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Problem statement

QT = (0, 1)× (0,T ), qT ⊂ QT , V := H1
0 (0, 1)× L2(0, 1), a, b ∈ C([0,T ], ]0, 1[)

8<: ytt − yxx = v1qT , (x , t) ∈ QT
y = 0, (x , t) ∈ ∂Ω× (0,T )
(y(·, 0), yt (·, 0)) = (y0, y1) ∈ V , x ∈ (0, 1).
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Dependent domains qT included in QT .

qT =


(x , t) ∈ QT ; a(t) < x < b(t), t ∈ (0,T )

ff
Goals of the works -

For some T > 0 and qT , prove
the existence of uniform null
L2(qT )-controls.

Approximate numerically the
control of minimal L2(qT )-norm.
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Combination of two works

This contribution is a combination of two recent works :

C. Castro : Exact controllability of the 1D wave equation from a moving interior
point, COCV - 2013(

ytt − yxx = v(x , t) 1x=γ(t), (x , t) ∈ QT ,

γ ∈ C1([0,T ], (0, 1)), 0 < |γ′(t)| < 1, t ∈ (0,T ).

Existence of H−1(∪t∈(0,T )γ(t)× (0,T )) null controls for
(y0, y1) ∈ L2(0, 1)× H−1(0, 1), T > 2

N. Cîndea and AM : A mixed formulation for the direct approximations of the
control of minimal L2-norm for linear type wave equations

ytt − (a(x)yx )x + b(x , t)y = v1ω , (x , t) ∈ QT

Robust numerical approximation of the control of minimal L2(ω × (0,T ))-norm
using a space-time formulation, well-adapted to our non cylindrical case.
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Literature - Controllability in the non-cylindrical situation

A. Khapalov, Controllability of the wave equation with moving point control, 1995
For any T > 0, construction of punctual L2-controls for smooth initial data
(y0, y1) (to avoid strategic point)

A. Khapalov, Interior point control and observation for the wave equation, 1996

L. Cui, X. Liu, H. Gao, Exact controllability for a one-dimensional wave equation
in non-cylindrical domains, 2013
Controllability of the 1D wave with moving boundary of the form 1 + kt , k ∈ (0, 1]

C. Castro, Exact controllability of the 1D wave equation from a moving interior
point, 2013
Punctual controllability of the 1D wave, T > 2 with H−1-control an C1-curve

P. Martin, L. Rosier, P. Rouchon, Null controllability of the structurally damped
wave equation with moving control, 2013.
Controllability of ytt − yxx − εytxx = 0 on the 1D-Torus, to avoid essential
spectrum
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Generalized Observability inequality

qT -non-cylindrical domain, Lϕ = ϕtt − ϕxx . Let qT ⊂ (0, 1)× (0,T ) be an open set.
We define the vectorial space

Φ =
n
ϕ ∈ C([0,T ]; L2(0, 1)) ∩ C1([0,T ]; H−1(0, 1)), such that Lϕ ∈ L2(0,T ; H−1(0, 1))

o
.

Proposition (Castro, Cîndea, Münch)

Assume that T > 2 and qT contains a C1-curve γ : [0,T ]→ (0, 1) such that

γ(t) ∈ (a(t), b(t)) ∀t ∈ [0,T ], i.e. γ ⊂ qT

0 < |γ′(t)| < 1 ∀t ∈ [0,T ].

Set H = L2(0, 1)× H−1(0, 1). There exists C > 0 such that

‖ϕ(·, 0), ϕt (·, 0))‖2
H ≤ C

„
‖ϕ‖2

L2(qT )
+ ‖Lϕ‖2

L2(0,T ;H−1(0,1))

«
, ∀ϕ ∈ Φ. (1)
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Proof

Set W = {ϕ : ϕ ∈ Φ such that Lϕ = 0} ⊂ Φ.

Step 1: We write an observability inequality for initial data in V , when the observation
is taken on the curve γ ⊂ qT and Lϕ = 0. For T > 2, the following inequality is proved
in [Castro, 2013]:

∃C > 0 : ‖ϕ(·, 0), ϕt (·, 0))‖2
V ≤ C

Z T

0
‖

d
dt
ϕ(γ(t), t)‖2dt , ∀ϕ ∈ W . (2)
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Proof

Step 2. We extend the observation in (2) from γ to qT . More precisely, we show that for
some constant C > 0,

‖ϕ(·, 0), ϕt (·, 0))‖2
V ≤ C

„
‖ϕt‖2

L2(qT )
+ ‖ϕx‖2

L2(qT )

«
, (3)

for any ϕ ∈ W and initial data in V .

Let us consider δ0 > 0 small enough such that γ(t) + δ0 ∈ (a(t), b(t)) for all t ∈ [0,T ].
In this case, we can define small translations of the curve γ, i.e. γδ = γ + δ in such a
way that γδ ⊂ qT for all δ < δ0. γδ : [0,T ]→ (0, 1) satisfies the same properties
stated for γ in the Step 1 and (2) holds for all such curves with the same constant. In
particular, we have

‖ϕ(·, 0), ϕt (·, 0))‖2
V ≤

C
2δ0

Z δ0

−δ0

Z T

0
‖

d
dt
ϕ(γ(t) + δ, t)‖2dt dδ

≤
C

2δ0

ZZ
qT

‖ϕt (x , t) + γ′(t)ϕx (x , t)‖2dx dt

≤
C

2δ0
(1 + max

t∈[0,T ]
|γ′(t)|2)

„
‖ϕt‖2

L2(qT )
+ ‖ϕx‖2

L2(qT )

«
.
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Proof

Step 3. We show that we can substitute ϕx by ϕ in the right hand side of (3), i.e.

