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Problem statement

Qr = (0,1) x (0, T), g7 C Qr, V := H1(0,1) x L3(0,1), a,b € C([0, T],]0,1[)

{ Yit — Yoo = Vigy, (x,t) € Qr
y=0, (x,t) € 92 x (0, T)
(.y('vo)vyt('vo)) = (y07.y1) ev, X e (071)
oL ]
" qr = {(x, t) € Qr; a(t) < x < b(t), t € (0, T)}

Goals of the works -

@ Forsome T > 0 and gr, prove
the existence of uniform null
L?(qg7)-controls.

t1r 8

or q
0 0.5 1
x

Dependent domains g included in Q7.
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" qr = {(x, t) € Qr; a(t) < x < b(t), t € (0, T)}

Goals of the works -
@ Forsome T > 0 and gr, prove
the existence of uniform null
L?(qg7)-controls.

@ Approximate numerically the
control of minimal L2(gr)-norm.

t1r 8

or q
0 0.5 1
x

Dependent domains g included in Q7.
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Combination of two works

This contribution is a combination of two recent works :

@ C. Castro : Exact controllability of the 1D wave equation from a moving interior
point, COCV - 2013

i — Yoo = V(X ) 1y, (X, 1) € Qr,
v € C'([0,T],(0,1)), 0< |y (D) <1,te(0,T).

Existence of H="(Use(o,7)¥(t) x (0, T)) null controls for
(Yo,31) € L3(0,1) x HT1(0,1), T > 2
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Combination of two works

This contribution is a combination of two recent works :

@ C. Castro : Exact controllability of the 1D wave equation from a moving interior
point, COCV - 2013

Yit — Yxx = V(th) 1X:'y(t)7 (X7 t) € Qr,
v € C([0,T1,(0,1)), 0</(t) <1,te(0,T).
Existence of H="(Use(o,7)¥(t) x (0, T)) null controls for

(Yo, ¥1) € L3(0,1) x H1(0,1), T > 2

@ N. Cindea and AM : A mixed formulation for the direct approximations of the
control of minimal L2-norm for linear type wave equations, CALCOLO 2014

yir — (@) yx)x + b(x, )y = vie, (x,1)€Qr

Robust numerical approximation of the control of minimal L2(w x (0, T))-norm
using a space-time formulation, well-adapted to our non cylindrical case.
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Literature - Controllability in the non-cylindrical situation

@ A. Khapalov, Controllability of the wave equation with moving point control, 1995
For any T > 0, construction of punctual L2-controls for smooth initial data
(Y0, ¥1) (to avoid strategic point)
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Punctual controllability of the 1D wave, T > 2 with H—'-control an C'-curve
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Generalized Observability inequality: weaker hypothesis

Set H = L?(0,1) x H='(0,1). Let T > 0.
gr-non-cylindrical domain, Ly = i — ¢oxx. Let gt C (0,1) x (0, T) be an open set.

> = {Lp e C([0, T]; L2(0, 1)) n C'([0, T]; H~'(0,1)), such that Ly € L2(0, T; H(0, 1))} )

Controllability of the linear 1D wave equation with inner moving fo



Generalized Observability inequality: weaker hypothesis

Set H = L?(0,1) x H='(0,1). Let T > 0.
gr-non-cylindrical domain, Ly = i — ¢oxx. Let gt C (0,1) x (0, T) be an open set.

> = {Lp e C([0, T]; L2(0, 1)) n C'([0, T]; H~'(0,1)), such that Ly € L2(0, T; H(0, 1))} )

(Castro, Cindea, Miinch)

Assume that qr C (0,1) x (0, T) is a finite union of connected open sets and satisfies
the following hypotheses:

Any characteristic line starting at a point x € (0, 1) at time t = 0 and following the
optical geometric laws when reflecting at the boundary ¥+ must meet qr.

Then, there exists C > 0 such that the following estimate holds :

6,00 oxC- O < € (el + ItlBaorsromy ) Wo €@ (1)
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Sketch of the Proof : step 1

Step 1: Let ¢ be a smooth solution of the wave eq. ¢ can be extended in a unique way
to a function, still denoted by «, in (x, t) € (0,1) x R satisfying Ly = 0 and the
boundary conditions ¢(0,t) = ¢(1,t) =0 for all t € R.

For such extension the following holds: Foreacht € R, x € (0,1)and ¢ > 0

t+6
[ lex0.9)? ds
t—6

t+35
/ [ox(0, S ds
t—§

IN

5 // |89X(Yv )2 + lee(ys S)|2) dy ds,

(x,t+x)

5 // |<px ¥, )P + ey, s)| )dyds,

(xt X)

IN

where L{(JX H is a neighborhood of (x, t) of the form

Ul = {(y,8) such that [x — y| + |t — s| < 6}
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Step 1 (Picture)

t+6
/ ‘¢X(Oy5)|2 ds <

t—§
1 , ,
3 //m ) (‘@X(yv S)I° + lee(y, 9)| ) dy ds

/// 3{_) (X, t4x
: //j /7
CeOg /// t+5
TNt / s lox(0, 8)[? ds <
. .
7N ) ]
(oltvs)-k \\ 1 g // (|pr(y’ S)|2 + |§0t(y, S)|2) dy ds
T ) u(i(,t—x)
N
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Proof : step 1

Step 1: Wave equation is symmetric with respect to the time and space variables. The

D’Alembert formulae can be used changing the time and space role, i.e.
1 tx
> vx(0,8) ds = ¢(x,t), (x,t) €(0,1) xR, 2

t—x

where we have taken into account the boundary condition ¢(0, t) = 0.
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Proof : step 1

Step 1: Wave equation is symmetric with respect to the time and space variables. The
D’Alembert formulae can be used changing the time and space role, i.e.

