About Least-squares type approach to address direct and controllability problems

Arnaud Münch

Université Blaise Pascal - Clermont-Ferrand - France
Chambery, June 15-18, 2015
joint work with Pablo Pedregal (Ciudad Real, Spain)

Introduction (the linear heat eq. to fix ideas)

$$
\begin{aligned}
& \omega \subset \Omega \subset \mathbb{R}^{N}, N \geq 1, a \in C^{1}\left(\bar{\Omega}, \mathbb{R}_{*}^{+}\right), d \in L^{\infty}\left(Q_{T}\right), T>0, Q_{T}=\Omega \times(0, T), \\
& q_{T}=\omega \times(0, T), \Gamma_{T}:=\partial \Omega \times(0, T)
\end{aligned}
$$

$$
\left\{\begin{array}{lr}
L y \equiv y_{t}-\nabla \cdot(a(x) \nabla y)+d y=v 1_{\omega}, & \text { in } Q_{T} \tag{1}\\
y=0, & \text { on } \Gamma_{T} \\
y(\cdot, 0)=y_{0}, & \text { in } \Omega .
\end{array}\right.
$$

$\left(y_{0} \in L^{2}(\Omega), v \in L^{2}\left(q_{T}\right)\right) \Longrightarrow y \in C^{0}\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$.
Null controllability $-\forall T>0, \omega \subset \Omega, \quad \exists v \in L^{2}\left(q_{T}\right)$ s.t. $y(\cdot, T)=0$ (Fursikov-Imanuvilov'96, Robbiano-Lebeau'95, etc)

Control of minimal L^{2} - norm-

$$
\left\{\begin{array}{l}
\min J(y, v):=\|v\|_{L^{2}\left(q_{T}\right)}^{2} \quad \text { over } C\left(y_{0}, T\right) \\
C\left(y_{0}, T\right)=\left\{(y, v): v \in L^{2}\left(q_{T}\right), \quad y \text { solves }(1) \text { and satisfies } y(T, \cdot)=0\right\}
\end{array}\right.
$$

Introduction (the linear heat eq. to fix ideas)

$\omega \subset \Omega \subset \mathbb{R}^{N}, N \geq 1, a \in C^{1}\left(\bar{\Omega}, \mathbb{R}_{*}^{+}\right), d \in L^{\infty}\left(Q_{T}\right), T>0, Q_{T}=\Omega \times(0, T)$, $q_{T}=\omega \times(0, T), \Gamma_{T}:=\partial \Omega \times(0, T)$

$$
\left\{\begin{array}{lr}
L y \equiv y_{t}-\nabla \cdot(a(x) \nabla y)+d y=v 1_{\omega}, & \text { in } Q_{T} \tag{1}\\
y=0, & \text { on } \Gamma_{T} \\
y(\cdot, 0)=y_{0}, & \text { in } \Omega .
\end{array}\right.
$$

$\left(y_{0} \in L^{2}(\Omega), v \in L^{2}\left(q_{T}\right)\right) \Longrightarrow y \in C^{0}\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$.
Null controllability $-\forall T>0, \omega \subset \Omega, \quad \exists v \in L^{2}\left(q_{T}\right)$ s.t. $y(\cdot, T)=0$ (Fursikov-Imanuvilov'96, Robbiano-Lebeau'95, etc)

Control of minimal L^{2} - norm-

Introduction (the linear heat eq. to fix ideas)

$\omega \subset \Omega \subset \mathbb{R}^{N}, N \geq 1, a \in C^{1}\left(\bar{\Omega}, \mathbb{R}_{*}^{+}\right), d \in L^{\infty}\left(Q_{T}\right), T>0, Q_{T}=\Omega \times(0, T)$, $q_{T}=\omega \times(0, T), \Gamma_{T}:=\partial \Omega \times(0, T)$

$$
\left\{\begin{array}{lr}
L y \equiv y_{t}-\nabla \cdot(a(x) \nabla y)+d y=v 1_{\omega}, & \text { in } Q_{T} \tag{1}\\
y=0, & \text { on } \Gamma_{T} \\
y(\cdot, 0)=y_{0}, & \text { in } \Omega .
\end{array}\right.
$$

$\left(y_{0} \in L^{2}(\Omega), v \in L^{2}\left(q_{T}\right)\right) \Longrightarrow y \in C^{0}\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$.
Null controllability $-\forall T>0, \omega \subset \Omega, \quad \exists v \in L^{2}\left(q_{T}\right)$ s.t. $y(\cdot, T)=0$
(Fursikov-Imanuvilov'96, Robbiano-Lebeau'95, etc)

Control of minimal L^{2} - norm-

$$
\left\{\begin{array}{l}
\min J(y, v):=\|v\|_{L^{2}\left(q_{T}\right)}^{2} \quad \text { over } \quad \mathcal{C}\left(y_{0}, T\right) \tag{2}\\
\mathcal{C}\left(y_{0}, T\right)=\left\{(y, v): v \in L^{2}\left(q_{T}\right), \quad y \text { solves (1) and satisfies } y(T, \cdot)=0\right\}
\end{array}\right.
$$

Minimal L^{2} norm control using duality [Glowinski-Lions 94']

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(y, v)=-\inf _{\phi_{T} \in H} J^{\star}\left(\phi_{T}\right), J^{\star}\left(\phi_{T}\right):=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x
$$

where ϕ solves the backward system

$$
\left\{\begin{array}{l}
L^{\star} \phi \equiv-\phi_{t}-\nabla \cdot(a(x) \nabla \phi)+d \phi=0 \quad Q_{T}=(0, T) \times \Omega, \\
\phi=0 \quad \Sigma_{T}=(0, T) \times \partial \Omega, \quad \phi(T, \cdot)=\phi_{T} \quad \Omega
\end{array}\right.
$$

H-completion of $\mathcal{D}(\Omega)$ with respect to the norm

From the observability inequality
$C(T, \omega)\|\phi(0, \cdot)\|_{L^{2}(\Omega)}^{2} \leq\left\|\phi_{T}\right\|_{H}^{2} \quad \forall \phi_{T} \in L^{2}(\Omega)$,
J^{\star} is coercive on H. The control is given by $v=\phi \mathcal{X}_{\omega}$ on Q_{T}.

Minimal L^{2} norm control using duality [Glowinski-Lions 94']

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(y, v)=-\inf _{\phi_{T} \in H} J^{\star}\left(\phi_{T}\right), J^{\star}\left(\phi_{T}\right):=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x
$$

where ϕ solves the backward system

$$
\left\{\begin{array}{l}
L^{\star} \phi \equiv-\phi_{t}-\nabla \cdot(a(x) \nabla \phi)+d \phi=0 \quad Q_{T}=(0, T) \times \Omega, \\
\phi=0 \quad \Sigma_{T}=(0, T) \times \partial \Omega, \quad \phi(T, \cdot)=\phi_{T} \quad \Omega .
\end{array}\right.
$$

H-completion of $\mathcal{D}(\Omega)$ with respect to the norm

$$
\left\|\phi_{T}\right\|_{H}=\left(\int_{q_{T}} \phi^{2}(t, x) d x d t\right)^{1 / 2}
$$

From the observability inequality
$C(T, \omega)\|\phi(0, \cdot)\|_{L^{2}(\Omega)}^{2} \leq\left\|\phi_{T}\right\|_{H}^{2} \quad \forall \phi_{T} \in L^{2}(\Omega)$,
J^{\star} is coercive on H. The control is given by $v=\phi \mathcal{X}_{\omega}$ on Q_{T}.

Minimal L^{2} norm control using duality [Glowinski-Lions 94']

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, T\right)} J(y, v)=-\inf _{\phi_{T} \in H} J^{\star}\left(\phi_{T}\right), J^{\star}\left(\phi_{T}\right):=\frac{1}{2} \int_{q_{T}} \phi^{2} d x d t+\int_{\Omega} \phi(0, \cdot) y_{0} d x
$$

where ϕ solves the backward system

$$
\left\{\begin{array}{l}
L^{\star} \phi \equiv-\phi_{t}-\nabla \cdot(a(x) \nabla \phi)+d \phi=0 \quad Q_{T}=(0, T) \times \Omega, \\
\phi=0 \quad \Sigma_{T}=(0, T) \times \partial \Omega, \quad \phi(T, \cdot)=\phi_{T} \quad \Omega
\end{array}\right.
$$

H-completion of $\mathcal{D}(\Omega)$ with respect to the norm

$$
\left\|\phi_{T}\right\|_{H}=\left(\int_{q_{T}} \phi^{2}(t, x) d x d t\right)^{1 / 2}
$$

From the observability inequality

$$
C(T, \omega)\|\phi(0, \cdot)\|_{L^{2}(\Omega)}^{2} \leq\left\|\phi_{T}\right\|_{H}^{2} \quad \forall \phi_{T} \in L^{2}(\Omega)
$$

J^{\star} is coercive on H. The control is given by $v=\phi \mathcal{X}_{\omega}$ on Q_{T}.
$N=1-L^{2}(0,1)$-norm of the HUM control with respect to time Hugeness of $H: H^{-s} \subset H$ for any $s \geq 0 \Longrightarrow$ III-posedness

Figure: $y_{0}(x)=\sin (\pi x)-T=1-\omega=(0.2,0.8)-t \rightarrow\|v(\cdot, t)\|_{L^{2}(0,1)}$ in $[0, T]$

Remedies via Carleman approach and convergence results in [Fernandez-Cara, Münch, 2011-2014]

Least-squares approach

We define the non-empty set

$$
\begin{array}{r}
\mathcal{A}=\left\{(u, f) ; u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; u^{\prime} \in L^{2}\left(0, T, H^{-1}(\Omega)\right),\right. \\
\left.u(\cdot, 0)=u_{0}, u(\cdot, T)=0, f \in L^{2}\left(q_{T}\right)\right\}
\end{array}
$$

and find $(u, f) \in \mathcal{A}$ solution of the heat eq. !