‖ϕ(·, 0), ϕt (·, 0))‖2
V ≤ C

„
‖ϕt‖2

L2(qT )
+ ‖ϕ‖2

L2(qT )

«
, (4)

for any ϕ ∈ W and initial data in V .
This requires to extend slightly the observation zone qT . Instead, we first argue that (3)
must hold for a slightly smaller open set. Let ε > 0 small enough so that T − 2ε > 2
and it exists q̃T defined as

q̃T =


(x , t) ∈ QT ; ã(t) < x < b̃(t), t ∈ (ε,T − ε)

ff

with (γ(t)− δ0, γ(t) + δ0) ⊂ (ã(t)− ε, b̃(t) + ε) ⊂ (a(t), b(t)) for all t ∈ [0,T ].
Therefore, (3) holds when considering q̃T instead of qT . Now we introduce

η(x , t) =


t(T − t)(x − a(t))2(x − b(t))2, if (x , t) ∈ qT
0 otherwise.

Obviously, η ∈ C1 is supported in qT and there exists a constant C1 such that
‖ηt‖L∞ ≤ C1, ‖η2

x/η‖ ≤ C1. Moreover η > 0 and it is uniformly bounded below by a
constant C2 > 0 in q̃T .
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Proof

Multiplying the equation of ϕ by ηϕ and integrating by parts we easily obtainZZ
qT

η|ϕx |2 dx dt =

ZZ
qT

η|ϕt |2 dx dt +

ZZ
qT

(ηtϕϕt − ηxϕϕx ) dx dt

≤
ZZ

qT

η|ϕt |2 dxdt +
‖ηt‖L∞(qT )

2

ZZ
qT

(|ϕ|2 + |ϕt |) dx dt

+
1
2

ZZ
qT

(
η2

x

η
ϕ2 + ηϕ2

x ) dx dt .

Therefore, ZZ
qT

η|ϕx |2 dx dt ≤ C
ZZ

qT

(|ϕt |2 + |ϕ|2) dx dt ,

for some constant C > 0, and we obtain

‖ϕx‖2
L2(q̃T )

≤ C−1
2

ZZ
qT

η|ϕx |2 dx dt ≤ C−1
2 C

ZZ
qT

(|ϕt |2 + |ϕ|2) dx dt .

This combined with (3) for q̃T provides (4).
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Proof

Step 4. Here we prove that we can remove the second term in the right hand side of
(4), i.e.

‖ϕ(·, 0), ϕt (·, 0))‖2
V ≤ C‖ϕt‖2

L2(qT )
, (5)

for any ϕ ∈ W and initial data in V .
Note that, for each time t ∈ [0,T ] and each ω ⊂ Ω we have the following regularity
estimate Z b(t)

a(t)
|ϕ(x , t)|2dx ≤ ‖ϕ(·, 0), ϕt (·, 0))‖2

H , for all t ∈ [0,T ]

Therefore, integrating in time, we obtain

‖ϕ‖2
L2(qT )

≤ T‖ϕ(·, 0), ϕt (·, 0))‖2
H .

We now substitute this inequality in (4)

‖ϕ(·, 0), ϕt (·, 0))‖2
V ≤ C

„
‖ϕt‖2

L2(qT )
+ ‖ϕ(·, 0), ϕt (·, 0))‖2

H

«
.

Inequality (5) is finally obtained by contradiction. Assume that it is not true. Then, there
exists a sequence (ϕk (·, 0), ϕk

t (·, 0)))k>0 ∈ V such that

‖ϕk (·, 0), ϕk
t (·, 0))‖2

V = 1, ∀k > 0, ‖ϕk
t ‖

2
L2(qT )

→ 0, as k →∞.

There exists a subsequence such that (ϕk (·, 0), ϕk
t (·, 0))→ (ϕ?(·, 0), ϕ?t (·, 0)) weakly

in V and strongly in H. Passing to the limit in the equation we see that the solution
associated to (ϕ?(·, 0), ϕ?t (·, 0)), ϕ? must vanish at qT and therefore, by (4), ϕ? = 0.
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Inequality (5) is finally obtained by contradiction. Assume that it is not true. Then, there
exists a sequence (ϕk (·, 0), ϕk

t (·, 0)))k>0 ∈ V such that

‖ϕk (·, 0), ϕk
t (·, 0))‖2

V = 1, ∀k > 0, ‖ϕk
t ‖

2
L2(qT )

→ 0, as k →∞.

There exists a subsequence such that (ϕk (·, 0), ϕk
t (·, 0))→ (ϕ?(·, 0), ϕ?t (·, 0)) weakly

in V and strongly in H. Passing to the limit in the equation we see that the solution
associated to (ϕ?(·, 0), ϕ?t (·, 0)), ϕ? must vanish at qT and therefore, by (4), ϕ? = 0.