1 tx
2 Jix

where we have taken into account the boundary condition ¢(0, t) = 0. Consider now
X = Xy — tin (2) and differentiate with respect to time. Then,

—ox(0,2t — x0) = —px(Xo — £, 1) + @t(X — 1, 1),

that written in the original variables (x, t) gives, px(0,t — x) = px(X, t) — pt(x, t), or
equivalently

@X(Ovs) dSZ(p(X, t)7 (Xa t) € (0,1) X R7 (2)

QO)((O,I):(Px(X,t+X)*(pt(X,t+X), t€R7 X€(071)' (3)

Integrating the square of (3) in (y, s) € L{(‘SX t4x) with the parametrization

u—v u+v
s=1t+ )
V2

lul, [v] <

L
\/57
we obtain

§/V2 /N2
0x(0, t +2v/V/2) 2 dud = / / lox(, 5) — 1y, 5)[2 dyds.
—5/v2)—s/v2 Z

Therefore, with the change s = t + 2v/+/2 in the first integral leads the result.
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Proof: Step 2

Set W = {p: p € ®suchthat Lp = 0} C $. We show that for some constant C > 0,

10,00t O < € (lerlaggyy + loxley) ) @

for any o € W and initial data in V.
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Proof: Step 2

Set W = {p: p € ®suchthat Lp = 0} C $. We show that for some constant C > 0,

10,00t O < € (lerlaggyy + loxley) ) @

for any o € W and initial data in V.

We may assume that ¢ is smooth since the general case can be obtained by a usual
density argument. We also assume that ¢ is extended to (x, t) € (0,1) x R by
assuming that it satisfies the wave equation and boundary conditions in this region.
This extension is unique and 2-periodic in time. The region g7 is also extended to g7 to
take advantage of the time periodicity of the solution . We define,

gr = U {(x,t) suchthat(x,t+2k) € gr}.
keZ
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Proof : Step 2 (Picture)

Tav
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Proof: Step 2

gr = U {(x,t) suchthat(x,t+2k) € qr}.
keZ

The key point now is to observe that the hypotheses on g7, namely the fact that

"any characteristic line starting at point (x, 0) and following the optical geometric laws
when reflecting at the boundary must meet g7",

N

"for any point (0, t) with ¢ € [0, 2] there exists one characteristic line (either (x, t 4+ x)
with x € (0,1) or (x, t — x)) that meets gr".
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Proof: Step 2

Thus, given t € [0, 2] we can apply STEP 1 with (x, t + x) € gr or with (x,t — x) € gr
with ¢ sufficiently small so that M(‘sx tx) C gr or u& t—x) C gr. In particular we see that
for any t € [0, 2] there exists §; > 0 and C; > 0 such that

t+6¢ 5 5
[ o0 ds < o [ (1ol + lonl?) aet
t—d¢ ar
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Proof: Step 2

Thus, given t € [0, 2] we can apply STEP 1 with (x, t + x) € gr or with (x,t — x) € gr

with ¢ sufficiently small so that M(‘SX’HX) C gror Z/{(éx,tfx) C gr. In particular we see that

for any t € [0, 2] there exists §; > 0 and C; > 0 such that

t+68;
[ o0 ds < o [ (1ol + lonl?) aet
t—d¢ ar

By compacity, there exists a finite number of times 4, ..., t; such that
Uj—t1,..,n(ti = 0, t + &3,) covers the whole interval [0, 2] and therefore, by adding the
corresponding inequalities, there exists C > 0 such that

/02 ox(0,8)[? ds < C//q (w + |sox|2) dxat. (5)

The fact that we can replace gr by gr is due to the 2-periodicity of ¢ in time.
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Proof: Step 2

Thus, given t € [0, 2] we can apply STEP 1 with (x, t + x) € gr or with (x,t — x) € gr

with ¢ sufficiently small so that M(‘SX’HX) C gror Z/{(éx,tfx) C gr. In particular we see that

for any t € [0, 2] there exists §; > 0 and C; > 0 such that

t+68;
[ o0 ds < o [ (1ol + lonl?) aet
t—d¢ ar

By compacity, there exists a finite number of times 4, ..., t; such that
Uj—t1,..,n(ti = 0, t + &3,) covers the whole interval [0, 2] and therefore, by adding the
corresponding inequalities, there exists C > 0 such that

/02 ox(0,8)[? ds < C//q (w + |sox|2) dxat. (5)

The fact that we can replace gr by gr is due to the 2-periodicity of ¢ in time. Finally,
the result is a consequence of the well-known boundary observability inequality

2
le(-,0), e (-, NI < C/O liox(0, 8)[? ds.
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Proof: Step 3

Step 3. We show that we can substitute ¢x by ¢ in the right hand side of (4), i.e

0, 0) e NI < © (el + I ) ©)

for any o € W and initial data in V.
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Proof: Step 3

Step 3. We show that we can substitute ¢x by ¢ in the right hand side of (4), i.e

0, 0) e NI < © (el + I ) ©)

for any o € W and initial data in V.

In fact, this requires to extend slightly the observation zone gr. Instead, we observe
that if g7 satisfies the hypotheses in Proposition 2 then there exists a smaller open
subset gr C gr that still satisfies the same hypotheses and such that the closure of g7
is included in gr. Thus, (4) must hold as well for gr. Let us introduce now a function

n > 0 which satisfies the following hypotheses:

n€ C'((0,1) x (0,T)), supp(n) C qr, |nellee + [n/nlleee < Cy inqr

n > no > 0in gy, with g > 0 constant.

As gr is a finite union of connected open sets, the function n can be easily obtained by
convolution of the characteristic function of gr with a positive mollifier.
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Proof: Step 3

Multiplying the equation of ¢ by n¢ and integrating by parts we easily obtain

// nlexZdxat = // nlepdl? dx dt + // (ot — nxpx) ax at
qar qar qar

lImell o
// nlsorl2dxdt+7t : (q”/ (Il + |e]) dx at
qr ar

+5 // m(pz + npk) dx dt.
qr

IN

Therefore,

// nlpxlZoxat < c// (12 + |2 dx o,
ar ar

for some constant C > 0, and we obtain

oo < G [ nlexaxat< 030 [[ (el + 1) ot
qr ar

This combined with (4) for g7 provides (6).
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Proof : Step 4

Step 4. Here we prove that we can remove the second term in the right hand side of
(6), i.e.
o, 0) 2t ODIY < ClleelZa(qr) (7)

for any p € W and initial data in V.
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Proof : Step 4

Step 4. Here we prove that we can remove the second term in the right hand side of

(6), i.e.
(- 0, e, NI < ClitllZayg s (7)
for any p € W and initial data in V.