For any $(u, f) \in \mathcal{A}$, we define the "corrector" $v=v(u, f) \in H^{1}\left(Q_{T}\right)$ solution of the $Q_{T^{-}}$ elliptic problem

Least-squares approach

We define the non-empty set

$$
\begin{array}{r}
\mathcal{A}=\left\{(u, f) ; u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; u^{\prime} \in L^{2}\left(0, T, H^{-1}(\Omega)\right),\right. \\
\left.u(\cdot, 0)=u_{0}, u(\cdot, T)=0, f \in L^{2}\left(q_{T}\right)\right\}
\end{array}
$$

and find $(u, f) \in \mathcal{A}$ solution of the heat eq. !

For any $(u, f) \in \mathcal{A}$, we define the "corrector" $v=v(u, f) \in H^{1}\left(Q_{T}\right)$ solution of the $Q_{T^{-}}$ elliptic problem

$$
\left\{\begin{array}{lr}
-v_{t t}-\nabla \cdot(a(x) \nabla v)+\left(u_{t}-\nabla \cdot(a(x) \nabla u)+d u-f 1_{\omega}\right)=0, & (x, t) \in Q_{T}, \tag{3}\\
v_{t}=0, & x \in \Omega, t \in\{0, T\} \\
v=0, & x \in \Sigma_{T} .
\end{array}\right.
$$

Least-squares approach (2)

Theorem
u is a controlled solution of the heat eq. by the control function $f 1_{\omega} \in L^{2}\left(q_{T}\right)$ if and only if (u, f) is a solution of the extremal problem

$$
\begin{equation*}
\inf _{(u, f) \in \mathcal{A}} E(u, f):=\frac{1}{2} \iint_{Q_{T}}\left(\left|v_{t}\right|^{2}+a(x)|\nabla v|^{2}\right) d x d t \tag{4}
\end{equation*}
$$

Proof.
 \Longleftarrow From the null controllability of the heat eq., the extremal problem is well-posed in the sense that the infimum, equal to zero, is reached by any controlled solution of the heat eq. (the minimizer is not unique).

\Longrightarrow Conversely, we check that any minimizer of E is a solution of the (controlled) heat
eq.
We define the vector space

$$
\mathcal{A}_{0}=\left\{(u, f) ; u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; u^{\prime} \in L^{2}\left(0, T, H^{-1}(\Omega)\right),\right.
$$

$$
\left.u(\cdot, 0)=u(\cdot, T)=0, x \in \Omega, f \in L^{2}\left(q_{T}\right)\right\}
$$

Least-squares approach (2)

Theorem
u is a controlled solution of the heat eq. by the control function $f 1_{\omega} \in L^{2}\left(q_{T}\right)$ if and only if (u, f) is a solution of the extremal problem

$$
\begin{equation*}
\inf _{(u, f) \in \mathcal{A}} E(u, f):=\frac{1}{2} \iint_{Q_{T}}\left(\left|v_{t}\right|^{2}+a(x)|\nabla v|^{2}\right) d x d t \tag{4}
\end{equation*}
$$

Proof.
\Longleftarrow From the null controllability of the heat eq., the extremal problem is well-posed in the sense that the infimum, equal to zero, is reached by any controlled solution of the heat eq. (the minimizer is not unique).
\Longrightarrow Conversely, we check that any minimizer of E is a solution of the (controlled) heat
eq.
We define the vector space
$\mathcal{A}_{0}=\left\{(u, f) ; u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; u^{\prime} \in L^{2}\left(0, T, H^{-1}(\Omega)\right)\right.$, $\left.u(, 0)=u(, T)=0, x \in \Omega, f \in L^{2}\left(q_{T}\right)\right\}$

Least-squares approach (2)

Theorem
u is a controlled solution of the heat eq. by the control function $f 1_{\omega} \in L^{2}\left(q_{T}\right)$ if and only if (u, f) is a solution of the extremal problem

$$
\begin{equation*}
\inf _{(u, f) \in \mathcal{A}} E(u, f):=\frac{1}{2} \iint_{Q_{T}}\left(\left|v_{t}\right|^{2}+a(x)|\nabla v|^{2}\right) d x d t \tag{4}
\end{equation*}
$$

Proof.
\Longleftarrow From the null controllability of the heat eq., the extremal problem is well-posed in the sense that the infimum, equal to zero, is reached by any controlled solution of the heat eq. (the minimizer is not unique).
\Longrightarrow Conversely, we check that any minimizer of E is a solution of the (controlled) heat eq.:
We define the vector space

$$
\begin{array}{r}
\mathcal{A}_{0}=\left\{(u, f) ; u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; u^{\prime} \in L^{2}\left(0, T, H^{-1}(\Omega)\right)\right. \\
\left.u(\cdot, 0)=u(\cdot, T)=0, x \in \Omega, f \in L^{2}\left(q_{T}\right)\right\}
\end{array}
$$

The first variation of E at (u, f) in the admissible direction $(U, F) \in \mathcal{A}_{0}$ defined by

$$
\begin{equation*}
<E^{\prime}(u, f),(U, F)>=\lim _{\eta \rightarrow 0} \frac{E((u, f)+\eta(U, F))-E(u, f)}{\eta} \tag{5}
\end{equation*}
$$

exists and is given by

$$
\begin{equation*}
<E^{\prime}(u, f),(U, F)>=\iint_{Q_{T}}\left(v_{t} V_{t}+a(x) \nabla v \cdot \nabla V\right) d x d t \tag{6}
\end{equation*}
$$

where the corrector $V \in H^{1}\left(Q_{T}\right)$ associated to (U, F) is the solution of

$$
\left\{\begin{array}{lr}
U_{t}-V_{t t}-\nabla \cdot(a(x)(\nabla U+\nabla V))-F 1_{\omega}=0, & (x, t) \in Q_{T}, \tag{7}\\
V_{t}(x, 0)=V_{t}(x, T)=0, & x \in \Omega \\
V(0, t)=V(1, t)=0, & t \in(0, T)
\end{array}\right.
$$

Using that

$$
-\int_{0}^{T}<U_{t}, v>_{H^{-1}(\Omega), H^{1}(\Omega)} d t=\iint_{Q_{T}} U v_{t} d x d t-\int_{0}^{1}[U v]_{0}^{T} d x=\iint_{Q_{T}} U v_{t} d x d t
$$

we get that

$$
<E^{\prime}(u, f),(U, F)>=\iint_{Q_{T}}\left(U v_{t}-a(x) \nabla U \cdot \nabla v+F v 1_{\omega}\right) d x d t, \quad \forall(U, F) \in \mathcal{A}_{0}
$$

Least-squares approach (2)

Therefore, if (u, f) minimizes E, the equality $\left.<E^{\prime}(u, f),(U, F)\right\rangle=0$ for all $(U, F) \in A_{0}$ implies that the corrector $v=v(u, f)$ satisfies

$$
\begin{cases}-v_{t}-\nabla \cdot(a(x) \nabla v)+d v=0, & (x, t) \in Q_{T} \\ v=0, & (x, t) \in q_{T}\end{cases}
$$

in addition to the boundary conditions: $v=0$ on Σ_{T} and $v_{t}=0$ on $\Omega \times\{0, T\}$. Unique continuation property implies that $v=0$ in Q_{T} and so $E(u, f)=0$ and so $(u, f) \in \mathcal{A}$ solves the heat eq.

Remark The proposition educes the search of ONE control f distributed in ω to the minimization of the functional E over \mathcal{A}.

Remark Least squares terminology

Least-squares approach (2)

Therefore, if (u, f) minimizes E, the equality $\left.<E^{\prime}(u, f),(U, F)\right\rangle=0$ for all $(U, F) \in A_{0}$ implies that the corrector $v=v(u, f)$ satisfies

$$
\left\{\begin{array}{lr}
-v_{t}-\nabla \cdot(a(x) \nabla v)+d v=0, & (x, t) \in Q_{T} \\
v=0, & (x, t) \in q_{T}
\end{array}\right.
$$

in addition to the boundary conditions: $v=0$ on Σ_{T} and $v_{t}=0$ on $\Omega \times\{0, T\}$. Unique continuation property implies that $v=0$ in Q_{T} and so $E(u, f)=0$ and so $(u, f) \in \mathcal{A}$ solves the heat eq.

Remark The proposition educes the search of ONE control f distributed in ω to the minimization of the functional E over \mathcal{A}.

Remark Least squares terminology

Least-squares approach (2)

Therefore, if (u, f) minimizes E, the equality $\left.<E^{\prime}(u, f),(U, F)\right\rangle=0$ for all $(U, F) \in A_{0}$ implies that the corrector $v=v(u, f)$ satisfies

$$
\left\{\begin{array}{lr}
-v_{t}-\nabla \cdot(a(x) \nabla v)+d v=0, & (x, t) \in Q_{T} \\
v=0, & (x, t) \in q_{T}
\end{array}\right.
$$

in addition to the boundary conditions: $v=0$ on Σ_{T} and $v_{t}=0$ on $\Omega \times\{0, T\}$. Unique continuation property implies that $v=0$ in Q_{T} and so $E(u, f)=0$ and so $(u, f) \in \mathcal{A}$ solves the heat eq.

Remark The proposition educes the search of ONE control f distributed in ω to the minimization of the functional E over \mathcal{A}.

Remark Least squares terminology :

$$
E(u, f):=\frac{1}{2}\left\|u_{t}-\nabla \cdot(a(x) \nabla u)+d u-f 1_{\omega}\right\|_{H^{-1}\left(Q_{T}\right)}^{2}
$$

Least-squares approach (3): convergence of (some) minimizing sequences

For any $s_{\mathcal{A}}:=\left(u_{\mathcal{A}}, f_{\mathcal{A}}\right) \in \mathcal{A}$, we consider the equivalent problem :

$$
\begin{equation*}
\min _{(u, f) \in \mathcal{A}_{0}} E_{s_{\mathcal{A}}}(u, f), \quad E_{\mathcal{S}_{\mathcal{A}}}(u, f):=E\left(s_{\mathcal{A}}+(u, f)\right) \tag{8}
\end{equation*}
$$

$\left(\mathcal{A}_{0},\|\cdot\|_{\mathcal{A}_{0}}\right)$ is a Hilbert space with and introduce

$$
\begin{equation*}
\|u, f\|_{\mathcal{A}_{0}}^{2}:=\iint_{Q_{T}}\left(|u|^{2}+|\nabla u|^{2}\right) d x d t+\int_{0}^{T}\left\|u_{t}(\cdot, t)\right\|_{H^{-1}(\Omega)}^{2} d t+\iint_{Q_{T}}|f|^{2} d x d t \tag{9}
\end{equation*}
$$

The boundedness of $E_{S_{\mathcal{A}}}$ implies only the boundedness of the corrector v for the $H^{1}\left(Q_{T}\right)$-norm.

