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Introduction (the linear heat eq. to fix ideas)

ω ⊂ Ω ⊂ RN , N ≥ 1, a ∈ C1(Ω,R+
∗ ), d ∈ L∞(QT ), T > 0, QT = Ω× (0,T ),

qT = ω × (0,T ), ΓT := ∂Ω× (0,T )8><>:
Ly ≡ yt −∇ · (a(x)∇y) + dy = v1ω , in QT

y = 0, on ΓT

y(·, 0) = y0, in Ω.

(1)

(y0 ∈ L2(Ω), v ∈ L2(qT )) =⇒ y ∈ C0([0,T ]; L2(Ω)) ∩ L2(0,T ; H1
0 (Ω)).

Null controllability - ∀T > 0, ω ⊂ Ω, ∃v ∈ L2(qT ) s.t. y(·,T ) = 0
(FURSIKOV-IMANUVILOV’96, ROBBIANO-LEBEAU’95, etc)

Control of minimal L2- norm-8<: min J(y , v) := ‖v‖2
L2(qT )

over C(y0,T )

C(y0,T ) = { (y , v) : v ∈ L2(qT ), y solves (1) and satisfies y(T , ·) = 0 }
(2)
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Minimal L2 norm control using duality [Glowinski-Lions 94’]

inf
(y,v)∈C(y0,T )

J(y , v) = − inf
φT∈H

J?(φT ), J?(φT ) :=
1
2

Z
qT

φ2dxdt +

Z
Ω
φ(0, ·)y0dx

where φ solves the backward system(
L?φ ≡ −φt −∇ · (a(x)∇φ) + dφ = 0 QT = (0,T )× Ω,

φ = 0 ΣT = (0,T )× ∂Ω, φ(T , ·) = φT Ω.

H-completion of D(Ω) with respect to the norm

‖φT ‖H =

„Z
qT

φ2(t , x)dxdt
«1/2

.

From the observability inequality

C(T , ω)‖φ(0, ·)‖2
L2(Ω)

≤ ‖φT ‖2
H ∀φT ∈ L2(Ω),

J? is coercive on H. The control is given by v = φXω on QT .
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N = 1 - L2(0, 1)-norm of the HUM control with respect to time
Hugeness of H: H−s ⊂ H for any s ≥ 0 =⇒ Ill-posedness
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Figure: y0(x) = sin(πx) - T = 1 - ω = (0.2, 0.8) - t → ‖v(·, t)‖L2(0,1) in [0,T ]

Remedies via Carleman approach and convergence results in [Fernandez-Cara,

Münch, 2011-2014]



Least-squares approach

We define the non-empty set

A =


(u, f ); u ∈ C([0,T ]; L2(Ω))∩L2(0,T ; H1

0 (Ω)); u′ ∈ L2(0,T ,H−1(Ω)),

u(·, 0) = u0, u(·,T ) = 0, f ∈ L2(qT )

ff
and find (u, f ) ∈ A solution of the heat eq. !

For any (u, f ) ∈ A, we define the "corrector" v = v(u, f ) ∈ H1(QT ) solution of the QT -
elliptic problem8>>><>>>:
− vtt −∇ · (a(x)∇v) +

„
ut −∇ · (a(x)∇u) + du − f 1ω

«
= 0, (x , t) ∈ QT ,

vt = 0, x ∈ Ω, t ∈ {0,T}
v = 0, x ∈ ΣT .

(3)
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Least-squares approach (2)

Theorem
u is a controlled solution of the heat eq. by the control function f 1ω ∈ L2(qT ) if and
only if (u, f ) is a solution of the extremal problem

inf
(u,f )∈A

E(u, f ) :=
1
2

ZZ
QT

(|vt |2 + a(x)|∇v |2)dx dt . (4)

Proof.
⇐= From the null controllability of the heat eq., the extremal problem is well-posed in
the sense that the infimum, equal to zero, is reached by any controlled solution of the
heat eq. (the minimizer is not unique).