We substitute the inequality (energy estimate)

112 gy < Tl 0), (-, 0))Il-

IW(®¢KOMW<COwM%T+WEWW&ﬂMﬁ>
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Proof : Step 4

Step 4. Here we prove that we can remove the second term in the right hand side of
(6), i.e.
o, 0) 2t ODIY < ClleelZa(qr) (7)

for any p € W and initial data in V.

We substitute the inequality (energy estimate)

112 gy < Tl 0), (-, 0))Il-

le(:,0), el 0)>||V<C(kuLz(q, +||so<»,0>,w<-,0))||%).

Inequality (7) is finally obtained by contradiction. Assume that it is not true. Then, there
exists a sequence (¢ (-,0), ¢k(+,0)))k>0 € V such that

16 (. 0), . ONIF =1, k>0, [[@flPaq,, — 0. as k — oo.

There exists a subsequence such that (¢* (-, 0), ¢ (-,0)) — (¢*(:,0), ¢7 (-, 0)) weakly
in V and strongly in H. Passing to the limit in the equation we see that the solution
associated to (¢*(+,0), 7 (-,0)), »* must vanish at g7 and therefore, by (6), p* = 0.

Controllability of the linear 1D wave equation with inner moving fo



Step 5. We now write (7) with respect to the weaker norm. In particular, we obtain
H(P(,O) ( 0))HH < C”(P”LZ (a7)’ (8)

for any ¢ € ® with Ly = 0.
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Step 5. We now write (7) with respect to the weaker norm. In particular, we obtain
H(P(,O) ( 0))HH < C”(P”LZ (a7)’ (8)

for any ¢ € ® with Ly = 0.

Let € ® be defined by n(x,t) = n(x,0) + fot p(x,s) ds, for all (x, t) € Qr such that

(77('7 0) 771(‘7 0)) = (A71 ‘pf(V 0)7 <p(‘7 O)) ev
where A designates the Dirichlet Laplacian in (0,1). Then Ly = 0in Q.

Then, inequality (7) on n and the fact that A is an isomorphism from H(‘, (0,1) to
L?(0, 1), provide

||(A71<Pi('70)7§0('70))”%/
(n(-,0), me(-, )T

< ClineliZa(q,) = Clielize

(-, 0), e+, 0),)Il

(ar) — (ar)
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Step 6. Here we finally obtain (10). Given ¢ € ® we can decompose it as ¢ = p1 + @2
where 1, po € ® solve

{ Loy = Lo, { Lop =0,
©1(-,0) = (¢1):(-,0) =0 ©2(+,0) = ¢(-,0), (p2)t(-,0) = ¢1(-, 0).
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Step 6. Here we finally obtain (10). Given ¢ € ® we can decompose it as ¢ = p1 + @2
where 1, po € ® solve

{ Loy = Lo, { Lop =0,
©1(-,0) = (¢1):(-,0) =0 ©2(+,0) = ¢(-,0), (p2)t(-,0) = ¢1(-, 0).

From Duhamel’s principle, we can write

¢1<~,r):/0tw<~,r—s,s)ds

where 1(x, t, s) solves, for each value of the parameter s € (0, t),

{ Lw(7 ) S) =0,
w('vov S) =0, 1!’1(',0»3) = LLP('%S)'

Therefore,

)
o112eary < ) 108y < © / [16(-,0. 8). (-0, ) 305

< C||LS0HL2(07T;H—’(0,1)) ©
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Step 6. Here we finally obtain (10). Given ¢ € ® we can decompose it as ¢ = p1 + @2
where 1, po € ® solve

{ Loy = Lo, { Lop =0,
©1(-,0) = (¢1):(-,0) =0 ©2(+,0) = ¢(-,0), (p2)t(-,0) = ¢1(-, 0).

From Duhamel’s principle, we can write

¢1<~,r):/0tw<~,r—s,s)ds

where 1(x, t, s) solves, for each value of the parameter s € (0, t),

{ Lw(7 ) S) =0,
w('vov S) =0, 1!’1(',0»3) = LLP('%S)'

Therefore,
)
o112eary < ) 108y < © / [16(-,0. 8). (-0, ) 305

S C||L§0HL2(07T;H—1(0’1)) (9)
Combining (9) and estimate (8) for ¢, we obtain
(- 0), 0t(- ODIE = Il 0), (w2)i( O < CllwallZag,

< C (Ielaqyy + 1911227y < € (19122, + ILelo 71, ) -

Controllability of the linear 1D wave equation with inner moving fo



Generalized Observability inequality: weaker hypothesis

Set H=L?(0,1) x H='(0,1). Let T > 0.

(Castro, Cindea, Miinch)

Assume qr C (0,1) x (0, T) is a finite union of connected open sets and satisfies the
following hypotheses:

"Any characteristic line starting at the point x € (0, 1) at time t = 0 and following the
optical geometric laws when reflecting at the boundaries x = 0,1 must meet q7".

Then, there exists C > 0 such that the following estimate holds :

H(P(,O),(Pt(,o))Hi[ < C<”¢”i2(q7—) + ||L§0||i2(07T;H—1(0’1)))7 ch €. (10)
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1. The hypotheses on gr stated in the Theorem are optimal in the following sense: If
there exists a subinterval wg C (0, 1) for which all characteristics starting in wy and
following the geometrical optics conditions when getting to the boundary x = 0, 1, do
not meet gr, then the inequality fails to hold. This is easily seen by considering
particular solutions of the wave equation which initial data supported in wy.

2. The proof of inequality (10) above does not provide an estimate on the dependence
of the constant with respect to qr.

3. In the cylindrical situation, i.e. gr = (a, b) x (0, T), a generalized Carleman
inequality, valid for the wave equation with variable coefficients, have been obtained in
Cindea, Fernandez-Cara and Munch (2013) (see also Yao’2011). The extension of
Proposition 2 to the wave equation with variable coefficients is still open and a priori
can not be obtained by the method used in this section.
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Under the hypotheses on qr, the space ® is a Hilbert space with the scalar product,

.
(%o ://q o(x, HB(x, 1) dxdt-i—n/o < Lo, LB >poroy i-10m) O (1)
T

for any fixed n > 0.