It turns out that minimizing sequences for $E_{S_{\mathcal{A}}}$ which belong to a precise subset of \mathcal{A}_{0} remain bounded uniformly.

Actually, this property is mainly due to the fact the functional $E_{S_{\mathcal{A}}}$ is invariant in the subset of \mathcal{A}_{0} which satisfies the state equations.

Least-squares approach (3): convergence of (some) minimizing sequences

For any $s_{\mathcal{A}}:=\left(u_{\mathcal{A}}, f_{\mathcal{A}}\right) \in \mathcal{A}$, we consider the equivalent problem :

$$
\begin{equation*}
\min _{(u, f) \in \mathcal{A}_{0}} E_{s_{\mathcal{A}}}(u, f), \quad E_{s_{\mathcal{A}}}(u, f):=E\left(s_{\mathcal{A}}+(u, f)\right) \tag{8}
\end{equation*}
$$

$\left(\mathcal{A}_{0},\|\cdot\|_{\mathcal{A}_{0}}\right)$ is a Hilbert space with and introduce

$$
\begin{equation*}
\|u, f\|_{\mathcal{A}_{0}}^{2}:=\iint_{Q_{T}}\left(|u|^{2}+|\nabla u|^{2}\right) d x d t+\int_{0}^{T}\left\|u_{t}(\cdot, t)\right\|_{H^{-1}(\Omega)}^{2} d t+\iint_{Q_{T}}|f|^{2} d x d t \tag{9}
\end{equation*}
$$

The boundedness of $E_{s_{\mathcal{A}}}$ implies only the boundedness of the corrector v for the $H^{1}\left(Q_{T}\right)$-norm.

It turns out that minimizing sequences for $E_{S_{\mathcal{A}}}$ which belong to a precise subset of \mathcal{A}_{0} remain bounded uniformly.

Actually, this property is mainly due to the fact the functional $E_{S_{\mathcal{A}}}$ is invariant in the subset of \mathcal{A}_{0} which satisfies the state equations.

Least-squares approach (3): convergence of the minimizing sequences

We note

- T which maps a triplet $(u, f) \subset \mathcal{A}$ into the corresponding vector $v \in H^{1}\left(Q_{T}\right)$.
- $A=\operatorname{Ker} \mathbf{T} \cap \mathcal{A}_{0}$ composed of the elements (u, f) satisfying the heat eq. and such that u vanishes on the boundary ∂Q_{T}.
- $A^{\perp}=\left(\operatorname{Ker} \mathbf{T} \cap \mathcal{A}_{0}\right)^{\perp}$ the orthogonal complement of A in \mathcal{A}_{0}
$-P_{A^{\perp}}: \mathcal{A}_{0} \rightarrow A^{\perp}$ the (orthogonal) projection on A^{\perp}.
We define the minimizing sequence $\left(u^{k}, f^{k}\right)_{k>0} \in A^{\perp}$ as follows:

where $\left(\bar{u}^{k}, \bar{f}^{k}\right) \in \mathcal{A}_{0}$ is defined as the unique solution of the formulation

$$
\left\langle\left(u^{k}, f^{k}\right),(U, F)\right\rangle_{\mathcal{A}_{0}}=\left\langle E_{S_{\mathcal{A}}^{\prime}}^{\prime}\left(u^{k}, f^{k}\right),(U, F)\right\rangle, \quad \forall(U, F) \in \mathcal{A}_{0} .
$$

Least-squares approach (3): convergence of the minimizing sequences

We note

- T which maps a triplet $(u, f) \subset \mathcal{A}$ into the corresponding vector $v \in H^{1}\left(Q_{T}\right)$.
- $A=\operatorname{Ker} \mathbf{T} \cap \mathcal{A}_{0}$ composed of the elements (u, f) satisfying the heat eq. and such that u vanishes on the boundary ∂Q_{T}.
- $A^{\perp}=\left(\operatorname{Ker} \mathbf{T} \cap \mathcal{A}_{0}\right)^{\perp}$ the orthogonal complement of A in \mathcal{A}_{0}
$-P_{A^{\perp}}: \mathcal{A}_{0} \rightarrow A^{\perp}$ the (orthogonal) projection on A^{\perp}.
We define the minimizing sequence $\left(u^{k}, f^{k}\right)_{k \geq 0} \in A^{\perp}$ as follows:

$$
\left\{\begin{array}{l}
\left(u^{0}, f^{0}\right) \text { given in } A^{\perp}, \tag{10}\\
\left(u^{k+1}, f^{k+1}\right)=\left(u^{k}, f^{k}\right)-\eta_{k} P_{A^{\perp}}\left(\bar{u}^{k}, \bar{f}^{k}\right), \quad k \geq 0
\end{array}\right.
$$

where $\left(\bar{u}^{k}, \bar{f}^{k}\right) \in \mathcal{A}_{0}$ is defined as the unique solution of the formulation

$$
\begin{equation*}
\left\langle\left(\bar{u}^{k}, \bar{f}^{k}\right),(U, F)\right\rangle_{\mathcal{A}_{0}}=\left\langle E_{s_{\mathcal{A}}}^{\prime}\left(u^{k}, f^{k}\right),(U, F)\right\rangle, \quad \forall(U, F) \in \mathcal{A}_{0} \tag{11}
\end{equation*}
$$

Least-squares approach (3): convergence of the minimizing sequences

We note

- T which maps a triplet $(u, f) \subset \mathcal{A}$ into the corresponding vector $v \in H^{1}\left(Q_{T}\right)$.
- $A=\operatorname{Ker} \mathbf{T} \cap \mathcal{A}_{0}$ composed of the elements (u, f) satisfying the heat eq. and such that u vanishes on the boundary ∂Q_{T}.
- $A^{\perp}=\left(\operatorname{Ker} \mathbf{T} \cap \mathcal{A}_{0}\right)^{\perp}$ the orthogonal complement of A in \mathcal{A}_{0}
$-P_{A^{\perp}}: \mathcal{A}_{0} \rightarrow A^{\perp}$ the (orthogonal) projection on A^{\perp}.
We define the minimizing sequence $\left(u^{k}, f^{k}\right)_{k \geq 0} \in A^{\perp}$ as follows:

$$
\left\{\begin{array}{l}
\left(u^{0}, f^{0}\right) \text { given in } A^{\perp}, \tag{10}\\
\left(u^{k+1}, f^{k+1}\right)=\left(u^{k}, f^{k}\right)-\eta_{k} P_{A^{\perp}}\left(\bar{u}^{k}, \bar{f}^{k}\right), \quad k \geq 0
\end{array}\right.
$$

where $\left(\bar{u}^{k}, \bar{f}^{k}\right) \in \mathcal{A}_{0}$ is defined as the unique solution of the formulation

$$
\begin{equation*}
\left\langle\left(\bar{u}^{k}, \bar{f}^{k}\right),(U, F)\right\rangle_{\mathcal{A}_{0}}=\left\langle E_{s_{\mathcal{A}}}^{\prime}\left(u^{k}, f^{k}\right),(U, F)\right\rangle, \quad \forall(U, F) \in \mathcal{A}_{0} \tag{11}
\end{equation*}
$$

Proposition

For any $s_{\mathcal{A}} \in \mathcal{A}$ and any $\left\{u^{0}, f^{0}\right\} \in A^{\perp}$, the sequence $s_{\mathcal{A}}+\left\{\left(u^{k}, f^{k}\right)\right\}_{k \geq 0} \in \mathcal{A}$ converges strongly to a solution of the extremal problem for E.

Least-squares approach (4): convergence of the minimizing sequences

This proposition is the consequence of the following abstract result :
Lemma
Suppose $\mathbf{T}: X \mapsto Y$ is a linear, continuous operator between Hilbert spaces, and $H \subset X$, a closed subspace, $u_{0} \in X$. Put

$$
E: u_{0}+H \mapsto \mathbb{R}^{+}, \quad E(u)=\frac{1}{2}\|\mathbf{T} u\|^{2}, \quad A=\operatorname{Ker} \mathbf{T} \cap H
$$

```
1. \(E: u_{0}+A^{\perp} \rightarrow \mathbb{R}\) is quadratic, non-negative, and strictly convex, where \(A^{\perp}\) is
    the orthogonal complement of A in H .
    2. If we regard \(E\) as a functional defined on \(H, E\left(u_{0}+\cdot\right)\), and identify \(H\) with its
    dual, then the derivative \(E^{\prime}\left(u_{0}+\cdot\right)\) always belongs to \(A^{\perp}\). In particular, a typical
    steepest descent procedure for \(E\left(u_{0}+\cdot\right)\) will always stay in the manifold
    \(u_{0}+A^{1}\)
    3. If, in addition, min \(_{u \in H} E\left(u_{0}+u\right)=0\), then the steepest descent scheme will
    always produce sequences converging (strongly in \(X\) ) to a unique (in \(u_{0}+A^{\perp}\) )
    minimizer \(u_{0}+\bar{u}\) with zero error.
```


Least-squares approach (4): convergence of the minimizing sequences

This proposition is the consequence of the following abstract result :
Lemma
Suppose $\mathbf{T}: X \mapsto Y$ is a linear, continuous operator between Hilbert spaces, and $H \subset X$, a closed subspace, $u_{0} \in X$. Put

$$
E: u_{0}+H \mapsto \mathbb{R}^{+}, \quad E(u)=\frac{1}{2}\|\mathbf{T} u\|^{2}, \quad A=\operatorname{Ker} \mathbf{T} \cap H .
$$

1. $E: u_{0}+A^{\perp} \rightarrow \mathbb{R}$ is quadratic, non-negative, and strictly convex, where A^{\perp} is the orthogonal complement of A in H .
2. If we regard E as a functional defined on $H, E\left(u_{0}+\cdot\right)$, and identify H with its dual, then the derivative $E^{\prime}\left(u_{0}+\cdot\right)$ always belongs to A^{\perp}. In particular, a typical steepest descent procedure for $E\left(u_{0}+\cdot\right)$ will always stay in the manifold $u_{0}+A^{1}$
3. If, in addition, $\min _{u \in H} E\left(u_{0}+u\right)=0$, then the steepest descent scheme will always produce sequences converging (strongly in X) to a unique (in $u_{0}+A^{\perp}$) minimizer $u_{0}+\bar{u}$ with zero error.

