Controllability of the linear 1D wave equation with inner moving forces

Arnaud Münch

Université Blaise Pascal - Clermont-Ferrand - France

Toulouse, May 27, 2014

joint work with CARLOS CASTRO (Madrid) and NICOLAE CÎNDEA (Clermont-Ferrand)

Arnaud Münch Controllability of the linear 1D wave equation with inner moving for

イロト イポト イヨト イヨト

 $Q_T = (0,1) \times (0,T), q_T \subset Q_T, V := H_0^1(0,1) \times L^2(0,1), a, b \in C([0,T],]0, 1[)$

$$\begin{cases} y_{tt} - y_{xx} = v \mathbf{1}_{q_T}, & (x, t) \in Q_T \\ y = 0, & (x, t) \in \partial\Omega \times (0, T) \\ (y(\cdot, 0), y_t(\cdot, 0)) = (y_0, y_1) \in \mathbf{V}, & x \in (0, 1). \end{cases}$$

Dependent domains q_T included in Q_T .

$$q_T = \left\{ (x,t) \in Q_T; \ a(t) < x < b(t), \ t \in (0,T) \right\}$$

Goals of the works -

- For some T > 0 and q_T, prove the existence of uniform null L²(q_T)-controls.
- Approximate numerically the control of minimal L²(q_T)-norm.

Arnaud Münch Controllability of the linear 1D wave equation with inner moving for

イロン 不得 とくほ とくほ とうほ

 $Q_T = (0,1) \times (0,T), q_T \subset Q_T, V := H_0^1(0,1) \times L^2(0,1), a, b \in C([0,T],]0, 1[)$

$$\begin{cases} y_{tt} - y_{xx} = v \mathbf{1}_{q_T}, & (x, t) \in Q_T \\ y = 0, & (x, t) \in \partial\Omega \times (0, T) \\ (y(\cdot, 0), y_t(\cdot, 0)) = (y_0, y_1) \in \mathbf{V}, & x \in (0, 1). \end{cases}$$

Dependent domains q_T included in Q_T .

$$q_T = \left\{ (x, t) \in Q_T; \ a(t) < x < b(t), \ t \in (0, T) \right\}$$

Goals of the works -

- For some T > 0 and q_T, prove the existence of uniform null L²(q_T)-controls.
- Approximate numerically the control of minimal L²(q_T)-norm.

Arnaud Münch Controllability of the linear 1D wave equation with inner moving for

ヘロン 人間 とくほ とくほ とう

3

This contribution is a combination of two recent works :

 C. Castro : Exact controllability of the 1D wave equation from a moving interior point, COCV - 2013

$$\begin{cases} y_{tt} - y_{xx} = v(x, t) \mathbf{1}_{x=\gamma(t)}, \quad (x, t) \in Q_T, \\ \gamma \in \mathcal{C}^1([0, T], (0, 1)), \quad 0 < |\gamma'(t)| < 1, t \in (0, T). \end{cases}$$

Existence of $H^{-1}(\cup_{t \in (0,T)} \gamma(t) \times (0,T))$ null controls for $(y_0, y_1) \in L^2(0, 1) \times H^{-1}(0, 1), T > 2$

 N. Cîndea and AM : A mixed formulation for the direct approximations of the control of minimal L²-norm for linear type wave equations, CALCOLO 2014

$$y_{tt} - (a(x)y_x)_x + b(x,t)y = v\mathbf{1}_{\omega}, \quad (x,t) \in Q_T$$

Robust numerical approximation of the control of minimal $L^2(\omega \times (0, T))$ -norm using a space-time formulation, well-adapted to our non cylindrical case.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

This contribution is a combination of two recent works :

 C. Castro : Exact controllability of the 1D wave equation from a moving interior point, COCV - 2013

$$\begin{cases} y_{tt} - y_{xx} = v(x,t) \mathbf{1}_{x=\gamma(t)}, & (x,t) \in Q_T, \\ \gamma \in G^1([0,T],(0,1)), & 0 < |\gamma'(t)| < 1, t \in (0,T). \end{cases}$$

Existence of $H^{-1}(\cup_{t \in (0,T)} \gamma(t) \times (0,T))$ null controls for $(y_0, y_1) \in L^2(0, 1) \times H^{-1}(0, 1), T > 2$

 N. Cîndea and AM : A mixed formulation for the direct approximations of the control of minimal L²-norm for linear type wave equations, CALCOLO 2014

$$y_{tt} - (a(x)y_x)_x + b(x,t)y = v\mathbf{1}_{\omega}, \quad (x,t) \in Q_T$$

Robust numerical approximation of the control of minimal $L^2(\omega \times (0, T))$ -norm using a space-time formulation, well-adapted to our non cylindrical case.

- A. Khapalov, Controllability of the wave equation with moving point control, 1995
 For any T > 0, construction of punctual L²-controls for smooth initial data (y₀, y₁) (to avoid strategic point)
- A. Khapalov, Interior point control and observation for the wave equation, 1996
- L. Cui, X. Liu, H. Gao, Exact controllability for a one-dimensional wave equation in non-cylindrical domains, 2013
 Controllability of the 1D wave with moving boundary of the form 1 + kt, k ∈ (0, 1]
- C. Castro, Exact controllability of the 1D wave equation from a moving interior point, 2013
 Punctual controllability of the 1D wave, T > 2 with H⁻¹-control an C¹-curve
- P. Martin, L. Rosier, P. Rouchon, Null controllability of the structurally damped wave equation with moving control, 2013. Controllability of $y_{tt} - y_{xx} - \varepsilon y_{txx} = 0$ on the 1D-Torus, to avoid essential spectrum

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

- A. Khapalov, Controllability of the wave equation with moving point control, 1995
 For any T > 0, construction of punctual L²-controls for smooth initial data (y₀, y₁) (to avoid strategic point)
- A. Khapalov, Interior point control and observation for the wave equation, 1996
- L. Cui, X. Liu, H. Gao, Exact controllability for a one-dimensional wave equation in non-cylindrical domains, 2013
 Controllability of the 1D wave with moving boundary of the form 1 + kt, k ∈ (0, 1]
- C. Castro, Exact controllability of the 1D wave equation from a moving interior point, 2013
 Punctual controllability of the 1D wave, T > 2 with H⁻¹-control an C¹-curve
- P. Martin, L. Rosier, P. Rouchon, Null controllability of the structurally damped wave equation with moving control, 2013. Controllability of $y_{tt} - y_{xx} - \varepsilon y_{txx} = 0$ on the 1D-Torus, to avoid essential spectrum

- A. Khapalov, Controllability of the wave equation with moving point control, 1995
 For any T > 0, construction of punctual L²-controls for smooth initial data (y₀, y₁) (to avoid strategic point)
- A. Khapalov, Interior point control and observation for the wave equation, 1996
- L. Cui, X. Liu, H. Gao, Exact controllability for a one-dimensional wave equation in non-cylindrical domains, 2013 Controllability of the 1D wave with moving boundary of the form 1 + kt, k ∈ (0, 1]
- C. Castro, Exact controllability of the 1D wave equation from a moving interior point, 2013
 Punctual controllability of the 1D wave, T > 2 with H⁻¹-control an C¹-curve
- P. Martin, L. Rosier, P. Rouchon, Null controllability of the structurally damped wave equation with moving control, 2013. Controllability of $y_{tt} - y_{xx} - \varepsilon y_{txx} = 0$ on the 1D-Torus, to avoid essential spectrum

- A. Khapalov, Controllability of the wave equation with moving point control, 1995
 For any T > 0, construction of punctual L²-controls for smooth initial data (y₀, y₁) (to avoid strategic point)
- A. Khapalov, Interior point control and observation for the wave equation, 1996
- L. Cui, X. Liu, H. Gao, Exact controllability for a one-dimensional wave equation in non-cylindrical domains, 2013
 Controllability of the 1D wave with moving boundary of the form 1 + kt, k ∈ (0, 1]

C. Castro, Exact controllability of the 1D wave equation from a moving interior point, 2013
 Punctual controllability of the 1D wave, T > 2 with H⁻¹-control an C¹-curve

• P. Martin, L. Rosier, P. Rouchon, Null controllability of the structurally damped wave equation with moving control, 2013. Controllability of $y_{tt} - y_{xx} - \varepsilon y_{txx} = 0$ on the 1D-Torus, to avoid essential spectrum

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

- A. Khapalov, Controllability of the wave equation with moving point control, 1995
 For any T > 0, construction of punctual L²-controls for smooth initial data (y₀, y₁) (to avoid strategic point)
- A. Khapalov, Interior point control and observation for the wave equation, 1996
- L. Cui, X. Liu, H. Gao, Exact controllability for a one-dimensional wave equation in non-cylindrical domains, 2013
 Controllability of the 1D wave with moving boundary of the form 1 + kt, k ∈ (0, 1]
- C. Castro, Exact controllability of the 1D wave equation from a moving interior point, 2013
 Punctual controllability of the 1D wave, T > 2 with H⁻¹-control an C¹-curve
- P. Martin, L. Rosier, P. Rouchon, Null controllability of the structurally damped wave equation with moving control, 2013. Controllability of $y_{tt} - y_{xx} - \varepsilon y_{txx} = 0$ on the 1D-Torus, to avoid essential spectrum

Generalized Observability inequality: weaker hypothesis

Set $H = L^2(0,1) \times H^{-1}(0,1)$. Let T > 0. q_T -non-cylindrical domain, $L\varphi = \varphi_{tt} - \varphi_{xx}$. Let $q_T \subset (0,1) \times (0,T)$ be an open set.

$$\Phi = \left\{ \varphi \in \mathcal{C}([0, T]; L^2(0, 1)) \cap \mathcal{C}^1([0, T]; H^{-1}(0, 1)), \text{ such that } L\varphi \in L^2(0, T; H^{-1}(0, 1)) \right\}.$$

(Castro, Cîndea, Münch)

Assume that $q_T \subset (0, 1) \times (0, T)$ is a finite union of connected open sets and satisfies the following hypotheses:

Any characteristic line starting at a point $x \in (0, 1)$ at time t = 0 and following the optical geometric laws when reflecting at the boundary Σ_T must meet q_T .

Then, there exists C > 0 such that the following estimate holds :

$$\|\varphi(\cdot, 0), \varphi_{l}(\cdot, 0))\|_{H}^{2} \leq C \bigg(\|\varphi\|_{L^{2}(q_{T})}^{2} + \|L\varphi\|_{L^{2}(0, T; H^{-1}(0, 1))}^{2} \bigg), \quad \forall \varphi \in \Phi.$$
 (1)

Set $H = L^2(0,1) \times H^{-1}(0,1)$. Let T > 0. q_T -non-cylindrical domain, $L\varphi = \varphi_{tt} - \varphi_{xx}$. Let $q_T \subset (0,1) \times (0,T)$ be an open set.

 $\Phi = \left\{ \varphi \in \mathcal{C}([0,T]; L^2(0,1)) \cap \mathcal{C}^1([0,T]; H^{-1}(0,1)), \text{ such that } L\varphi \in L^2(0,T; H^{-1}(0,1)) \right\}.$

Theorem (Castro, Cîndea, Münch)

Assume that $q_T \subset (0, 1) \times (0, T)$ is a finite union of connected open sets and satisfies the following hypotheses:

Any characteristic line starting at a point $x \in (0, 1)$ at time t = 0 and following the optical geometric laws when reflecting at the boundary Σ_T must meet q_T .

Then, there exists C > 0 such that the following estimate holds :

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{H}}^2 \leq C \bigg(\|\varphi\|_{L^2(q_T)}^2 + \|L\varphi\|_{L^2(0,T;H^{-1}(0,1))}^2 \bigg), \quad \forall \varphi \in \Phi.$$
(1)

.

Step 1: Let φ be a smooth solution of the wave eq. φ can be extended in a unique way to a function, still denoted by φ , in $(x, t) \in (0, 1) \times \mathbf{R}$ satisfying $L\varphi = 0$ and the boundary conditions $\varphi(0, t) = \varphi(1, t) = 0$ for all $t \in \mathbf{R}$.

