA _m} w={xeQ VUEA} (17
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Proof of Theorem 1 for N = 1 - Step 1: Variational reformulation of P},

@ Then considering the two following functions W, V : M?%X2 — R U {+oo}

2
(MO, MeRgUA, oy T, MEN _au)

W(x, U, M) = Vix,U,M) =4 0, M€ NNA _ pouh)
+o00, else +o0, else

(18)
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Proof of Theorem 1 for N = 1 - Step 1: Variational reformulation of P},

@ Then considering the two following functions W, V : M?%X2 — R U {+oo}

)M“)(Z, MeRgUA, oy T, MEN _au)
W(x, U, M) = : VX, U,M) =14 0, MeEMNA i)
+o00, else +o0, else
(18)
@ the optimization problem (Pl)) is equivalent to the following vector variational problem
1 ) T
(vel) m= |nf/ / W (x, U(t, x), VU (1, X)) dx dt (19)
UJo Jo
subject to
1 2
U=(uv) e (H(0,7) % (0,1))
uM (t,0) = UM (t,1) = 0, te(o,T) 20)
UM =), UMeox=urx, xea
Jivixutx), vutx) d<L|Ql, te(0,7).
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Proof of Theorem 1 for N = 1 - Step 1: Variational reformulation of P},

@ Then considering the two following functions W, V : M?%X2 — R U {+oo}

)M“)(Z, MeRgUA, oy T MeEN _gum
W(x, U, M) = : VX, U,M) =14 0, MeEMNA i)
+o00, else +o0, else
(18)
@ the optimization problem (Pl)) is equivalent to the following vector variational problem
1 ) T
(vel) m= |nf/ / W (x, U(t, x), VU (1, X)) dx dt (19)
UJo Jo
subject to
1 2
U=(uv) e (H (0.7 x (0,1))
uM (t,0) = UM (t,1) = 0, te(o,T) 20)
UM =), UMeox=urx, xea
Jivixutx), vutx) d<L|Ql, te (o, 7).

@ This procedure transforms the scalar optimization problem (Pl)) , with differentiable, integrable and

pointwise constraints, into a non-convex, vector variational problem (VPL) with only pointwise and integral
constraints.
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Young measures (basic property)

@ A Young measure is a family of probability measures v = {vx }xeq associated with a sequence of

functions £ : Q C RN — A, such that supp(vy) C A, depending measurably on x € Q, i.e. for any
continuous ¢ : A — R, the function

X — ¢(x) = /A¢()\)dux(>\) is measurable (21)
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Young measures (basic property)

@ A Young measure is a family of probability measures v = {vx }xeq associated with a sequence of

functions £ : Q C RN — A, such that supp(vy) C A, depending measurably on x € Q, i.e. for any
continuous ¢ : A — R, the function

X — ¢(x) = /A¢()\)dux(>\) is measurable (21)

@ Example : let f(x) = 2X]g,1 21 — 1for x € [0, 1] 1-periodic and fj(x) = f(jx),j € N. Forany ¢ : R — R
continuous

s 1 1
Iu;n/o PN = Z(B(1) + 6(-1), v = 2(31+51) (22)
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Young measures (basic property)

@ A Young measure is a family of probability measures v = {vx }xeq associated with a sequence of

functions £ : Q C RN — A, such that supp(vy) C A, depending measurably on x € Q, i.e. for any
continuous ¢ : A — R, the function

X — ¢(x) = /A¢()\)dux(>\) is measurable (21)

@ Example : let f(x) = 2X]g,1 21 — 1for x € [0, 1] 1-periodic and fj(x) = f(jx),j € N. Forany ¢ : R — R
continuous

s 1 1
Iu;n/o PN = Z(B(1) + 6(-1), v = 2(31+51) (22)

@ Forany sequel {#(f)} (¢ : A — R) weakly convergent in L° () — *, the weak-limit is expressed in
terms of v:

Ii;n/n S(F)h(x)dx = /Q h(x)/;‘ S(A\)dux(A)dx Vh e L'(Q). 23)
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ung

(Fundamental theorem of the Young measures)

LetQ c RN be a measurable set and letzj: Q — R™ be measurable functions such that sup; Ja 9(1z])dx < oo,
where g : [0, co) — [0, o0) is a continuous, nondecreasing function such thatlim;_, . g(t) = oco. There exist a
subsequence, not relabeled, and a family of probability measures v = {vx } xcq depending measurably on x with

the property that whenever the sequence {+(x, zj(x))} is weakly convergent in L'(Q) for any Carathéodory
function (x, \) : Q x R™ — R*, the weak limit is the function

asures

A; B0 \dux(). (24)
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ung asures

(Fundamental theorem of the Young measures)

LetQ c RN be a measurable set and letzj: Q — R™ be measurable functions such that sup; Ja 9(1z])dx < oo,
where g : [0, co) — [0, o0) is a continuous, nondecreasing function such thatlim;_, . g(t) = oco. There exist a
subsequence, not relabeled, and a family of probability measures v = {vx } xcq depending measurably on x with

the property that whenever the sequence {+(x, zj(x))} is weakly convergent in L'(Q) for any Carathéodory
function (x, \) : Q x R™ — R*, the weak limit is the function

A; B0 \dux(). (24)

Assume that {W(V U;)} is weakly convergent in L'((0, T) x Q) where U; is a minimizing sequence for the cost,

we have - T
/im,ﬂw/ / W(x,t,VUj(x,t))dde:/ // aep WOt Ay (Aot (25)
0 Q 0 QJ meX

where v = {vy ;} is the Young measure associated with { VU, }. [Kinderleher-Pedregal, 92].