=⇒ Conversely, we check that any minimizer of E is a solution of the (controlled) heat
eq.:
We define the vector space

A0 =


(u, f ); u ∈ C([0,T ]; L2(Ω))∩L2(0,T ; H1

0 (Ω)); u′ ∈ L2(0,T ,H−1(Ω)),

u(·, 0) = u(·,T ) = 0, x ∈ Ω, f ∈ L2(qT )

ff
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Least-squares approach (2)
The first variation of E at (u, f ) in the admissible direction (U,F ) ∈ A0 defined by

< E ′(u, f ), (U,F ) >= lim
η→0

E((u, f ) + η(U,F ))− E(u, f )

η
(5)

exists and is given by

< E ′(u, f ), (U,F ) >=

ZZ
QT

(vt Vt + a(x)∇v · ∇V )dx dt , (6)

where the corrector V ∈ H1(QT ) associated to (U,F ) is the solution of8><>:
Ut − Vtt −∇ · (a(x)(∇U +∇V ))− F 1ω = 0, (x , t) ∈ QT ,

Vt (x , 0) = Vt (x ,T ) = 0, x ∈ Ω,

V (0, t) = V (1, t) = 0, t ∈ (0,T ).

(7)

Using that

−
Z T

0
< Ut , v >H−1(Ω),H1(Ω) dt =

ZZ
QT

Uvt dx dt −
Z 1

0
[Uv ]T0 dx =

ZZ
QT

Uvt dx dt ,

we get that

< E ′(u, f ), (U,F ) >=

ZZ
QT

(Uvt − a(x)∇U · ∇v + Fv 1ω) dx dt , ∀(U,F ) ∈ A0



Least-squares approach (2)

Therefore, if (u, f ) minimizes E , the equality < E ′(u, f ), (U,F ) >= 0 for all (U,F ) ∈ A0
implies that the corrector v = v(u, f ) satisfies(

− vt −∇ · (a(x)∇v) + dv = 0, (x , t) ∈ QT ,

v = 0, (x , t) ∈ qT

in addition to the boundary conditions: v = 0 on ΣT and vt = 0 on Ω× {0,T}.
Unique continuation property implies that v = 0 in QT and so E(u, f ) = 0 and so
(u, f ) ∈ A solves the heat eq.

Remark The proposition educes the search of ONE control f distributed in ω to the
minimization of the functional E over A.

Remark Least squares terminology :

E(u, f ) :=
1
2
‖ut −∇ · (a(x)∇u) + d u − f1ω‖2

H−1(QT )
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Least-squares approach (3): convergence of (some) minimizing sequences

For any sA := (uA, fA) ∈ A, we consider the equivalent problem :

min
(u,f )∈A0

EsA (u, f ), EsA (u, f ) := E(sA + (u, f )). (8)

(A0, ‖ · ‖A0 ) is a Hilbert space with and introduce

‖u, f‖2
A0

:=

ZZ
QT

(|u|2 + |∇u|2) dx dt +

Z T

0
‖ut (·, t)‖2

H−1(Ω)
dt +

ZZ
QT

|f |2 dx dt (9)

The boundedness of EsA implies only the boundedness of the corrector v for the
H1(QT )-norm.

It turns out that minimizing sequences for EsA which belong to a precise subset of A0
remain bounded uniformly.

Actually, this property is mainly due to the fact the functional EsA is invariant in the
subset of A0 which satisfies the state equations.
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Least-squares approach (3): convergence of the minimizing sequences

We note
I T which maps a triplet (u, f ) ⊂ A into the corresponding vector v ∈ H1(QT ).
I A = Ker T∩A0 composed of the elements (u, f ) satisfying the heat eq. and such

that u vanishes on the boundary ∂QT .
I A⊥ = (Ker T ∩ A0)⊥ the orthogonal complement of A in A0

I PA⊥ : A0 → A⊥ the (orthogonal) projection on A⊥.