PROOF: The seminorm associated to this inner product || - || is a norm from (10). We
check that ¢ is closed with respect to this norm.

Let us consider a convergence sequence {¢k }x>1 C ® such that o, — ¢ in the norm
- llo-

From (10), there exist (vg, v1) € Hand f € L2(0, T; H=1(0, 1)) such that

(¢k(-,0), ¢k,1(,0)) — (0, 1) in Hand Ly — fin L2(0, T; H~1(0, 1)). Therefore,
k can be considered as a sequence of solutions of the wave equation with convergent
initial data and second hand term Ly, — f.

By the continuous dependence of the solutions of the wave equation on the data,

vk — pin C([0, T]; L2(0,1)) N C'([0, T]; H=1(0, 1)), where ¢ is the solution of the
wave equation with initial data (49, v1) € H and second hand term

Ly = f € L?(0, T; H~'(0,1)). Therefore ¢ € ®.
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Strong convergent (numerical approximation)"

[CINDEA, FERNANDEZCARA, MUNCH, COCV13],

Minimize J(y, v) : // ly|2 dx dt + = / |v|? dx d.

The optimal pair (y, v) is
y=Ly in Qr, v=¢pl, in Qr

where ¢ € ® solves the variational problem

[ retmaxat+ [ omaxat= (0. 20 us — 01 F.0)e VB E O,
T ar
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Strong convergent (numerical approximation)"

[CINDEA, FERNANDEZCARA, MUNCH, COCV13],

Minimize J(y, v) : // ly|2 dx dt + = / |v|? dx d.

The optimal pair (y, v) is
y=Ly in Qr, v=¢pl, in Qr

where ¢ € ® solves the variational problem

[ retmaxat+ [ omaxat= (0. 20 us — 01 F.0)e VB E O,
T qr

Let pp € ®p C ® solves the variational problem

//O LonLpnaxdt+ [ | onrdxat. = (o, 0t -1~ (1, BH(-0))z VR € O,
T ar

oh—pin®ash— 0=y, := Loy — yin [2(Qr) and v, := pplg, — vin L2(qr)
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Control of minimal L2-norm: a mixed formulation

[CINDEA, MUNCH, CALCOLO14],

1 1
. J* , _ ! 2 - 7/ .
L (0, 01) = 5 o liol” dx dt+ < o1, Y0 >p-1(0,1), 1] (0,1) | o ax
where Ly = 01in Qr; o =00n Z71, (¢, ¢1)(-,0) = (0, 1) and

1
< @100 >0 0= [, P) o)) deyo(x) o

where —A is the Dirichlet Laplacian in (0, 1).
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Control of minimal L2-norm: a mixed formulation

[CINDEA, MUNCH, CALCOLO14],

1 1
min  J*(¢0, == 2dx dt+ < o1, Yo >p— 7/ dx.
(eoinen 0 0) =5 [ [ TeFaxdtt <enyo s o) ~ f PN

where Ly = 01in Qr; ¢ = 00n X1, (¢, 91)(+, 0) = (o, 1) and

1
< @100 >0 0= [, P) o)) deyo(x) o

where —A is the Dirichlet Laplacian in (0, 1).
Since the variable ¢ is completely and uniquely determined by (g, 1), the idea of the
reformulation is to keep ¢ as variable and consider the following extremal problem:

oy " 2 1
min 30 = 5 [ 16 axte <0000 >0 o — ) o0 0o

W= {w Lo e l2(gr), ¢ =0on X7, Lo =0 [2(0, T; H*1(O,1))}.

(12)
From (10), the property ¢ € W implies that (¢(-, 0), ¢t(+,0)) € H, so that the functional
J* is well-defined over W.
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Control of minimal L2-norm: a mixed formulation

The main variable is now ¢ submitted to the constraint equality Ly = 0 as an

L?(0, T; H1(0, 1)) function. This constraint is addressed introducing a Lagrangian
multiplier A € L2(0, T; H}(%)):

We consider the following problem : find (¢, A) € ® x L2(0, T; H}(0, 1)) solution of

{ar(%@Hb(W) = I(p), Ve e

= i (13)
b(p,A) = 0O, VX € L3(0, T; H}(0,1)),

where (r > 0 - augmentation parameter)

;
ar:dxd—R, ar(zp,a):// @dedt—i-r/ <L§07L¢>H*1,H*1 dt
ar 0

.
bi®x 2O, TiHO.1) ~ R b(e.N) = [ <Led >0 o

; 1HO,

:/ Ox(—A"(Lp)) - DA dx dit
Qr

1
o =R, () =—<ei(0), ¥ >H—1(0,1),H(1)(0,1) +/0 w(+,0) yrdx.
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Well-posedness of the mixed formulation
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Well-posedness of the mixed formulation

o The mixed formulation (13) is well-posed.
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Well-posedness of the mixed formulation

o The mixed formulation (13) is well-posed.
@ The unique solution (p,\) € ® x L2(0, T; H}(0,1)) is the unique saddle-point of
the Lagrangian L : & x L2(0, T; H}(0, 1)) — R defined by

£(e,2) = gar(e,0) + (e, ) = I(g).
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Well-posedness of the mixed formulation

o The mixed formulation (13) is well-posed.
@ The unique solution (p,\) € ® x L2(0, T; H}(0,1)) is the unique saddle-point of
the Lagrangian L : & x L2(0, T; H}(0, 1)) — R defined by

£(e,2) = gar(e,0) + (e, ) = I(g).

Q The optimal function ¢ is the minimizer of J* over ® while the optimal function
A€ L?(0, T; H{(0,1)) is the state of the controlled wave equation in the weak
sense (associated to the control —p 1q; ).
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Well-posedness of the mixed formulation

o The mixed formulation (13) is well-posed.
@ The unique solution (p,\) € ® x L2(0, T; H}(0,1)) is the unique saddle-point of
the Lagrangian L : & x L2(0, T; H}(0, 1)) — R defined by

£(e,2) = gar(e,0) + (e, ) = I(g).