For such extension the following holds: For each $t \in \mathbf{R}$, $x \in (0, 1)$ and $\delta > 0$

$$egin{array}{ll} \int_{t-\delta}^{t+\delta} |arphi_X(\mathbf{0},m{s})|^2 \ dm{s} &\leq & rac{1}{\delta} \iint_{\mathcal{U}_{(X,t+X)}^{\delta}} \left(|arphi_X(y,m{s})|^2 + |arphi_t(y,m{s})|^2
ight) dy \ dm{s}, \ \int_{t-\delta}^{t+\delta} |arphi_X(\mathbf{0},m{s})|^2 \ dm{s} &\leq & rac{1}{\delta} \iint_{\mathcal{U}_{(X,t-X)}^{\delta}} \left(|arphi_X(y,m{s})|^2 + |arphi_t(y,m{s})|^2
ight) dy \ dm{s}, \end{array}$$

where $\mathcal{U}_{(x,t)}^{\delta}$ is a neighborhood of (x, t) of the form

$$\mathcal{U}_{(x,t)}^{\delta} = \{(y, s) \text{ such that } |x - y| + |t - s| < \delta\}$$

Step 1 (Picture)

Arnaud Münch

Controllability of the linear 1D wave equation with inner moving fo

Proof : step 1

Step 1: Wave equation is symmetric with respect to the time and space variables. The D'Alembert formulae can be used changing the time and space role, i.e.

$$\frac{1}{2}\int_{t-x}^{t+x}\varphi_{x}(0,s)\ ds=\varphi(x,t),\quad (x,t)\in(0,1)\times\mathbf{R},$$
(2)

where we have taken into account the boundary condition $\varphi(0, t) = 0$. Consider now $x = x_0 - t$ in (2) and differentiate with respect to time. Then,

$$-\varphi_X(0,2t-x_0)=-\varphi_X(x_0-t,t)+\varphi_t(x_0-t,t),$$

that written in the original variables (x, t) gives, $\varphi_x(0, t - x) = \varphi_x(x, t) - \varphi_t(x, t)$, or equivalently

$$\varphi_X(0,t) = \varphi_X(x,t+x) - \varphi_t(x,t+x), \quad t \in \mathbf{R}, \quad x \in (0,1).$$
(3)

Integrating the square of (3) in $(y, s) \in U^{\delta}_{(x,t+x)}$ with the parametrization

$$y = x + \frac{u - v}{\sqrt{2}}, \qquad s = t + \frac{u + v}{\sqrt{2}}, \qquad |u|, |v| < \frac{\delta}{\sqrt{2}}$$

we obtain

$$\int_{-\delta/\sqrt{2}}^{\delta/\sqrt{2}} \int_{-\delta/\sqrt{2}}^{\delta/\sqrt{2}} |\varphi_{\mathsf{X}}(0,t+2\mathsf{V}/\sqrt{2})|^2 \, d\mathsf{u} d\mathsf{v} = \iint_{\mathcal{U}_{\mathsf{X},t+\mathsf{X}}^{\delta}} |\varphi_{\mathsf{X}}(y,s) - \varphi_t(y,s)|^2 \, d\mathsf{y} ds.$$

Therefore, with the change $s = t + 2v/\sqrt{2}$ in the first integral eads the result z, $z \to \infty$

Proof : step 1

Step 1: Wave equation is symmetric with respect to the time and space variables. The D'Alembert formulae can be used changing the time and space role, i.e.

$$\frac{1}{2}\int_{t-x}^{t+x}\varphi_{x}(0,s)\ ds=\varphi(x,t),\quad (x,t)\in(0,1)\times\mathbf{R},$$
(2)

where we have taken into account the boundary condition $\varphi(0, t) = 0$. Consider now $x = x_0 - t$ in (2) and differentiate with respect to time. Then,

$$-\varphi_x(0,2t-x_0)=-\varphi_x(x_0-t,t)+\varphi_t(x_0-t,t),$$

that written in the original variables (x, t) gives, $\varphi_x(0, t - x) = \varphi_x(x, t) - \varphi_t(x, t)$, or equivalently

$$\varphi_X(0,t) = \varphi_X(x,t+x) - \varphi_t(x,t+x), \quad t \in \mathbf{R}, \quad x \in (0,1).$$
(3)

Integrating the square of (3) in $(y,s) \in \mathcal{U}^{\delta}_{(x,t+x)}$ with the parametrization

$$y = x + rac{u-v}{\sqrt{2}}, \qquad s = t + rac{u+v}{\sqrt{2}}, \qquad |u|, |v| < rac{\delta}{\sqrt{2}}$$

we obtain

$$\int_{-\delta/\sqrt{2}}^{\delta/\sqrt{2}} \int_{-\delta/\sqrt{2}}^{\delta/\sqrt{2}} |\varphi_{X}(0,t+2\nu/\sqrt{2})|^{2} du d\nu = \iint_{\mathcal{U}_{x,t+x}^{\delta}} |\varphi_{X}(y,s) - \varphi_{t}(y,s)|^{2} dy ds.$$

Therefore, with the change $s = t + 2v/\sqrt{2}$ in the first integral leads the result.

Set $W = \{\varphi : \varphi \in \Phi \text{ such that } L\varphi = 0\} \subset \Phi$. We show that for some constant C > 0,

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{V}}^2 \leq C\bigg(\|\varphi_t\|_{L^2(q_T)}^2 + \|\varphi_x\|_{L^2(q_T)}^2\bigg),\tag{4}$$

for any $\varphi \in W$ and initial data in V.

We may assume that φ is smooth since the general case can be obtained by a usual density argument. We also assume that φ is extended to $(x, t) \in (0, 1) \times \mathbf{R}$ by assuming that it satisfies the wave equation and boundary conditions in this region. This extension is unique and 2-periodic in time. The region q_T is also extended to \tilde{q}_T to take advantage of the time periodicity of the solution φ . We define,

$$\tilde{q}_T = \bigcup_{k \in \mathbb{Z}} \{(x, t) \quad \text{such that } (x, t+2k) \in q_T\}.$$

Set $W = \{\varphi : \varphi \in \Phi \text{ such that } L\varphi = 0\} \subset \Phi$. We show that for some constant C > 0,

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{V}}^2 \leq C\bigg(\|\varphi_t\|_{L^2(q_T)}^2 + \|\varphi_x\|_{L^2(q_T)}^2\bigg),\tag{4}$$

for any $\varphi \in W$ and initial data in V.

We may assume that φ is smooth since the general case can be obtained by a usual density argument. We also assume that φ is extended to $(x, t) \in (0, 1) \times \mathbf{R}$ by assuming that it satisfies the wave equation and boundary conditions in this region. This extension is unique and 2-periodic in time. The region q_T is also extended to \tilde{q}_T to take advantage of the time periodicity of the solution φ . We define,

$$\tilde{q}_T = \bigcup_{k \in \mathbb{Z}} \{ (x, t) \quad \text{such that } (x, t + 2k) \in q_T \}.$$

(日)

Proof : Step 2 (Picture)

Arnaud Münch

Controllability of the linear 1D wave equation with inner moving fo

$$\tilde{q}_T = \bigcup_{k \in \mathbf{Z}} \{(x, t) \quad \text{such that } (x, t + 2k) \in q_T\}.$$

The key point now is to observe that the hypotheses on q_T , namely the fact that

"any characteristic line starting at point (x, 0) and following the optical geometric laws when reflecting at the boundary must meet q_T ",

\Leftrightarrow

"for any point (0, t) with $t \in [0, 2]$ there exists one characteristic line (either (x, t + x) with $x \in (0, 1)$ or (x, t - x)) that meets \tilde{q}_T ".

Thus, given $t \in [0, 2]$ we can apply STEP 1 with $(x, t + x) \in \tilde{q}_T$ or with $(x, t - x) \in \tilde{q}_T$ with δ sufficiently small so that $\mathcal{U}_{(x,t+x)}^{\delta} \subset \tilde{q}_T$ or $\mathcal{U}_{(x,t-x)}^{\delta} \subset \tilde{q}_T$. In particular we see that for any $t \in [0, 2]$ there exists $\delta_t > 0$ and $C_t > 0$ such that

$$\int_{t-\delta_t}^{t+\delta_t} |\varphi_x(0,s)|^2 \, ds \leq C_t \iint_{\widetilde{q}_T} \left(|\varphi_t|^2 + |\varphi_x|^2 \right) dx dt.$$

By compacity, there exists a finite number of times $t_1, ..., t_n$ such that $\bigcup_{i=1,...,n} (t_i - \delta_{t_i}, t_i + \delta_{t_i})$ covers the whole interval [0, 2] and therefore, by adding the corresponding inequalities, there exists C > 0 such that

$$\int_{0}^{2} |\varphi_{\mathsf{X}}(0,s)|^{2} ds \leq C \iint_{\tilde{q}_{\mathsf{T}}} \left(|\varphi_{t}|^{2} + |\varphi_{\mathsf{X}}|^{2} \right) d\mathsf{X} dt.$$
(5)

The fact that we can replace \tilde{q}_T by q_T is due to the 2-periodicity of φ in time. Finally, the result is a consequence of the well-known boundary observability inequality

$$\|arphi(\cdot,0),arphi_t(\cdot,0))\|_V^2 \leq C \int_0^2 |arphi_X(0,s)|^2 \; ds$$

Thus, given $t \in [0, 2]$ we can apply STEP 1 with $(x, t + x) \in \tilde{q}_T$ or with $(x, t - x) \in \tilde{q}_T$ with δ sufficiently small so that $\mathcal{U}_{(x,t+x)}^{\delta} \subset \tilde{q}_T$ or $\mathcal{U}_{(x,t-x)}^{\delta} \subset \tilde{q}_T$. In particular we see that for any $t \in [0, 2]$ there exists $\delta_t > 0$ and $C_t > 0$ such that

$$\int_{t-\delta_t}^{t+\delta_t} |\varphi_{\mathsf{X}}(\mathsf{0},s)|^2 \ ds \leq C_t \iint_{\widetilde{q}_T} \left(|\varphi_t|^2 + |\varphi_{\mathsf{X}}|^2 \right) d\mathsf{x} dt.$$

By compacity, there exists a finite number of times $t_1, ..., t_n$ such that $\cup_{i=1,...,n}(t_i - \delta_{t_i}, t_i + \delta_{t_i})$ covers the whole interval [0, 2] and therefore, by adding the corresponding inequalities, there exists C > 0 such that

$$\int_0^2 |\varphi_x(0,s)|^2 ds \le C \iint_{\tilde{q}_T} \left(|\varphi_t|^2 + |\varphi_x|^2 \right) dx dt.$$
(5)

The fact that we can replace \tilde{q}_T by q_T is due to the 2-periodicity of φ in time. Finally, the result is a consequence of the well-known boundary observability inequality

$$\|arphi(\cdot,0),arphi_t(\cdot,0))\|_V^2 \leq C \int_0^2 |arphi_X(0,s)|^2 \ ds$$

Thus, given $t \in [0, 2]$ we can apply STEP 1 with $(x, t + x) \in \tilde{q}_T$ or with $(x, t - x) \in \tilde{q}_T$ with δ sufficiently small so that $\mathcal{U}_{(x,t+x)}^{\delta} \subset \tilde{q}_T$ or $\mathcal{U}_{(x,t-x)}^{\delta} \subset \tilde{q}_T$. In particular we see that for any $t \in [0, 2]$ there exists $\delta_t > 0$ and $C_t > 0$ such that

$$\int_{t-\delta_t}^{t+\delta_t} |\varphi_{\mathsf{X}}(\mathsf{0},s)|^2 \, ds \leq C_t \iint_{\widetilde{q}_{\mathsf{T}}} \left(|\varphi_t|^2 + |\varphi_{\mathsf{X}}|^2 \right) d\mathsf{x} dt.$$

By compacity, there exists a finite number of times $t_1, ..., t_n$ such that $\cup_{i=1,...,n}(t_i - \delta_{t_i}, t_i + \delta_{t_i})$ covers the whole interval [0, 2] and therefore, by adding the corresponding inequalities, there exists C > 0 such that

$$\int_0^2 |\varphi_x(0,s)|^2 ds \le C \iint_{\tilde{q}_T} \left(|\varphi_t|^2 + |\varphi_x|^2 \right) dx dt.$$
(5)

The fact that we can replace \tilde{q}_T by q_T is due to the 2-periodicity of φ in time. Finally, the result is a consequence of the well-known boundary observability inequality

$$\|arphi(\cdot,0),arphi_t(\cdot,0))\|_{oldsymbol{V}}^2 \leq C \int_0^2 |arphi_{X}(0,s)|^2 \ ds.$$

Step 3. We show that we can substitute φ_x by φ in the right hand side of (4), i.e.

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{V}}^2 \le C\bigg(\|\varphi_t\|_{L^2(q_T)}^2 + \|\varphi\|_{L^2(q_T)}^2\bigg),\tag{6}$$

for any $\varphi \in W$ and initial data in V.

In fact, this requires to extend slightly the observation zone q_T . Instead, we observe that if q_T satisfies the hypotheses in Proposition 2 then there exists a smaller open subset $\tilde{q}_T \subset q_T$ that still satisfies the same hypotheses and such that the closure of \tilde{q}_T is included in q_T . Thus, (4) must hold as well for \tilde{q}_T . Let us introduce now a function $\eta \ge 0$ which satisfies the following hypotheses:

$$\eta\in C^1((0,1) imes(0,T)), \quad supp(\eta)\subset q_T, \quad \|\eta_t\|_{L^\infty}+\|\eta_x^2/\eta\|_{L^\infty}\leq C_1 \ \ ext{in} \ q_T$$

 $\eta > \eta_0 > 0$ in \tilde{q}_T , with $\eta_0 > 0$ constant.

As q_T is a finite union of connected open sets, the function η can be easily obtained by convolution of the characteristic function of \tilde{q}_T with a positive mollifier.

Step 3. We show that we can substitute φ_x by φ in the right hand side of (4), i.e.

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{V}}^2 \le C\bigg(\|\varphi_t\|_{L^2(q_T)}^2 + \|\varphi\|_{L^2(q_T)}^2\bigg),\tag{6}$$

for any $\varphi \in W$ and initial data in V.

In fact, this requires to extend slightly the observation zone q_T . Instead, we observe that if q_T satisfies the hypotheses in Proposition 2 then there exists a smaller open subset $\tilde{q}_T \subset q_T$ that still satisfies the same hypotheses and such that the closure of \tilde{q}_T is included in q_T . Thus, (4) must hold as well for \tilde{q}_T . Let us introduce now a function $\eta \ge 0$ which satisfies the following hypotheses:

$$\eta\in \mathcal{C}^1((0,1) imes(0,T)), \hspace{1em} supp(\eta)\subset q_T, \hspace{1em} \|\eta_t\|_{L^\infty}+\|\eta_x^2/\eta\|_{L^\infty}\leq C_1 \hspace{1em} ext{in} \hspace{1em} q_T$$

 $\eta > \eta_0 > 0$ in \tilde{q}_T , with $\eta_0 > 0$ constant.

As q_T is a finite union of connected open sets, the function η can be easily obtained by convolution of the characteristic function of \tilde{q}_T with a positive mollifier.