We define the minimizing sequence (uk , f k )k≥0 ∈ A⊥ as follows:

8<: (u0, f 0) given in A⊥,

(uk+1, f k+1) = (uk , f k )− ηk PA⊥ (uk , f
k

), k ≥ 0
(10)

where (uk , f
k

) ∈ A0 is defined as the unique solution of the formulation

〈(uk , f
k

), (U,F )〉A0 = 〈E ′sA (uk , f k ), (U,F )〉, ∀(U,F ) ∈ A0. (11)

Proposition
For any sA ∈ A and any {u0, f 0} ∈ A⊥, the sequence sA + {(uk , f k )}k≥0 ∈ A
converges strongly to a solution of the extremal problem for E.
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Least-squares approach (4): convergence of the minimizing sequences

This proposition is the consequence of the following abstract result :

Lemma
Suppose T : X 7→ Y is a linear, continuous operator between Hilbert spaces, and
H ⊂ X, a closed subspace, u0 ∈ X. Put

E : u0 + H 7→ R+, E(u) =
1
2
‖Tu‖2, A = Ker T ∩ H.

1. E : u0 + A⊥ → R is quadratic, non-negative, and strictly convex, where A⊥ is
the orthogonal complement of A in H.

2. If we regard E as a functional defined on H, E(u0 + ·), and identify H with its
dual, then the derivative E ′(u0 + ·) always belongs to A⊥. In particular, a typical
steepest descent procedure for E(u0 + ·) will always stay in the manifold
u0 + A⊥.

3. If, in addition, minu∈H E(u0 + u) = 0, then the steepest descent scheme will
always produce sequences converging (strongly in X) to a unique (in u0 + A⊥)
minimizer u0 + u with zero error.
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Least-squares approach (4): convergence of the minimizing sequences

PROOF OF THE LEMMA - 1-) Suppose there are ui ∈ A⊥, i = 1, 2, such that

E
„

u0 +
1
2

u1 +
1
2

u2

«
=

1
2

E(u0 + u1) +
1
2

E(u0 + u2).

Due to the strict convexity of the norm in a Hilbert space, we deduce that this equality
can only occur if Tu1 = Tu2. So therefore u1 − u2 ∈ A ∩ A⊥ = {0}, and u1 = u2.

2-) Note that for arbitrary U ∈ A, TU = 0, and so

E(u0 + u + U) =
1
2
‖Tu0 + Tu + TU‖2 =

1
2
‖Tu0 + Tu‖2 = E(u0 + u).

Therefore the derivative E ′(u0 + u), the steepest descent direction for E at u0 + u, has
to be orthogonal to all such U ∈ A.



Least-squares approach (4): convergence of the minimizing sequences

PROOF OF THE LEMMA 1- 3-) Finally, assume E(u0 + u) = 0. It is clear that this
minimizer is unique in u0 + A⊥ (recall the strict convexity in (i)). This, in particular,
implies that for arbitrary u ∈ A⊥,

〈E ′(u0 + u), u − u〉 ≤ 0, (12)

because this inner product is the derivative of the section t 7→ E(u0 + tu + (1− t)u) at
t = 0, and this section must be a positive parabola with the minimum point at t = 1. If
we consider the gradient flow

u′(t) = −E ′(u0 + u(t)), t ∈ [0,+∞),

then, because of (12),

d
dt

„
1
2
‖u(t)− u‖2

«
= 〈u(t)− u, u′(t)〉 = 〈u(t)− u,−E ′(u0 + u(t))〉 ≤ 0.

This implies that sequences produced through a steepest descent method will be

minimizing for E , uniformly bounded in X (because ‖u(t)− u‖ is a non-increasing

function of t), and due to the strict convexity of E restricted to u0 + A⊥, they will have to

converge towards the unique minimizer u0 + u.