Arnaud Münch Controllability of the linear 1D wave equation with inner moving forces



Proof

Step 5. We now write (5) with respect to the weaker norm. In particular, we obtain

‖ϕ(·, 0), ϕt (·, 0))‖2
H ≤ C‖ϕ‖2

L2(qT )
, (6)

for any ϕ ∈ Φ with Lϕ = 0.

Let η ∈ Φ be defined by η(x , t) = η(x , 0) +
R t

0 ϕ(x , s) ds, for all (x , t) ∈ QT such that

(η(·, 0), ηt (·, 0)) = (∆−1ϕt (·, 0), ϕ(·, 0)) ∈ V

where ∆ designates the Dirichlet Laplacian in (0, 1). Then Lη = 0 in QT .

Then, inequality (5) on η and the fact that ∆ is an isomorphism from H1
0 (0, 1) to

L2(0, 1), provide

‖(ϕ(·, 0), ϕt (·, 0), )‖2
H = ‖(∆−1ϕt (·, 0), ϕ(·, 0))‖2

V

= ‖(η(·, 0), ηt (·, 0))‖2
V

≤ C‖ηt‖2
L2(qT )

= C‖ϕ‖2
L2(qT )

.
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Proof

Step 6. Here we finally obtain (8). Given ϕ ∈ Φ we can decompose it as ϕ = ϕ1 + ϕ2
where ϕ1, ϕ2 ∈ Φ solve

Lϕ1 = Lϕ,
ϕ1(·, 0) = (ϕ1)t (·, 0) = 0


Lϕ2 = 0,
ϕ2(·, 0) = ϕ(·, 0), (ϕ2)t (·, 0) = ϕt (·, 0).

From Duhamel’s principle, we can write

ϕ1(·, t) =

Z t

0
ψ(·, t − s, s)ds

where ψ(x , t , s) solves, for each value of the parameter s ∈ (0, t),
Lψ(·, ·, s) = 0,
ψ(·, 0, s) = 0, ψt (·, 0, s) = Lϕ(·, s).

Therefore,

‖ϕ1‖2
L2(qT )

≤
Z T

0
‖ψ(·, ·, s)‖2

L2(qT )
ds ≤ C

Z T

0
‖ψ(·, 0, s), ψt (·, 0, s))‖2

H ds

≤ C‖Lϕ‖2
L2(0,T ;H−1(0,1))

(7)

Combining (7) and estimate (6) for ϕ2 we obtain

‖ϕ(·, 0), ϕt (·, 0))‖2
H = ‖ϕ2(·, 0), (ϕ2)t (·, 0))‖2

H ≤ C‖ϕ2‖2
L2(qT )

≤ C
“
‖ϕ‖2

L2(qT )
+ ‖ϕ1‖2

L2(qT )

”
≤ C

“
‖ϕ‖2

L2(qT )
+ ‖Lϕ‖2

L2(0,T ;H−1)

”
.
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Generalized Observability inequality: weaker hypothesis

Set H = L2(0, 1)× H−1(0, 1). Let T > 0.

Theorem (Castro, Cîndea, Münch)

Assume that T > 2 and qT ⊂ (0, 1)× (0,T ) is a finite union of connected open sets
and satisfies the following hypotheses:

"Any characteristic line starting at the point x ∈ (0, 1) at time t = 0 and following the
optical geometric laws when reflecting at the boundaries x = 0, 1 must meet qT ".

Then, there exists C > 0 such that the following estimate holds :

‖ϕ(·, 0), ϕt (·, 0))‖2
H ≤ C

„
‖ϕ‖2

L2(qT )
+ ‖Lϕ‖2

L2(0,T ;H−1(0,1))

«
, ∀ϕ ∈ Φ. (8)
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Remarks

1. The hypotheses on qT stated in the Theorem are optimal in the following sense: If
there exists a subinterval ω0 ⊂ (0, 1) for which all characteristics starting in ω0 and
following the geometrical optics conditions when getting to the boundary x = 0, 1, do
not meet qT , then the inequality fails to hold. This is easily seen by considering
particular solutions of the wave equation which initial data supported in ω0.

2. The proof of inequality (8) above does not provide an estimate on the dependence
of the constant with respect to qT .

3. In the cylindrical situation, i.e. qT = (a, b)× (0,T ), a generalized Carleman
inequality, valid for the wave equation with variable coefficients, have been obtained in
Cindea, Fernandez-Cara and Munch (2013) (see also Yao’2011). The extension of
Proposition 1 to the wave equation with variable coefficients is still open and a priori
can not be obtained by the method used in this section.
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Norm

Corollary

Under the hypotheses on qT , the space Φ is a Hilbert space with the scalar product,

(ϕ,ϕ)Φ =

ZZ
qT

ϕ(x , t)ϕ(x , t) dx dt + η

Z T

0
< Lϕ, Lϕ >H−1(0,1),H−1(0,1) dt , (9)

for any fixed η > 0.