Multiplying the equation of φ by $\eta\varphi$ and integrating by parts we easily obtain

$$\begin{split} \iint_{q_T} \eta |\varphi_X|^2 \, dx \, dt &= \iint_{q_T} \eta |\varphi_t|^2 \, dx \, dt + \iint_{q_T} (\eta_t \varphi \varphi_t - \eta_X \varphi \varphi_X) \, dx \, dt \\ &\leq \iint_{q_T} \eta |\varphi_t|^2 \, dx dt + \frac{\|\eta_t\|_{L^{\infty}(q_T)}}{2} \iint_{q_T} (|\varphi|^2 + |\varphi_t|) \, dx \, dt \\ &+ \frac{1}{2} \iint_{q_T} (\frac{\eta_X^2}{\eta} \varphi^2 + \eta \varphi_X^2) \, dx \, dt. \end{split}$$

Therefore,

$$\iint_{q_T} \eta |\varphi_x|^2 \, dx \, dt \quad \leq \quad C \iint_{q_T} (|\varphi_t|^2 + |\varphi|^2) \, dx \, dt,$$

for some constant C > 0, and we obtain

$$\|\varphi_x\|_{L^2(\tilde{q}_T)}^2 \le C_2^{-1} \iint_{q_T} \eta |\varphi_x|^2 \, dx \, dt \le C_2^{-1} C \iint_{q_T} (|\varphi_t|^2 + |\varphi|^2) \, dx \, dt.$$

This combined with (4) for \tilde{q}_T provides (6).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Step 4. Here we prove that we can remove the second term in the right hand side of (6), i.e.

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{V}}^2 \le C \|\varphi_t\|_{L^2(q_T)}^2,\tag{7}$$

for any $\varphi \in W$ and initial data in V.

We substitute the inequality (energy estimate)

 $\|\varphi\|_{L^2(q_T)}^2 \leq T \|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{H}}^2.$

in (6)

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_V^2 \leq C \bigg(\|\varphi_t\|_{L^2(q_T)}^2 + \|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_H^2 \bigg).$$

Inequality (7) is finally obtained by contradiction. Assume that it is not true. Then, there exists a sequence $(\varphi^k(\cdot, 0), \varphi^k_t(\cdot, 0)))_{k>0} \in V$ such that

$$\|\varphi^k(\cdot,0),\varphi^k_t(\cdot,0))\|_V^2=1,\quad\forall k>0,\qquad \|\varphi^k_t\|_{L^2(q_T)}^2\to 0, \text{ as } k\to\infty.$$

There exists a subsequence such that $(\varphi^k(\cdot, 0), \varphi_t^k(\cdot, 0)) \to (\varphi^*(\cdot, 0), \varphi_t^*(\cdot, 0))$ weakly in V and strongly in H. Passing to the limit in the equation we see that the solution associated to $(\varphi^*(\cdot, 0), \varphi_t^*(\cdot, 0)), \varphi^*$ must vanish at q_T and therefore, by (6), $\varphi^* = 0$.

Step 4. Here we prove that we can remove the second term in the right hand side of (6), i.e.

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{V}}^2 \le C \|\varphi_t\|_{L^2(q_T)}^2,\tag{7}$$

for any $\varphi \in W$ and initial data in V.

We substitute the inequality (energy estimate)

 $\|\varphi\|_{L^2(q_T)}^2 \leq T \|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{H}}^2.$

in (6)

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{V}}^2 \leq C \bigg(\|\varphi_t\|_{L^2(q_T)}^2 + \|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{H}}^2 \bigg)$$

Inequality (7) is finally obtained by contradiction. Assume that it is not true. Then, there exists a sequence $(\varphi^k(\cdot, 0), \varphi^k_t(\cdot, 0))_{k>0} \in V$ such that

$$\|\varphi^k(\cdot,0),\varphi^k_t(\cdot,0))\|_V^2=1,\quad\forall k>0,\qquad \|\varphi^k_t\|_{L^2(q_T)}^2\to 0, \text{ as } k\to\infty.$$

There exists a subsequence such that $(\varphi^k(\cdot, 0), \varphi_t^k(\cdot, 0)) \to (\varphi^*(\cdot, 0), \varphi_t^*(\cdot, 0))$ weakly in V and strongly in H. Passing to the limit in the equation we see that the solution associated to $(\varphi^*(\cdot, 0), \varphi_t^*(\cdot, 0)), \varphi^*$ must vanish at q_T and therefore, by (6), $\varphi^* = 0$.

Step 4. Here we prove that we can remove the second term in the right hand side of (6), i.e.

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{V}}^2 \leq C \|\varphi_t\|_{L^2(q_T)}^2,\tag{7}$$

for any $\varphi \in W$ and initial data in V.

We substitute the inequality (energy estimate)

 $\|\varphi\|_{L^2(q_T)}^2 \leq T \|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{H}}^2.$

in (6)

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{V}}^2 \leq C \bigg(\|\varphi_t\|_{L^2(q_T)}^2 + \|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{H}}^2 \bigg).$$

Inequality (7) is finally obtained by contradiction. Assume that it is not true. Then, there exists a sequence $(\varphi^k(\cdot, 0), \varphi^k_t(\cdot, 0)))_{k>0} \in \mathbf{V}$ such that

$$\|\varphi^k(\cdot,0),\varphi^k_t(\cdot,0))\|_V^2=1,\quad\forall k>0,\qquad \|\varphi^k_t\|_{L^2(q_T)}^2\to 0,\text{ as }k\to\infty.$$

There exists a subsequence such that $(\varphi^k(\cdot, 0), \varphi^k_t(\cdot, 0)) \to (\varphi^*(\cdot, 0), \varphi^*_t(\cdot, 0))$ weakly in V and strongly in H. Passing to the limit in the equation we see that the solution associated to $(\varphi^*(\cdot, 0), \varphi^*_t(\cdot, 0)), \varphi^*$ must vanish at q_T and therefore, by (6), $\varphi^* = 0$.

Step 5. We now write (7) with respect to the weaker norm. In particular, we obtain

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0))\|_{\boldsymbol{H}}^2 \le C \|\varphi\|_{L^2(q_T)}^2,\tag{8}$$

for any $\varphi \in \Phi$ with $L\varphi = 0$.

Let $\eta \in \Phi$ be defined by $\eta(x,t) = \eta(x,0) + \int_0^t \varphi(x,s) \, ds$, for all $(x,t) \in Q_T$ such that

 $(\eta(\cdot,0),\eta_t(\cdot,0))=(\Delta^{-1}\varphi_t(\cdot,0),\varphi(\cdot,0))\in V$

where Δ designates the Dirichlet Laplacian in (0, 1). Then $L\eta = 0$ in Q_T .

Then, inequality (7) on η and the fact that Δ is an isomorphism from $H_0^1(0, 1)$ to $L^2(0, 1)$, provide

$$\begin{aligned} \|(\varphi(\cdot, 0), \varphi_{l}(\cdot, 0),)\|_{H}^{2} &= \|(\Delta^{-1}\varphi_{l}(\cdot, 0), \varphi(\cdot, 0))\|_{V}^{2} \\ &= \|(\eta(\cdot, 0), \eta_{l}(\cdot, 0))\|_{V}^{2} \\ &\leq C \|\eta_{l}\|_{L^{2}(q_{T})}^{2} = C \|\varphi\|_{L^{2}(q_{T})}^{2} \end{aligned}$$

Step 5. We now write (7) with respect to the weaker norm. In particular, we obtain

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0)\|_{\boldsymbol{H}}^2 \le C \|\varphi\|_{L^2(q_T)}^2,\tag{8}$$

for any $\varphi \in \Phi$ with $L\varphi = 0$.

Let $\eta \in \Phi$ be defined by $\eta(x, t) = \eta(x, 0) + \int_0^t \varphi(x, s) ds$, for all $(x, t) \in Q_T$ such that

$$(\eta(\cdot,0),\eta_t(\cdot,0))=(\Delta^{-1}\varphi_t(\cdot,0),\varphi(\cdot,0))\in \mathbf{V}$$

where Δ designates the Dirichlet Laplacian in (0, 1). Then $L\eta = 0$ in Q_T .

Then, inequality (7) on η and the fact that Δ is an isomorphism from $H_0^1(0, 1)$ to $L^2(0, 1)$, provide

$$\begin{aligned} \|(\varphi(\cdot,0),\varphi_{l}(\cdot,0),)\|_{\boldsymbol{H}}^{2} &= \|(\Delta^{-1}\varphi_{l}(\cdot,0),\varphi(\cdot,0))\|_{\boldsymbol{V}}^{2} \\ &= \|(\eta(\cdot,0),\eta_{l}(\cdot,0))\|_{\boldsymbol{V}}^{2} \\ &\leq C\|\eta_{l}\|_{L^{2}(q_{T})}^{2} = C\|\varphi\|_{L^{2}(q_{T})}^{2}.\end{aligned}$$

Step 6. Here we finally obtain (10). Given $\varphi \in \Phi$ we can decompose it as $\varphi = \varphi_1 + \varphi_2$ where $\varphi_1, \varphi_2 \in \Phi$ solve

$$\left\{ \begin{array}{l} L\varphi_1 = L\varphi, \\ \varphi_1(\cdot, 0) = (\varphi_1)_t(\cdot, 0) = 0 \end{array} \right. \left\{ \begin{array}{l} L\varphi_2 = 0, \\ \varphi_2(\cdot, 0) = \varphi(\cdot, 0), \quad (\varphi_2)_t(\cdot, 0) = \varphi_t(\cdot, 0). \end{array} \right.$$

From Duhamel's principle, we can write

$$\varphi_1(\cdot,t) = \int_0^t \psi(\cdot,t-s,s) ds$$

where $\psi(x, t, s)$ solves, for each value of the parameter $s \in (0, t)$,

$$\left\{ egin{array}{ll} L\psi(\cdot,\cdot,s)=0, \ \psi(\cdot,0,s)=0, \ \psi_l(\cdot,0,s)=Larphi(\cdot,s). \end{array}
ight.$$

Therefore

$$\begin{aligned} \|\varphi_1\|_{L^2(q_T)}^2 &\leq \int_0^T \|\psi(\cdot,\cdot,s)\|_{L^2(q_T)}^2 ds \leq C \int_0^T \|\psi(\cdot,0,s),\psi_t(\cdot,0,s))\|_H^2 ds \\ &\leq C \|L\varphi\|_{L^2(0,T;H^{-1}(0,1))}^2 \end{aligned}$$

Combining (9) and estimate (8) for φ_2 we obtain

$$\begin{aligned} \|\varphi(\cdot,0),\varphi_{t}(\cdot,0)\|_{H}^{2} &= \|\varphi_{2}(\cdot,0),(\varphi_{2})_{t}(\cdot,0)\|_{H}^{2} \leq C \|\varphi_{2}\|_{L^{2}(q_{T})}^{2} \\ &\leq C \left(\|\varphi\|_{L^{2}(q_{T})}^{2} + \|\varphi_{1}\|_{L^{2}(q_{T})}^{2}\right) \leq C \left(\|\varphi\|_{L^{2}(q_{T})}^{2} + \|L\varphi\|_{L^{2}(0,T;H^{-1})}^{2}\right). \end{aligned}$$

Step 6. Here we finally obtain (10). Given $\varphi \in \Phi$ we can decompose it as $\varphi = \varphi_1 + \varphi_2$ where $\varphi_1, \varphi_2 \in \Phi$ solve

$$\left\{ \begin{array}{l} L\varphi_1 = L\varphi, \\ \varphi_1(\cdot, 0) = (\varphi_1)_t(\cdot, 0) = 0 \end{array} \right. \left. \left\{ \begin{array}{l} L\varphi_2 = 0, \\ \varphi_2(\cdot, 0) = \varphi(\cdot, 0), \end{array} \right. (\varphi_2)_t(\cdot, 0) = \varphi_t(\cdot, 0). \end{array} \right.$$

From Duhamel's principle, we can write

$$\varphi_1(\cdot,t) = \int_0^t \psi(\cdot,t-s,s) ds$$

where $\psi(x, t, s)$ solves, for each value of the parameter $s \in (0, t)$,

$$\left\{ egin{array}{ll} L\psi(\cdot,\cdot,s)=0, \ \psi(\cdot,0,s)=0, \ \psi_t(\cdot,0,s)=L\varphi(\cdot,s). \end{array}
ight.$$

Therefore,

$$\begin{aligned} \|\varphi_1\|_{L^2(q_T)}^2 &\leq \int_0^T \|\psi(\cdot, \cdot, s)\|_{L^2(q_T)}^2 ds \leq C \int_0^T \|\psi(\cdot, 0, s), \psi_t(\cdot, 0, s))\|_H^2 ds \\ &\leq C \|L\varphi\|_{L^2(0, T; H^{-1}(0, 1))}^2 \end{aligned}$$
(9)

Combining (9) and estimate (8) for φ_2 we obtain

$$\begin{aligned} \|\varphi(\cdot,0),\varphi_{t}(\cdot,0))\|_{H}^{2} &= \|\varphi_{2}(\cdot,0),(\varphi_{2})_{t}(\cdot,0))\|_{H}^{2} \leq C \|\varphi_{2}\|_{L^{2}(q_{T})}^{2} \\ &\leq C \left(\|\varphi\|_{L^{2}(q_{T})}^{2} + \|\varphi_{1}\|_{L^{2}(q_{T})}^{2}\right) \leq C \left(\|\varphi\|_{L^{2}(q_{T})}^{2} + \|L\varphi\|_{L^{2}(0,T;H^{-1})}^{2}\right). \end{aligned}$$

Step 6. Here we finally obtain (10). Given $\varphi \in \Phi$ we can decompose it as $\varphi = \varphi_1 + \varphi_2$ where $\varphi_1, \varphi_2 \in \Phi$ solve

$$\left\{ \begin{array}{l} L\varphi_1 = L\varphi, \\ \varphi_1(\cdot, 0) = (\varphi_1)_t(\cdot, 0) = 0 \end{array} \right. \left. \left\{ \begin{array}{l} L\varphi_2 = 0, \\ \varphi_2(\cdot, 0) = \varphi(\cdot, 0), \end{array} \right. (\varphi_2)_t(\cdot, 0) = \varphi_t(\cdot, 0). \end{array} \right.$$