Least-squares approach (4): convergence of the minimizing sequences

PROOF OF THE PROPOSITION-

The result is obtained by applying the previous lemma 1 with :

I B = {y ∈ L2(0,T ,H1
0 (Ω)) : yt ∈ L2(0,T ; H−1(Ω))},

I X is taken to be B × L2(qT )

I H is taken to be A0, u0 = sA ∈ A ⊂ X .
I The operator T maps (u, f ) ∈ A ⊂ X into v ∈ Y := H1(QT )



Remark

Direct problem

A =


u; u ∈ C([0,T ]; L2(Ω)) ∩ L2(0,T ; H1

0 (Ω)); u′ ∈ L2(0,T ,H−1(Ω)), u(·, 0) = u0

ff
< E ′(u),U >= 0 for all U ∈ A0 implies that the corrector v solves(

− vt −∇ · (a(x)∇v) + dv = 0, (x , t) ∈ QT ,

v(·,T ) = 0, x ∈ Ω

Boundary controllability
ΣT ⊂ ΓT := ∂Ω× (0,T ).

A =


u; u ∈ H1(QT ), u = 0 on ΓT \ ΣT , u(·, 0) = u0, u(·,T ) = 0

ff
< E ′(u),U >= 0 for all U ∈ A0 implies that the corrector v solves(

− vt −∇ · (a(x)∇v) + dv = 0, (x , t) ∈ QT ,

a(x)∂νv = 0, (x , t) ∈ ΣT ⊂ ΓT

The control is obtained as the trace of u ∈ A on ΣT .
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A numerical application in 1D (inner controllability)

N = 1, Ω = (0, 1), ω = (0.2, 0.5), u0(x) = sin(πx), a(x) = a0 = 0.25, T = 1/2,
d := 0
Starting point of the algorithm: (u, f ) = (u0(x)(1− t/T )2, 0) ∈ A

0 50 100 150 200

6.5

6

5.5

5

4.5

4

3.5

3

2.5

2

n

u0(x) = sin(πx) - Control acting on ω = (0.2, 0.5) - ε = 10−6 - log10(Eh(un
h ) (dashed

line) and log10(‖gn
h‖A) (full line) vs. the iteration n of the CG algorithm.
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A numerical application in 1D (boundary controllability)

N = 1, Ω = (0, 1), u0(x) = sin(πx), a(x) = a0 = 0.25, T = 1/2, d := 0
Starting point of the algorithm: (u, f ) = (u0(x)(1− t/T )2, 0) ∈ A
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h‖A) (full line)
vs. the iteration n of the CG algorithm.



A numerical application in 1D (boundary controllability)
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A numerical application in 1D (boundary controllability)
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Direct and control problem for Stokes

(
yt − ν∆y +∇π = f 1ω , ∇ · y = 0 in QT

y = 0 on ΣT , y(·, 0) = y0 in Ω
(13)

H = {ϕ ∈ L2(Ω) : ∇ ·ϕ = 0 in Ω, ϕ · n = 0 on ∂Ω},

V = {ϕ ∈ H1
0(Ω) : ∇ ·ϕ = 0 in Ω},

U =


ψ ∈ L2(Ω) :

Z
Ω
ψ(x) dx = 0

ff
.

(14)

Then, for any y0 ∈ H, T > 0, and f ∈ L2(qT ), there exists exactly one solution (y, π) of
(13) with the following regularity :

y ∈ C0 ([0,T ]; H) ∩ L2 (0,T ; V) , π ∈ L2(0,T ; U)

Theorem
For any y0 ∈ H, the linear system (13) is null-controllable at any time T > 0.



Least-squares for the controllability of Stokes

A =


(y, π, f); y ∈ L2(0,T ,H1

0(Ω)), yt ∈ L2(0,T ; H−1(Ω)),

y(·, 0) = y0, y(·,T ) = 0, π ∈ L2(0,T ; U), f ∈ L2(qT )

ff
.