Arnaud MUNCH Optimal desig



ung

(Fundamental theorem of the Young measures)

LetQ c RN be a measurable set and letzj: Q — R™ be measurable functions such that sup; Ja 9(1z])dx < oo,
where g : [0, co) — [0, o0) is a continuous, nondecreasing function such thatlim;_, . g(t) = oco. There exist a
subsequence, not relabeled, and a family of probability measures v = {vx } xcq depending measurably on x with

the property that whenever the sequence {+(x, zj(x))} is weakly convergent in L'(Q) for any Carathéodory
function (x, \) : Q x R™ — R*, the weak limit is the function

asures

A; B0 \dux(). (24)

Assume that {W(V U;)} is weakly convergent in L'((0, T) x Q) where U; is a minimizing sequence for the cost,
we have

T o, T .
/im,ﬂw/ / W(x,t,VUj(x,t))dde:/ // aep WOt Ay (Aot (25)
0 Q 0 QJ meX

where v = {vy ;} is the Young measure associated with { VU, }. [Kinderleher-Pedregal, 92].
Morever, if sz><2 W(x, t, A)dvy t(A) > W(x, t, fM2><2 Aduxy,(A)) then

T T T
Iir_n/ / W(x, t, VU,)dxat > / / W(x,t,/ Adux‘,(A)) :/ /W(x, t, VU)dxdt  (26)
J Jo Ja Jo Ja JMm2%2 ’ Jo Ja

since (VU = f_M2><2 Advy {(A) is the weak limit of {V U;}).
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Characterization of the gradient Young measures

(Kinderleher-Pedregal, 92)

Let{u;} asequelin w! P(Q), p > 1andv = {vx}xcq afamily of probability measures such that

supp(vx) € R"™ ™. v is a Young measure generated by the sequel {Vuy;} if and and only if:
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Characterization of the gradient Young measures

(Kinderleher-Pedregal, 92)

Let{u;} asequelin w! P(Q), p > 1andv = {vx}xcq afamily of probability measures such that

supp(vx) € R"™ ™. v is a Young measure generated by the sequel {Vuy;} if and and only if:

@ Vu(x) = [ynxm Advy(A) forsome u € W'P(Q);
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Characterization of the gradient Young measures

(Kinderleher-Pedregal, 92)

Let{u;} asequelin w! P(Q), p > 1andv = {vx}xcq afamily of probability measures such that

supp(vx) € R"™ ™. v is a Young measure generated by the sequel {Vuy;} if and and only if:
@ Vu(x) = [ynxm Advy(A) forsome u € W'P(Q);

(] fRnx m ¢(A)dvx(A) > ¢(Vu(x)) a.e. x € Q and any quasi-convexe function ¢ with a polynomial growth
of orderp ;
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Characterization of the gradient Young measures

(Kinderleher-Pedregal, 92)

Let{u;} asequelin w! P(Q), p > 1andv = {vx}xcq afamily of probability measures such that

supp(vx) € R"™ ™. v is a Young measure generated by the sequel {Vuy;} if and and only if:
@ Vu(x) = [ynxm Advy(A) forsome u € W'P(Q);

(] fRnx m ¢(A)dvx(A) > ¢(Vu(x)) a.e. x € Q and any quasi-convexe function ¢ with a polynomial growth
of orderp ;

o |, Spnxm |AIPdux(A)dx < oo.

This caracterization allows to express the quasi-convex hull of any ¢ in term of v :

Qa(Y) = inf{/ ¢(A)dv(A); v is an homogeneous gradient Young measure; / Adv(A) = Y}A (27)
v | Jrnxm R

nxm
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Relaxation via Constrained Quasi-Convexification of W

@ From Dacorogna °, a relaxed formulation of (VPL) is where
T
T = min {/ / caw (t, x, VU(t,X),s(x))dxdt} (= m) 28)
U,s 0JqQ

2
where the minimum is taken over the fields U € (H1 ((0, T) x (0, 1))) which satisfy the initial and
boundary conditions and the function s verifies the constraints

0<s(x)<1 vxe®, and /s(x)dxgum. 29)
Q

SDacorogna, B., Direct method in the calculus of variations, 1989
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Relaxation via Constrained Quasi-Convexification of W

@ From Dacorogna °, a relaxed formulation of (VPL) is where
T
T = min {/ / caw (t, x, VU(t,X),s(x))dxdt} (= m) 28)
U,s 0JqQ

2
where the minimum is taken over the fields U € (H1 ((0, T) x (0, 1))) which satisfy the initial and
boundary conditions and the function s verifies the constraints

0<s(x)<1 vxe®, and /s(x)dxgum. 29)
Q

@ The expression CQW (t, x, VU (t, x) , s (x)) stands for the constrained quasi-convexification of the
density W and for a fixed (F, s) € M2%2 x Ris defined as

caw (t, x, F, s) = inf{/ W(tx,Mydv (M) : v e A(F, s)}, (30)
v M2X2
where
A(F,s) = {u : v is a homogeneous H' - Young measure,

= /Mm Mav (M) and /sz2 V (M) dv (M) = s} :

5Dacorognal, B., Direct method in the calculus of variations, 1989
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Computation of CQW

The class A(F, s) of Gradient Young Measure is NOT explicit. The strategy is as follows : [Kohn-Strang 86],
[Fonseca-Muller 00], [Pedregal 05] :

@ Minimize over v € A*, the class of polyconvex measures such that

A(F,s) C A*(F,s),VF,s (31)

A* (F,s) = {u :v is an homogeneous Young measure , v commute with det,

(32)

F:/ Mdu(M), s :/ V(U, Mydv(M)}.
M2X%2 M2X2

CPW(F, s) = m.n{/ Mydu(M) : v € A*} < CQW(F,s) 33)

2><2
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Computation of CQW

The class A(F, s) of Gradient Young Measure is NOT explicit. The strategy is as follows : [Kohn-Strang 86],
[Fonseca-Muller 00], [Pedregal 05] :

@ Minimize over v € A*, the class of polyconvex measures such that

A(F,s) C A*(F,s),VF,s (31)

A* (F,s) = {u :v is an homogeneous Young measure , v commute with det,

(32)

F:/ Mdu(M), s :/ V(U, Mydv(M)}.
M2X%2 M2X2

2rp WMAL(M) v € A } < CQW(F, s) (33)

CPW(F, ) = min {/

@ Study if the optimal measure Vopt € A* satisfies a rank one condition, in which case, vopt belongs to the
class of laminates A, such that
A (F,s) C A(F,s), VF,s (34)
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Computation of CQW

The class A(F, s) of Gradient Young Measure is NOT explicit. The strategy is as follows : [Kohn-Strang 86],
[Fonseca-Muller 00], [Pedregal 05] :

@ Minimize over v € A*, the class of polyconvex measures such that

A(F,s) C A*(F,s),VF,s (31)