Least-squares approach (4): convergence of the minimizing sequences

This proposition is the consequence of the following abstract result :

Lemma

Suppose $\mathbf{T}: X \mapsto Y$ is a linear, continuous operator between Hilbert spaces, and $H \subset X$, a closed subspace, $u_{0} \in X$. Put

$$
E: u_{0}+H \mapsto \mathbb{R}^{+}, \quad E(u)=\frac{1}{2}\|\mathbf{T} u\|^{2}, \quad A=\operatorname{Ker} \mathbf{T} \cap H .
$$

1. $E: u_{0}+A^{\perp} \rightarrow \mathbb{R}$ is quadratic, non-negative, and strictly convex, where A^{\perp} is the orthogonal complement of A in H .
2. If we regard E as a functional defined on $H, E\left(u_{0}+\cdot\right)$, and identify H with its dual, then the derivative $E^{\prime}\left(u_{0}+\cdot\right)$ always belongs to A^{\perp}. In particular, a typical steepest descent procedure for $E\left(u_{0}+\cdot\right)$ will always stay in the manifold $u_{0}+A^{\perp}$.
3. If, in addition, $\min _{u \in H} E\left(u_{0}+u\right)=0$, then the steepest descent scheme will always produce sequences converging (strongly in X) to a unique (in $u_{0}+A^{\perp}$) minimizer $u_{0}+\bar{u}$ with zero error.

Least-squares approach (4): convergence of the minimizing sequences

This proposition is the consequence of the following abstract result :

Lemma

Suppose $\mathbf{T}: X \mapsto Y$ is a linear, continuous operator between Hilbert spaces, and $H \subset X$, a closed subspace, $u_{0} \in X$. Put

$$
E: u_{0}+H \mapsto \mathbb{R}^{+}, \quad E(u)=\frac{1}{2}\|\mathbf{T} u\|^{2}, \quad A=\operatorname{Ker} \mathbf{T} \cap H .
$$

1. $E: u_{0}+A^{\perp} \rightarrow \mathbb{R}$ is quadratic, non-negative, and strictly convex, where A^{\perp} is the orthogonal complement of A in H.
2. If we regard E as a functional defined on $H, E\left(u_{0}+\cdot\right)$, and identify H with its dual, then the derivative $E^{\prime}\left(u_{0}+\cdot\right)$ always belongs to A^{\perp}. In particular, a typical steepest descent procedure for $E\left(u_{0}+\cdot\right)$ will always stay in the manifold $u_{0}+A^{\perp}$.
3. If, in addition, $\min _{u \in H} E\left(u_{0}+u\right)=0$, then the steepest descent scheme will always produce sequences converging (strongly in X) to a unique (in $u_{0}+A^{\perp}$) minimizer $u_{0}+\bar{u}$ with zero error.

Least-squares approach (4): convergence of the minimizing sequences

Proof of the lemma - 1-) Suppose there are $u_{i} \in A^{\perp}, i=1,2$, such that

$$
E\left(u_{0}+\frac{1}{2} u_{1}+\frac{1}{2} u_{2}\right)=\frac{1}{2} E\left(u_{0}+u_{1}\right)+\frac{1}{2} E\left(u_{0}+u_{2}\right) .
$$

Due to the strict convexity of the norm in a Hilbert space, we deduce that this equality can only occur if $\mathbf{T} u_{1}=\mathbf{T} u_{2}$. So therefore $u_{1}-u_{2} \in A \cap A^{\perp}=\{0\}$, and $u_{1}=u_{2}$.

2-) Note that for arbitrary $U \in A, \mathbf{T} U=0$, and so

$$
E\left(u_{0}+u+U\right)=\frac{1}{2}\left\|\mathbf{T} u_{0}+\mathbf{T} u+\mathbf{T} U\right\|^{2}=\frac{1}{2}\left\|\mathbf{T} u_{0}+\mathbf{T} u\right\|^{2}=E\left(u_{0}+u\right) .
$$

Therefore the derivative $E^{\prime}\left(u_{0}+u\right)$, the steepest descent direction for E at $u_{0}+u$, has to be orthogonal to all such $U \in A$.

Least-squares approach (4): convergence of the minimizing sequences

Proof of the lemma 1-3-) Finally, assume $E\left(u_{0}+\bar{u}\right)=0$. It is clear that this minimizer is unique in $u_{0}+A^{\perp}$ (recall the strict convexity in (i)). This, in particular, implies that for arbitrary $u \in A^{\perp}$,

$$
\begin{equation*}
\left\langle E^{\prime}\left(u_{0}+u\right), \bar{u}-u\right\rangle \leq 0, \tag{12}
\end{equation*}
$$

because this inner product is the derivative of the section $t \mapsto E\left(u_{0}+t \bar{u}+(1-t) u\right)$ at $t=0$, and this section must be a positive parabola with the minimum point at $t=1$. If we consider the gradient flow

$$
u^{\prime}(t)=-E^{\prime}\left(u_{0}+u(t)\right), \quad t \in[0,+\infty)
$$

then, because of (12),

$$
\frac{d}{d t}\left(\frac{1}{2}\|u(t)-\bar{u}\|^{2}\right)=\left\langle u(t)-\bar{u}, u^{\prime}(t)\right\rangle=\left\langle u(t)-\bar{u},-E^{\prime}\left(u_{0}+u(t)\right)\right\rangle \leq 0
$$

This implies that sequences produced through a steepest descent method will be minimizing for E, uniformly bounded in X (because $\|u(t)-\bar{u}\|$ is a non-increasing function of t), and due to the strict convexity of E restricted to $u_{0}+A^{\perp}$, they will have to converge towards the unique minimizer $u_{0}+\bar{u}$.

Proof of the proposition-

The result is obtained by applying the previous lemma 1 with :

- $B=\left\{\mathbf{y} \in \mathbf{L}^{2}\left(0, T, H_{0}^{1}(\Omega)\right): \mathbf{y}_{t} \in \mathbf{L}^{2}\left(0, T ; H^{-1}(\Omega)\right)\right\}$,
- X is taken to be $B \times L^{2}\left(q_{T}\right)$
- H is taken to be $\mathcal{A}_{0}, u_{0}=s_{\mathcal{A}} \in \mathcal{A} \subset X$.
- The operator \mathbf{T} maps $(u, f) \in \mathcal{A} \subset X$ into $v \in Y:=H^{1}\left(Q_{T}\right)$

Remark

Direct problem
$\mathcal{A}=\left\{u ; u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; u^{\prime} \in L^{2}\left(0, T, H^{-1}(\Omega)\right), u(\cdot, 0)=u_{0}\right\}$
$\left.<E^{\prime}(u), U\right\rangle=0$ for all $U \in \mathcal{A}_{0}$ implies that the corrector v solves

$$
\left\{\begin{array}{l}
-v_{t}-\nabla \cdot(a(x) \nabla v)+d v=0, \quad(x, t) \in Q_{T} \\
v(\cdot, T)=0, \quad x \in \Omega
\end{array}\right.
$$

Boundary controllability

$\Sigma_{T} \subset \Gamma_{T}:=\partial \Omega \times(0, T)$.

$$
A=\left\{u ; u \in H^{1}\left(Q_{T}\right), u=0 \text { on } \Gamma_{T} \backslash \Sigma_{T}, u(\cdot, 0)=u_{0}, u(\cdot, T)=0\right\}
$$

$<E^{\prime}(u), U>=0$ for all $U \in \mathcal{A}_{0}$ implies that the corrector v solves
\square
The control is obtained as the trace of $u \in \mathcal{A}$ on Σ_{T}.

Remark

Direct problem
$\mathcal{A}=\left\{u ; u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) ; u^{\prime} \in L^{2}\left(0, T, H^{-1}(\Omega)\right), u(\cdot, 0)=u_{0}\right\}$
$<E^{\prime}(u), U>=0$ for all $U \in \mathcal{A}_{0}$ implies that the corrector v solves

$$
\left\{\begin{array}{l}
-v_{t}-\nabla \cdot(a(x) \nabla v)+d v=0, \quad(x, t) \in Q_{T} \\
v(\cdot, T)=0, \quad x \in \Omega
\end{array}\right.
$$

Boundary controllability
$\Sigma_{T} \subset \Gamma_{T}:=\partial \Omega \times(0, T)$.

$$
\mathcal{A}=\left\{u ; u \in H^{1}\left(Q_{T}\right), u=0 \text { on } \Gamma_{T} \backslash \Sigma_{T}, u(\cdot, 0)=u_{0}, u(\cdot, T)=0\right\}
$$

$\left.<E^{\prime}(u), U\right\rangle=0$ for all $U \in \mathcal{A}_{0}$ implies that the corrector v solves

$$
\left\{\begin{array}{l}
-v_{t}-\nabla \cdot(a(x) \nabla v)+d v=0, \quad(x, t) \in Q_{T} \\
a(x) \partial_{\nu} v=0, \quad(x, t) \in \Sigma_{T} \subset \Gamma_{T}
\end{array}\right.
$$

The control is obtained as the trace of $u \in \mathcal{A}$ on Σ_{T}.