(15)

Then, we define the functional E : A → R+ by

E(y, π, f) =
1
2

ZZ
QT

(|vt |2 + |∇v|2 + |∇ · y|2) dx dt (16)

where the corrector v is the unique solution in H1(QT ) of the (elliptic) boundary value
problem (

− vtt −∆v + (yt − ν∆y +∇π − f 1ω) = 0, in QT ,

v = 0 on ΣT , vt = 0 on Ω× {0,T}.
(17)



Least-squares for the controllability of Stokes
[Pedregal, Münch 2014], [Münch 2015]

Proposition
(y, π) is a controlled solution of the Stokes system (13) by the control function
f 1ω ∈ L2(qT ) if and only if (y, π, f) is a solution of the extremal problem :

inf
(y,π,f)∈A

E(y, π, f). (18)

Proof- =⇒
〈E ′(y, π, f), (Y,Π,F)〉 = 0 ∀(Y,Π,F) ∈ A0 implies that the corrector v = v(y, π, f)
solution of (30) satisfies the conditions(

vt + ν∆v−∇(∇ · y) = 0, ∇ · v = 0, in QT ,

v = 0, in qT .
(19)

The unique continuation property for the Stokes system implies that v = 0 in QT and
that ∇ · y is a constant in QT . Eventually, from

〈E ′(y, π, f), (Y,Π,F)〉 = (∇ · y)

ZZ
QT

∇ · Y dx dt = 0, ∀(Y,Π,F) ∈ A0

and then implies that this constant is zero.
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Convergence of the minimizing sequence

We then define the following minimizing sequence (yk , πk , fk )k≥0 ∈ A⊥ as follows:

8>>><>>>:
(y0, π0, f0) given in A⊥,

(yk+1, πk+1, fk+1) = (yk , πk , fk )− ηk PA⊥ (yk , πk , f
k

), k ≥ 0,

〈(yk , πk , f
k

), (Y,Π,F)〉A0 = 〈E ′s0
(yk , πk , fk ), (Y,Π,F)〉, ∀(Y,Π,F) ∈ A0.

(20)

Proposition
For any sA ∈ A and any {y0, π0, f0} ∈ A⊥, the sequence sA + {(yk, πk, fk)}k≥0 ∈ A
converges strongly to a solution of the extremal problem (29).

Proof- Applied the lemma with
B = {y ∈ L2(0,T ,H1

0(Ω)) : yt ∈ L2(0,T ; H−1(Ω))}, X is taken to be
B × L2(0,T ; U)× L2(qT ).
H = A0 and u0 = sA ∈ A ⊂ X .
The operator T maps a triplet (y, π, f) ∈ A ⊂ X into
(v,∇ · y) ∈ Y := H1(QT )× L2(QT ).



Numerical application : controllability to trajectory

The Poiseuille flow y =

„
− c

2ν x2(1− x2), 0
«
, π = c x1 solves the stationary

homogeneous Stokes eq.

− ν∆y +∇π = 0, ∇ · y = 0 in QT . (21)

We introduce (z, σ) = (y− y, π − π) where (y, π) solves the state equations of (13):

yt − ν∆y +∇π = f 1ω , ∇ · y = 0 in QT , y(·, 0) = y0 in Ω (22)

so that (z, σ) solves

zt − ν∆z +∇σ = f 1ω , ∇ · z = 0 in QT , z(·, 0) = y0 − y in Ω. (23)

We add the boundary condition z = 0 on ΣT .
For any y0 such that y0 − y ∈ H, we determine f such that z(·,T ) = 0 on QT .
y := z + y is then controlled to the trajectory y at time T .