A* (F,s) = {u :v is an homogeneous Young measure , v commute with det,

(32)

F:/ Mdu(M), s :/ V(U, Mydv(M)}.
M2X%2 M2X2

2rp WMAL(M) v € A } < CQW(F, s) (33)

CPW(F, ) = min {/

@ Study if the optimal measure Vopt € A* satisfies a rank one condition, in which case, vopt belongs to the
class of laminates A, such that
A (F,s) C A(F,s), VF,s (34)

@ This implies that vop; € A and gives CQW = CPW and m.
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Step 2: Minimization over A* - Computation of CPW

o
CPW(F, s) = min {/ arp WMYI(M) - v € A*} < CQW(F, s) (35)
v M

where
A*(F,s) = {u :v is a homogeneous Young measure, v commutes with the determinant,
(36)
F= / Mdu(M),s:/ V(U, Mydu(M)}.
. M2><2 M2><2
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Step 2: Minimization over A* - Computation of CPW

o
— mi . *
CPW(F, s) = min { /szz W(M)dv(M) : v € A } < CQW(F, s) (35)
where
A*(F,s) = {u :v is a homogeneous Young measure, v commutes with the determinant,
(36)
F= / Mdu(M),s:/ V(U, Mydu(M)}.
Jm2x2 M2X2
@ From the volume constraint (s = sz><2 V(U, M)dv(M)), the measure has the form
v =svy + (1 — s)vg, with supp (yj> CAj, j=0,1, (37)

and hence for each pair (F, s) , the constrained polyconvexification CPW (F, s) is computed by solving

CPW(F,s) = muin{s/ MO dy () + (1 — s)/ M awg (M)} (38)
M Mo
subject to
v = svq + (1 — 8) vg commutes with det,
supp (uj) C A, j=0,1, 39)

F:s/A1 Mdu1(M)+(1fs)/A0Mduo(M)4
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Step 2: Minimization over A* - Computation of CPW

@ Let us introduce the following variables
si= [ P, -1z, (40)
R
where 1) stands for the projection of v onto the (1/) —th component, and

F/:/AMdu,(M), j=0,1. (41)
j

Since F/ € A;, we have

0 0 L0 0 1 1 1 1
Fiy = Fag, Fig = Fpy and Fyy = Fyp + X, Fip = Fyy (42)
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Step 2: Minimization over A* - Computation of CPW

@ Let us introduce the following variables
si= [ P, -1z, (40)
R
where 1) stands for the projection of v onto the (1/) —th component, and

F/:/AMdu,(M), j=0,1. (41)
j

Since F/ € A;, we have

0 0 L0 0 1 1 1 1
Fiy = Fag, Fig = Fpy and Fyy = Fyp + X, Fip = Fyy (42)
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Step 2: Minimization over A* - Computation of CPW

@ Let us introduce the following variables
S = / M2 a1 =12, (40)
R
where 1) stands for the projection of v onto the (1/) —th component, and
Ff:/ Mdu; (M), j=0,1. (41)
Aj
Since F/ € A;, we have
1
Fli = Fo, Fip = Fy and Fly = Flp + X, Ffy = Fpy (42)
On the other hand, from the third condition in (39) it follows that

{ Fip = SFly + (1 = 8)FY,  Fip=sFl, + (1 —s)F, “3)

For = sF)y + (1 — 8)FYy,  Foo=sFh+(1—8)F
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Step 2: Minimization over A* - Computation of CPW

@ Let us introduce the following variables
S = / M2 d M =12, (40)
R
where 1) stands for the projection of v onto the (1/) —th component, and
F/:/ Mdv; (M), j=0,1. (41)
A
J
Since F/ € Aj, we have

1
Fli = Fo, Fip = Fy and Fly = Flp + X, Ffy = Fpy (42)
On the other hand, from the third condition in (39) it follows that

Fiy = sF1:1 +(1—5) Fgw Fia = sF;2 +(1—3s)FY, 43)
Foy = sF21 +(1—59) F21 s Fop = sF22 +(1—5) F22
Substituting (42) into (43) we obtain the system
Fiy=sFli+ (1 —9)FY, Fro=sFh+(1—3s)F, (44)
Fat = SFlp + (1 — 8) Fiy,  Fap + 8\ = sF]; + (1 — 8) FY,
which has a solution if and only if the compatibility condition
Fi2 = Fa1, Fy1 = Fo 48X (45)

holds.
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Step 2: Minimization over A* - Computation of CPW

@ Let us introduce the following variables
S = / M2 d M =12, (40)
R
where 1) stands for the projection of v onto the (1/) —th component, and
F/:/ Mdv; (M), j=0,1. (41)
A
J
Since F/ € Aj, we have

1 1
Fli = Fo, Fip = Fy and Fly = Flp + X, Ffy = Fpy (42)
On the other hand, from the third condition in (39) it follows that

Fiy = sF1:1 +(1—5) Fgw Fia = sF;2 +(1—3s)FY, 43)
Foy = sF21 +(1—59) F21 s Fop = sF22 +(1—5) F22
Substituting (42) into (43) we obtain the system
Fiy=sFli +(1 = 8)FY,  Fia=sFl,+(1—5)FY, (44)
Fat = SFlp + (1 — 8) Fiy,  Fap + 8\ = sF]; + (1 — 8) FY,
which has a solution if and only if the compatibility condition
Fia = Fa1,  Fi1 = Fop + X (45)
holds. In this case, the solution is given by
0 0 11 11
Fii=a, Fpo=8 Fi=—-F1-(0-95a) Fp=-(Fz2-(0-5)p) (46)

S S

where («, 3) € R? are two parameters. Notice then that there is no restriction on'F. , as it can take on
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Step 2: Minimization over A* - Computation of CPW

@ Moreover, the constraint on the commutation with det yields to
detF = s/ det Mdvy (M) + (1 — s)/ det Mdvq (M)
Aq Ao

= 5 — S — sxF,
since
s { kU &R
Finally, from Jensen’s inequality we obtain the conditions
S > |Fyl?, i=1,2. (48)

To sum up, we have to solve the mathematical programming problem

Minimize in (s/, F111) L (51 +S) (49)
subject to
Sy — Sy — SAF{, = detF
{ Si>|Fyl2, i=1.2. €0
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Step 2: Minimization over A* - Computation of CPW