A numerical application in 1D (inner controllability)

$N=1, \Omega=(0,1), \omega=(0.2,0.5), u_{0}(x)=\sin (\pi x), a(x)=a_{0}=0.25, T=1 / 2$, $d:=0$
Starting point of the algorithm: $(u, f)=\left(u_{0}(x)(1-t / T)^{2}, 0\right) \in \mathcal{A}$

$u_{0}(x)=\sin (\pi x)$ - Control acting on $\omega=(0.2,0.5)-\varepsilon=10^{-6}-\log _{10}\left(E_{h}\left(u_{h}^{n}\right)\right.$ (dashed line) and $\log _{10}\left(\left\|g_{n}^{n}\right\|_{\mathcal{A}}\right)$ (full line) vs. the iteration n of the CG algorithm.

A numerical application in 1D (inner controllability)

$(u, f) \in \mathcal{A}$ along Q_{T} at convergence

A numerical application in 1D (inner controllability)

Isovalues along Q_{T} of the corresponding corrector $v:\|v\|_{H^{1}\left(Q_{T}\right)} \approx 10^{-4}$

A numerical application in 1D (boundary controllability)

$N=1, \Omega=(0,1), u_{0}(x)=\sin (\pi x), a(x)=a_{0}=0.25, T=1 / 2, d:=0$
Starting point of the algorithm: $(u, f)=\left(u_{0}(x)(1-t / T)^{2}, 0\right) \in \mathcal{A}$

$u_{0}(x)=\sin (\pi x)-\varepsilon=10^{-6}-\log _{10}\left(E_{h}\left(u_{h}^{n}\right)\right.$ (dashed line) and $\log _{10}\left(\left\|g_{h}^{n}\right\|_{\mathcal{A}}\right)$ (full line) vs. the iteration n of the CG algorithm.

A numerical application in 1D (boundary controllability)

Left: $u \in \mathcal{A}$ along Q_{T} at convergence; Right: Iso-values of u

A numerical application in 1D (boundary controllability)

Corresponding corrector $v:\|v\|_{H^{1}\left(Q_{T}\right)} \approx 10^{-4}$

Direct and control problem for Stokes

$$
\begin{align*}
&\left\{\begin{array}{l}
\mathbf{y}_{t}-\nu \Delta \mathbf{y}+\nabla \pi=\mathbf{f} 1_{\omega}, \quad \nabla \cdot \mathbf{y}=0 \text { in } Q_{T} \\
\mathbf{y}=\mathbf{0} \text { on } \Sigma_{T}, \quad \mathbf{y}(\cdot, 0)=\mathbf{y}_{0} \text { in } \Omega
\end{array}\right. \tag{13}\\
& \mathbf{H}=\left\{\boldsymbol{\varphi} \in \mathbf{L}^{2}(\Omega): \nabla \cdot \boldsymbol{\varphi}=0 \text { in } \Omega, \boldsymbol{\varphi} \cdot \mathbf{n}=0 \text { on } \partial \Omega\right\}, \\
& \mathbf{V}=\left\{\boldsymbol{\varphi} \in \mathbf{H}_{0}^{1}(\Omega): \nabla \cdot \boldsymbol{\varphi}=0 \text { in } \Omega\right\}, \tag{14}\\
& U=\left\{\psi \in L^{2}(\Omega): \int_{\Omega} \psi(\mathbf{x}) d \mathbf{x}=0\right\} .
\end{align*}
$$

Then, for any $\mathbf{y}_{0} \in \mathbf{H}, T>0$, and $\mathbf{f} \in \mathbf{L}^{2}\left(q_{T}\right)$, there exists exactly one solution (\mathbf{y}, π) of (13) with the following regularity :

$$
\mathbf{y} \in C^{0}([0, T] ; \mathbf{H}) \cap L^{2}(0, T ; \mathbf{V}), \pi \in L^{2}(0, T ; U)
$$

Theorem
For any $\mathbf{y}_{0} \in \mathbf{H}$, the linear system (13) is null-controllable at any time $T>0$.

Least-squares for the controllability of Stokes

$$
\begin{align*}
& \mathcal{A}=\{(\mathbf{y}, \pi, \mathbf{f}) ; \mathbf{y} \in \mathbf{L}^{2}\left(0, T, \mathbf{H}_{0}^{1}(\Omega)\right), \mathbf{y}_{t} \in \mathbf{L}^{2}\left(0, T ; \mathbf{H}^{-1}(\Omega)\right) \tag{15}\\
&\left.\mathbf{y}(\cdot, 0)=\mathbf{y}_{0}, \mathbf{y}(\cdot, T)=\mathbf{0}, \pi \in L^{2}(0, T ; U), \mathbf{f} \in \mathbf{L}^{2}\left(q_{T}\right)\right\}
\end{align*}
$$

Then, we define the functional $E: \mathcal{A} \rightarrow \mathbb{R}^{+}$by

$$
\begin{equation*}
E(\mathbf{y}, \pi, \mathbf{f})=\frac{1}{2} \iint_{Q_{T}}\left(\left|\mathbf{v}_{t}\right|^{2}+|\nabla \mathbf{v}|^{2}+|\nabla \cdot \mathbf{y}|^{2}\right) d \mathbf{x} d t \tag{16}
\end{equation*}
$$

where the corrector \mathbf{v} is the unique solution in $\mathbf{H}^{1}\left(Q_{T}\right)$ of the (elliptic) boundary value problem

$$
\left\{\begin{array}{l}
-\mathbf{v}_{t t}-\Delta \mathbf{v}+\left(\mathbf{y}_{t}-\nu \Delta \mathbf{y}+\nabla \pi-\mathbf{f} 1_{\omega}\right)=0, \quad \text { in } Q_{T}, \tag{17}\\
\mathbf{v}=0 \quad \text { on } \quad \Sigma_{T}, \quad \mathbf{v}_{t}=0 \quad \text { on } \quad \Omega \times\{0, T\} .
\end{array}\right.
$$

Least-squares for the controllability of Stokes

[Pedregal, Münch 2014], [Münch 2015]

Proposition

(\mathbf{y}, π) is a controlled solution of the Stokes system (13) by the control function $\mathbf{f} 1_{\omega} \in \mathbf{L}^{2}\left(q_{T}\right)$ if and only if $(\mathbf{y}, \pi, \mathbf{f})$ is a solution of the extremal problem :

$$
\begin{equation*}
\inf _{(\mathbf{y}, \pi, \mathbf{f}) \in \mathcal{A}} E(\mathbf{y}, \pi, \mathbf{f}) . \tag{18}
\end{equation*}
$$

Proof- \Longrightarrow
$\left\langle E^{\prime}(\mathbf{y}, \pi, \mathbf{f}),(Y, \Pi, F)\right\rangle=0 \forall(Y, \Pi, F) \in \mathcal{A}_{0}$ implies that the corrector $v=v(y, \pi, f)$ solution of (30) satisfies the conditions

The unique continuation property for the Stokes system implies that $\mathbf{v}=0$ in Q_{T} and that $\nabla \cdot \mathbf{y}$ is a constant in Q_{T}. Eventually, from

Least-squares for the controllability of Stokes

[Pedregal, Münch 2014], [Münch 2015]

Proposition

(\mathbf{y}, π) is a controlled solution of the Stokes system (13) by the control function $\mathbf{f} 1_{\omega} \in \mathbf{L}^{2}\left(q_{T}\right)$ if and only if $(\mathbf{y}, \pi, \mathbf{f})$ is a solution of the extremal problem :

$$
\begin{equation*}
\inf _{(\mathbf{y}, \pi, \mathbf{f}) \in \mathcal{A}} E(\mathbf{y}, \pi, \mathbf{f}) . \tag{18}
\end{equation*}
$$

Proof- \Longrightarrow
$\left\langle E^{\prime}(\mathbf{y}, \pi, \mathbf{f}),(Y, \Pi, F)\right\rangle=0 \forall(Y, \Pi, F) \in \mathcal{A}_{0}$ implies that the corrector $v=v(y, \pi, f)$ solution of (30) satisfies the conditions

The unique continuation property for the Stokes system implies that $\mathbf{v}=0$ in Q_{T} and that $\nabla \cdot \mathbf{y}$ is a constant in Q_{T}. Eventually, from

Least-squares for the controllability of Stokes

[Pedregal, Münch 2014], [Münch 2015]

Proposition

(\mathbf{y}, π) is a controlled solution of the Stokes system (13) by the control function $\mathbf{f} 1_{\omega} \in \mathbf{L}^{2}\left(q_{T}\right)$ if and only if $(\mathbf{y}, \pi, \mathbf{f})$ is a solution of the extremal problem :

$$
\begin{equation*}
\inf _{(\mathbf{y}, \pi, \mathbf{f}) \in \mathcal{A}} E(\mathbf{y}, \pi, \mathbf{f}) . \tag{18}
\end{equation*}
$$

Proof- \Longrightarrow
$\left\langle E^{\prime}(\mathbf{y}, \pi, \mathbf{f}),(\mathbf{Y}, \Pi, \mathbf{F})\right\rangle=0 \forall(\mathbf{Y}, \Pi, \mathbf{F}) \in \mathcal{A}_{0}$ implies that the corrector $\mathbf{v}=\mathbf{v}(\mathbf{y}, \pi, \mathbf{f})$ solution of (30) satisfies the conditions

$$
\left\{\begin{array}{lr}
\mathbf{v}_{t}+\nu \Delta \mathbf{v}-\nabla(\nabla \cdot \mathbf{y})=0, & \nabla \cdot \mathbf{v}=0, \tag{19}\\
\mathbf{v}=0, & \text { in } Q_{T} \\
\text { in } q_{T}
\end{array}\right.
$$

The unique continuation property for the Stokes system implies that $\mathbf{v}=0$ in Q_{T} and that $\nabla \cdot \mathbf{y}$ is a constant in Q_{T}. Eventually, from

Least-squares for the controllability of Stokes

[Pedregal, Münch 2014], [Münch 2015]