PROOF: The seminorm associated to this inner product ‖ · ‖Φ is a norm from (8). We
check that Φ is closed with respect to this norm.
Let us consider a convergence sequence {ϕk}k≥1 ⊂ Φ such that ϕk → ϕ in the norm
‖ · ‖Φ.
From (8), there exist (ϕ0, ϕ1) ∈ H and f ∈ L2(0,T ; H−1(0, 1)) such that
(ϕk (·, 0), ϕk,t (·, 0))→ (ϕ0, ϕ1) in H and Lϕk → f in L2(0,T ; H−1(0, 1)). Therefore,
ϕk can be considered as a sequence of solutions of the wave equation with convergent
initial data and second hand term Lϕk → f .
By the continuous dependence of the solutions of the wave equation on the data,
ϕk → ϕ in C([0,T ]; L2(0, 1)) ∩ C1([0,T ]; H−1(0, 1)), where ϕ is the solution of the
wave equation with initial data (ϕ0, ϕ1) ∈ H and second hand term
Lϕ = f ∈ L2(0,T ; H−1(0, 1)). Therefore ϕ ∈ Φ.
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Control of minimal L2-norm: a mixed formulation

min
(ϕ0,ϕ1)∈H

J?(ϕ0, ϕ1) =
1
2

ZZ
qT

|ϕ|2 dx dt+ < ϕ1, y0 >H−1(0,1),H1
0 (0,1) −

Z 1

0
ϕ0 y1 dx .

where Lϕ = 0 in QT ; ϕ = 0 on ΣT , (ϕ,ϕt )(·, 0) = (ϕ0, ϕ1) and

< ϕ1, y0 >H−1(0,1),H1
0 (0,1)=

Z 1

0
∂x ((−∆)−1ϕ1)(x) ∂x y0(x) dx

where −∆ is the Dirichlet Laplacian in (0, 1).
Since the variable ϕ is completely and uniquely determined by (ϕ0, ϕ1), the idea of the
reformulation is to keep ϕ as variable and consider the following extremal problem:

min
ϕ∈W

Ĵ?(ϕ) =
1
2

ZZ
qT

|ϕ|2 dx dt+ < ϕt (·, 0), y0 >H−1(0,1),H1
0 (0,1) −

Z 1

0
ϕ(·, 0) y1dx ,

W =
n
ϕ : ϕ ∈ L2(qT ), ϕ = 0 on ΣT , Lϕ = 0 ∈ L2(0,T ; H−1(0, 1))

o
.

(10)
From (8), the property ϕ ∈ W implies that (ϕ(·, 0), ϕt (·, 0)) ∈ H, so that the functional
Ĵ? is well-defined over W .
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Control of minimal L2-norm: a mixed formulation

The main variable is now ϕ submitted to the constraint equality Lϕ = 0 as an
L2(0,T ; H−1(0, 1)) function. This constraint is addressed introducing a Lagrangian
multiplier λ ∈ L2(0,T ; H1

0 (Ω)):
We consider the following problem : find (ϕ, λ) ∈ Φ× L2(0,T ; H1

0 (0, 1)) solution of

(
ar (ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

b(ϕ, λ) = 0, ∀λ ∈ L2(0,T ; H1
0 (0, 1)),

(11)

where (r ≥ 0 - augmentation parameter)

ar : Φ× Φ→ R, ar (ϕ,ϕ) =

ZZ
qT

ϕϕ dx dt + r
Z T

0
< Lϕ, Lϕ >H−1,H−1 dt

b : Φ× L2(0,T ; H1
0 (0, 1))→ R, b(ϕ, λ) =

Z T

0
< Lϕ, λ >H−1(0,1),H1

0 (0,1) dt

=

ZZ
QT

∂x (−∆−1(Lϕ)) · ∂xλ dx dt

l : Φ→ R, l(ϕ) = − < ϕt (·, 0), y0 >H−1(0,1),H1
0 (0,1) +

Z 1

0
ϕ(·, 0) y1dx .
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Well-posedness of the mixed formulation

Theorem

1 The mixed formulation (11) is well-posed.
2 The unique solution (ϕ, λ) ∈ Φ× L2(0,T ; H1

0 (0, 1)) is the unique saddle-point of
the Lagrangian L : Φ× L2(0,T ; H1

0 (0, 1))→ R defined by

L(ϕ, λ) =
1
2

ar (ϕ,ϕ) + b(ϕ, λ)− l(ϕ).

3 The optimal function ϕ is the minimizer of Ĵ? over Φ while the optimal function
λ ∈ L2(0,T ; H1

0 (0, 1)) is the state of the controlled wave equation in the weak
sense (associated to the control −ϕ 1qT ).

The well-posedness of the mixed formulation is a consequence of two properties
[FORTIN-BREZZI’91] :

a is coercive on
Ker(b) = {ϕ ∈ Φ such that b(ϕ, λ) = 0 for every λ ∈ L2(0,T ; H1

0 (0, 1))}.
b satisfies the usual "inf-sup" condition over Φ× L2(0,T ; H1

0 (0, 1)): there exists
δ > 0 such that

inf
λ∈L2(0,T ;H1

0 (0,1))
sup
ϕ∈Φ

b(ϕ, λ)

‖ϕ‖Φ‖λ‖L2(0,T ,H1
0 (0,1))

≥ δ. (12)
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λ ∈ L2(0,T ; H1

0 (0, 1)) is the state of the controlled wave equation in the weak
sense (associated to the control −ϕ 1qT ).