@ Moreover, the constraint on the commutation with det yields to
detF = s/ det Mdvy (M) + (1 — s)/ det Mdvq (M)
Aq Ao

= 5 — S — sxF,
since
s { kU &R
Finally, from Jensen’s inequality we obtain the conditions
S > |Fyl?, i=1,2. (48)

To sum up, we have to solve the mathematical programming problem

Minimize in (s/, F111) L (51 +S) (49)
subject to
Sy — Sy — SAF{, = detF
{ Si>|Fyl2, i=1.2. €0

d MUNCH Optimal desig



Step 2: Minimization over A* - Computation of CPW

@ Moreover, the constraint on the commutation with det yields to
detF = s/ det Mdvy (M) + (1 — s)/ det Mdvq (M)
Aq Ao

= 5 — S — sxF,
since
s { kU &R
Finally, from Jensen’s inequality we obtain the conditions
S > |Fyl?, i=1,2. (48)

To sum up, we have to solve the mathematical programming problem

Minimize in (), F{;):  (Si + S2) (49)
subject to
Sy — Sy — SAF{, = detF
{ S > |Fl?, i=1,2 0)
We obtain easily that the solution is
S =IFil?, i=1.2. (1)
This implies that
[F()2  if (45) holds
CPW(F,s) = (52)
+o0 else.
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Step 2: Minimization over A* - CPW

CPW(F, s) = min {/ W(M)du(M) : v € A*} < CQW(F, s) (53)
v M2X2
where
A* (F,s) = {V :v is a homogeneous Young measure, v commutes with the determinant,
(54)
F:/ Mdv(M), s :/ V(U, M)du(M)}.
M2x2 M2X2
@ We have

IFO2 it For = Fig, Fiy = Fo + 8)

CPW(F,s) = (55)
+o0 else.
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Step 2: Minimization over A* - CPW

CPW(F, s) = min {/ W(M)du(M) : v € A*} < CQW(F, s) (53)
v M2X2
where
A* (F,s) = {V :v is a homogeneous Young measure, v commutes with the determinant,
(54)
F:/ Mdv(M), s :/ V(U, M)du(M)}.
M2x2 M2X2
@ We have
IF it Fay = Fia, Fry = Fap + s
CPW(F,s) = (55)
+oo else.
@ The optimal , unique, measure v is
v=»1-5)04 +555, (56)
where
o F11 Fi2 ’ Fiq Fi2
G = and G = . (57)
Fi2 Fi1 Fi2 Fii 4+ A
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Step 3 : Rank-one condition on vept ? - vopt € Ay ?

@ From
vopt = (1 —8)d50 + 8651,
where
o Fiq Fi2 ’ Fi1 Fi2
G = and G = . (58)
Fiz Fi1 Fi2 Fi1+A
we get that
G'-G®=bxn, with b=(0,A) and n=(0,1) (59)
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Step 3 : Rank-one condition on vept ? - vopt € Ay ?

@ From
vopt = (1 —8)d50 + 8651,
where
o Fiq Fi2 ’ Fi1 Fi2
G = and G' = . (58)
Fi2 Fiq Fiz Fii + X
we get that
G'-G®=bxn, with b=(0,A) and n=(0,1) (59)
o
Rank(G' — G°) = 1 (60)

= vpt satisfies a rank one condition.
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Rank-one condition on vept ? - vopt € A, ?

@ From
vopt = (1 —8)d50 + 8651,
where
o Fiq Fi2 ’ Fi1 Fi2
G = and G = . (58)
Fi2 Fiq Fiz Fii + X
we get that
G'-G®=bxn, with b=(0,A) and n=(0,1) (59)
o
Rank(G' — G°) = 1 (60)

= vpt satisfies a rank one condition.

@ The optimal measure vqp; belongs to A, and vgp is a first order laminate with normal n
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Rank-one condition on vept ? - vopt € A, ?

@ From
vopt = (1 —8)d50 + 8651,
where
o Fiq Fi2 ’ Fi1 Fi2
G = and G' = . (58)
Fi2 Fiq Fiz Fii + X
we get that
G'-G®=bxn, with b=(0,A) and n=(0,1) (59)
o
Rank(G' — G°) = 1 (60)

= vpt satisfies a rank one condition.
@ The optimal measure vqp; belongs to A, and vgp is a first order laminate with normal n

@ Conclusion: vgpt € A and CQW(F, s) = CPW(F, s)
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Step 4 : Re-interpretration in terms of the initial variable u
@ From A\ = —a(x)u(t, x) and

F11 Fa1 ut vt
F= —vu= . (61)
Fi2 Fao ux vx

IFM12 it Fay = Fip, Fiy = Foo + X
CQW(F,s) = (62)
+oo else.
becomes
Gt x) 4+ U2(t,x) i ux = vy, up = vk — a(x)s(x)u(t, x)
CQW(V U, s) = (63)
+o0 else.
equivalently
u?(r. X) + uf([t x) if ug — uxx + a(x)s(x)uy =0
caw(vU,s) = (64)
+oo else.

UNCH Optimal design



Step 4 : Re-interpretration in terms of the initial variable u
@ From A\ = —a(x)u(t, x) and

F11 Fa1 ut vt
F= =vU= . 61)
Fi2 Fao ux vx

IFM12 it Fay = Fip, Fiy = Foo + X
CQW(F,s) = (62)
+oo else.
becomes
Gt x) 4+ U2(t,x) i ux = vy, up = vk — a(x)s(x)u(t, x)
CQW(V U, s) = (63)
+o0 else.
equivalently
u?(r. X) + uf([t x) if ug — uxx + a(x)s(x)uy =0
caw(vU,s) = (64)
+oo else.

@ miny s ] fo CQW(V U, s)dxdt then leads to (RP],)
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Some numerical results for (RP!)

Q=(0,1), (°x),u'(x))=(sin(nx),0), L=1/5 T=1 (65)
) |
.

Optimal density for a(x) = 1 (Left) and a(x) = 10 (Right)

Ifa < a*(Q,L,u0 u'), {x € 2,0 < s(x) < 1} = 0, (P,) = (RP,) and is well-posed

(This property is related to the over-damping phenomena)
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Some numerical results for (RP!)