Proposition

(\mathbf{y}, π) is a controlled solution of the Stokes system (13) by the control function $\mathbf{f} 1_{\omega} \in \mathbf{L}^{2}\left(q_{T}\right)$ if and only if $(\mathbf{y}, \pi, \mathbf{f})$ is a solution of the extremal problem :

$$
\begin{equation*}
\inf _{(\mathbf{y}, \pi, \mathbf{f}) \in \mathcal{A}} E(\mathbf{y}, \pi, \mathbf{f}) \tag{18}
\end{equation*}
$$

Proof- \Longrightarrow
$\left\langle E^{\prime}(\mathbf{y}, \pi, \mathbf{f}),(\mathbf{Y}, \Pi, \mathbf{F})\right\rangle=0 \forall(\mathbf{Y}, \Pi, \mathbf{F}) \in \mathcal{A}_{0}$ implies that the corrector $\mathbf{v}=\mathbf{v}(\mathbf{y}, \pi, \mathbf{f})$ solution of (30) satisfies the conditions

$$
\left\{\begin{array}{lr}
\mathbf{v}_{t}+\nu \Delta \mathbf{v}-\nabla(\nabla \cdot \mathbf{y})=0, & \nabla \cdot \mathbf{v}=0, \tag{19}\\
\mathbf{v}=0, & \text { in } Q_{T} \\
\text { in } q_{T}
\end{array}\right.
$$

The unique continuation property for the Stokes system implies that $\mathbf{v}=0$ in Q_{T} and that $\nabla \cdot \mathbf{y}$ is a constant in Q_{T}. Eventually, from

$$
\left\langle E^{\prime}(\mathbf{y}, \pi, \mathbf{f}),(\mathbf{Y}, \Pi, \mathbf{F})\right\rangle=(\nabla \cdot \mathbf{y}) \iint_{Q_{T}} \nabla \cdot \mathbf{Y} d \mathbf{x} d t=0, \quad \forall(\mathbf{Y}, \Pi, \mathbf{F}) \in \mathcal{A}_{0}
$$

and then implies that this constant is zero.

Convergence of the minimizing sequence

We then define the following minimizing sequence $\left(\mathbf{y}^{k}, \pi^{k}, \mathbf{f}^{k}\right)_{k \geq 0} \in A^{\perp}$ as follows:

$$
\left\{\begin{array}{l}
\left(\mathbf{y}^{0}, \pi^{0}, \mathbf{f}^{0}\right) \text { given in } A^{\perp}, \tag{20}\\
\left(\mathbf{y}^{k+1}, \pi^{k+1}, \mathbf{f}^{k+1}\right)=\left(\mathbf{y}^{k}, \pi^{k}, \mathbf{f}^{k}\right)-\eta_{k} P_{A^{\perp}}\left(\overline{\mathbf{y}}^{k}, \bar{\pi}^{k}, \overline{\mathbf{f}}^{k}\right), \quad k \geq 0, \\
\left\langle\left(\overline{\mathbf{y}}^{k}, \bar{\pi}^{k}, \overline{\mathbf{f}}^{k}\right),(\mathbf{Y}, \Pi, \mathbf{F})\right\rangle_{\mathcal{A}_{0}}=\left\langle E_{\mathbf{s}_{0}}^{\prime}\left(\mathbf{y}^{k}, \pi^{k}, \mathbf{f}^{k}\right),(\mathbf{Y}, \Pi, \mathbf{F})\right\rangle, \quad \forall(\mathbf{Y}, \Pi, \mathbf{F}) \in \mathcal{A}_{0}
\end{array}\right.
$$

Proposition

For any $\mathbf{s}_{\mathcal{A}} \in \mathcal{A}$ and any $\left\{\mathbf{y}^{0}, \pi^{0}, \mathbf{f}^{\mathbf{0}}\right\} \in A^{\perp}$, the sequence $\mathbf{s}_{\mathcal{A}}+\left\{\left(\mathbf{y}^{\mathbf{k}}, \pi^{\mathbf{k}}, \mathbf{f}^{\mathbf{k}}\right)\right\}_{\mathbf{k} \geq \mathbf{0}} \in \mathcal{A}$ converges strongly to a solution of the extremal problem (29).

Proof- Applied the lemma with
$B=\left\{\mathbf{y} \in \mathbf{L}^{2}\left(0, T, \mathbf{H}_{0}^{1}(\Omega)\right): \mathbf{y}_{t} \in \mathbf{L}^{2}\left(0, T ; \mathbf{H}^{-1}(\Omega)\right)\right\}, X$ is taken to be $B \times L^{2}(0, T ; U) \times L^{2}\left(q_{T}\right)$.
$H=\mathcal{A}_{0}$ and $u_{0}=\boldsymbol{s}_{\mathcal{A}} \in \mathcal{A} \subset X$.
The operator \mathbf{T} maps a triplet $(\mathbf{y}, \pi, \mathbf{f}) \in \mathcal{A} \subset X$ into
$(\mathbf{v}, \nabla \cdot \mathbf{y}) \in Y:=\mathbf{H}^{1}\left(Q_{T}\right) \times L^{2}\left(Q_{T}\right)$.

Numerical application : controllability to trajectory

The Poiseuille flow $\overline{\mathbf{y}}=\left(-\frac{c}{2 \nu} x_{2}\left(1-x_{2}\right), 0\right), \bar{\pi}=c x_{1}$ solves the stationary homogeneous Stokes eq.

$$
\begin{equation*}
-\nu \Delta \overline{\mathbf{y}}+\nabla \pi=\mathbf{0}, \quad \nabla \cdot \overline{\mathbf{y}}=0 \quad \text { in } \quad Q_{T} \tag{21}
\end{equation*}
$$

We introduce $(\mathbf{z}, \sigma)=(\mathbf{y}-\overline{\mathbf{y}}, \pi-\bar{\pi})$ where (\mathbf{y}, π) solves the state equations of (13):

$$
\mathbf{y}_{t}-\nu \Delta \mathbf{y}+\nabla \pi=\mathbf{f} 1_{\omega}, \quad \nabla \cdot \mathbf{y}=0 \quad \text { in } Q_{T}, \quad \mathbf{y}(\cdot, 0)=\mathbf{y}_{0} \quad \text { in } \Omega
$$

```
so that (z,\sigma) solves
```

 \(z_{t}-\nu \Delta z+\nabla \sigma=\mathrm{f}^{1} \omega, \quad \nabla \cdot z=0 \quad\) in \(Q_{T}, \quad z(\cdot, 0)=y_{0}-\bar{y}\) in \(\Omega\).
 We add the boundary condition $\mathbf{z}=0$ on Σ_{T}.
For any \mathbf{y}_{0} such that $\mathbf{y}_{0}-\overline{\mathbf{y}} \in \mathbf{H}$, we determine f such that $\mathrm{z}(\cdot, T)=0$ on Q_{T}.
$y:=z+\bar{y}$ is then controlled to the trajectory $\overline{\mathrm{y}}$ at time T.
$\Omega=(0,5) \times(0,1), \omega=(1,2) \times(0,1), T=2$ and $\nu=1 / 40$ and

$$
y_{0}=\bar{y}+\nabla \times \psi, \quad \psi=K\left(1-x_{2}\right)^{2} x_{2}^{2}\left(5-x_{1}\right)^{2} x_{1}^{2}, \quad m \in \mathbb{N}
$$

Numerical application : controllability to trajectory

The Poiseuille flow $\overline{\mathbf{y}}=\left(-\frac{c}{2 \nu} x_{2}\left(1-x_{2}\right), 0\right), \bar{\pi}=c x_{1}$ solves the stationary homogeneous Stokes eq.

$$
\begin{equation*}
-\nu \Delta \overline{\mathbf{y}}+\nabla \pi=\mathbf{0}, \quad \nabla \cdot \overline{\mathbf{y}}=0 \quad \text { in } \quad Q_{T} \tag{21}
\end{equation*}
$$

We introduce $(\mathbf{z}, \sigma)=(\mathbf{y}-\overline{\mathbf{y}}, \pi-\bar{\pi})$ where (\mathbf{y}, π) solves the state equations of (13):

$$
\begin{equation*}
\mathbf{y}_{t}-\nu \Delta \mathbf{y}+\nabla \pi=\mathbf{f} 1_{\omega}, \quad \nabla \cdot \mathbf{y}=0 \quad \text { in } \quad Q_{T}, \quad \mathbf{y}(\cdot, 0)=\mathbf{y}_{0} \quad \text { in } \Omega \tag{22}
\end{equation*}
$$

so that (\mathbf{z}, σ) solves

$$
\begin{equation*}
\mathbf{z}_{t}-\nu \Delta \mathbf{z}+\nabla \sigma=\mathbf{f} 1_{\omega}, \quad \nabla \cdot \mathbf{z}=0 \quad \text { in } Q_{T}, \quad \mathbf{z}(\cdot, 0)=\mathbf{y}_{0}-\overline{\mathbf{y}} \quad \text { in } \Omega . \tag{23}
\end{equation*}
$$

We add the boundary condition $\mathbf{z}=\mathbf{0}$ on Σ_{T}.
For any \mathbf{y}_{0} such that $\mathbf{y}_{0}-\overline{\mathbf{y}} \in \mathbf{H}$, we determine \mathbf{f} such that $\mathbf{z}(\cdot, T)=0$ on Q_{T}. $\mathbf{y}:=\mathbf{z}+\overline{\mathbf{y}}$ is then controlled to the trajectory $\overline{\mathbf{y}}$ at time T.
$\Omega=(0,5) \times(0,1), \omega=(1,2) \times(0,1), T=2$ and $\nu=1 / 40$ and

$$
\begin{equation*}
\mathbf{y}_{0}=\overline{\mathbf{y}}+\nabla \times \psi, \quad \psi=K\left(1-x_{2}\right)^{2} x_{2}^{2}\left(5-x_{1}\right)^{2} x_{1}^{2}, \quad m \in \mathbb{N} \tag{24}
\end{equation*}
$$

We take K such that $\|\nabla \times \psi\|_{L^{2}(\Omega)}=2$.