Q The optimal function ¢ is the minimizer of J* over ® while the optimal function
A€ L?(0, T; H{(0,1)) is the state of the controlled wave equation in the weak
sense (associated to the control —p 1q; ).
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Well-posedness of the mixed formulation

o The mixed formulation (13) is well-posed.
@ The unique solution (p,\) € ® x L2(0, T; H}(0,1)) is the unique saddle-point of
the Lagrangian L : & x L2(0, T; H}(0, 1)) — R defined by

£(e,2) = gar(e,0) + (e, ) = I(g).

Q The optimal function ¢ is the minimizer of J* over ® while the optimal function
A€ L?(0, T; H{(0,1)) is the state of the controlled wave equation in the weak
sense (associated to the control —p 1q; ).

The well-posedness of the mixed formulation is a consequence of two properties
[FORTIN-BREZZI'91] :
@ ais coercive on
Ker(b) = {¢ € ® such that b(¢, \) = 0 forevery A € L?(0, T; H& (0,1)}.
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Well-posedness of the mixed formulation

o The mixed formulation (13) is well-posed.
@ The unique solution (p,\) € ® x L2(0, T; H}(0,1)) is the unique saddle-point of
the Lagrangian L : & x L2(0, T; H}(0, 1)) — R defined by

£(e,2) = gar(e,0) + (e, ) = I(g).

Q The optimal function ¢ is the minimizer of J* over ® while the optimal function
A€ L?(0, T; H{(0,1)) is the state of the controlled wave equation in the weak
sense (associated to the control —p 1q; ).

The well-posedness of the mixed formulation is a consequence of two properties
[FORTIN-BREZZI'91] :
@ ais coercive on
Ker(b) = {¢ € ® such that b(¢, \) = 0 forevery A € L?(0, T; H& (0,1)}.
@ b satisfies the usual "inf-sup" condition over ® x L2(0, T; H(‘)(O, 1)): there exists
6 > 0 such that

inf u ble:A) > 4. (14)
A€EL2(0,T;H}(0,1)) ped HS@”‘P”)‘”LZ(O,T,HS(OA))
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Inf-Sup condition

For any Ao € L2(H]}), we define the (unique) element ¢ such that

Lpo=—DX Qr,  ¢0(,0)=¢0(,0)=0 Q, =0 Zr
From the direct inequality,

||<P0||L2(QT) < CQ,T || - A)‘OHLZ(O,T;H—1(0,1)) < CQ,T HAOHLz(o,T;HA(oJ))

we get that g € . In particular, b(pg, Ag) = \\Aollfz(o T:H} (0,1))
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Inf-Sup condition

For any Ao € L2(H]}), we define the (unique) element ¢ such that

Lpo=—DX Qr,  ¢0(,0)=¢0(,0)=0 Q, =0 Zr
From the direct inequality,

||<P0||L2(QT) < CQ,T || - A)‘OHLZ(O,T;H—1(0,1)) < CQ,T HAOHLz(o,T;HA(oJ))

we get that ¢ € . In particular, b(pg, Ao) = H>\o||L2 0.T:H1 (0.1) and
sup b(p, Ao) b(p0, Xo)
peo [lellollXollziay — llvallollollzar)

AO 2 1
H IIL (0 "0(0 )

2
(10122 gy + 1002 7 0.1) Pl mngo

Combining the above two inequalities, we obtain
b(e0, A 1
sup (#0, M) >
PoEP ”‘POH‘DH)‘O”LZ(O,T;HS(OA)) szl r+m

and, hence, (14) holds with § = (02 24 n) w2
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Dual of the dual problem ("UZAWA" type algorithm)

Let A, be the linear operator from L2(H}) into L2(H}) defined by

AX = —A7Y(Lp), YAELP(H)) where o€ ® solves a(p,®)=b(@,N\), VE4qo.

For any r > 0, the operator A is a strongly elliptic, symmetric isomorphism from
LZ(H(}) into L2(H(‘)).
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Dual of the dual problem ("UZAWA" type algorithm)

Let A, be the linear operator from L2(H}) into L2(H}) defined by

A= —-A"1(Lp), VA€ L2(Ha) where ¢ € ® solves ar(p,p) = b(p, ), Ve & o.

For any r > 0, the operator A is a strongly elliptic, symmetric isomorphism from
LZ(H(}) into L2(H(‘)).

sup inf Lr(p,A) =— inf J*(N)  + Lr(p0,0)
/\eLZ(H&)‘ped) A€ELR(0,T,H{(0,1))

where @ € ® solves ar(vo, ) = (@), V% € ¢ and J** : [2(H}) — R defined by

JH() = % /Q AA(X, DA, 1) dx dt — (9o, A)
T
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Conformal approximation

Let then @, and M}, be two finite dimensional spaces parametrized by the variable h
such that
opC &, M, CL3(0,T;H}(0,1)), Vh>O0.

Then, we can introduce the following approximated problems : find (¢p, Ap) € &4 x My
solution of

{ ar(onPn) + b@n ) = I@a),  VEnEPp 15
b(@hyxh) 07 th (S Mh.
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Conformal approximation

Let then @, and M}, be two finite dimensional spaces parametrized by the variable h
such that
opC &, M, CL3(0,T;H}(0,1)), Vh>O0.

Then, we can introduce the following approximated problems : find (¢p, Ap) € &4 x My
solution of

(15)

{ ar(on®n) + b@mAn) = I(@h), V@ € Pp
b(@hyxh) 07 th (S Mh.

The well-posedness is again a consequence of two properties : the coercivity of the
bilinear form a, on the subset NV,(b) = {on € Pp; b(pn, Ap) =0 VYAp € Mp}. From
the relation

.
ar(p,¢) > EHSOH?» Vo €@

the form a, is coercive on the full space ¢, and so a fortiori on Np(b) C &, C ®. The
second property is a discrete inf-sup condition : there exists 6, > 0 such that

. b(wn, A
inf  sup _blemAn) > op. (16)
MnEMy ey [|onlloy I n]IM,

For any fixed h, the spaces M), and ¢, are of finite dimension so that the infimum and
supremum in (16) are reached: moreover, from the property of the bilinear form a,, 5,
is strictly positive. Consequently, for any fixed h > 0, there exists a unique couple
(vn, An) solution of (15).