Q=(0,1), (°x),u'(x))=(sin(nx),0), L=1/5 T=1 (65)

Optimal density for a(x) = 1 (Left) and a(x) = 10 (Right)

Ifa < a*(Q,L,u0 u'), {x € 2,0 < s(x) < 1} = 0, (P,) = (RP,) and is well-posed
Ifa> a*(Q,L,u0 u'), {x € 2,0 < s(x) < 1} # 0, (P].) # (RP) and is NOT well-posed

(This property is related to the over-damping phenomena)
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Some numerical results for (RP!)

Q=(0,1), (°x),u'(x))=(sin(nx),0), L=1/5 T=1 (66)

f L —

duudy o

x x

fuw; ‘ 10 ‘ 20 ‘ 30 ‘ 40
I(ij) ‘ 4.1331 ‘ 3.7216 ‘ 3.5413 ‘ 3.4313

My, o0 (X)) = l(Sopt) = 3.4212
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The 2-D case (N

o Similarly, the damped wave equation may be written as
ug — Au+ a(xq, xp) X, up = 0 <= Div (u, +aX,u, — Uy, —Ux2) =0 in (0,T)xQ (67)
and so there exist two Clebsch’s potentials 6!/1 = vy (t, X1, X2) and vo = v (1, Xq, Xo) such that

(ut+anu,—ux1,—uX2) =Vvy X Vip. (68)

6Kotiuga, P.R, Clebsch potentials and the vizualisation of three-dimensional solenoidal vectors fields,-1991.
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The 2-D case (N

o Similarly, the damped wave equation may be written as
ug — Au+ a(xq, xp) X, up = 0 <= Div (u, +aX,u, — Uy, —Ux2) =0 in (0,7)xQ (67)
and so there exist two Clebsch’s potentials 6!/1 = vy (t, X1, X2) and vo = v (1, Xq, Xo) such that
(ut+anu,—ux1,—uX2) =Vvy X Vip. (68)
@ Let the vector field U = (u, vy, vo) € (H'((0, T) x €))3 and the two non-linear manifolds

Ao = {M e M3 am() — @ o p® = 0},

M= {M e M3 am™ — p@ « p® = /\91}’

1 10 0
es=| 0|, A=[0 -1 0o |. (70)
0 0 0 -1

where A € R and

6Kotiuga, P.R, Clebsch potentials and the vizualisation of three-dimensional solenoidal vectors fields,-1991.
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Figure: iso-values of the optimal s in © for a(x) = 25Xq (x) (Left) and a(x) = 50X (x) (Right) - T = 1




) spatio-temporal distribution for the wave equation

[Maestre-AM-Pedegral, IFB 08]”

@ LetQCR 0<a<fB<oo, LE(0,1), T>0, (u,u') € Hi(Q) x LB(9).

. H _ T 2 2
(P2): ot ’(X“’)*/o /Q(|ut\ Fa(t, x, X)) Vul?)dxat ™)
with
a(t, %, Xeo) = an (t, X)X + ag(t, )1 — X) (72)
subject to
ug — div([axu + 01— Xw)]Vu> -0 0, 7)x
Ve 0, 7) x 99,
u(0,) =, u0,") =u' Q, (73)
KXo € L%((0, T) x ©; {0,1}),
1%l 0y < ¥l g ©.7)

7F. Maestre, AM, P. Pedregal, Optimal design under the one-dimensional wave equation, Interfaces and Free
Boundaries (2008)
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Problem (P?2): Optimal («, 3) distribution - The result

@ n(t,x) = Baa(t, x) — aag(t, x), a(t, x, X) = X(t, x)aa(t, x) + (1 — X(t, x))ag(t, x)
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Problem (P?2): Optimal («, 3) distribution - The result

@ n(t,x) = Baa(t, x) — aag(t, x), a(t, x, X) = X(t, x)aa(t, x) + (1 — X(t, x))ag(t, x)
o
(RP2) : 'BEQ/OT/Q CaW(t, x, TU(t, x), s(t, x))dxat
U= (u,v) € H'([0, T] x Q)%, tr(VU(t, x)) =0,
U0, x) = wp(x), UM (0,x) = () in @
UMD,y =M, 00=0 in [0,7],

0<s(tx) <1, [ s(t,x)de < Val2] V€ 0,7],
JQ
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Problem (P?2): Optimal («, 3) distribution - The result

@ n(t,x) = Baa(t, x) — aag(t, x), a(t, x, X) = X(t, x)aa(t, x) + (1 — X(t, x))ag(t, x)
o
(RP2) : min /OT/Q CaW(t, x, TU(t, x), s(t, x))dxat

U= (u,v) € H'([0, T] x Q)%, tr(VU(t, x)) =0,
U0, x) = wp(x), UM (0,x) = () in @
UMD,y =M, 00=0 in [0,7],

0<s(tx) <1, [ s(t,x)de < Val2] V€ 0,7],
JQ

@ caw(t, x, F, s) is defined by

h 2 2 2 2 a3 )
— 5 (B%1F2|” + |F211" + 28F2F21) + [F14|® — —Fi2F21 it h(t, x) 2> 0,%(F,s) < 0
sp(B — a) B
—h 2. 2 2 2 ao .
T (@ FlT + P lT + 2aFafe) + [F11]T — —Fi2F2,  ifA(t, x) < 0,4(F,s) < 0
(1 —s)a(B — o) a
1
—dotF+ ————(
s(1 —8)(B — )2
+ (1 = s)(a + aa) + S8 + ag)) |Far 12 + 2((e + aa)B — sh)F12F21) if 4 (F, s) > 0.

4 oo if Tr(F) # 0

(1 = 9)8%(a + aa) + sa®(B + ag)) | Fizl?