From Duhamel's principle, we can write

$$\varphi_1(\cdot,t) = \int_0^t \psi(\cdot,t-s,s) ds$$

where $\psi(x, t, s)$ solves, for each value of the parameter $s \in (0, t)$,

$$\left\{ egin{array}{ll} L\psi(\cdot,\cdot,s)=0, \ \psi(\cdot,0,s)=0, \ \psi_t(\cdot,0,s)=L\varphi(\cdot,s). \end{array}
ight.$$

Therefore,

$$\begin{aligned} \|\varphi_1\|_{L^2(q_T)}^2 &\leq \int_0^T \|\psi(\cdot, \cdot, s)\|_{L^2(q_T)}^2 ds \leq C \int_0^T \|\psi(\cdot, 0, s), \psi_t(\cdot, 0, s))\|_H^2 ds \\ &\leq C \|L\varphi\|_{L^2(0, T; H^{-1}(0, 1))}^2 \end{aligned}$$
(9)

Combining (9) and estimate (8) for φ_2 we obtain

$$\begin{aligned} \|\varphi(\cdot,0),\varphi_{t}(\cdot,0))\|_{H}^{2} &= \|\varphi_{2}(\cdot,0),(\varphi_{2})_{t}(\cdot,0))\|_{H}^{2} \leq C \|\varphi_{2}\|_{L^{2}(q_{T})}^{2} \\ &\leq C \left(\|\varphi\|_{L^{2}(q_{T})}^{2} + \|\varphi_{1}\|_{L^{2}(q_{T})}^{2}\right) \leq C \left(\|\varphi\|_{L^{2}(q_{T})}^{2} + \|L\varphi\|_{L^{2}(0,T;H^{-1})}^{2}\right). \end{aligned}$$

Set $H = L^2(0, 1) \times H^{-1}(0, 1)$. Let T > 0.

Theorem (Castro, Cîndea, Münch)

Assume $q_T \subset (0,1) \times (0,T)$ is a finite union of connected open sets and satisfies the following hypotheses:

"Any characteristic line starting at the point $x \in (0, 1)$ at time t = 0 and following the optical geometric laws when reflecting at the boundaries x = 0, 1 must meet q_T ".

Then, there exists C > 0 such that the following estimate holds :

$$\|\varphi(\cdot,0),\varphi_{t}(\cdot,0))\|_{H}^{2} \leq C \bigg(\|\varphi\|_{L^{2}(q_{T})}^{2} + \|L\varphi\|_{L^{2}(0,T;H^{-1}(0,1))}^{2}\bigg), \quad \forall \varphi \in \Phi.$$
(10)

Remarks

1. The hypotheses on q_T stated in the Theorem are optimal in the following sense: If there exists a subinterval $\omega_0 \subset (0, 1)$ for which all characteristics starting in ω_0 and following the geometrical optics conditions when getting to the boundary x = 0, 1, do not meet q_T , then the inequality fails to hold. This is easily seen by considering particular solutions of the wave equation which initial data supported in ω_0 .

2. The proof of inequality (10) above does not provide an estimate on the dependence of the constant with respect to q_T .

3. In the cylindrical situation, i.e. $q_T = (a, b) \times (0, T)$, a generalized Carleman inequality, valid for the wave equation with variable coefficients, have been obtained in Cindea, Fernandez-Cara and Munch (2013) (see also Yao'2011). The extension of Proposition 2 to the wave equation with variable coefficients is still open and *a priori* can not be obtained by the method used in this section.

ヘロン 人間 とくほ とくほ とう

3
Corollary

Under the hypotheses on q_T , the space Φ is a Hilbert space with the scalar product,

$$(\varphi,\overline{\varphi})_{\Phi} = \iint_{q_T} \varphi(x,t)\overline{\varphi}(x,t) \, dx \, dt + \eta \int_0^T \langle L\varphi, L\overline{\varphi} \rangle_{H^{-1}(0,1),H^{-1}(0,1)} \, dt, \quad (11)$$

for any fixed $\eta > 0$.

PROOF: The seminorm associated to this inner product $\|\cdot\|_{\Phi}$ is a norm from (10). We check that Φ is closed with respect to this norm.

Let us consider a convergence sequence $\{\varphi_k\}_{k\geq 1} \subset \Phi$ such that $\varphi_k \to \varphi$ in the norm $\|\cdot\|_{\Phi}$.

From (10), there exist $(\varphi_0, \varphi_1) \in H$ and $f \in L^2(0, T; H^{-1}(0, 1))$ such that $(\varphi_k(\cdot, 0), \varphi_{k,t}(\cdot, 0)) \to (\varphi_0, \varphi_1)$ in H and $L\varphi_k \to f$ in $L^2(0, T; H^{-1}(0, 1))$. Therefore, φ_k can be considered as a sequence of solutions of the wave equation with convergent initial data and second hand term $L\varphi_k \to f$.

By the continuous dependence of the solutions of the wave equation on the data, $\varphi_k \rightarrow \varphi$ in $C([0, T]; L^2(0, 1)) \cap C^1([0, T]; H^{-1}(0, 1))$, where φ is the solution of the wave equation with initial data $(\varphi_0, \varphi_1) \in H$ and second hand term $L\varphi = f \in L^2(0, T; H^{-1}(0, 1))$. Therefore $\varphi \in \Phi$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

[CINDEA, FERNANDEZCARA, MUNCH, COCV13],

Minimize
$$J(y, v) := \frac{1}{2} \iint_{Q_T} |y|^2 \, dx \, dt + \frac{1}{2} \iint_{q_T} |v|^2 \, dx \, dt.$$

The optimal pair (y, v) is

$$y = L \varphi$$
 in Q_T , $v = \varphi \mathbf{1}_\omega$ in Q_T

where $\varphi \in \Phi$ solves the variational problem

$$\iint_{Q_T} L\varphi \, L\overline{\varphi} \, dx \, dt + \iint_{q_T} \varphi \, \overline{\varphi} \, dx \, dt, = (y_0, \, \overline{\varphi}_t(\cdot, 0))_{H^1, H^{-1}} - (y_1, \, \overline{\varphi}(\cdot, 0))_{L^2} \quad \forall \overline{\varphi} \in \Phi.$$

Let $\varphi_h \in \Phi_h \subset \Phi$ solves the variational problem

$$\iint_{Q_T} L\varphi_h L\overline{\varphi_h} \, dx \, dt + \iint_{q_T} \varphi_h \overline{\varphi_h} \, dx \, dt, = (y_0, \overline{\varphi_h}_t(\cdot, 0))_{H^1, H^{-1}} - (y_1, \overline{\varphi_h}(\cdot, 0))_{L^2} \quad \forall \overline{\varphi_h} \in \Phi_h.$$

 $\varphi_h \to \varphi$ in Φ as $h \to 0 \Longrightarrow y_h := L\varphi_h \to y$ in $L^2(Q_T)$ and $v_h := \varphi_h \mathbb{1}_{q_T} \to v$ in $L^2(q_T)$

(ロ) (同) (目) (日) (日) (の)

[CINDEA, FERNANDEZCARA, MUNCH, COCV13],

Minimize
$$J(y, v) := \frac{1}{2} \iint_{Q_T} |y|^2 \, dx \, dt + \frac{1}{2} \iint_{q_T} |v|^2 \, dx \, dt.$$

The optimal pair (y, v) is

$$y = L \varphi$$
 in Q_T , $v = \varphi \mathbf{1}_\omega$ in Q_T

where $\varphi \in \Phi$ solves the variational problem

$$\iint_{Q_T} L\varphi \, L\overline{\varphi} \, dx \, dt + \iint_{q_T} \varphi \, \overline{\varphi} \, dx \, dt, = (y_0, \, \overline{\varphi}_t(\cdot, 0))_{H^1, H^{-1}} - (y_1, \, \overline{\varphi}(\cdot, 0))_{L^2} \quad \forall \overline{\varphi} \in \Phi.$$

Let $\varphi_h \in \Phi_h \subset \Phi$ solves the variational problem

$$\iint_{Q_T} L\varphi_h L\overline{\varphi_h} \, dx \, dt + \iint_{q_T} \varphi_h \overline{\varphi_h} \, dx \, dt, = (y_0, \overline{\varphi_h}_t(\cdot, 0))_{H^1, H^{-1}} - (y_1, \overline{\varphi_h}(\cdot, 0))_{L^2} \quad \forall \overline{\varphi_h} \in \Phi_h.$$

 $\varphi_h \to \varphi \text{ in } \Phi \text{ as } h \to 0 \Longrightarrow y_h := L\varphi_h \to y \text{ in } L^2(Q_T) \text{ and } v_h := \varphi_h \mathbf{1}_{q_T} \to v \text{ in } L^2(q_T)$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

[CINDEA, MUNCH, CALCOLO14],

$$\min_{(\varphi_0,\varphi_1)\in H} J^*(\varphi_0,\varphi_1) = \frac{1}{2} \iint_{q_T} |\varphi|^2 \, dx \, dt + \langle \varphi_1, y_0 \rangle_{H^{-1}(0,1), H^1_0(0,1)} - \int_0^1 \varphi_0 \, y_1 \, dx.$$

where $L\varphi = 0$ in Q_T ; $\varphi = 0$ on Σ_T , $(\varphi, \varphi_t)(\cdot, 0) = (\varphi_0, \varphi_1)$ and

$$<\varphi_1, y_0>_{H^{-1}(0,1), H^1_0(0,1)} = \int_0^1 \partial_x ((-\Delta)^{-1}\varphi_1)(x) \, \partial_x y_0(x) \, dx$$

where $-\Delta$ is the Dirichlet Laplacian in (0, 1).

Since the variable φ is completely and uniquely determined by (φ_0, φ_1) , the idea of the reformulation is to keep φ as variable and consider the following extremal problem:

$$\min_{\varphi \in W} \hat{J}^{\star}(\varphi) = \frac{1}{2} \iint_{q_{T}} |\varphi|^{2} dx dt + \langle \varphi_{t}(\cdot, 0), y_{0} \rangle_{H^{-1}(0,1), H^{1}_{0}(0,1)} - \int_{0}^{1} \varphi(\cdot, 0) y_{1} dx,$$

$$W = \left\{ \varphi : \varphi \in L^{2}(q_{T}), \ \varphi = 0 \text{ on } \Sigma_{T}, \ L\varphi = 0 \in L^{2}(0, T; H^{-1}(0, 1)) \right\}.$$
(12)

From (10), the property $\varphi \in W$ implies that $(\varphi(\cdot, 0), \varphi_l(\cdot, 0)) \in H$, so that the functional \hat{J}^* is well-defined over W.

(ロ) (同) (目) (日) (日) (の)

[CINDEA, MUNCH, CALCOLO14],

$$\min_{(\varphi_0,\varphi_1)\in H} J^*(\varphi_0,\varphi_1) = \frac{1}{2} \iint_{q_T} |\varphi|^2 \, dx \, dt + \langle \varphi_1, y_0 \rangle_{H^{-1}(0,1), H^1_0(0,1)} - \int_0^1 \varphi_0 \, y_1 \, dx.$$

where $L\varphi = 0$ in Q_T ; $\varphi = 0$ on Σ_T , $(\varphi, \varphi_t)(\cdot, 0) = (\varphi_0, \varphi_1)$ and

$$<\varphi_1, y_0>_{H^{-1}(0,1), H^1_0(0,1)} = \int_0^1 \partial_x ((-\Delta)^{-1}\varphi_1)(x) \, \partial_x y_0(x) \, dx$$

where $-\Delta$ is the Dirichlet Laplacian in (0, 1).

Since the variable φ is completely and uniquely determined by (φ_0, φ_1) , the idea of the reformulation is to keep φ as variable and consider the following extremal problem:

$$\min_{\varphi \in W} \hat{J}^{\star}(\varphi) = \frac{1}{2} \iint_{q_{T}} |\varphi|^{2} dx dt + \langle \varphi_{t}(\cdot, 0), y_{0} \rangle_{H^{-1}(0,1), H^{1}_{0}(0,1)} - \int_{0}^{1} \varphi(\cdot, 0) y_{1} dx,
W = \left\{ \varphi : \varphi \in L^{2}(q_{T}), \, \varphi = 0 \text{ on } \Sigma_{T}, \, L\varphi = 0 \in L^{2}(0, \, T; \, H^{-1}(0, 1)) \right\}.$$
(12)

From (10), the property $\varphi \in W$ implies that $(\varphi(\cdot, 0), \varphi_l(\cdot, 0)) \in H$, so that the functional \hat{J}^* is well-defined over W.