Controllability of the linear 1D wave equation with inner moving fo



The space ®p, must be chosen such that Ly, € L2(0, T, H='(0,1)) for any ¢p, € &4,
This is guaranteed for instance as soon as ¢, possesses second-order derivatives in
L2 (Qr). A conformal approximation based on standard triangulation of Qr is obtained
with spaces of functions continuously differentiable with respect to both x and t.

We introduce a triangulation 75, such that Qr = UkeT, K and we assume that {7} n~0
is a regular family. We note h := max{diam(K), K € 7p}.
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The space ®p, must be chosen such that Ly, € L2(0, T, H='(0,1)) for any ¢p, € &4,
This is guaranteed for instance as soon as ¢, possesses second-order derivatives in
L2 (Qr). A conformal approximation based on standard triangulation of Qr is obtained
with spaces of functions continuously differentiable with respect to both x and t.

We introduce a triangulation 75, such that Qr = UkeT, K and we assume that {7} n~0
is a regular family. We note h := max{diam(K), K € 7p}.

We introduce the space ¢, as follows:

®p = {pn € dpe C'(Qr) : pnlk € P(K) VYK € Th, op=0o0n X7}
where P(K) denotes an appropriate space of polynomial functions in x and t. We
consider for P(K) the reduced Hsieh-Clough-Tocher C'-element ( Composite finite

element and involves as degrees of freedom the values of ¢p, ©p x, @n ¢ ON the vertices
of each triangle K).
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The space ®p, must be chosen such that Ly, € L2(0, T, H='(0,1)) for any ¢p, € &4,
This is guaranteed for instance as soon as ¢, possesses second-order derivatives in
L2 (Qr). A conformal approximation based on standard triangulation of Qr is obtained
with spaces of functions continuously differentiable with respect to both x and t.

We introduce a triangulation 75, such that Qr = UkeT, K and we assume that {7} n~0
is a regular family. We note h := max{diam(K), K € 7p}.

We introduce the space ¢, as follows:

®p = {pn € dpe C'(Qr) : pnlk € P(K) VYK € Th, op=0o0n X7}
where P(K) denotes an appropriate space of polynomial functions in x and t. We
consider for P(K) the reduced Hsieh-Clough-Tocher C'-element ( Composite finite
element and involves as degrees of freedom the values of ¢p, ©p x, @n ¢ ON the vertices
of each triangle K).
We also define the finite dimensional space

My = {\n € C°(Qr), Al € P1(K) VK €Th, Ap=0onXr}

For any h > 0, we have &, C ® and M, C L2(0, T; H}(0,1)).
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Change of the norm || - [|;2(-1) over the discrete space ¢

[Bramble, Gunzburger]
Remark that if there exist two constants Cy > 0 and o > 0 such that

W’hHLz(QT > CohaHwhHi2(07T;H&(O,1))7 Vibp € ®p (17)
then a similar inequality it holds for weaker norms. More precisely, we have

H‘Pth2(O,T;H*1(0,1)) > COhO‘H(PthZ(OT)v Von € p. (18)
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Change of the norm || - [|;2(-1) over the discrete space ¢

[Bramble, Gunzburger]
Remark that if there exist two constants Cy > 0 and o > 0 such that

W’hHLz(QT > CohaHwhHi2(07T;H&(O,1))7 Vibp € ®p (17)
then a similar inequality it holds for weaker norms. More precisely, we have
H‘Pth2(O,T;H*1(0,1)) > COhO‘H(PthZ(OT)v \V/Qph € & (18)

Indeed, to obtain (18) it suffices to take ¥u(-, t) = (— A)% n(-, t)in (17). That gives

T 1
[t
0

Since —A is a self-adjoint positive operator and ¢y, € ®, C H&(OT) we can integrate
by parts in both hand-sides of the above inequality and hence we deduce estimate (18).

2

) > core [ 3
sy @2 0on [ ][=a) enin

dt
L2(0,1)

Coy and « does not depend on T.
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Change of the norm || - [|;2(-1) over the discrete space ¢

We consider, for any fixed h > 0, the following equivalent definitions of the form a,
and by, over the finite dimensional spaces ¢4, x ¢, and ¢4 x M}, respectively :

B O X On R apon PR = alon,7) + ol | /O Ll
T

bp: dp x My — R, bh(@h:)‘h) = Coha // L(ph/\hdxdt.
Qr
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Change of the norm || - [|;2(-1) over the discrete space ¢

We consider, for any fixed h > 0, the following equivalent definitions of the form a,
and by, over the finite dimensional spaces ¢4, x ¢, and ¢4 x M}, respectively :

B O X On R apon PR = alon,7) + ol | /O Ll
T
bp: dp x My — R, bh(@h:)‘h) = Coha // L(ph/\hdxdt.
Qr
Let np = dim &4, my = dim M}, and let the real matrices A, , € R defined by

ar,h(‘Ph» @) = <Ar,h{<)0h}7 {ﬁ}>R"h7R"h7 Vﬂohvﬁ € ¢h7

where {¢5} € R™! denotes the vector associated to ¢p, and (-, g gn the usual
scalar product over R, The problem reads: find {5} € R™1 and {\,} € R such

that
( An Bf ) ( {¢n} ) _ ( Ly ) .
Bh 0 RMh+MpsNp+mp {Ah} RMh+Mp 1 0 RARTMp.1

The matrix of order my + np, is symmetric but not positive definite. We use exact
integration methods and the LU decomposition method.

From ¢, an approximation vj, of the control v is given by v, = —pp 14, € L2(Q7).
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Change of the norm : computation of Cy and «

In order to approximate the values of the constants Cy, o appearing in (17)-(18) we
consider the following problem :

”(ph“iZ 0.7:H1
,T:H3(0,1 1
( b(01) Vvh > 0.

find « > 0 and Cy > 0 such that sup 5 < )
PhEP ”wh“LZ(QT) Coho‘

Since dim ¢4, < oo, the supremum is, for any fixed h > 0, the solution of the following
eigenvalue problem :

vh>0, vh:sup{v:Kh{wh}:ﬂh{wh}, vwh}eRf"~\{0}}
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Change of the norm : computation of Cy and «

In order to approximate the values of the constants Cy, o appearing in (17)-(18) we
consider the following problem :

2
©hn
I ”LZ(O,T:H&(OJ)) 1

find o > 0 and Cy > 0 such that sup

< , vh > 0.
PhEPH IIthIiZ(QT) COha

Since dim ¢4, < oo, the supremum is, for any fixed h > 0, the solution of the following
eigenvalue problem :

¥h> 0, n=sup{x s Knln) =aTnlun). ¥lon} € R\ (0) |
We determine Cy and « such that Coh® = 7,71. We obtain
Co~1.48x 1072, «~ 2.1993.