U(F.9) = CUZID (5 nT @ ) (Far + ] 5912
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The relaxation for (P3): First order laminate

w

(RP3): [in / / CQW(t, x, VU(t, x), s(t, X), r(x))dxdt

soumis a
U= (u,v) e H([0,T] x Q)% ¥(t,x,VU,s,r)=0

tr(VU(t, X)) = ut + vx = a(x)r(x)u(t, x), dans (0, T) x Q
UMD (0, x) = up(x), UM (0,x) = uy(x) dans @,
Ut 1y = U, 0) =0 dans [0, T],

0<s(t,x) <1, / s(t, X) dx < Lo |Q| VE€ [0, T],
JQ

0<r(x) <1, / r(x)dx < Ly|Q|
JQ
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The relaxation for (P3): First order laminate

o
(RP3) :

w

min /OT/Q CQW(t, x, VU(t, x), s(t, X), r(x))dxdt

u,s,r

soumis a
U= (u,v) e H([0,T] x Q)% ¥(t,x,VU,s,r)=0

tr(VU(t, X)) = ut + vx = a(x)r(x)u(t, x), dans (0, T) x Q
UMD (0, x) = up(x), UM (0,x) = uy(x) dans @,
Ut 1y = U, 0) =0 dans [0, T],

0<s(t,x) <1, / s(t, X) dx < Lo |Q| VE€ [0, T],
JQ

0<r(x) <1, / r(x)dx < Ly|Q|
JQ
@ caw(t, x, F,s, r)is given by

a
B laFia+ P (74)

CQW(U, F,s,r) = |Fi112 + Fip+ FoyP+— P
( )=1Fnl"+ o 5 |8F12 + Fa1l RIS YIS

(B — )

Y(F,s,r) = w <F21 + A;ﬂ(s)"—m) <F21 + AzyB(S)F‘l?)
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The relaxation for (P3): First order laminate

o
(RP3) :

w

min /OT/Q CQW(t, x, VU(t, x), s(t, X), r(x))dxdt

u,s,r

soumis a
U=(u,v) € H([0, T] x 9%, w%(t,x, VU,s,r) =0
tr(VU(t, X)) = ut + vx = a(x)r(x)u(t, x), dans (0, T) x Q

U(1)(0’X) = Up(x), U,(U(O,X) = uy(x) dans Q,
Ut 1y = U, 0) =0 dans [0, T],

0<s(t,x) <1, / s(t, X) dx < Lo |Q| VE€ [0, T],
JQ

0<r(x) <1, / r(x)dx < Ly|Q|
JQ

@ caw(t, x, F,s, r)is given by

2 ag 2
CQW(U,F,s,r) = [F1]" + 5 laFi2 + Fa1] (74)

Fiz + For P+ —— 22—
5 |8F12 + Fa1l RIS YIS

o Fx
(B — a)
P(F,s,r) = w <F21 + A;ﬂ(s)"—m) <F21 + AzyB(S)F‘l?)

@ First order laminate = (Regular effect on the optimal micro-structure) or (no second order laminates for
2
(RPG))-
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Simplification of (RP?)

= —(AT(s) = AT (9P| Fr2l? (75)

AT(8) + A7 (s) F12)2

1
F,8)=0= [ Foq + -
p(F, s) (21 5 1
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Simplification of (RP?)

= —(AT(s) = AT (9P| Fr2l? (75)

AT(8) + A7 (s) F12)2

1
F,8)=0= [ Foq + -
p(F, s) (21 5 1

At(s) — A’(s)) Fral - (A*(s) +A7(s)

Fo1 = m(x, t)( > > >F12, m(x,t)==+1in(0,T) x Q (76)
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Simplification of (RP?)

= —(AT(s) = AT (9P| Fr2l? (75)

+ —
W9 =0 (R 2O )2
AT(s) ’\7(S)> At(s)+ A7 (s)
— \ﬁz\*(i

Fo1 = m(x, t)( > > )F12, m(x,t)==+1in(0,T) x Q (76)

The relaxed formulation (F\‘Pi) is equivalent
RP? n [ w
(RP,) - ur)ry’nm/O /Q CQW(x, t, u, s, m)dxdt
subject to
+ - + -
utr7div(MVufm(x,t)(M>|Vu|) =0 (0,7) x Q,
u=0 (0, T) x 09,
u(0,) =%, u(0,-) = u' Q, @7
sE€L((0,T) x 2:{0,1}), [m(x,t)| =1
Isll1g) < L Xall1q) 0.7)
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Problem (P2): Particular case : (a., as) = (a, 8)

The relaxed formulation of

o (T2 2
(P2): ot ixe) = [ [ Gl + fos + 801 = X)) Vul?)dbat 78)
subject to
up — div([ade + 601 = XVU) =0 (0. 1) x 2,
u=20 (0, 7) x 89,
u(0, ) =, u(0,) = Q, (79)
X, € L°((0,T) x ©;{0,1}),
1%l 1 gy < LIXall,1 q) ©.7)
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Problem (P2): Particular case : (a,,

16

The relaxed formulation of

o (T2 2
(P2): ot ixe) = [ [ Gl + fos + 801 = X)) Vul?)dbat 78)
subject to
uy — div([chw +B8(1 — Xu)]Vu) =0 0, 7T) xQ,
u=20 (0, 7) x 89,
u(0,) =u®, u(0,:)=1d Q, (79)
X, € L0, T) x 2;{0,1}),
1%l 1 gy < LIXall1 g 0,7)

T 1
f 2 2
m = min up(t, x) + —————————————ux(t, x axat 80
“vs/o/n('( St et ta— o™ )> €0
subject to
 f— _ g
ug dIV(<!71$(T7X)+ﬁ71(1*5(f,>())VU) 0 in (0,T)xQ,
u=20 on (0,T) x 09,
N ; (81)
u(0, x) = u”(x), ut(0,x) = u'(x) in Q,
0 < s(t,x) <1, [ s(t, x) dx < L|Q| in [0, T]
and the optimal measure is recovered with first order laminates with normal (0, 1).
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The relaxed formulation of