(ロ) (同) (目) (日) (日) (の)

Control of minimal L^2 -norm: a mixed formulation

The main variable is now φ submitted to the constraint equality $L\varphi = 0$ as an $L^2(0, T; H^{-1}(0, 1))$ function. This constraint is addressed introducing a Lagrangian multiplier $\lambda \in L^2(0, T; H_0^1(\Omega))$:

We consider the following problem : find $(\varphi, \lambda) \in \Phi \times L^2(0, T; H^1_0(0, 1))$ solution of

$$\begin{cases} a_{r}(\varphi,\overline{\varphi}) + b(\overline{\varphi},\lambda) = l(\overline{\varphi}), & \forall \overline{\varphi} \in \Phi \\ b(\varphi,\overline{\lambda}) = 0, & \forall \overline{\lambda} \in L^{2}(0,T; H_{0}^{1}(0,1)), \end{cases}$$
(13)

where ($r \ge 0$ - augmentation parameter)

$$\begin{aligned} a_{r}: \Phi \times \Phi \to \mathbb{R}, \quad a_{r}(\varphi, \overline{\varphi}) &= \iint_{q_{T}} \varphi \,\overline{\varphi} \, dx \, dt + r \int_{0}^{T} \langle L\varphi, L\overline{\varphi} \rangle_{H^{-1}, H^{-1}} \, dt \\ b: \Phi \times L^{2}(0, T; H^{1}_{0}(0, 1)) \to \mathbb{R}, \quad b(\varphi, \lambda) &= \int_{0}^{T} \langle L\varphi, \lambda \rangle_{H^{-1}(0, 1), H^{1}_{0}(0, 1)} \, dt \\ &= \iint_{Q_{T}} \partial_{x} (-\Delta^{-1}(L\varphi)) \cdot \partial_{x} \lambda \, dx \, dt \\ l: \Phi \to \mathbb{R}, \quad l(\varphi) &= -\langle \varphi_{l}(\cdot, 0), y_{0} \rangle_{H^{-1}(0, 1), H^{1}_{0}(0, 1)} + \int_{0}^{1} \varphi(\cdot, 0) \, y_{1} \, dx. \end{aligned}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

heorem

- The mixed formulation (13) is well-posed.
- 2 The unique solution (φ, λ) ∈ Φ × L²(0, T; H¹₀(0, 1)) is the unique saddle-point of the Lagrangian L : Φ × L²(0, T; H¹₀(0, 1)) → ℝ defined by

$$\mathcal{L}(\varphi,\lambda) = \frac{1}{2}a_r(\varphi,\varphi) + b(\varphi,\lambda) - l(\varphi).$$

The optimal function φ is the minimizer of Ĵ^{*} over Φ while the optimal function λ ∈ L²(0, T; H¹₀(0, 1)) is the state of the controlled wave equation in the weak sense (associated to the control −φ 1_{qτ}).

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91] :

a is coercive on

 $Ker(b) = \{ \varphi \in \Phi \text{ such that } b(\varphi, \lambda) = 0 \text{ for every } \lambda \in L^2(0, T; H^1_0(0, 1)) \}.$

b satisfies the usual "inf-sup" condition over Φ × L²(0, T; H¹₀(0, 1)): there exists δ > 0 such that

The mixed formulation (13) is well-posed.

The unique solution $(\varphi, \lambda) \in \Phi \times L^2(0, T; H_0^1(0, 1))$ is the unique saddle-point of the Lagrangian $\mathcal{L} : \Phi \times L^2(0, T; H_0^1(0, 1)) \to \mathbb{R}$ defined by

$$\mathcal{L}(\varphi,\lambda) = \frac{1}{2}a_r(\varphi,\varphi) + b(\varphi,\lambda) - l(\varphi).$$

The optimal function φ is the minimizer of Ĵ^{*} over Φ while the optimal function λ ∈ L²(0, T; H¹₀(0, 1)) is the state of the controlled wave equation in the weak sense (associated to the control −φ 1_{qτ}).

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91] :

a is coercive on

 $Ker(b) = \{ \varphi \in \Phi \text{ such that } b(\varphi, \lambda) = 0 \text{ for every } \lambda \in L^2(0, T; H^1_0(0, 1)) \}.$

• *b* satisfies the usual "inf-sup" condition over $\Phi \times L^2(0, T; H^1_0(0, 1))$: there exists $\delta > 0$ such that

 $\inf_{e \in L^2(0, T; H^1_0(0, 1))} \sup_{\varphi \in \Phi} \frac{D(\varphi; \lambda)}{\|\varphi\|_{\Phi} \|\lambda\|_{L^2(0, T; H^1_0(0, 1))}} \ge \delta.$ (14)

- The mixed formulation (13) is well-posed.
- 2 The unique solution $(\varphi, \lambda) \in \Phi \times L^2(0, T; H_0^1(0, 1))$ is the unique saddle-point of the Lagrangian $\mathcal{L} : \Phi \times L^2(0, T; H_0^1(0, 1)) \to \mathbb{R}$ defined by

$$\mathcal{L}(\varphi,\lambda) = \frac{1}{2}a_r(\varphi,\varphi) + b(\varphi,\lambda) - l(\varphi).$$

The optimal function φ is the minimizer of Ĵ^{*} over Φ while the optimal function λ ∈ L²(0, T; H¹₀(0, 1)) is the state of the controlled wave equation in the weak sense (associated to the control −φ 1_{qτ}).

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91] :

a is coercive on

 $Ker(b) = \{\varphi \in \Phi \text{ such that } b(\varphi, \lambda) = 0 \text{ for every } \lambda \in L^2(0, T; H^1_0(0, 1))\}.$

b satisfies the usual "inf-sup" condition over Φ × L²(0, T; H¹₀(0, 1)): there exists δ > 0 such that

Arnaud Münch Controllability of the linear 1D wave equation with inner moving for

イロン 不得 とくほ とくほ とうほ

- The mixed formulation (13) is well-posed.
- 2 The unique solution $(\varphi, \lambda) \in \Phi \times L^2(0, T; H_0^1(0, 1))$ is the unique saddle-point of the Lagrangian $\mathcal{L} : \Phi \times L^2(0, T; H_0^1(0, 1)) \to \mathbb{R}$ defined by

$$\mathcal{L}(\varphi,\lambda) = \frac{1}{2}a_r(\varphi,\varphi) + b(\varphi,\lambda) - l(\varphi).$$

The optimal function φ is the minimizer of Ĵ^{*} over Φ while the optimal function λ ∈ L²(0, T; H¹₀(0, 1)) is the state of the controlled wave equation in the weak sense (associated to the control −φ 1_{q_T}).

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91] :

a is coercive on

 $Ker(b) = \{\varphi \in \Phi \text{ such that } b(\varphi, \lambda) = 0 \text{ for every } \lambda \in L^2(0, T; H^1_0(0, 1))\}.$

b satisfies the usual "inf-sup" condition over Φ × L²(0, T; H¹₀(0, 1)): there exists δ > 0 such that

Arnaud Münch Controllability of the linear 1D wave equation with inner moving for

イロト イポト イヨト イヨト 一臣

- The mixed formulation (13) is well-posed.
- 2 The unique solution $(\varphi, \lambda) \in \Phi \times L^2(0, T; H_0^1(0, 1))$ is the unique saddle-point of the Lagrangian $\mathcal{L} : \Phi \times L^2(0, T; H_0^1(0, 1)) \to \mathbb{R}$ defined by

$$\mathcal{L}(\varphi,\lambda) = \frac{1}{2}a_r(\varphi,\varphi) + b(\varphi,\lambda) - l(\varphi).$$

The optimal function φ is the minimizer of Ĵ^{*} over Φ while the optimal function λ ∈ L²(0, T; H¹₀(0, 1)) is the state of the controlled wave equation in the weak sense (associated to the control −φ 1_{q_T}).

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91] :

a is coercive on

 $Ker(b) = \{\varphi \in \Phi \text{ such that } b(\varphi, \lambda) = 0 \text{ for every } \lambda \in L^2(0, T; H^1_0(0, 1))\}.$

b satisfies the usual "inf-sup" condition over Φ × L²(0, T; H¹₀(0, 1)): there exists δ > 0 such that

Arnaud Münch Controllability of the linear 1D wave equation with inner moving for

イロト イポト イヨト イヨト 一臣

- The mixed formulation (13) is well-posed.
- 2 The unique solution $(\varphi, \lambda) \in \Phi \times L^2(0, T; H_0^1(0, 1))$ is the unique saddle-point of the Lagrangian $\mathcal{L} : \Phi \times L^2(0, T; H_0^1(0, 1)) \to \mathbb{R}$ defined by

$$\mathcal{L}(\varphi,\lambda) = \frac{1}{2}a_r(\varphi,\varphi) + b(\varphi,\lambda) - l(\varphi).$$

3 The optimal function φ is the minimizer of Ĵ^{*} over Φ while the optimal function λ ∈ L²(0, T; H¹₀(0, 1)) is the state of the controlled wave equation in the weak sense (associated to the control −φ 1_{qT}).

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91] :

- *a* is coercive on $Ker(b) = \{\varphi \in \Phi \text{ such that } b(\varphi, \lambda) = 0 \text{ for every } \lambda \in L^2(0, T; H^1_0(0, 1))\}.$
- *b* satisfies the usual "inf-sup" condition over $\Phi \times L^2(0, T; H^1_0(0, 1))$: there exists $\delta > 0$ such that

$$\inf_{\substack{\in L^2(0,T;H_0^1(0,1)) \ \varphi \in \Phi}} \sup_{\substack{\|\varphi\|_{\Phi} \|\lambda\|_{L^2(0,T;H_0^1(0,1))}}} \ge \delta. \tag{14}$$

- The mixed formulation (13) is well-posed.
- 2 The unique solution $(\varphi, \lambda) \in \Phi \times L^2(0, T; H^1_0(0, 1))$ is the unique saddle-point of the Lagrangian $\mathcal{L} : \Phi \times L^2(0, T; H^1_0(0, 1)) \to \mathbb{R}$ defined by

$$\mathcal{L}(\varphi,\lambda) = \frac{1}{2}a_r(\varphi,\varphi) + b(\varphi,\lambda) - l(\varphi).$$

3 The optimal function φ is the minimizer of \hat{J}^* over Φ while the optimal function $\lambda \in L^2(0, T; H_0^1(0, 1))$ is the state of the controlled wave equation in the weak sense (associated to the control $-\varphi \mathbf{1}_{q_T}$).

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91] :

- *a* is coercive on $Ker(b) = \{\varphi \in \Phi \text{ such that } b(\varphi, \lambda) = 0 \text{ for every } \lambda \in L^2(0, T; H_0^1(0, 1))\}.$
- *b* satisfies the usual "inf-sup" condition over $\Phi \times L^2(0, T; H_0^1(0, 1))$: there exists $\delta > 0$ such that

$$\inf_{\lambda \in L^{2}(0,T;H_{0}^{1}(0,1))} \sup_{\varphi \in \Phi} \frac{b(\varphi,\lambda)}{\|\varphi\|_{\Phi} \|\lambda\|_{L^{2}(0,T;H_{0}^{1}(0,1))}} \ge \delta.$$
(14)

Inf-Sup condition

For any $\lambda_0 \in L^2(H_0^1)$, we define the (unique) element φ_0 such that

$$L\varphi_0 = -\Delta\lambda_0 \quad Q_T, \qquad \varphi_0(\cdot, 0) = \varphi_{0,t}(\cdot, 0) = 0 \quad \Omega, \qquad \varphi_0 = 0 \quad \Sigma_T$$

From the direct inequality,

$$\|\varphi_0\|_{L^2(Q_T)} \le C_{\Omega,T} \| - \Delta \lambda_0\|_{L^2(0,T;H^{-1}(0,1))} \le C_{\Omega,T} \|\lambda_0\|_{L^2(0,T;H^1_0(0,1))}$$

we get that $\varphi_0 \in \Phi$. In particular, $b(\varphi_0, \lambda_0) = \|\lambda_0\|_{L^2(0,T;H^1_0(0,1))}^2$ and

$$\sup_{\varphi \in \Phi} \frac{b(\varphi, \lambda_{0})}{\|\varphi\|_{\Phi} \|\lambda_{0}\|_{L^{2}(Q_{T})}} \geq \frac{b(\varphi_{0}, \lambda_{0})}{\|\varphi_{0}\|_{\Phi} \|\lambda_{0}\|_{L^{2}(Q_{T})}} = \frac{\|\lambda_{0}\|_{L^{2}(0, T; H_{0}^{1}(0, 1))}^{2}}{\left(\|\varphi_{0}\|_{L^{2}(q_{T})}^{2} + \eta\|\lambda_{0}\|_{L^{2}(0, T; H_{0}^{1}(0, 1))}^{2}\right)^{\frac{1}{2}} \|\lambda_{0}\|_{L^{2}(0, T; H_{0}^{1}(0, 1))}}$$

Combining the above two inequalities, we obtain

$$\sup_{\varphi_0 \in \Phi} \frac{b(\varphi_0, \lambda_0)}{\|\varphi_0\|_{\Phi}\|_{\lambda_0}\|_{L^2(0, \mathcal{T}; H^1_0(0, 1))}} \geq \frac{1}{\sqrt{C^2_{\Omega, \mathcal{T}} + r_0}}$$

and, hence, (14) holds with $\delta = \left(C_{\Omega,T}^2 + \eta\right)^{-1}$

Arnaud Münch

Controllability of the linear 1D wave equation with inner moving for

())

Inf-Sup condition

For any $\lambda_0 \in L^2(H_0^1)$, we define the (unique) element φ_0 such that

$$L\varphi_0 = -\Delta\lambda_0 \quad Q_T, \qquad \varphi_0(\cdot, 0) = \varphi_{0,t}(\cdot, 0) = 0 \quad \Omega, \qquad \varphi_0 = 0 \quad \Sigma_T$$

From the direct inequality,

$$\|\varphi_0\|_{L^2(Q_T)} \le C_{\Omega,T} \| - \Delta \lambda_0\|_{L^2(0,T;H^{-1}(0,1))} \le C_{\Omega,T} \|\lambda_0\|_{L^2(0,T;H^1_0(0,1))}$$

we get that $\varphi_0 \in \Phi$. In particular, $b(\varphi_0, \lambda_0) = \|\lambda_0\|_{L^2(0,T;H^1_0(0,1))}^2$ and

$$\begin{split} \sup_{\varphi \in \Phi} \frac{b(\varphi, \lambda_0)}{\|\varphi\|_{\Phi} \|\lambda_0\|_{L^2(Q_T)}} &\geq \frac{b(\varphi_0, \lambda_0)}{\|\varphi_0\|_{\Phi} \|\lambda_0\|_{L^2(Q_T)}} \\ &= \frac{\|\lambda_0\|_{L^2(0, T; H_0^1(0, 1))}^2}{\left(\|\varphi_0\|_{L^2(q_T)}^2 + \eta \|\lambda_0\|_{L^2(0, T; H_0^1(0, 1))}^2\right)^{\frac{1}{2}} \|\lambda_0\|_{L^2(0, T; H_0^1(0, 1))}}. \end{split}$$

Combining the above two inequalities, we obtain

$$\sup_{\varphi_0 \in \Phi} \frac{b(\varphi_0, \lambda_0)}{\|\varphi_0\|_{\Phi} \|\lambda_0\|_{L^2(0, T; H^1_0(0, 1))}} \geq \frac{1}{\sqrt{C^2_{\Omega, T} + \eta_0^2}}$$

and, hence, (14) holds with $\delta = \left(\mathcal{C}^2_{\Omega,\,\mathcal{T}} + \eta
ight)^{-rac{1}{2}}.$

.emma

Let A_r be the linear operator from $L^2(H_0^1)$ into $L^2(H_0^1)$ defined by

 $A_r\lambda:=-\Delta^{-1}(L\varphi), \quad \forall \lambda\in L^2(H^1_0) \quad \text{where} \quad \varphi\in \Phi \quad \text{solves} \quad a_r(\varphi,\overline{\varphi})=b(\overline{\varphi},\lambda), \quad \forall \overline{\varphi}\in \Phi.$

For any r > 0, the operator A_r is a strongly elliptic, symmetric isomorphism from $L^2(H_0^1)$ into $L^2(H_0^1)$.