$\nu=1 / 40$ - Iso-values of the first component $y_{1, h}(\cdot, t)=\bar{y}_{1}+z_{h}(\cdot, t)$ of the velocity on

$$
\Omega \text { for } t=t_{i} \in \frac{i}{5} T, i=0, \cdots, 5
$$

Reduce the L^{2}-norm of the control

The method avoids duality arguments and therefore ill-posedness: on the contrary, the controls obtained from the minimization of E does not minimize a priori any particular norm :
Two options:

- for any solution $(u, f) \in \mathcal{A}$, compute a collection of solution $\left(u_{j}, f_{j}\right) \in \mathcal{A}_{0}, j \in J$ and then solve

$$
\begin{equation*}
\min \left\|f+\sum_{j \in J} \alpha_{j} f_{j}\right\|_{L^{2}\left(q_{T}\right)} \quad \text { w.r.t. }\left\{\alpha_{j}\right\}_{j \in J} \tag{25}
\end{equation*}
$$

- solve the saddle problem

$$
\sup _{\lambda \in \mathbb{R}} \inf _{(\mathbf{y}, \pi, \mathbf{f}) \in \mathcal{A}} \mathcal{L}((\mathbf{y}, \pi, \mathbf{f}), \lambda):=\frac{1}{2}\|\mathbf{f}\|_{L^{2}\left(q_{T}\right)}^{2}+\lambda E(\mathbf{y}, \pi, \mathbf{f}) .
$$

Reduce the L^{2}-norm of the control

The method avoids duality arguments and therefore ill-posedness: on the contrary, the controls obtained from the minimization of E does not minimize a priori any particular norm :
Two options:

- for any solution $(u, f) \in \mathcal{A}$, compute a collection of solution $\left(u_{j}, f_{j}\right) \in \mathcal{A}_{0}, j \in J$ and then solve

$$
\begin{equation*}
\min \left\|f+\sum_{j \in J} \alpha_{j} f_{j}\right\|_{L^{2}\left(q_{T}\right)} \quad \text { w.r.t. }\left\{\alpha_{j}\right\}_{j \in J} \tag{25}
\end{equation*}
$$

- solve the saddle problem

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{R}} \inf _{(\mathbf{y}, \pi, \mathbf{f}) \in \mathcal{A}} \mathcal{L}((\mathbf{y}, \pi, \mathbf{f}), \lambda):=\frac{1}{2}\|\mathbf{f}\|_{\mathbb{L}^{2}\left(q_{T}\right)}^{2}+\lambda E(\mathbf{y}, \pi, \mathbf{f}) \tag{26}
\end{equation*}
$$

The set $\{(\mathbf{y}, \pi, \mathbf{f}) \in \mathcal{A}, E(\mathbf{y}, \pi, \mathbf{f})=0\}$ is convex so Uzawa type algorithm converges :

Non linear case? Example : NS steady case

$$
\left\{\begin{array}{l}
-\nu \Delta \mathbf{y}+(\mathbf{y} \cdot \nabla) \mathbf{y}+\nabla \pi=\mathbf{f}, \quad \nabla \cdot \mathbf{y}=0 \quad \text { in } \Omega \tag{27}\\
\mathbf{y}=\mathbf{0} \text { on } \partial \Omega
\end{array}\right.
$$

$\forall f \in \mathbf{H}^{-1}(\Omega), \exists(\mathbf{y}, \pi) \in \mathbf{H}_{0}^{1}(\Omega) \times L_{0}^{2}(\Omega)$.

$$
\left\{\begin{array}{l}
\mathcal{A}=\mathbf{H}_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad E: \mathcal{A} \rightarrow \mathbb{R}^{+} \tag{28}\\
E(\mathbf{y}, \pi):=\frac{1}{2} \int_{\Omega}\left(|\nabla \mathbf{v}|^{2}+|\nabla \cdot \mathbf{y}|^{2}\right) d \mathbf{x}
\end{array}\right.
$$

Least-Squares problem

$$
\begin{equation*}
\inf _{(\mathbf{y}, \pi) \in \mathcal{A}} E(\mathbf{y}, \pi) \tag{29}
\end{equation*}
$$

where the corrector \mathbf{v} is the unique solution in $\mathbf{H}_{0}^{1}\left(Q_{T}\right)$ of the (elliptic) boundary value problem

Non linear case? Example : NS steady case

$$
\left\{\begin{array}{l}
-\nu \Delta \mathbf{y}+(\mathbf{y} \cdot \nabla) \mathbf{y}+\nabla \pi=\mathbf{f}, \quad \nabla \cdot \mathbf{y}=0 \quad \text { in } \Omega \tag{27}\\
\mathbf{y}=\mathbf{0} \text { on } \partial \Omega
\end{array}\right.
$$

$\forall f \in \mathbf{H}^{-1}(\Omega), \exists(\mathbf{y}, \pi) \in \mathbf{H}_{0}^{1}(\Omega) \times L_{0}^{2}(\Omega)$.

$$
\left\{\begin{array}{l}
\mathcal{A}=\mathbf{H}_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad E: \mathcal{A} \rightarrow \mathbb{R}^{+} \tag{28}\\
E(\mathbf{y}, \pi):=\frac{1}{2} \int_{\Omega}\left(|\nabla \mathbf{v}|^{2}+|\nabla \cdot \mathbf{y}|^{2}\right) d \mathbf{x}
\end{array}\right.
$$

Least-Squares problem :

$$
\begin{equation*}
\inf _{(\mathbf{y}, \pi) \in \mathcal{A}} E(\mathbf{y}, \pi) \tag{29}
\end{equation*}
$$

where the corrector \mathbf{v} is the unique solution in $\mathbf{H}_{0}^{1}\left(Q_{T}\right)$ of the (elliptic) boundary value problem

$$
\left\{\begin{array}{l}
-\Delta \mathbf{v}+(-\nu \Delta \mathbf{y}+\operatorname{div}(\mathbf{y} \otimes \mathbf{y})+\nabla \pi-\mathbf{f})=0, \quad \text { in } \Omega \tag{30}\\
\mathbf{v}=0 \quad \text { on } \quad \partial \Omega .
\end{array}\right.
$$

Main issue

$$
\begin{equation*}
E\left(\mathbf{y}_{j}, \pi_{j}\right) \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty \Longrightarrow\left(\mathbf{y}_{j}, \pi_{j}\right) \rightarrow(\mathbf{y}, f) \in \mathcal{A} \quad \text { with } \quad E(\mathbf{y}, \pi)=0 \quad \text { ?? } \tag{31}
\end{equation*}
$$

Non linear case. Abstract framework
Consider a non-negative, smooth functional $E: H \rightarrow \mathbb{R}$ defined on a Hilbert space H. Definition
A functional E is an error functional if over bounded sets of $H, \lim _{E^{\prime}(u)=0} E(u)=0$.
\square
Proposition (Pedregal 2014- Non existence of mountain-pass points)
Suppose $E: H \rightarrow \mathbb{R}$ is an error functional and $Z=\{E \equiv 0\}=\left\{u_{0}\right\}$. Then, the functional $\rho:[0, \infty) \rightarrow[0, \infty)$ defined by

Definition ("Coercivity" of E at its zero set)
The zero set Z of E is regular if it is non-empty and if $\lim _{E(u) \rightarrow 0} \operatorname{dist}(u, Z)=0$.
Theorem
Every integral curve of the flow

$$
\begin{equation*}
u(0) \in H_{;} \quad u^{\prime}(t)=-E^{\prime}(u(t)), \quad t>0 \tag{32}
\end{equation*}
$$

of an error functional $E: H \rightarrow \mathcal{R}$ whose zero set Z is regular converges strongly to a unique limit in Z.

Non linear case. Abstract framework
Consider a non-negative, smooth functional $E: H \rightarrow \mathbb{R}$ defined on a Hilbert space H. Definition
A functional E is an error functional if over bounded sets of $H, \lim _{E^{\prime}(u)=0} E(u)=0$.
Proposition (Pedregal 2014- Non existence of mountain-pass points)
Suppose $E: H \rightarrow \mathbb{R}$ is an error functional and $Z=\{E \equiv 0\}=\left\{u_{0}\right\}$. Then, the functional $\rho:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\rho(r):=\inf _{\left\|u-u_{0}\right\|=r} E(u) \quad \text { is non-decreasing. }
$$

Definition ("Coercivity" of E at its zero set)
The zero set Z of E is regular if it is non-empty and if $\lim _{E(u) \rightarrow 0} \operatorname{dist}(u, Z)=0$.
Theorem
Every integral curve of the flow

$$
u(0) \in H_{;} \quad u^{\prime}(t)=-E^{\prime}(u(t)), \quad t>0
$$

Non linear case. Abstract framework
Consider a non-negative, smooth functional $E: H \rightarrow \mathbb{R}$ defined on a Hilbert space H. Definition
A functional E is an error functional if over bounded sets of $H, \lim _{E^{\prime}(u)=0} E(u)=0$.
Proposition (Pedregal 2014- Non existence of mountain-pass points)
Suppose $E: H \rightarrow \mathbb{R}$ is an error functional and $Z=\{E \equiv 0\}=\left\{u_{0}\right\}$. Then, the functional $\rho:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\rho(r):=\inf _{\left\|u-u_{0}\right\|=r} E(u) \quad \text { is non-decreasing. }
$$

Definition ("Coercivity" of E at its zero set)
The zero set Z of E is regular if it is non-empty and if $\lim _{E(u) \rightarrow 0} \operatorname{dist}(u, Z)=0$.
Theorem
Every integral curve of the flow

Non linear case. Abstract framework

Consider a non-negative, smooth functional $E: H \rightarrow \mathbb{R}$ defined on a Hilbert space H. Definition
A functional E is an error functional if over bounded sets of $H, \lim _{E^{\prime}(u)=0} E(u)=0$.
Proposition (Pedregal 2014- Non existence of mountain-pass points)
Suppose $E: H \rightarrow \mathbb{R}$ is an error functional and $Z=\{E \equiv 0\}=\left\{u_{0}\right\}$. Then, the functional $\rho:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\rho(r):=\inf _{\left\|u-u_{0}\right\|=r} E(u) \quad \text { is non-decreasing. }
$$

Definition ("Coercivity" of E at its zero set)
The zero set Z of E is regular if it is non-empty and if $\lim _{E(u) \rightarrow 0} \operatorname{dist}(u, Z)=0$.
Theorem
Every integral curve of the flow

$$
\begin{equation*}
u(0) \in H ; \quad u^{\prime}(t)=-E^{\prime}(u(t)), \quad t>0 \tag{32}
\end{equation*}
$$

of an error functional $E: H \rightarrow \mathcal{R}$ whose zero set Z is regular converges strongly to a unique limit in Z.