Ω = (0, 5)× (0, 1), ω = (1, 2)× (0, 1), T = 2 and ν = 1/40 and

y0 = y +∇× ψ, ψ = K (1− x2)2x2
2 (5− x1)2x2

1 , m ∈ N (24)

We take K such that ‖∇ × ψ‖L2(Ω) = 2.
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Reduce the L2-norm of the control

The method avoids duality arguments and therefore ill-posedness: on the contrary, the
controls obtained from the minimization of E does not minimize a priori any particular
norm :
Two options :

I for any solution (u, f ) ∈ A, compute a collection of solution (uj , fj ) ∈ A0, j ∈ J
and then solve

min ‖f +
X
j∈J

αj fj‖L2(qT ) w .r .t .{αj}j∈J (25)

I solve the saddle problem

sup
λ∈R

inf
(y,π,f)∈A

L((y, π, f), λ) :=
1
2
‖f‖2

L2(qT )
+ λE(y, π, f). (26)

The set {(y, π, f) ∈ A,E(y, π, f) = 0} is convex so Uzawa type algorithm
converges :
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Non linear case ? Example : NS steady case

(
− ν∆y + (y · ∇)y +∇π = f, ∇ · y = 0 in Ω

y = 0 on ∂Ω
(27)

∀f ∈ H−1(Ω), ∃(y, π) ∈ H1
0(Ω)× L2

0(Ω).8><>:
A = H1

0(Ω)× L2(Ω), E : A → R+

E(y, π) :=
1
2

Z
Ω

(|∇v|2 + |∇ · y|2) dx
(28)

Least-Squares problem :
inf

(y,π)∈A
E(y, π). (29)

where the corrector v is the unique solution in H1
0(QT ) of the (elliptic) boundary value

problem (
−∆v + (−ν∆y + div(y⊗ y) +∇π − f) = 0, in Ω,

v = 0 on ∂Ω.
(30)

Main issue

E(yj , πj )→ 0 as j →∞ =⇒ (yj , πj )→ (y, f ) ∈ A with E(y, π) = 0 ?? (31)
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Non linear case. Abstract framework

Consider a non-negative, smooth functional E : H → R defined on a Hilbert space H.

Definition
A functional E is an error functional if over bounded sets of H, limE′(u)=0 E(u) = 0.

Proposition (Pedregal 2014- Non existence of mountain-pass points)
Suppose E : H → R is an error functional and Z = {E ≡ 0} = {u0}. Then, the
functional ρ : [0,∞)→ [0,∞) defined by

ρ(r) := inf
‖u−u0‖=r

E(u) is non-decreasing.

Definition ("Coercivity" of E at its zero set)
The zero set Z of E is regular if it is non-empty and if limE(u)→0 dist(u,Z ) = 0.

Theorem
Every integral curve of the flow

u(0) ∈ H; u′(t) = −E ′(u(t)), t > 0 (32)

of an error functional E : H →R whose zero set Z is regular converges strongly to a
unique limit in Z .
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of an error functional E : H →R whose zero set Z is regular converges strongly to a
unique limit in Z .



Non linear case ? Example : NS steady case8><>:
A = H1

0(Ω)× L2(Ω), E : A → R+

E(y, π) :=
1
2

Z
Ω

(|∇v|2 + |∇ · y|2) dx
(33)

Proposition
E is an error functional: over bounded sets of A, limE′(y,π)=0 E(y, π) = 0.
Proof

E ′(y, π) · (Y,Π) =

Z
Ω
−ν∇v · ∇Y + (y⊗ Y + Y⊗ y) : ∇v + (∇ · v)Πdx

+

Z
Ω

(∇ · y)(∇ · Y)dx
(34)

We easily get that

‖v‖H1
0(Ω) ≤ C(‖y⊗ y‖L2(Ω) + ‖y‖H1

0(Ω) + ‖π‖L2(Ω) + ‖f‖H−1(Ω)). (35)

so that we can take Y = v leading to

E ′(y, π) · (v,Π) =

Z
Ω
−ν|∇v|2 − (v⊗ v) : ∇y +

1
2

(∇ · y)|v|2dx

+

Z
Ω

(∇ · v)(∇ · y + y · v + Π)dx
(36)