Theorem

$$\begin{split} \sup_{\lambda \in L^{2}(H_{0}^{1})} \inf_{\varphi \in \Phi} \mathcal{L}_{r}(\varphi, \lambda) &= -\inf_{\lambda \in L^{2}(0, T, H_{0}^{1}(0, 1))} J^{**}(\lambda) + \mathcal{L}_{r}(\varphi_{0}, 0) \\ \text{where } \varphi_{0} \in \Phi \text{ solves } a_{r}(\varphi_{0}, \overline{\varphi}) &= I(\overline{\varphi}), \forall \overline{\varphi} \in \Phi \text{ and } J^{**} : L^{2}(H_{0}^{1}) \to \mathbb{R} \text{ defined by} \\ J^{**}(\lambda) &= \frac{1}{2} \iint_{Q_{T}} A_{r}\lambda(x, t)\lambda(x, t) dx dt - b(\varphi_{0}, \lambda) \end{split}$$

(日)

.emma

Let A_r be the linear operator from $L^2(H_0^1)$ into $L^2(H_0^1)$ defined by

 $A_r\lambda:=-\Delta^{-1}(L\varphi), \quad \forall \lambda\in L^2(H^1_0) \quad \text{where} \quad \varphi\in \Phi \quad \text{solves} \quad a_r(\varphi,\overline{\varphi})=b(\overline{\varphi},\lambda), \quad \forall \overline{\varphi}\in \Phi.$

For any r > 0, the operator A_r is a strongly elliptic, symmetric isomorphism from $L^2(H_0^1)$ into $L^2(H_0^1)$.

Theorem

$$\sup_{\lambda \in L^2(H_0^1)} \inf_{\varphi \in \Phi} \mathcal{L}_r(\varphi, \lambda) = - \inf_{\lambda \in L^2(0, T, H_0^1(0, 1))} J^{\star \star}(\lambda) + \mathcal{L}_r(\varphi_0, 0)$$

where $\varphi_0 \in \Phi$ solves $a_r(\varphi_0, \overline{\varphi}) = I(\overline{\varphi}), \forall \overline{\varphi} \in \Phi$ and $J^{**} : L^2(H_0^1) \to \mathbb{R}$ defined by

$$J^{\star\star}(\lambda) = \frac{1}{2} \iint_{Q_T} A_r \lambda(x,t) \lambda(x,t) \, dx \, dt - b(\varphi_0,\lambda)$$

(日)

Conformal approximation

Let then Φ_h and M_h be two finite dimensional spaces parametrized by the variable h such that

$$\Phi_h \subset \Phi, \quad M_h \subset L^2(0, T; H^1_0(0, 1)), \qquad \forall h > 0.$$

Then, we can introduce the following approximated problems : find $(\varphi_h, \lambda_h) \in \Phi_h \times M_h$ solution of

$$a_{r}(\varphi_{h},\overline{\varphi}_{h}) + b(\overline{\varphi}_{h},\lambda_{h}) = l(\overline{\varphi}_{h}), \qquad \forall \overline{\varphi}_{h} \in \Phi_{h}$$

$$b(\varphi_{h},\overline{\lambda}_{h}) = 0, \qquad \forall \overline{\lambda}_{h} \in M_{h}.$$
 (15)

The well-posedness is again a consequence of two properties : the coercivity of the bilinear form a_r on the subset $\mathcal{N}_h(b) = \{\varphi_h \in \Phi_h; b(\varphi_h, \lambda_h) = 0 \quad \forall \lambda_h \in M_h\}$. From the relation

$$a_r(arphi,arphi) \geq rac{r}{\eta} \|arphi\|_{\Phi}^2, \quad orall arphi \in \Phi$$

the form a_r is coercive on the full space Φ , and so a fortiori on $\mathcal{N}_h(b) \subset \Phi_h \subset \Phi$. The second property is a discrete inf-sup condition : there exists $\delta_h > 0$ such that

$$\inf_{\lambda_h \in M_h} \sup_{\varphi_h \in \Phi_h} \frac{b(\varphi_h, \lambda_h)}{\|\varphi_h\|_{\Phi_h} \|\lambda_h\|_{M_h}} \ge \delta_h.$$
(16)

For any fixed *h*, the spaces M_h and Φ_h are of finite dimension so that the infimum and supremum in (16) are reached: moreover, from the property of the bilinear form a_r , δ_h is strictly positive. Consequently, for any fixed h > 0, there exists a unique couple (φ_h, λ_h) solution of (15).

Conformal approximation

Let then Φ_h and M_h be two finite dimensional spaces parametrized by the variable h such that

$$\Phi_h \subset \Phi, \quad M_h \subset L^2(0, T; H^1_0(0, 1)), \qquad \forall h > 0.$$

Then, we can introduce the following approximated problems : find $(\varphi_h, \lambda_h) \in \Phi_h \times M_h$ solution of

$$\begin{aligned} a_{r}(\varphi_{h},\overline{\varphi}_{h})+b(\overline{\varphi}_{h},\lambda_{h}) &= l(\overline{\varphi}_{h}), \qquad \forall \overline{\varphi}_{h} \in \Phi_{h} \\ b(\varphi_{h},\overline{\lambda}_{h}) &= 0, \qquad \forall \overline{\lambda}_{h} \in M_{h}. \end{aligned}$$
 (15)

The well-posedness is again a consequence of two properties : the coercivity of the bilinear form a_r on the subset $\mathcal{N}_h(b) = \{\varphi_h \in \Phi_h; b(\varphi_h, \lambda_h) = 0 \quad \forall \lambda_h \in M_h\}$. From the relation

$$a_r(arphi,arphi) \geq rac{r}{\eta} \|arphi\|_{\Phi}^2, \quad orall arphi \in \Phi$$

the form a_r is coercive on the full space Φ , and so a fortiori on $\mathcal{N}_h(b) \subset \Phi_h \subset \Phi$. The second property is a discrete inf-sup condition : there exists $\delta_h > 0$ such that

$$\inf_{\lambda_h \in M_h} \sup_{\varphi_h \in \Phi_h} \frac{b(\varphi_h, \lambda_h)}{\|\varphi_h\|_{\Phi_h} \|\lambda_h\|_{M_h}} \ge \delta_h.$$
(16)

For any fixed *h*, the spaces M_h and Φ_h are of finite dimension so that the infimum and supremum in (16) are reached: moreover, from the property of the bilinear form a_r , δ_h is strictly positive. Consequently, for any fixed h > 0, there exists a unique couple (φ_h, λ_h) solution of (15).

The space Φ_h must be chosen such that $L\varphi_h \in L^2(0, T, H^{-1}(0, 1))$ for any $\varphi_h \in \Phi_h$. This is guaranteed for instance as soon as φ_h possesses second-order derivatives in $L^2_{loc}(Q_T)$. A conformal approximation based on standard triangulation of Q_T is obtained with spaces of functions continuously differentiable with respect to both *x* and *t*.

We introduce a triangulation \mathcal{T}_h such that $\overline{Q_T} = \bigcup_{K \in \mathcal{T}_h} K$ and we assume that $\{\mathcal{T}_h\}_{h>0}$ is a regular family. We note $h := \max\{\operatorname{diam}(K), K \in \mathcal{T}_h\}$.

We introduce the space Φ_h as follows:

$$\Phi_h = \{ \varphi_h \in \Phi_h \in C^1(\overline{Q_T}) : \varphi_h |_K \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_h, \ \varphi_h = 0 \text{ on } \Sigma_T \}$$

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in *x* and *t*. We consider for $\mathbb{P}(K)$ the reduced *Hsieh-Clough-Tocher* C¹-element (Composite finite element and involves as degrees of freedom the values of $\varphi_h, \varphi_{h,x}, \varphi_{h,t}$ on the vertices of each triangle *K*).

We also define the finite dimensional space

$$M_h = \{\lambda_h \in C^0(\overline{Q_T}), \lambda_h|_K \in \mathbb{P}_1(K) \quad \forall K \in \mathcal{T}_h, \ \lambda_h = 0 \text{ on } \Sigma_T\}$$

For any h > 0, we have $\Phi_h \subset \Phi$ and $M_h \subset L^2(0, T; H^1_0(0, 1))$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

The space Φ_h must be chosen such that $L\varphi_h \in L^2(0, T, H^{-1}(0, 1))$ for any $\varphi_h \in \Phi_h$. This is guaranteed for instance as soon as φ_h possesses second-order derivatives in $L^2_{loc}(Q_T)$. A conformal approximation based on standard triangulation of Q_T is obtained with spaces of functions continuously differentiable with respect to both *x* and *t*.

We introduce a triangulation \mathcal{T}_h such that $\overline{Q_T} = \bigcup_{K \in \mathcal{T}_h} K$ and we assume that $\{\mathcal{T}_h\}_{h>0}$ is a regular family. We note $h := \max\{\operatorname{diam}(K), K \in \mathcal{T}_h\}$.

We introduce the space Φ_h as follows:

$$\Phi_h = \{ \varphi_h \in \Phi_h \in C^1(\overline{Q_T}) : \varphi_h |_K \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_h, \ \varphi_h = 0 \text{ on } \Sigma_T \}$$

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in *x* and *t*. We consider for $\mathbb{P}(K)$ the reduced *Hsieh-Clough-Tocher* C^1 -element (Composite finite element and involves as degrees of freedom the values of $\varphi_h, \varphi_{h,x}, \varphi_{h,t}$ on the vertices of each triangle *K*).

We also define the finite dimensional space

$$M_h = \{\lambda_h \in C^0(\overline{Q_T}), \lambda_h |_K \in \mathbb{P}_1(K) \mid \forall K \in \mathcal{T}_h, \ \lambda_h = 0 \text{ on } \Sigma_T \}$$

For any h > 0, we have $\Phi_h \subset \Phi$ and $M_h \subset L^2(0, T; H^1_0(0, 1))$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

The space Φ_h must be chosen such that $L\varphi_h \in L^2(0, T, H^{-1}(0, 1))$ for any $\varphi_h \in \Phi_h$. This is guaranteed for instance as soon as φ_h possesses second-order derivatives in $L^2_{loc}(Q_T)$. A conformal approximation based on standard triangulation of Q_T is obtained with spaces of functions continuously differentiable with respect to both *x* and *t*.

We introduce a triangulation \mathcal{T}_h such that $\overline{Q_T} = \bigcup_{K \in \mathcal{T}_h} K$ and we assume that $\{\mathcal{T}_h\}_{h>0}$ is a regular family. We note $h := \max\{\operatorname{diam}(K), K \in \mathcal{T}_h\}$.

We introduce the space Φ_h as follows:

$$\Phi_h = \{\varphi_h \in \Phi_h \in \mathcal{C}^1(\overline{Q_T}) : \varphi_h|_K \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_h, \ \varphi_h = 0 \text{ on } \Sigma_T \}$$

where $\mathbb{P}(K)$ denotes an appropriate space of polynomial functions in *x* and *t*. We consider for $\mathbb{P}(K)$ the reduced *Hsieh-Clough-Tocher* C^1 -element (Composite finite element and involves as degrees of freedom the values of $\varphi_h, \varphi_{h,x}, \varphi_{h,t}$ on the vertices of each triangle *K*).