2 . T 2 2
(F2): it (&) :/ /(\u,\ + | Vul?)dxat ©82)
X 0 Ja
subject to

g — div([axw 81— xw)]w) -0 (0,7T) xQ,
u=0 (0, T) x 09,
u(0, ) = u®,  (0,) = Q, (©3)
X € L%°((0,T) x 2;{0,1}),
1%l 1 gy < LIXall1 g ©,7)
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Problem (P2): Particular case : (a,,

v

The relaxed formulation of

2 . T 2 2
(F2): it (&) :/ /(\u,\ + | Vul?)dxat ©82)
X o Ja
subject to

up — div([axw ¥ 801 — xu)]vU) -0 0,7) x
u=0 (0, 7) x 09,
u(0, ) = u®,  (0,) = Q, (©3)
X € L%°((0,T) x 2;{0,1}),
1% l1q) < LI¥al1q) ©.7

m = in /OT/Q (ut(t, X2+ [as([, X) + 801 — s(t, x))] ux(t, x)z)dxdt (84)
subject to
uy — div([ees(t, x) + B(1 — s(t, x))]Vu) =0 in (0,T)x Q,
u=0 on (0,T) x 09,
u(0, x) = uo(x), ut(0, x) = u' (x) in Q, (85)
0 < st x) <1, fos(t, x)dx < L|Q in [0, T]

and the optimal measure is recovered with first order laminates with normal (1, 0).
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Some numerical results for (RP2)

LetQ = (0,1), T =2and (0, u') = (sin(rx),0)and L = 1/2

Iso-values of the optimal density s on (0, T) x Q Top: («, 8) = (1, 1.1) -Bottom:(«, 8) = (1, 10)
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Some numerical results for (RP?)

2
LetQ = (0,1), T =2and (0, u') = (e~ 05(=0-5)" gyand L = 1/2

Iso-values of the optimal density s on (0, T) x Q Top: («, 8) = (1, 1.1) -Bottom:(«, 3) = (1, 10)
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Optimization of the heat flux: Div-Rot Young Measure

1 T
(P Minimize overx’ : J,(X):5//K(t,x)Vu(I,x)<Vu(l,x)dxdt
0JQ

u=0 on (0, T) x 0Q, (86)

(Bt X)u(t, X)) —div (K(t,x)Vu(t,x))=Kt,x) in  (0,T)xQ,
u (0, x) = up (x) in  Q,

with
B(t,x) =X (t,x) B1 + (1 — X (8, X)) B, K (t, x) = X (t, X) k Iy + (1 — X (¢, X)) ka Iy,

(AM, Pedregal, Periago, JMPA 2008)

— 2
_ ]G—kzw )G—quu‘
(RP;) Minimize over (9, G, u) . (6, G, u) / / + ky dxalt
T2 6 (ky — kp)? (1—0) (ko — ky)?
Ge (0,7 x urRMT), ue H (0, T) x %R),
(681 + (1 —0)B2)u) —divG =0 dans H=1((0, T) x Q),
ulgg =0 p.p.telo,T], u(0) =uy dansQ,

0€L=((0,T) x [0,1]), [q0(t,x)dx=L|Q| pp.te(0,T).

is a relaxation of (P;) in the following sense :
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Optimization of the heat flux: Div-Rot Young Measure

1 T
(P Minimize overx’ : J,(X):5//K(t,x)Vu(I,x)<Vu(l,x)dxdt
0JQ

u=0 on (0, T) x 0Q, (86)

(Bt X)u(t, X)) —div (K(t,x)Vu(t,x))=Kt,x) in  (0,T)xQ,
u (0, x) = up (x) in  Q,

with
B(t,x) =X (t,x) B1 + (1 — X (8, X)) B, K (t, x) = X (t, X) k Iy + (1 — X (¢, X)) ka Iy,

(AM, Pedregal, Periago, JMPA 2008)

— 2
_ ]G—kzw )G—quu‘
(RP;) Minimize over (9, G, u) . (6, G, u) / / + ky dxalt
T2 6 (ky — kp)? (1—0) (ko — ky)?
Ge (0,7 x urRMT), ue H (0, T) x %R),
(681 + (1 —0)B2)u) —divG =0 dans H=1((0, T) x Q),
ulgg =0 p.p.telo,T], u(0) =uy dansQ,

6 € L% ((0,T) x 2[0,1]), [q0(t,x)dx=L|Q pp.te (0,T).
is a relaxation of (P;) in the following sense :

(i) (RP¢) is well-posed,
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Optimization of the heat flux: Div-Rot Young Measure

1 T
(P Minimize overx’ : J,(X):5//K(t,x)Vu(I,x)<Vu(l,x)dxdt
0JQ

u=0 on (0, T) x 0Q, (86)

(Bt X)u(t, X)) —div (K(t,x)Vu(t,x))=Kt,x) in  (0,T)xQ,
u (0, x) = up (x) in  Q,

with
B(t,x) =X (t,x) B1 + (1 — X (8, X)) B, K (t, x) = X (t, X) k Iy + (1 — X (¢, X)) ka Iy,

(AM, Pedregal, Periago, JMPA 2008)

— 2
_ ]G—kzw )G—quu‘
(RP;) Minimize over (9, G, u) . (6, G, u) / / + ky dxalt
T2 6 (ky — kp)? (1—0) (ko — ky)?
Ge (0,7 x urRMT), ue H (0, T) x %R),
(681 + (1 —0)B2)u) —divG =0 dans H=1((0, T) x Q),
ulgg =0 p.p.telo,T], u(0) =uy dansQ,

6 € L% ((0,T) x 2[0,1]), [q0(t,x)dx=L|Q pp.te (0,T).
is a relaxation of (P;) in the following sense :

(i) (RP¢) is well-posed,
(i) the infimum of (VP;) equals the minimum of (RP;), and
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Optimization of the heat flux: Div-Rot Young Measure

1 T
(P Minimize overx’ : J,(X):5//K(t,x)Vu(I,x)<Vu(l,x)dxdt
0JQ

(B(t, x)u(t, x)) —div (K(t,x)Vu(t,x)) =f(t,x) in (0,T)xQ,
0 ,
u (0, x) = ug (x) in Q,

with
B(t,x) =X (t,x) B1 + (1 — X (8, X)) B, K (t, x) = X (t, X) k Iy + (1 — X (¢, X)) ka Iy,

(AM, Pedregal, Periago, JMPA 2008)

— 2
_ _ ’G—kZVU‘ )G—quu‘
(RP;) Minimize over (e,e, u): Ji(6, G, / / #+0l5 5 | dxat
T2 6 (ky — kp)? (1 —0) (ke — ki)
Ge (0,7 x urRMT), ue H (0, T) x %R),
(681 +(1 = 6) B2)u)’ —divG =0 dans H=1 ((0, T) x ),
ulgg =0 p.p.telo,T], u(0) =uy dansQ,