Non linear case ? Example : NS steady case

Similarly, Πs = −(∇ · y + y · v) ∈ L2(Ω) remains bounded with respect to (y, π) and
we write

E ′(y, π) · (v,Πs) =

Z
Ω
−ν|∇v|2 − (v⊗ v) : ∇y +

1
2

(∇ · y)|v|2dx (37)

We then use the following result (consequence of the well-posedness of the Oseen
equation)

Lemma
For any y ∈ H1

0(Ω), F ∈ L2(Ω), there exists (Y,Π) ∈ H1
0 (Ω)× L2(Ω) with ∇ · Y = 0

such thatZ
Ω

(ν∇Y− (Y⊗ y + y⊗ Y)) : ∇w− Π∇ · w− F · w = 0, ∀w ∈ H1
0 (Ω) (38)

such that ‖Y,Π‖H1
0(Ω)×L2(Ω) ≤ C(‖y‖H1

0(Ω)‖+ ‖F‖L2(Ω)) for some C > 0.



Non linear case ? Example : NS steady case

Using this lemma for F = v and w = v (v is the corrector associated to the pair (y, π)),
we obtain that (Y,Π) ∈ H1

0(Ω)× L2(Ω) satisfies ∇ · Y = 0 and

Z
Ω

(ν∇Y− (Y⊗ y + y⊗ Y)) : ∇v− Π∇ · v− v · v = 0, ∀w ∈ H1
0 (Ω) (39)

With this pair (Y,Π) bounded with respect to v and to y, and so with respect to (y, π),
we have from (34), (remind that ∇ · Y = 0)

E ′(y, π) · (Y,Π) =

Z
Ω
−ν∇v · ∇Y + (y⊗ Y + Y⊗ y) : ∇v + (∇ · v)Πdx (40)

The property E ′(y, π) · (Y,Π)→ 0 then implies that ‖v‖L2(Ω) → 0. Then, from (37), the
property E ′(y, π) · (v,Πs)→ 0 then implies from the equality (39) that ‖∇v‖L2(Ω) → 0.
Then, 34 implies that

R
Ω∇ · y∇ · Ydx→ 0 for all Y ∈ H1

0 (Ω) so that ‖∇ · y‖L2(Ω) → 0.



Non linear case ? Backward facing step

IsoValue
-0.114405
-0.0308222
0.0248996
0.0806213
0.136343
0.192065
0.247786
0.303508
0.35923
0.414952
0.470673
0.526395
0.582117
0.637838
0.69356
0.749282
0.805004
0.860725
0.916447
1.05575

Iso-values of the first component of the velocity with Reynolds number Re = 1/150



Null controllability of a non linear heat equation

8><>:
yt −∆y + F (y) = v 1ω , (x , t) ∈ QT ,

y(·, 0) = y0, x ∈ Ω,

y = 0, (x , t) ∈ ∂Ω× (0,T ),

(41)

Theorem (Barbu 99, Fernandez-Cara Zuazua 00)
If F : R→ R is locally lipschitz-continuous and satisfies

F (s)

|s|log3/2(1 + |s|)
→ 0 as s →∞

then the system is uniformly controllable.

Remark -
The controllability is proved by linearization and fixed point argument, useless in
practice if the fixed point operator is not a contraction.
[Fernandez-Cara Münch, 2012]



Null control of the non linear heat equation

F (s) = −αs logp(1 + |s|), α = 5, p = 1.4.
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Figure: u0(x) = 3 sin(πx) - T = 1/2, a0 = 1/4 - log10(Eh(un
h )) (dashed line) and log10(‖gn

h‖A) (full line)
vs. the iteration n of the CG algorithm.



Null control of the non linear heat equation
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Null control of the non linear heat equation
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Conclusions

I Use of Least-squares method to controllability seems original

I Construction of strong convergence sequences.

I Can be extended to solve inverse type problems

I General method, numerically robust, simple implementation and (apparently !)
fast :

I Open question: speed of convergence ?
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