We also define the finite dimensional space

$$M_h = \{\lambda_h \in C^0(\overline{Q_T}), \lambda_h|_{\mathcal{K}} \in \mathbb{P}_1(\mathcal{K}) \quad \forall \mathcal{K} \in \mathcal{T}_h, \ \lambda_h = 0 \text{ on } \Sigma_T\}$$

For any h > 0, we have $\Phi_h \subset \Phi$ and $M_h \subset L^2(0, T; H^1_0(0, 1))$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

[Bramble, Gunzburger]

Remark that if there exist two constants $C_0 > 0$ and $\alpha > 0$ such that

$$\|\psi_h\|_{L^2(Q_T)}^2 \ge C_0 h^{\alpha} \|\psi_h\|_{L^2(0,T;H_0^1(0,1))}^2, \qquad \forall \psi_h \in \Phi_h$$
(17)

then a similar inequality it holds for weaker norms. More precisely, we have

$$\|\varphi_h\|_{L^2(0,T;H^{-1}(0,1))}^2 \ge C_0 h^{\alpha} \|\varphi_h\|_{L^2(Q_T)}^2, \qquad \forall \varphi_h \in \Phi_h.$$
(18)

Indeed, to obtain (18) it suffices to take $\psi_h(\cdot, t) = (-\Delta)^{\frac{1}{2}} \varphi_h(\cdot, t)$ in (17). That gives

$$\int_0^T \left\| (-\Delta)^{-\frac{1}{2}} \varphi_h(\cdot, t) \right\|_{L^2(0, 1)}^2 dt \ge C_0 h^\alpha \int_0^T \left\| (-\Delta)^{-\frac{1}{2}} \varphi_{h, x}(\cdot, t) \right\|_{L^2(0, 1)}^2 dt.$$

Since $-\Delta$ is a self-adjoint positive operator and $\varphi_h \in \Phi_h \subset H_0^1(Q_T)$ we can integrate by parts in both hand-sides of the above inequality and hence we deduce estimate (18)

 C_0 and α does not depend on T.

(ロ) (同) (目) (日) (日) (の)

[Bramble, Gunzburger]

Remark that if there exist two constants $C_0 > 0$ and $\alpha > 0$ such that

$$\|\psi_h\|_{L^2(Q_T)}^2 \ge C_0 h^{\alpha} \|\psi_h\|_{L^2(0,T;H_0^1(0,1))}^2, \qquad \forall \psi_h \in \Phi_h$$
(17)

then a similar inequality it holds for weaker norms. More precisely, we have

$$\|\varphi_{h}\|_{L^{2}(0,T;H^{-1}(0,1))}^{2} \geq C_{0}h^{\alpha}\|\varphi_{h}\|_{L^{2}(Q_{T})}^{2}, \qquad \forall \varphi_{h} \in \Phi_{h}.$$
(18)

Indeed, to obtain (18) it suffices to take $\psi_h(\cdot, t) = (-\Delta)^{\frac{1}{2}} \varphi_h(\cdot, t)$ in (17). That gives

$$\int_0^T \left\| (-\Delta)^{-\frac{1}{2}} \varphi_h(\cdot, t) \right\|_{L^2(0,1)}^2 dt \ge C_0 h^\alpha \int_0^T \left\| (-\Delta)^{-\frac{1}{2}} \varphi_{h,x}(\cdot, t) \right\|_{L^2(0,1)}^2 dt.$$

Since $-\Delta$ is a self-adjoint positive operator and $\varphi_h \in \Phi_h \subset H_0^1(Q_T)$ we can integrate by parts in both hand-sides of the above inequality and hence we deduce estimate (18).

 C_0 and α does not depend on T.

(ロ) (同) (目) (日) (日) (の)

Change of the norm $\|\cdot\|_{L^2(H^{-1})}$ over the discrete space Φ_h

We consider, for any fixed h > 0, the following equivalent definitions of the form $a_{r,h}$ and b_h over the finite dimensional spaces $\Phi_h \times \Phi_h$ and $\Phi_h \times M_h$ respectively :

$$\begin{aligned} a_{r,h} &: \Phi_h \times \Phi_h \to \mathbb{R}, \qquad a_{r,h}(\varphi_h, \overline{\varphi_h}) = a(\varphi_h, \overline{\varphi_h}) + rC_0 h^{\alpha} \iint_{Q_T} L\varphi_h L\overline{\varphi_h} dx dt \\ b_h &: \Phi_h \times M_h \to \mathbb{R}, \qquad b_h(\varphi_h, \lambda_h) = C_0 h^{\alpha} \iint_{Q_T} L\varphi_h \lambda_h dx dt. \end{aligned}$$

Let $n_h = \dim \Phi_h, m_h = \dim M_h$ and let the real matrices $A_{r,h} \in \mathbb{R}^{n_h, n_h}$ defined by

$$a_{r,h}(\varphi_h,\overline{\varphi_h}) = \langle A_{r,h}\{\varphi_h\}, \{\overline{\varphi_h}\} \rangle_{\mathbb{R}^{n_h},\mathbb{R}^{n_h}}, \quad \forall \varphi_h, \overline{\varphi_h} \in \Phi_h,$$

where $\{\varphi_h\} \in \mathbb{R}^{n_h, 1}$ denotes the vector associated to φ_h and $\langle \cdot, \cdot \rangle_{\mathbb{R}^{n_h}, \mathbb{R}^{n_h}}$ the usual scalar product over \mathbb{R}^{n_h} . The problem reads: find $\{\varphi_h\} \in \mathbb{R}^{n_h, 1}$ and $\{\lambda_h\} \in \mathbb{R}^{m_h, 1}$ such that

$$\begin{pmatrix} A_{r,h} & B_h^T \\ B_h & 0 \end{pmatrix}_{\mathbb{R}^{n_h+m_h,n_h+m_h}} \begin{pmatrix} \{\varphi_h\} \\ \{\lambda_h\} \end{pmatrix}_{\mathbb{R}^{n_h+m_h,1}} = \begin{pmatrix} L_h \\ 0 \end{pmatrix}_{\mathbb{R}^{n_h+m_h,1}}$$

The matrix of order $m_h + n_h$ is symmetric but not positive definite. We use exact integration methods and the LU decomposition method.

From φ_h , an approximation v_h of the control v is given by $v_h = -\varphi_h \mathbf{1}_{q_T} \in L^2(Q_T)$.

Change of the norm $\|\cdot\|_{L^2(H^{-1})}$ over the discrete space Φ_h

We consider, for any fixed h > 0, the following equivalent definitions of the form $a_{r,h}$ and b_h over the finite dimensional spaces $\Phi_h \times \Phi_h$ and $\Phi_h \times M_h$ respectively :

$$\begin{aligned} a_{r,h}: \Phi_h \times \Phi_h \to \mathbb{R}, \qquad a_{r,h}(\varphi_h, \overline{\varphi_h}) &= a(\varphi_h, \overline{\varphi_h}) + rC_0 h^{\alpha} \iint_{Q_T} L\varphi_h L\overline{\varphi_h} dx dt \\ b_h: \Phi_h \times M_h \to \mathbb{R}, \qquad b_h(\varphi_h, \lambda_h) &= C_0 h^{\alpha} \iint_{Q_T} L\varphi_h \lambda_h dx dt. \end{aligned}$$

Let $n_h = \dim \Phi_h, m_h = \dim M_h$ and let the real matrices $A_{r,h} \in \mathbb{R}^{n_h, n_h}$ defined by

$$a_{r,h}(\varphi_h,\overline{\varphi_h}) = \langle A_{r,h}\{\varphi_h\}, \{\overline{\varphi_h}\} \rangle_{\mathbb{R}^{n_h},\mathbb{R}^{n_h},} \quad \forall \varphi_h, \overline{\varphi_h} \in \Phi_h,$$

where $\{\varphi_h\} \in \mathbb{R}^{n_h,1}$ denotes the vector associated to φ_h and $\langle \cdot, \cdot \rangle_{\mathbb{R}^{n_h}, \mathbb{R}^{n_h}}$ the usual scalar product over \mathbb{R}^{n_h} . The problem reads: find $\{\varphi_h\} \in \mathbb{R}^{n_h,1}$ and $\{\lambda_h\} \in \mathbb{R}^{m_h,1}$ such that

$$\begin{pmatrix} A_{r,h} & B_{h}^{T} \\ B_{h} & 0 \end{pmatrix}_{\mathbb{R}^{n_{h}+m_{h},n_{h}+m_{h}}} \begin{pmatrix} \{\varphi_{h}\} \\ \{\lambda_{h}\} \end{pmatrix}_{\mathbb{R}^{n_{h}+m_{h},1}} = \begin{pmatrix} L_{h} \\ 0 \end{pmatrix}_{\mathbb{R}^{n_{h}+m_{h},1}}.$$

The matrix of order $m_h + n_h$ is symmetric but not positive definite. We use exact integration methods and the LU decomposition method.

From φ_h , an approximation v_h of the control v is given by $v_h = -\varphi_h \mathbf{1}_{q_T} \in L^2(Q_T)$.

In order to approximate the values of the constants C_0 , α appearing in (17)-(18) we consider the following problem :

find
$$\alpha > 0$$
 and $C_0 > 0$ such that
$$\sup_{\varphi_h \in \Phi_h} \frac{\|\varphi_h\|_{L^2(0,T;H_0^1(0,1))}^2}{\|\varphi_h\|_{L^2(Q_T)}^2} \le \frac{1}{C_0 h^{\alpha}}, \qquad \forall h > 0.$$

Since dim $\Phi_h < \infty$, the supremum is, for any fixed h > 0, the solution of the following eigenvalue problem :

$$\forall h > 0, \quad \gamma_h = \sup \left\{ \gamma : K_h \{ \psi_h \} = \gamma \overline{J}_h \{ \psi_h \}, \quad \forall \{ \psi_h \} \in \mathbb{R}^{m_h} \setminus \{ \mathbf{0} \} \right\}$$

We determine C_0 and α such that $C_0 h^{\alpha} = \gamma_h^{-1}$. We obtain

$$C_0 \approx 1.48 \times 10^{-2}, \quad \alpha \approx 2.1993.$$

We check that the constant γ_h (and so C_0 and α) does not depend on T nor on the controllability domain.

(ロ) (同) (目) (日) (日) (の)

In order to approximate the values of the constants C_0 , α appearing in (17)-(18) we consider the following problem :

find
$$\alpha > 0$$
 and $C_0 > 0$ such that
$$\sup_{\varphi_h \in \Phi_h} \frac{\|\varphi_h\|_{L^2(0,T;H_0^1(0,1))}^2}{\|\varphi_h\|_{L^2(Q_T)}^2} \le \frac{1}{C_0 h^{\alpha}}, \qquad \forall h > 0.$$

Since dim $\Phi_h < \infty$, the supremum is, for any fixed h > 0, the solution of the following eigenvalue problem :

$$\forall h > 0, \quad \gamma_h = \sup \left\{ \gamma : \mathcal{K}_h \{ \psi_h \} = \gamma \overline{J}_h \{ \psi_h \}, \quad \forall \{ \psi_h \} \in \mathbb{R}^{m_h} \setminus \{ 0 \} \right\}$$

We determine C_0 and α such that $C_0 h^{\alpha} = \gamma_h^{-1}$. We obtain

$$C_0 \approx 1.48 \times 10^{-2}, \quad \alpha \approx 2.1993.$$

We check that the constant γ_h (and so C_0 and α) does not depend on T nor on the controllability domain.

(ロ) (同) (目) (日) (日) (の)

In order to solve the mixed formulation (15), we first test numerically the discrete inf-sup condition (16). Taking $\eta = r > 0$ so that $a_{r,h}(\varphi,\overline{\varphi}) = (\varphi,\overline{\varphi})_{\Phi}$ for all $\varphi,\overline{\varphi} \in \Phi$, it is readily seen that the discrete inf-sup constant satisfies

$$\delta_h := \inf \left\{ \sqrt{\delta} : B_h \mathcal{A}_{r,h}^{-1} \mathcal{B}_h^{\mathcal{T}} \{\lambda_h\} = \delta J_h \{\lambda_h\}, \quad \forall \{\lambda_h\} \in \mathbb{R}^{m_h} \setminus \{0\} \right\}.$$

The matrix $B_h A_{r,h}^{-1} B_h^T$ is symmetric, positive definite so that $\delta_h > 0$ for any h > 0.

Figure: δ_h vs. *h* for various control domains q_T , T > 0 and $r = 10^{-1}$.

In order to solve the mixed formulation (15), we first test numerically the discrete inf-sup condition (16). Taking $\eta = r > 0$ so that $a_{r,h}(\varphi,\overline{\varphi}) = (\varphi,\overline{\varphi})_{\Phi}$ for all $\varphi,\overline{\varphi} \in \Phi$, it is readily seen that the discrete inf-sup constant satisfies

$$\delta_h := \inf \left\{ \sqrt{\delta} : B_h \mathcal{A}_{r,h}^{-1} \mathcal{B}_h^{\mathcal{T}} \{\lambda_h\} = \delta J_h \{\lambda_h\}, \quad \forall \{\lambda_h\} \in \mathbb{R}^{m_h} \setminus \{0\} \right\}.$$

The matrix $B_h A_{r,h}^{-1} B_h^T$ is symmetric, positive definite so that $\delta_h > 0$ for any h > 0.

Figure: δ_h vs. *h* for various control domains q_T , T > 0 and $r = 10^{-1}$.

In order to solve the mixed formulation (15), we first test numerically the discrete inf-sup condition (16). Taking $\eta = r > 0$ so that $a_{r,h}(\varphi,\overline{\varphi}) = (\varphi,\overline{\varphi})_{\Phi}$ for all $\varphi,\overline{\varphi} \in \Phi$, it is readily seen that the discrete inf-sup constant satisfies

$$\delta_h := \inf \left\{ \sqrt{\delta} : B_h \mathcal{A}_{r,h}^{-1} \mathcal{B}_h^{\mathcal{T}} \{\lambda_h\} = \delta J_h \{\lambda_h\}, \quad \forall \{\lambda_h\} \in \mathbb{R}^{m_h} \setminus \{0\} \right\}.$$

The matrix $B_h A_{r,h}^{-1} B_h^T$ is symmetric, positive definite so that $\delta_h > 0$ for any h > 0.

Figure: δ_h vs. *h* for various control domains q_T , T > 0 and $r = 10^{-1}$.