The well-posedness of the mixed formulation is a consequence of two properties
[FORTIN-BREZZI’91] :

a is coercive on
Ker(b) = {ϕ ∈ Φ such that b(ϕ, λ) = 0 for every λ ∈ L2(0,T ; H1

0 (0, 1))}.
b satisfies the usual "inf-sup" condition over Φ× L2(0,T ; H1

0 (0, 1)): there exists
δ > 0 such that

inf
λ∈L2(0,T ;H1

0 (0,1))
sup
ϕ∈Φ

b(ϕ, λ)

‖ϕ‖Φ‖λ‖L2(0,T ,H1
0 (0,1))

≥ δ. (12)

Arnaud Münch Controllability of the linear 1D wave equation with inner moving forces



Inf-Sup condition

For any λ0 ∈ L2(H1
0 ), we define the (unique) element ϕ0 such that

Lϕ0 = −∆λ0 QT , ϕ0(·, 0) = ϕ0,t (·, 0) = 0 Ω, ϕ0 = 0 ΣT

From the direct inequality,

‖ϕ0‖L2(QT ) ≤ CΩ,T ‖ −∆λ0‖L2(0,T ;H−1(0,1)) ≤ CΩ,T ‖λ0‖L2(0,T ;H1
0 (0,1))

we get that ϕ0 ∈ Φ. In particular, b(ϕ0, λ0) = ‖λ0‖2
L2(0,T ;H1

0 (0,1))
and

sup
ϕ∈Φ

b(ϕ, λ0)

‖ϕ‖Φ‖λ0‖L2(QT )

≥
b(ϕ0, λ0)

‖ϕ0‖Φ‖λ0‖L2(QT )

=

‖λ0‖2
L2(0,T ;H1

0 (0,1))„
‖ϕ0‖2

L2(qT )
+ η‖λ0‖2

L2(0,T ;H1
0 (0,1))

« 1
2
‖λ0‖L2(0,T ;H1

0 (0,1))

.

Combining the above two inequalities, we obtain

sup
ϕ0∈Φ

b(ϕ0, λ0)

‖ϕ0‖Φ‖λ0‖L2(0,T ;H1
0 (0,1))

≥
1q

C2
Ω,T + η

and, hence, (12) holds with δ =
“

C2
Ω,T + η

”− 1
2 .
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Dual ...... of the dual problem ("UZAWA" type algorithm)

Lemma

Let Ar be the linear operator from L2(H1
0 ) into L2(H1

0 ) defined by

Arλ := −∆−1(Lϕ), ∀λ ∈ L2(H1
0 ) where ϕ ∈ Φ solves ar (ϕ,ϕ) = b(ϕ, λ), ∀ϕ ∈ Φ.

For any r > 0, the operator Ar is a strongly elliptic, symmetric isomorphism from
L2(H1

0 ) into L2(H1
0 ).

Theorem

sup
λ∈L2(H1

0 )

inf
ϕ∈Φ
Lr (ϕ, λ) = − inf

λ∈L2(0,T ,H1
0 (0,1))

J??(λ) + Lr (ϕ0, 0)

where ϕ0 ∈ Φ solves ar (ϕ0, ϕ) = l(ϕ), ∀ϕ ∈ Φ and J?? : L2(H1
0 )→ R defined by

J??(λ) =
1
2

ZZ
QT

Arλ(x , t)λ(x , t) dx dt − b(ϕ0, λ)
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Conformal approximation

Let then Φh and Mh be two finite dimensional spaces parametrized by the variable h
such that

Φh ⊂ Φ, Mh ⊂ L2(0,T ; H1
0 (0, 1)), ∀h > 0.

Then, we can introduce the following approximated problems : find (ϕh, λh) ∈ Φh ×Mh
solution of (

ar (ϕh, ϕh) + b(ϕh, λh) = l(ϕh), ∀ϕh ∈ Φh

b(ϕh, λh) = 0, ∀λh ∈ Mh.
(13)

The well-posedness is again a consequence of two properties : the coercivity of the
bilinear form ar on the subset Nh(b) = {ϕh ∈ Φh; b(ϕh, λh) = 0 ∀λh ∈ Mh}. From
the relation

ar (ϕ,ϕ) ≥
r
η
‖ϕ‖2

Φ, ∀ϕ ∈ Φ

the form ar is coercive on the full space Φ, and so a fortiori on Nh(b) ⊂ Φh ⊂ Φ. The
second property is a discrete inf-sup condition : there exists δh > 0 such that

inf
λh∈Mh

sup
ϕh∈Φh

b(ϕh, λh)

‖ϕh‖Φh‖λh‖Mh

≥ δh. (14)

For any fixed h, the spaces Mh and Φh are of finite dimension so that the infimum and
supremum in (14) are reached: moreover, from the property of the bilinear form ar , δh
is strictly positive. Consequently, for any fixed h > 0, there exists a unique couple
(ϕh, λh) solution of (13).
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Discretization

The space Φh must be chosen such that Lϕh ∈ L2(0,T ,H−1(0, 1)) for any ϕh ∈ Φh.
This is guaranteed for instance as soon as ϕh possesses second-order derivatives in
L2

loc(QT ). A conformal approximation based on standard triangulation of QT is obtained
with spaces of functions continuously differentiable with respect to both x and t .