We check that the constant ~4, (and so Cy and «) does not depend on T nor on the
controllability domain.
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The discrete inf-sup test

In order to solve the mixed formulation (15), we first test numerically the discrete
inf-sup condition (16). Taking n = r > 0 so that a, (¢, %) = (v, ®)e forall v, € @, it
is readily seen that the discrete inf-sup constant satisfies

o= inf{\/3 L BpA ABI (A} =6 Jn{An}, ¥ {An} €R™\ {0}}.

The matrix BhAr‘;7 B,f is symmetric, positive definite so that 6, > 0 for any h > 0.

o dwithT=22;

— (¥4, M) passes the
discrete inf-sup test !

107 10"
h

Figure: 8, vs. h for various control domains gr, T > 0and r = 10~".
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The discrete inf-sup test

In order to solve the mixed formulation (15), we first test numerically the discrete
inf-sup condition (16). Taking n = r > 0 so that a, (¢, %) = (v, ®)e forall v, € @, it
is readily seen that the discrete inf-sup constant satisfies

o= inf{\/3 L BpA ABI (A} =6 Jn{An}, ¥ {An} €R™\ {0}}.

The matrix BhAr‘;7 B,f is symmetric, positive definite so that 6, > 0 for any h > 0.

24
2 o dwithT=22;
+ g% with T=2;
20
op 18
16
14
— (¥4, M) passes the
) vy |
12 107 TR discrete inf-sup test !
h

Figure: 8, vs. h for various control domains gr, T >0and r = 10~".
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The discrete inf-sup test

In order to solve the mixed formulation (15), we first test numerically the discrete
inf-sup condition (16). Taking n = r > 0 so that a, (¢, %) = (v, ®)e forall v, € @, it
is readily seen that the discrete inf-sup constant satisfies

o= inf{\/3 L BpA ABI (A} =6 Jn{An}, ¥ {An} €R™\ {0}}.

The matrix BhAr‘;7 B,f is symmetric, positive definite so that 6, > 0 for any h > 0.

24
0 wi oo
22 ® g7 with T =2.2;
+ g% with T=2;
20 < gtwithT=2;
op 18
16
14
— (®p, M) passes the
) vy |
12 107 TR discrete inf-sup test !
h

Figure: 8§, vs. h for various control domains gr, T > 0and r = 10~".
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The discrete inf-sup test

In order to solve the mixed formulation (15), we first test numerically the discrete
inf-sup condition (16). Taking n = r > 0 so that a, (¢, %) = (v, ®)e forall v, € @, it
is readily seen that the discrete inf-sup constant satisfies

o= inf{\/3 L BpA ABI (A} =6 Jn{An}, ¥ {An} €R™\ {0}}.

The matrix BhAr‘;7 B,f is symmetric, positive definite so that 6, > 0 for any h > 0.

24
0 wi _ 5o
22 ® g7 with T =2.2;
+ g% with T=2;
20 < gtwithT=2;
3y 18 1 W G2 with T=22
16
14
— (®p, M) passes the
) vy |
12 107 TR discrete inf-sup test !
h

Figure: 8, vs. h for various control domains gr, T >0and r = 107",
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The discrete inf-sup test

In order to solve the mixed formulation (15), we first test numerically the discrete
inf-sup condition (16). Taking n = r > 0 so that a, (¢, %) = (v, ®)e forall v, € @, it
is readily seen that the discrete inf-sup constant satisfies

o= inf{\/3 L BpA ABI (A} =6 Jn{An}, ¥ {An} €R™\ {0}}.

The matrix BhAr‘;7 B,f is symmetric, positive definite so that 6, > 0 for any h > 0.

24
0 i _ 5o
22 | ® g7 with T =2.2;
+ g% with T=2;
20 < gtwithT=2;
3y 18 1 W G2 with T=22
16 | ¢ @EwithT=2
14
— (¥4, M) passes the
. vy |
12 107 TR discrete inf-sup test !
h

Figure: p vs. h for various control domains gr, T > 0and r = 107",
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The discrete inf-sup test

In order to solve the mixed formulation (15), we first test numerically the discrete
inf-sup condition (16). Taking n = r > 0 so that a, (¢, %) = (v, ®)e forall v, € @, it
is readily seen that the discrete inf-sup constant satisfies

o= inf{\/3 L BpA ABI (A} =6 Jn{An}, ¥ {An} €R™\ {0}}.

The matrix BhAr‘;7 B,f is symmetric, positive definite so that 6, > 0 for any h > 0.

24
2 o dwithT=22;
+ g% with T=2;
20 < gtwithT=2;
5y, 18 1 [ | G2 with T = 2.2;
16 | ¢ @EwithT=2
» > GwithT=22
— (®p, M) passes the
12 107 TR discrete inf-sup test !
h

Figure: §p vs. h for various control domains gr, T > 0and r = 10~".
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Geometries

2k B 2k B 2k B 2 B
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dr
y ar
t t t ¢ .
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Triangular meshes
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Numerical illustration

T=2; ylx)=sin(zx); y1 =0, qr=q;
§ Mesh 1 2 3 4 5
h 718 x 1072  359x 1072 1.79x 1072 897 x 105  4.49x 103
Al 5.370 5.047 4.893 4.815 4.776
hlli2(gr)
ILenll 20 7:4—1(0,1)) 2.286 9.43 x10~'  3.76 x 10~ 1.5 x 10! 6.15 x 10~2
lv — v,,nLg(qT) 2.45x 10"  965x 1072 432x1072 229x1072 1.10x 1072
Ily = pll 563x 1073 157x107% 4.04x10~* 1.03x10"% 261x10°°
nlli2qp)
K 2.46 x 107 2.67 x 108 2.96 x 10° 3.03 x 10'° 3.08 x 10"
Table: Norms vs. hforr =101,
—1 . 1.3 1.94
r=10"":|lv—vall 24,y = o(n'?), ILenll 20, rir—1(0.1y) = OB ) MY = Anll 2qy = O)

qr)