In order to solve the mixed formulation (15), we first test numerically the discrete inf-sup condition (16). Taking $\eta = r > 0$ so that $a_{r,h}(\varphi,\overline{\varphi}) = (\varphi,\overline{\varphi})_{\Phi}$ for all $\varphi,\overline{\varphi} \in \Phi$, it is readily seen that the discrete inf-sup constant satisfies

$$\delta_h := \inf \left\{ \sqrt{\delta} : B_h \mathcal{A}_{r,h}^{-1} \mathcal{B}_h^{\mathcal{T}} \{\lambda_h\} = \delta J_h \{\lambda_h\}, \quad \forall \{\lambda_h\} \in \mathbb{R}^{m_h} \setminus \{0\} \right\}.$$

The matrix $B_h A_{r,h}^{-1} B_h^T$ is symmetric, positive definite so that $\delta_h > 0$ for any h > 0.

Figure: δ_h vs. *h* for various control domains q_T , T > 0 and $r = 10^{-1}$.

In order to solve the mixed formulation (15), we first test numerically the discrete inf-sup condition (16). Taking $\eta = r > 0$ so that $a_{r,h}(\varphi,\overline{\varphi}) = (\varphi,\overline{\varphi})_{\Phi}$ for all $\varphi,\overline{\varphi} \in \Phi$, it is readily seen that the discrete inf-sup constant satisfies

$$\delta_h := \inf \left\{ \sqrt{\delta} : B_h \mathcal{A}_{r,h}^{-1} B_h^{\mathcal{T}} \{\lambda_h\} = \delta J_h \{\lambda_h\}, \quad \forall \{\lambda_h\} \in \mathbb{R}^{m_h} \setminus \{0\} \right\}.$$

The matrix $B_h A_{r,h}^{-1} B_h^T$ is symmetric, positive definite so that $\delta_h > 0$ for any h > 0.

Figure: δ_h vs. *h* for various control domains q_T , T > 0 and $r = 10^{-1}$.

In order to solve the mixed formulation (15), we first test numerically the discrete inf-sup condition (16). Taking $\eta = r > 0$ so that $a_{r,h}(\varphi,\overline{\varphi}) = (\varphi,\overline{\varphi})_{\Phi}$ for all $\varphi,\overline{\varphi} \in \Phi$, it is readily seen that the discrete inf-sup constant satisfies

$$\delta_h := \inf \left\{ \sqrt{\delta} : B_h \mathcal{A}_{r,h}^{-1} \mathcal{B}_h^{\mathcal{T}} \{\lambda_h\} = \delta J_h \{\lambda_h\}, \quad \forall \{\lambda_h\} \in \mathbb{R}^{m_h} \setminus \{0\} \right\}.$$

The matrix $B_h A_{r,h}^{-1} B_h^T$ is symmetric, positive definite so that $\delta_h > 0$ for any h > 0.

Figure: δ_h vs. *h* for various control domains q_T , T > 0 and $r = 10^{-1}$.

Figure: Time dependent domains q_T^i , $i \in \{0, 1, 2, 3\}$.

Arnaud Münch Controllability of the linear 1D wave equation with inner moving for

イロト イポト イヨト イヨト

э

Figure: Meshes $\sharp 1$ associated with the domains $q_{T=2,2}^i$: i = 0, 1, 2, 3.

Arnaud Münch Controllability of the linear 1D wave equation with inner moving for

< 🗇 🕨

→ E > < E >

э
$$T = 2.;$$
 $y_0(x) = sin(\pi x);$ $y_1 = 0;$ $q_T = q_2^2$

♯ Mesh	1	2	3	4	5
h	7.18×10^{-2}	3.59×10^{-2}	1.79×10^{-2}	8.97×10^{-3}	4.49×10^{-3}
$\ v_h\ _{L^2(q_T)}$	5.370	5.047	4.893	4.815	4.776
$\ L\varphi_h\ _{L^2(0,T;H^{-1}(0,1))}$	2.286	$9.43 imes 10^{-1}$	3.76×10^{-1}	1.5×10^{-1}	$6.15 imes10^{-2}$
$\ v - v_h\ _{L^2(q_T)}$	$2.45 imes 10^{-1}$	$9.65 imes 10^{-2}$	4.32×10^{-2}	$2.29 imes 10^{-2}$	1.10×10^{-2}
$\ y - \lambda_h\ _{L^2(Q_T)}$	$5.63 imes 10^{-3}$	$1.57 imes 10^{-3}$	4.04×10^{-4}	$1.03 imes 10^{-4}$	$2.61 imes 10^{-5}$
- (Ξ]) κ	$2.46 imes 10^7$	2.67×10^{8}	$2.96 imes10^9$	3.03×10^{10}	$3.08 imes10^{11}$

Table: Norms vs. *h* for $r = 10^{-1}$.

$$\begin{split} r &= 10^{-1} : \|v - v_h\|_{L^2(q_T)} \approx O(h^{1.3}), \|L\varphi_h\|_{L^2(0,T;H^{-1}(0,1))} \approx O(h^{1.3}), \|y - \lambda_h\|_{L^2(Q_T)} \approx O(h^{1.94}) \\ r &= 10^3 : \|v - v_h\|_{L^2(q_T)} \approx O(h^{1.09}), \quad \|L\varphi_h\|_{L^2(Q_T)} \approx O(h^{1.04}), \quad \|y - \lambda_h\|_{L^2(Q_T)} \approx O(h^{2.01}). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

$$T = 2.;$$
 $y_0(x) = sin(\pi x);$ $y_1 = 0;$ $q_T = q_2^2$

Figure: $r = 10^{-1}$; $q_T = q_{2.2}^2$; Norms $||v - v_h||_{L^2(q_T)}$ (•) and $||y - \lambda_h||_{L^2(Q_T)}$ (•) vs. *h*.

3

$$T = 2.2;$$
 $y_0(x) = e^{-500(x-0.8)^2};$ $y_1 = 0;$ $q_T = q_{2.2}^2$

Figure: $r = 10^{-1}$; $q_T = q_{2.2}^2$: Functions φ_h (Left) and λ_h (Right) over Q_T .

 $\|v - v_h\|_{L^2(q_T)} \approx e^{5.85} h^{1.4}, \|L\varphi_h\|_{L^2(Q_T)} \approx e^{7.96} h^{1.31}, \|y - \lambda_h\|_{L^2(Q_T)} \approx e^{1.508} h^{1.62}$

ъ

- 王

$$T = 2.2; \quad y_0(x) = \frac{x}{\theta} \mathbf{1}_{(0,\theta)}(x) + \frac{1-x}{1-\theta} \mathbf{1}_{(\theta,1)}(x), \quad y_1(x) = 0, \quad \theta \in (0,1) \quad q_T = q_{2.2}^2$$

Figure: Example **EX3** with $\theta = 1/3$; $r = 10^{-1}$; $q_T = q_{2,2}^2$: Functions φ_h (Left) and λ_h (Right).

 $\|v - v_h\|_{L^2(q_T)} \approx e^{1.54} h^{0.47}, \quad \|L\varphi_h\|_{L^2(Q_T)} \approx e^{2.91} h^{0.54}, \quad \|y - \lambda_h\|_{L^2(Q_T)} \approx e^{-1.52} h^{1.29}.$

Arnaud Münch

Controllability of the linear 1D wave equation with inner moving fo

$$T = 2.2;$$
 $y_0(x) = e^{-500(x-0.8)^2};$ $y_1 = 0;$ $q_T = q_{2.2}^3$

Figure: Example **EX2**: $q_T = q_{2,2}^3$ - Function φ_h (Left) and λ_h (Right) over Q_T .

Arnaud Münch Controllability of the linear 1D wave equation with inner moving for

$$T = 2.2; \quad y_0(x) = \frac{x}{\theta} \mathbf{1}_{(0,\theta)}(x) + \frac{1-x}{1-\theta} \mathbf{1}_{(\theta,1)}(x), \quad y_1(x) = 0, \quad \theta \in (0,1) \quad q_T = q_{2.2}^3$$

Figure: Example **EX3**, $\theta = 1/3$: $q_T = q_{2.2}^3$ - Function φ_h (Left) and λ_h (Right) over Q_T .

Arnaud Münch Controllability of the linear 1D wave equation with inner moving for

イロト イポト イヨト イヨト

ъ

$$T = 2.2; \quad y_0(x) = \sin(\pi x), \quad y_1(x) = 0, \quad \theta \in (0, 1) \quad q_T = q_2^2$$

δ0	10-1	$10^{-1}/2$	$10^{-1}/2^{2}$	$10^{-1}/2^{3}$	$10^{-1}/2^{4}$	$10^{-1}/2^{5}$	$10^{-1}/2^{6}$
	68 740	68 464	68 402	68 728	68 422	68 966	68 368
$\ v_h\ _{L^2(q_T)}$	4.8308	7.3308	11.5743	18.8056	29.7354	47.3157	123.9704
$\ v_h\ _{L^2(H-1)}$	0.0035	0.0042	0.0066	0.0107	0.0170	0.0270	0.0704

Table: Example **EX1**; $q_T = q_2^2$; Norms of the control v_h obtained for the **EX1** for control domains q_2^2 for different values of δ_0 .

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Non constant velocity

Figure: $r = 10^{-1}$:Example **EX3**, $\theta = 1/3$: $q_T = q_2^2$ for a non-constant velocity of propagation - Function φ_h (Left) and λ_h (**Right**) over Q_T .

イロト イポト イヨト イヨト

Figure: Example **EX3**, $\theta = 1/3$: $q_T = q_1^2$ - Function φ_h (Left) and λ_h (Right) over Q_T .

(日) (四) (日) (日) (日)

ъ

Figure: Example **EX3**. Evolution of the residue $\|g^n\|_{L^2(0,T;H^1_0(0,1))} / \|g^0\|_{L^2(0,T;H^1_0(0,1))}$ w.r.t. the iterate *n*.

 $g^n = -\Delta^{-1}(L\varphi^n)$

♯ Mesh	1	2	3	4	5
$ \begin{array}{c} h \\ \sharp \text{ iterate} \\ \ \lambda_h - y\ _{L^2(Q_T)} \end{array} $	$7.18 \times 10^{-2} \\ 87 \\ 1.15 \times 10^{-1}$	$\begin{array}{c} 3.59 \times 10^{-2} \\ 105 \\ 5.2 \times 10^{-2} \end{array}$	1.79×10^{-2} 119 1.65×10^{-2}	$\begin{array}{c} 8.97 \times 10^{-3} \\ 140 \\ 6.03 \times 10^{-3} \end{array}$	$\begin{array}{c} 4.49 \times 10^{-3} \\ 166 \\ 2.89 \times 10^{-3} \end{array}$
				Image: A	문에 주문에 문

Arnaud Münch Controllability of the linear 1D wave equation with inner moving fo

Controllability holds for any q_T satisfying the geometric optic condition

Mixed formulation allows to approximate directly L^2 minimal control

The minimisation of $J_r^{**}(\lambda)$ is very robust and fast contrary to the minimisation of $J^*(\varphi_0,\varphi_1)$ (inversion of symmetric definite positive and very sparse matrice with direct Cholesky solvers)

DIRECT APPROACH CAN BE USED FOR MANY OTHER CONTROLLABLE SYSTEMS FOR WHICH A GENERALIZED OBS. ESTIMATE IS AVAILABLE. IN PARTICULAR, HEAT, STOKES

The price to pay is to used C^1 finite elements (at least in space) unless $L^*\varphi = 0$ is seen in a weaker space than $L^2(Q_T)$.

A NICE OPEN QUESTION IF THE DISCRETE INF-SUP PROPERTY !? A SIMPLE STRATEGY IS TO ADD THE LAGRANGIAN THE STABILIZED TERM

$$-\|L\lambda_{h} - \varphi_{h} \mathbf{1}_{\omega}\|_{L^{2}(Q_{T})}^{2}, \quad -\|\lambda_{h}(\cdot, 0) - y_{0}\|_{H^{1}_{0}}^{2}, \quad -\|(\lambda_{h})_{t}(\cdot, 0) - y_{1}\|_{L^{2}}^{2}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

SPACE-TIME FINITE ELEMENT FORMULATION IS VERY WELL-ADAPTED TO MESH ADAPTATION AND TO NON-CYLINDRICAL SITUATION

Arnaud Münch Controllability of the linear 1D wave equation with inner moving fo

★ E → < E →</p>

э

This work allows now to consider the optimization of the controls with respect to $q_{\rm T}$:

 $\forall (y_0, y_1) \in H, T > 0 \text{ and } L \in (0, 1), \text{ the problem reads} :$

$$\inf_{q_T \in \mathcal{C}_L} \| v_{q_T} \|_{L^2(q_T)}, \quad \mathcal{C}_L = \{ q_T : q_T \subset \mathcal{Q}_T, |q_T| = L |\mathcal{Q}_T| \text{ and such that (10) holds} \}$$

where v_{q_T} denotes the control of minimal $L^2(q_T)$ norm for the wave eq. distributed over q_T .

THIS APPROACH MAY BE APPLIED FOR INVERSE PROBLEMS, OBSERVATION PROBLEMS, RECONSTRUCTION OF DATA,

Given the observation $z \in L^2(q_T)$, find y such that

Ly = 0 in Q_T , y = z in q_T , y = 0 on Σ_T

Least Squares Problem -
$$\begin{cases} \inf_{y \in Y} \frac{1}{2} \iint_{q_T} (y-z)^2 \, dx \, dt \\ Y = \{y \in L^2(q_T), Ly = 0 \text{ in } L^2(Q_T), y = 0 \text{ on } \Sigma_T \} \end{cases}$$

through a mixed formulation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

THANK YOU FOR YOUR ATTENTION

C. Castro, N. Cindea, A. Münch, Controllability of the linear 1D wave equation with inner moving forces Preprint 2014 Available at http://hal.archives-ouvertes.fr/hal-00927076

ヘロン 人間 とくほ とくほ とう

E DQC