We introduce a triangulation Th such that QT = ∪K∈Th K and we assume that {Th}h>0
is a regular family. We note h := max{diam(K ),K ∈ Th}.

We introduce the space Φh as follows:

Φh = {ϕh ∈ Φh ∈ C1(QT ) : ϕh|K ∈ P(K ) ∀K ∈ Th, ϕh = 0 on ΣT }

where P(K ) denotes an appropriate space of polynomial functions in x and t . We
consider for P(K ) the reduced Hsieh-Clough-Tocher C1-element ( Composite finite
element and involves as degrees of freedom the values of ϕh, ϕh,x , ϕh,t on the vertices
of each triangle K ).

We also define the finite dimensional space

Mh = {λh ∈ C0(QT ), λh|K ∈ P1(K ) ∀K ∈ Th, λh = 0 on ΣT }

For any h > 0, we have Φh ⊂ Φ and Mh ⊂ L2(0,T ; H1
0 (0, 1)).
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Change of the norm ‖ · ‖L2(H−1) over the discrete space Φh

[Bramble, Gunzburger]
Remark that if there exist two constants C0 > 0 and α > 0 such that

‖ψh‖2
L2(QT )

≥ C0hα‖ψh‖2
L2(0,T ;H1

0 (0,1))
, ∀ψh ∈ Φh (15)

then a similar inequality it holds for weaker norms. More precisely, we have

‖ϕh‖2
L2(0,T ;H−1(0,1))

≥ C0hα‖ϕh‖2
L2(QT )

, ∀ϕh ∈ Φh. (16)

Indeed, to obtain (16) it suffices to take ψh(·, t) = (−∆)
1
2 ϕh(·, t) in (15). That gives

Z T

0

‚‚‚(−∆)−
1
2 ϕh(·, t)

‚‚‚2

L2(0,1)
dt ≥ C0hα

Z T

0

‚‚‚(−∆)−
1
2 ϕh,x (·, t)

‚‚‚2

L2(0,1)
dt .

Since −∆ is a self-adjoint positive operator and ϕh ∈ Φh ⊂ H1
0 (QT ) we can integrate

by parts in both hand-sides of the above inequality and hence we deduce estimate (16).

C0 and α does not depend on T .
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Change of the norm ‖ · ‖L2(H−1) over the discrete space Φh

We consider, for any fixed h > 0, the following equivalent definitions of the form ar,h
and bh over the finite dimensional spaces Φh × Φh and Φh ×Mh respectively :

ar,h : Φh × Φh → R, ar,h(ϕh, ϕh) = a(ϕh, ϕh) + rC0hα
ZZ

QT

LϕhLϕhdxdt

bh : Φh ×Mh → R, bh(ϕh, λh) = C0hα
ZZ

QT

Lϕhλhdxdt .

Let nh = dim Φh,mh = dim Mh and let the real matrices Ar,h ∈ Rnh,nh defined by

ar,h(ϕh, ϕh) = 〈Ar,h{ϕh}, {ϕh}〉Rnh ,Rnh , ∀ϕh, ϕh ∈ Φh,

where {ϕh} ∈ Rnh,1 denotes the vector associated to ϕh and 〈·, ·〉Rnh ,Rnh the usual
scalar product over Rnh . The problem reads: find {ϕh} ∈ Rnh,1 and {λh} ∈ Rmh,1 such
that „

Ar,h BT
h

Bh 0

«
Rnh+mh,nh+mh

„
{ϕh}
{λh}

«
Rnh+mh,1

=

„
Lh
0

«
Rnh+mh,1

.

The matrix of order mh + nh is symmetric but not positive definite. We use exact
integration methods and the LU decomposition method.

From ϕh, an approximation vh of the control v is given by vh = −ϕh 1qT ∈ L2(QT ).
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Change of the norm : computation of C0 and α

In order to approximate the values of the constants C0, α appearing in (15)-(16) we
consider the following problem :

find α > 0 and C0 > 0 such that sup
ϕh∈Φh

‖ϕh‖2
L2(0,T ;H1

0 (0,1))

‖ϕh‖2
L2(QT )

≤
1

C0hα
, ∀h > 0.

Since dim Φh <∞, the supremum is, for any fixed h > 0, the solution of the following
eigenvalue problem :

∀h > 0, γh = sup

γ : Kh{ψh} = γJh{ψh}, ∀{ψh} ∈ Rmh \ {0}

ff

We determine C0 and α such that C0hα = γ−1
h . We obtain

C0 ≈ 1.48× 10−2, α ≈ 2.1993.

We check that the constant γh (and so C0 and α) does not depend on T nor on the

controllability domain.