Non linear case? Example : NS steady case

$$
\left\{\begin{array}{l}
\mathcal{A}=\mathbf{H}_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad E: \mathcal{A} \rightarrow \mathbb{R}^{+} \tag{33}\\
E(\mathbf{y}, \pi):=\frac{1}{2} \int_{\Omega}\left(|\nabla \mathbf{v}|^{2}+|\nabla \cdot \mathbf{y}|^{2}\right) d \mathbf{x}
\end{array}\right.
$$

Proposition

E is an error functional: over bounded sets of $\mathcal{A}, \lim _{E^{\prime}(\mathbf{y}, \pi)=0} E(\mathbf{y}, \pi)=0$. Proof

$$
\begin{align*}
E^{\prime}(\mathbf{y}, \pi) \cdot(\mathbf{Y}, \Pi) & =\int_{\Omega}-\nu \nabla \mathbf{v} \cdot \nabla \mathbf{Y}+(\mathbf{y} \otimes \mathbf{Y}+\mathbf{Y} \otimes \mathbf{y}): \nabla \mathbf{v}+(\nabla \cdot \mathbf{v}) \Pi d \mathbf{x} \tag{34}\\
& +\int_{\Omega}(\nabla \cdot \mathbf{y})(\nabla \cdot \mathbf{Y}) d \mathbf{x}
\end{align*}
$$

We easily get that

$$
\begin{equation*}
\|\mathbf{V}\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq C\left(\|\mathbf{y} \otimes \mathbf{y}\|_{L^{2}(\Omega)}+\|\mathbf{y}\|_{\mathbf{H}_{0}^{1}(\Omega)}+\|\pi\|_{L^{2}(\Omega)}+\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)}\right) . \tag{35}
\end{equation*}
$$

so that we can take $\mathbf{Y}=\mathbf{v}$ leading to

$$
\begin{align*}
E^{\prime}(\mathbf{y}, \pi) \cdot(\mathbf{v}, \Pi) & =\int_{\Omega}-\nu|\nabla \mathbf{v}|^{2}-(\mathbf{v} \otimes \mathbf{v}): \nabla \mathbf{y}+\frac{1}{2}(\nabla \cdot \mathbf{y})|\mathbf{v}|^{2} d \mathbf{x} \\
& +\int_{\Omega}(\nabla \cdot \mathbf{v})(\nabla \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{v}+\Pi) d \mathbf{x} \tag{36}
\end{align*}
$$

Non linear case? Example : NS steady case

Similarly, $\Pi_{s}=-(\nabla \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{v}) \in L^{2}(\Omega)$ remains bounded with respect to (\mathbf{y}, π) and we write

$$
\begin{equation*}
E^{\prime}(\mathbf{y}, \pi) \cdot\left(\mathbf{v}, \Pi_{S}\right)=\int_{\Omega}-\nu|\nabla \mathbf{v}|^{2}-(\mathbf{v} \otimes \mathbf{v}): \nabla \mathbf{y}+\frac{1}{2}(\nabla \cdot \mathbf{y})|\mathbf{v}|^{2} d \mathbf{x} \tag{37}
\end{equation*}
$$

We then use the following result (consequence of the well-posedness of the Oseen equation)
Lemma
For any $\mathbf{y} \in \mathbf{H}_{0}^{1}(\Omega), \mathbf{F} \in L^{2}(\Omega)$, there exists $(\mathbf{Y}, \Pi) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ with $\nabla \cdot \mathbf{Y}=0$ such that

$$
\begin{equation*}
\int_{\Omega}(\nu \nabla \mathbf{Y}-(\mathbf{Y} \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{Y})): \nabla \mathbf{w}-\Pi \nabla \cdot \mathbf{w}-\mathbf{F} \cdot \mathbf{w}=0, \quad \forall \mathbf{w} \in H_{0}^{1}(\Omega) \tag{38}
\end{equation*}
$$

such that $\|\mathbf{Y}, \Pi\|_{\mathbf{H}_{0}^{1}(\Omega) \times L^{2}(\Omega)} \leq C\left(\|\mathbf{y}\|_{\mathbf{H}_{0}^{1}(\Omega)}\|+\| \mathbf{F} \|_{L^{2}(\Omega)}\right)$ for some $C>0$.

Non linear case? Example : NS steady case

Using this lemma for $\mathbf{F}=\mathbf{v}$ and $\mathbf{w}=\mathbf{v}$ (\mathbf{v} is the corrector associated to the pair (\mathbf{y}, π)), we obtain that $(\mathbf{Y}, \Pi) \in \mathbf{H}_{0}^{1}(\Omega) \times L^{2}(\Omega)$ satisfies $\nabla \cdot \mathbf{Y}=0$ and

$$
\begin{equation*}
\int_{\Omega}(\nu \nabla \mathbf{Y}-(\mathbf{Y} \otimes \mathbf{y}+\mathbf{y} \otimes \mathbf{Y})): \nabla \mathbf{v}-\Pi \nabla \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{v}=0, \quad \forall \mathbf{w} \in H_{0}^{1}(\Omega) \tag{39}
\end{equation*}
$$

With this pair (\mathbf{Y}, Π) bounded with respect to \mathbf{v} and to \mathbf{y}, and so with respect to (\mathbf{y}, π), we have from (34), (remind that $\nabla \cdot \mathbf{Y}=0$)

$$
\begin{equation*}
E^{\prime}(\mathbf{y}, \pi) \cdot(\mathbf{Y}, \Pi)=\int_{\Omega}-\nu \nabla \mathbf{v} \cdot \nabla \mathbf{Y}+(\mathbf{y} \otimes \mathbf{Y}+\mathbf{Y} \otimes \mathbf{y}): \nabla \mathbf{v}+(\nabla \cdot \mathbf{v}) \Pi d \mathbf{x} \tag{40}
\end{equation*}
$$

The property $E^{\prime}(\mathbf{y}, \pi) \cdot(\mathbf{Y}, \Pi) \rightarrow 0$ then implies that $\|\mathbf{v}\|_{L^{2}(\Omega)} \rightarrow 0$. Then, from (37), the property $E^{\prime}(\mathbf{y}, \pi) \cdot\left(\mathbf{v}, \Pi_{s}\right) \rightarrow 0$ then implies from the equality (39) that $\|\nabla \mathbf{v}\|_{L^{2}(\Omega)} \rightarrow 0$. Then, 34 implies that $\int_{\Omega} \nabla \cdot \mathbf{y} \nabla \cdot \mathbf{Y} d \mathbf{x} \rightarrow 0$ for all $\mathbf{Y} \in H_{0}^{1}(\Omega)$ so that $\|\nabla \cdot \mathbf{y}\|_{L^{2}(\Omega)} \rightarrow 0$.

Non linear case? Backward facing step

Iso-values of the first component of the velocity with Reynolds number $\operatorname{Re}=1 / 150$

Null controllability of a non linear heat equation

$$
\left\{\begin{array}{lr}
y_{t}-\Delta y+F(y)=v 1_{\omega}, & (x, t) \in Q_{T}, \tag{41}\\
y(\cdot, 0)=y_{0}, & x \in \Omega, \\
y=0, & (x, t) \in \partial \Omega \times(0, T),
\end{array}\right.
$$

Theorem (Barbu 99, Fernandez-Cara Zuazua 00)
If $F: \mathbb{R} \rightarrow \mathbb{R}$ is locally lipschitz-continuous and satisfies

$$
\frac{F(s)}{|s| \log ^{3 / 2}(1+|s|)} \rightarrow 0 \quad \text { as } \quad s \rightarrow \infty
$$

then the system is uniformly controllable.

Remark -
The controllability is proved by linearization and fixed point argument, useless in practice if the fixed point operator is not a contraction.
[Fernandez-Cara Münch, 2012]

Null control of the non linear heat equation

$F(s)=-\alpha \log ^{p}(1+|s|), \quad \alpha=5, \quad p=1.4$.

Figure: $u_{0}(x)=3 \sin (\pi x)-T=1 / 2, a_{0}=1 / 4-\log _{10}\left(E_{h}\left(u_{h}^{n}\right)\right)$ (dashed line) and $\log _{10}\left(\left\|g_{h}^{n}\right\|_{\mathcal{A}}\right)($ full line $)$ vs. the iteration n of the CG algorithm.

Null control of the non linear heat equation

Convergent function $u \in \mathcal{A}$ along $Q_{T}=(0,1) \times(0, T)$ and its isovalues.

Null control of the non linear heat equation

Corrector function $v \in H^{1}\left(Q_{T}\right)$ along $Q_{T}=(0,1) \times(0, T)$

Conclusions

- Use of Least-squares method to controllability seems original
- Construction of strong convergence sequences.
- Can be extended to solve inverse type problems
- General method, numerically robust, simple implementation and (apparently !) fast :
- Open question: speed of convergence?

References

- Münch, Pedregal, A least squares approach for Navier-Stokes : direct and control problems. Submitted.
- Münch, A least-squares formulation for the approximation of controls for the Stokes system, Mathematics of Control, Signals, and Systems, (2015).
- Münch, Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach, European Journal of Applied Mathematics, (2014)
- Münch, Pedregal, A least-squares formulation for the approximation of null controls for the Stokes system, C.R. Acad. Sci. Paris, (2013).
- Münch, A variational approach to approximate controls for system with essential spectrum: application to the membranal arch, Evolution Equations and Control Theory (2013)
- Pedregal, A variational perspective on controllability, Inverse Problems, (2010)