6 € L% ((0,T) x 2[0,1]), [q0(t,x)dx=L|Q pp.te (0,T).
is a relaxation of (P;) in the following sense :
(i) (RP¢) is well-posed,

(i) the infimum of (VP;) equals the minimum of (RP;), and

(iii) the Young measure associated with (RP;) (et donc la micro-structure optimale de (VP;)) is
expressed in term of an explicit first order laminate.
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Problem 4: Optimal design and exact controllability

[AM 06,07,08] [Asch-Lebeau 99], [Chambolle-Santosa 03], [Periago 09]
@ Letoa c RV, N=1,2 (0 u") € Hi(Q) x 2(Q),L € (0,1), T > 08
4y 2
PLY: ot vl 0,1y (®7)

where v,, is an exact control, supported on w x (0, T) for

Uy — AU = vy, X, in (0,7) x Q,
u=0 on (0, T) x 99, (88)
u(0, ) =u®, u(0,:) =u in Q

and subject to
{ The system (88) may be observed from w X (0, T),

1% I < L xqll

o) = @)

8AM, Optimal design of the support of the control for the 2-D wave equation, C.R.Acad Sci., Paris Serie | (2006)
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Some numerical results for (RP*)

Let © = (0, 1)2, and (&2, u') = (e—80(x1 —0-8° ~8002 ~0.8) ) ang | — 1/10

2 I )
e =~y

Iso-value of the optimal density son Qfor T =0.5, T =1,T =3

@ (xc0<s(x)<1}=0, (P:L) = (FIPi) and is well-posed
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ain with a crack : Reduction of the singularity

[Ph. Destuynder 87,88,89]
@ letw cQeR%0< a< By e H2(M), g € L2(Tg) et u solution de

—div(iax,Vu) =0, ax, =aX, +0(1 - Xu) Q,
u=uy Iy C 09, (90)
BYVu-v=g g C 0Q.

Figure: Domain Q with a cut I'y - Optimization of the distribution (c, 3).
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Domain with a crack : Reduction of the singularity

[Ph. Destuynder 87,88,89]

@ letwCQER20< a<pB u € H/2(y), g € L3(Ty) et u solution de
o 0 g

—div(iax,Vu) =0, ax, =aX, +0(1 - Xu) Q,
u=u o C 09,
BYVu-v=g g C 0Q.

@ Forany L € (0, 1), the problem is
Py : inf xo)= [ Ay ()Y, VU)o, Ay =~ ( ¥1
(P): XWIH€XL9¢(M w) = ¥ (X)(Ay (X)Vu, Vu)dx, Ay = > 0

X, ={x € L°°(Q,{0,1}), X =00n DU IQ, HXHU(Q) =L|Q|}

g - Energy release rate

Figure: Domain Q with a cut I'y - Optimization of the distribution (c, 3).
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Domain with a crack : Reduction of the singularity - The relaxation

(AM, Pedregal (COCV 09) )

The problem
(RP) : min I(s, t) = / 9 (U, 8)dx (92)
Sht Q
subject to
s € L°°(Q,[0,1]),s =0in DU IQ, ||s], 1 = L|Q|,
(@) 93)
te L®@QR?), |t =1,
where U = U(s, t) is solution of the nonlinear problem
div (A(s)VUJr B(s)WU\t) =0, in Q,
U= up, on g, (94)
BVUu-v =g, onTg.
AT(S)+AT(s) _ 2aB+s(1—8)(B - a) AT(E) = AT (s) sl —s)(B—a)?
A(s) = = , B(s) = = .
2 2(a(1 — s) + Bs) 2 2(a(1 — s) + 3s)
(95)
is a relaxion of the initial problem (P).
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Domain with a crack : Reduction of the singularity - The relaxation

(AM, Pedregal (COCV 09) )

The problem
(RP) : min (s, t) = / 9 (U, 8)dx (92)
Sht Q
subject to
s € L%(2,[0,1]),s=0in DU B, [Isl|;1 o) = LI,
(93)
te L@ R, |il=1,
where U = U(s, t) is solution of the nonlinear problem
div (A(s)VHJr B(s)WU\t) =0, in Q,
U= up, on g, )
BVUu-v =g, onTg.
AT(s)+27(s)  2aB+s(1—s)(8— )P AT(s) = A7 (s)  s(1 —s)(B— a)?
A(s) = = , B(s) = = .
2 2(a(1 — s) + Bs) 2 2(a(1 — s) + Bs)
(95)

is a relaxion of the initial problem (P).

Ifs € {0,1}, then A(s) = as + B(1 — s) = ax,,, B(s) = 0andu = T.
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Domain with a crack : Reduction of the singularity

Q=(0,1), v=1[0.5,1 x {1/2}, L=2/5, u=0o0on {0} x [0,1], u=1/20n[0.5,0.8] x {1}  (96)

Figure: iso-values of the optimal density : (e, ) = (1,2) and (e, 8) = (1, 10).
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Two related works in progress

@ Non linear heat equation [Fernandez-Cara, Zuazua (00,01)]

acrV,wca, (97)
u — Au+ f(u) = v, (0, 7) xQ,
u=0 (0, T) x 09, (98)
u=1u’ e 3Q) {0} x Q

= Optimal position of the support of the control v in order to prevent the blow up of u :
inf, 1VIE2(0,7)x )
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Two related works in progress

@ Non linear heat equation [Fernandez-Cara, Zuazua (00,01)]

acrV,wca, (97)
u — Au+ f(u) = v, (0, 7) xQ,
u=0 (0, T) x 09, (98)
u=1u’ e 3Q) {0} x Q

= Optimal position of the support of the control v in order to prevent the blow up of u :
inf, 1VIE2(0,7)x )

@ Null controllability of shell - Q € R?, w C Q

V) + Amye + CApye =0 (0, T) x Q

%) {0} x @ (99)
Ye = Ve (0, T) x 0Q

(M&), 1(8)) = (Navs o)X (§) + (Ag, np)(1 — Xu(€)), €€w, wCQ

. 6% o131

SUp (100)
wC 40 w1 Jo [oq bu(®, d)dodt
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