Arnaud Münch Controllability of the linear 1D wave equation with inner moving forces



Change of the norm : computation of C0 and α

In order to approximate the values of the constants C0, α appearing in (15)-(16) we
consider the following problem :

find α > 0 and C0 > 0 such that sup
ϕh∈Φh

‖ϕh‖2
L2(0,T ;H1

0 (0,1))

‖ϕh‖2
L2(QT )

≤
1

C0hα
, ∀h > 0.

Since dim Φh <∞, the supremum is, for any fixed h > 0, the solution of the following
eigenvalue problem :

∀h > 0, γh = sup

γ : Kh{ψh} = γJh{ψh}, ∀{ψh} ∈ Rmh \ {0}

ff

We determine C0 and α such that C0hα = γ−1
h . We obtain

C0 ≈ 1.48× 10−2, α ≈ 2.1993.

We check that the constant γh (and so C0 and α) does not depend on T nor on the

controllability domain.

Arnaud Münch Controllability of the linear 1D wave equation with inner moving forces



The discrete inf-sup test

In order to solve the mixed formulation (13), we first test numerically the discrete
inf-sup condition (14). Taking η = r > 0 so that ar,h(ϕ,ϕ) = (ϕ,ϕ)Φ for all ϕ,ϕ ∈ Φ, it
is readily seen that the discrete inf-sup constant satisfies

δh := inf
√

δ : BhA−1
r,h BT

h {λh} = δ Jh{λh}, ∀ {λh} ∈ Rmh \ {0}
ff
.

The matrix BhA−1
r,h BT

h is symmetric, positive definite so that δh > 0 for any h > 0.

24

22

20

18

16

14

12
10 10-2 -1

h

δh

• q0
T with T = 2.2;

+ q0
T with T = 2;

J q1
T with T = 2;

� q2
T with T = 2.2;

� q2
T with T = 2.

I q3
T with T = 2.2.

=⇒ (Φh,Mh) passes the
discrete inf-sup test !

Figure: δh vs. h for various control domains qT , T > 0 and r = 10−1.
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δh := inf
√

δ : BhA−1
r,h BT

h {λh} = δ Jh{λh}, ∀ {λh} ∈ Rmh \ {0}
ff
.

The matrix BhA−1
r,h BT

h is symmetric, positive definite so that δh > 0 for any h > 0.

24
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16

14

12
10 10-2 -1

h

δh

• q0
T with T = 2.2;

+ q0
T with T = 2;

J q1
T with T = 2;

� q2
T with T = 2.2;

� q2
T with T = 2.

I q3
T with T = 2.2.

=⇒ (Φh,Mh) passes the
discrete inf-sup test !

Figure: δh vs. h for various control domains qT , T > 0 and r = 10−1.
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Geometries
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Figure: Time dependent domains q i
T , i ∈ {0,1,2,3}.
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Triangular meshes
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Figure: Meshes ]1 associated with the domains q i
T =2.2 : i = 0,1,2,3.
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Numerical illustration

T = 2.; y0(x) = sin(πx); y1 = 0; qT = q2
2

] Mesh 1 2 3 4 5
h 7.18× 10−2 3.59× 10−2 1.79× 10−2 8.97× 10−3 4.49× 10−3

‖vh‖L2(qT )
5.370 5.047 4.893 4.815 4.776

‖Lϕh‖L2(0,T ;H−1(0,1))
2.286 9.43× 10−1 3.76× 10−1 1.5× 10−1 6.15× 10−2

‖v − vh‖L2(qT )
2.45× 10−1 9.65× 10−2 4.32× 10−2 2.29× 10−2 1.10× 10−2

‖y − λh‖L2(QT )
5.63× 10−3 1.57× 10−3 4.04× 10−4 1.03× 10−4 2.61× 10−5

κ 2.46× 107 2.67× 108 2.96× 109 3.03× 1010 3.08× 1011

Table: Norms vs. h for r = 10−1.

r = 10−1 : ‖v − vh‖L2(qT )
≈ O(h1.3), ‖Lϕh‖L2(0,T ;H−1(0,1))

≈ O(h1.3), ‖y − λh‖L2(QT )
≈ O(h1.94)

r = 103 : ‖v − vh‖L2(qT )
≈ O(h1.09), ‖Lϕh‖L2(QT )

≈ O(h1.04), ‖y − λh‖L2(QT )
≈ O(h2.01).
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Convergence as h→ 0

T = 2.; y0(x) = sin(πx); y1 = 0; qT = q2
2

10
−2

10
−1

10
−4

10
−2

10
0

h

Figure: r = 10−1; qT = q2
2.2; Norms ‖v − vh‖L2(qT ) (•) and

‖y − λh‖L2(QT ) (�) vs. h.
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Numerical illustration

T = 2.2; y0(x) = e−500(x−0.8)2
; y1 = 0; qT = q2

2.2

0

0.5

1

0

1

2
−200

−150

−100

−50

0

50

t
x

ϕh

0

0.5

1

0

1

2
−0.5

0

0.5

1

t
x

λh

Figure: r = 10−1; qT = q2
2.2 : Functions ϕh (Left) and λh (Right) over QT .