. 1.04 2.01
=10 v = will 2 gy & O ), liLenllz gy & O ™), lly = Anll2q,) = O™,
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Convergence as h— 0

T=2; y(x)=sin(rx); y;1 =0, qr=qs

Figure: r =107"; g7 = g5 ,; Norms ||V — Vp||;2(g,) (®) and
1Y = Anllzar) (#) vs. h.
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Numerical illustration

2
T=22 yo(x)=e 0008y =0 gr=0,

Figure: r=10"";gr = g3 , : Functions ¢, (Left) and A, (Right) over Q7.

e7.96h1.31 ~ 61'508/’)1‘62

5.85,1.4 ~
IV = Vhll2(gy = €502, |ILonll2(q,) = Ay = Anllizar) =
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Numerical illustration

X 1—x
T=22 }’o(X):51(0,9)(X)+f1(9,1)(x)7 yi(x)=0, 0€(0,1) gr=d3,

1-6

50

Figure: example EX3with 6 = 1/3;r = 10~ "; g7 = g2 , : Functions ¢, (Left) and Ay, (Right).

~ e1 '54h0'47,

~ @291 0.54
V=Vhll2(gp) = e~ hor,

”L‘PhHLZ(QT) ~ _1'52h1‘29.

HY*AhHLZ(QT) ~e
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Numerical illustration

2
T=22 y(x)=e 50008 v —0, gr=g3,

50

-50
#h 100
-150

-200

Figure: Example EX2: g7 = g3 , - Function o, (Left) and X, (Right) over Q7.
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Numerical illustration

1—x
T=22; yo(x)= - 1(0,6)(X)+ _91(9,1)()()7 yi(x)=0, 0€(0,1) ar=aqs,
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Numerical illustration : qr — Usc(o,1)y(t) x {t

T=22 y(x)=sin(rx), yi(x)=0, 6€(0,1) qr =05

59 10~ 10-T/2 101722 10~ 1/2%5 10 7/2* 107725 10728

7 triangles 66740 68464 68402 68728 66422 66966 68368

a2,y | 48308 7.3308 11.5743 18.8056  29.7354  47.3157  123.9704
llvall2y—1, | 00035  0.0042 0.0066 0.0107 0.0170 0.0270 0.0704

Table: Example EX1; g1 = qg; Norms of the control v}, obtained for the EX1 for control domains qg for different

values of &p.
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Non constant velocity

1, X € [0,0.45]
c(x) = { € 1,8, (c'(x)>0), X € (0.45,0.55)
5, x € [0.55,1].

o O

Figure: r=10"" :Example EX3, 6 = 1/3: g7 = qg for a non-constant velocity of propagation - Function
(Left) and A\j, (Right) over Q.
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T<2

50

-10l

x 00
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Minimization of J;*

== =108

1

1074 . . . . . .
0 100 200 300 400 500 600 700

Figure: Example EX3. Evolution of the residue ||g" | w.r.t. the iterate n.

0
120,730,119 120, 711 0,1))

9" = —a7" (LM

# Mesh 1 2 3 4 5
h 718 x 1072 359 x 102 1.79x 10°2 897 x 103  4.49 x 10~ 3

t iterate 87 105 119 140 166
IAp — yuLz(oT) 1.15 x 10~ 52x 1072  1.65x 1072 6.03x 103 2.89x 1073
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Concluding remarks

CONTROLLABILITY HOLDS FOR ANY g7 SATISFYING THE GEOMETRIC OPTIC CONDITION

MIXED FORMULATION ALLOWS TO APPROXIMATE DIRECTLY L2 MINIMAL CONTROL

THE MINIMISATION OF J}*(X) IS VERY ROBUST AND FAST CONTRARY TO THE
MINIMISATION OF J* (0, ¢1) (INVERSION OF SYMMETRIC DEFINITE POSITIVE AND VERY
SPARSE MATRICE WITH DIRECT CHOLESKY SOLVERS)

DIRECT APPROACH CAN BE USED FOR MANY OTHER CONTROLLABLE SYSTEMS FOR
WHICH A GENERALIZED OBS. ESTIMATE IS AVAILABLE. IN PARTICULAR, HEAT, STOKES

THE PRICE TO PAY IS TO USED C' FINITE ELEMENTS (AT LEAST IN SPACE) UNLESS
L*o = 0 1S SEEN IN A WEAKER SPACE THAN L2(Qr).

A NICE OPEN QUESTION IF THE DISCRETE INF-SUP PROPERTY !? A SIMPLE STRATEGY
IS TO ADD THE LAGRANGIAN THE STABILIZED TERM

—IILAR — en 1w||fz(QT), —lIAn(-,0) = YO||,2_,(1)7 = (An)e(-,0) = y1 12
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Concluding remarks

SPACE-TIME FINITE ELEMENT FORMULATION IS VERY WELL-ADAPTED TO MESH
ADAPTATION AND TO NON-CYLINDRICAL SITUATION

2.5 2.5] 2.5

1.5

0.5]

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
X X X X

Time-Space Refinement of the mesh according to the gradient of A, (from [Cindea,
Miinch, 2014])
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Concluding remarks

THIS WORK ALLOWS NOW TO CONSIDER THE OPTIMIZATION OF THE CONTROLS WITH
RESPECT TO g

Y(Yo,y1) € H, T > 0and L € (0, 1), the problem reads :

qTingL IVarlli2(gry>  Co={ar:ar C Qr,lar| = L|Qr|and such that (10) holds}

where vg, denotes the control of minimal L2(qr) norm for the wave eq. distributed over
qar-
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Concluding remarks

THIS APPROACH MAY BE APPLIED FOR INVERSE PROBLEMS, OBSERVATION PROBLEMS,
RECONSTRUCTION OF DATA, ....

Given the observation z € L?(q7), find y such that

Ly=0 in Qr, y=z in qr, y=0 on X7t

(y — z)? dx at
Least Squares Problem — { ¥ EY 2 /
={re LZ(QT)7 Ly =0inL*(Qr),y = OonXr}

through a mixed formulation ......
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