‖v − vh‖L2(qT ) ≈ e5.85h1.4, ‖Lϕh‖L2(QT ) ≈ e7.96h1.31, ‖y − λh‖L2(QT ) ≈ e1.508h1.62
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Numerical illustration

T = 2.2; y0(x) =
x
θ

1(0,θ)(x)+
1− x
1− θ

1(θ,1)(x), y1(x) = 0, θ ∈ (0, 1) qT = q2
2.2
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Figure: Example EX3 with θ = 1/3; r = 10−1; qT = q2
2.2 : Functions ϕh (Left) and λh (Right).

‖v−vh‖L2(qT ) ≈ e1.54h0.47, ‖Lϕh‖L2(QT ) ≈ e2.91h0.54, ‖y−λh‖L2(QT ) ≈ e−1.52h1.29.
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Numerical illustration

T = 2.2; y0(x) = e−500(x−0.8)2
; y1 = 0; qT = q3
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Figure: Example EX2: qT = q3
2.2 - Function ϕh (Left) and λh (Right) over QT .
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Numerical illustration

T = 2.2; y0(x) =
x
θ

1(0,θ)(x)+
1− x
1− θ

1(θ,1)(x), y1(x) = 0, θ ∈ (0, 1) qT = q3
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Figure: Example EX3, θ = 1/3: qT = q3
2.2 - Function ϕh (Left) and λh (Right) over QT .
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Numerical illustration : qT → ∪t∈(0,T )γ(t)× {t}

T = 2.2; y0(x) = sin(πx), y1(x) = 0, θ ∈ (0, 1) qT = q2
2

δ0 10−1 10−1/2 10−1/22 10−1/23 10−1/24 10−1/25 10−1/26

] triangles 68 740 68 464 68 402 68 728 68 422 68 966 68 368
‖vh‖L2(qT )

4.8308 7.3308 11.5743 18.8056 29.7354 47.3157 123.9704

‖vh‖L2(H−1)
0.0035 0.0042 0.0066 0.0107 0.0170 0.0270 0.0704

Table: Example EX1; qT = q2
2 ; Norms of the control vh obtained for the EX1 for control domains q2

2 for different
values of δ0.
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Non constant velocity

c(x) =

8<:
1, x ∈ [0, 0.45]
∈ [1, 5], (c′(x) > 0), x ∈ (0.45, 0.55)
5, x ∈ [0.55, 1].
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Figure: r = 10−1 :Example EX3, θ = 1/3: qT = q2
2 for a non-constant velocity of propagation - Function ϕh

(Left) and λh (Right) over QT .
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T < 2
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Figure: Example EX3, θ = 1/3: qT = q2
1 - Function ϕh (Left) and λh (Right) over QT .
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Minimization of J??
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n

 

 
r = 10 3

r = 10− 1

Figure: Example EX3. Evolution of the residue ‖gn‖
L2(0,T ;H1

0 (0,1))
/‖g0‖

L2(0,T ;H1
0 (0,1))

w.r.t. the iterate n.

gn = −∆−1(Lϕn)

] Mesh 1 2 3 4 5
h 7.18× 10−2 3.59× 10−2 1.79× 10−2 8.97× 10−3 4.49× 10−3

] iterate 87 105 119 140 166
‖λh − y‖L2(QT )

1.15× 10−1 5.2× 10−2 1.65× 10−2 6.03× 10−3 2.89× 10−3

Table: Conjugate gradient algorithm. EX3 with θ = 1/3, for control domain q2
2 and r = 103.Arnaud Münch Controllability of the linear 1D wave equation with inner moving forces



Concluding remarks

ROBUST METHOD OF APPROXIMATION - NO SPURIOUS PHENOMENA USUAL WITH DUAL
APPROACH

SPACE-TIME APPROACH VERY APPROPRIATE FOR NON CYLINDRICAL SITUATION AND TO
MESH ADAPTATION
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Time-Space Refinement of the mesh according to the gradient of λh (from [Cîndea,
Münch, 2014] )
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Concluding remarks

THE APPROACH MAY BE ADAPTED TO TREAT THE HEAT EQUATION (IN PROGRESS WITH
D. A. DE SOUZA), ETC.

THIS WORK ALLOWS NOW TO CONSIDER THE OPTIMIZATION OF THE CONTROLS WITH
RESPECT TO qT :

∀(y0, y1) ∈ H, T > 0 and L ∈ (0, 1), the problem reads :

inf
qT∈CL

‖vqT ‖L2(qT ), CL = {qT : qT ⊂ QT , |qT | = L|QT | and such that (8) holds}

where vqT denotes the control of minimal L2(qT ) norm for the wave eq. distributed over
qT .
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Concluding remarks

ADAPTATION OF THE METHOD TO SOLVE INVERSE PROBLEMS VIA SPACE-TIME
FORMULATION

Given the observation z ∈ L2(qT ), find y ∈ Y such that8><>:
Ly = 0 in QT ,

y = z in qT ,

y = 0 on ΣT

Set Y = {y ∈ L2(qT ), Ly = 0 in L2(0,T ,H−1(Ω)), y = 0 on ΣT }, solve the
Least-Squares problem :

inf
y∈Y

1
2

ZZ
qT

(y − z)2 dx dt

........

THANK YOU FOR YOUR ATTENTION
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