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Problem statement

QcRVN(N>1)-T>0.

{ Ly :=yy — V- (c(x)Vy) +d(x,t)y =, (x,t)e Qr:=Qx(0,T)
y=0, x,0)eTr=00x (0,T) (1)
(y(':o)ayl("o)) = (yO’Y1)1 x €.

ce C'(QR)) c(x) > ¢ >0inQ, d e L>(Qr), (Yo, 1) € L3(Q) x H(Q) = H;
fel2(H1)=X.
Letw Cc Qandgr:=w x (0, T) C Qr.

(IP)-Given yops € L2(q7), find y the solution of (1) such thaty = yops on  qr.

From a "good" measurement y,,s on gr, we want to recover y solution of (1).
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Problem statement (bis)

Introducing the operator P : L?(Qr) — X x L2(qr) defined by Py := (Ly, y|q,), the
problem is reformulated as :

find y € L2(Qr) solution of Py = (f, Yops).- (IP)
From the unique continuation property for (1), if the set gt satisfies some geometric

conditions and if ys is a restriction to gy of a solution of (1), then the problem is
well-posed in the sense that the state y corresponding to the pair (yops, f) is unique.
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Problem statement (bis)

Introducing the operator P : L?(Qr) — X x L2(qr) defined by Py := (Ly, y|q,), the
problem is reformulated as :

find y € L2(Qr) solution of Py = (f, Yops).- (IP)

From the unique continuation property for (1), if the set gt satisfies some geometric
conditions and if ys is a restriction to gy of a solution of (1), then the problem is
well-posed in the sense that the state y corresponding to the pair (yops, f) is unique.

Objective - Find a convergent (numerical) approximation of the solution
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Most natural approach: Least-squares method

The most natural (and widely used in practice) approach consists in introducing a
least-squares type technic, i.e. consider the extremal problem

- 1
minimize  J(yo, 1) = 5|1y = YopsllFzqy)

(LS) subjectto  (yo,¥1) € H @

where y solves (1)

A minimizing sequence (Yo, ¥1)(x>0) is defined in term of the solution of an adjoint
problem.
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Most natural approach: Least-squares method

The most natural (and widely used in practice) approach consists in introducing a
least-squares type technic, i.e. consider the extremal problem

- 1
minimize  J(yo, 1) = 5|1y = YopsllFzqy)

(LS) subjectto  (yo,¥1) € H @

where y solves (1)

A minimizing sequence (Yo, ¥1)(x>0) is defined in term of the solution of an adjoint
problem.

A difficulty, when one wants to prove the convergence of a discrete approximation : it is
not possible to minimize over a discrete subspace of {y € Y; Ly — f = 0}: If
dim(Ys) < oo, {yn € Yo C Y : Ly, — f = 0} is 0 or empty

The minimization procedure first requires the discretization of J and of the system (1);

This raises the issue of uniform coercivity property of the discrete functional with
respect to the approximation parameter h.
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Luenberger observers type approach

[Auroux-Blum 2005],[Chapelle,Cindea,Moireau,2012], [Ramdani-Tucsnak 2011], etc...

Define a dynamic

Ly = G(Yobs’ QT) 7(7 0) fixed

such that
V() =y Dlingy =0 as t— o0

N(Q) - appropriate norm
The reversibility of the wave equation then allows to recover y for any time.

But, for the same reasons, on a numerically point of view, this method requires to prove
uniform discrete observability properties.

Inverse problems for linear hyperbolic equation via mixed formula



Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]

QR. method (Quasi-Reversibility): for any € > 0, find y. € A such that
(PYe, PY) xx12(gr) T €Ves V)4 = ((f, Yobs): PY) xx12(gr),xx 12(q7) > (QR)

forally € A,

@ A denotes a functional space which gives a meaning to the first term
@ ¢ > 0 a Tikhonov parameter which ensures the well-posedness
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Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]

QR. method (Quasi-Reversibility): for any € > 0, find y. € A such that
(PYe, PY) xx12(gr) T €Ves V)4 = ((f, Yobs): PY) xx12(gr),xx 12(q7) > (QR)

forally € A,

@ A denotes a functional space which gives a meaning to the first term
@ ¢ > 0 a Tikhonov parameter which ensures the well-posedness

equivalent to the minimization over A of

¥ = 1Py = (f, Yobs) I3 27y + EllVI
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Main assumption: a generalized obs. inequality

Without loss of generality, f = 0.
We consider the vectorial space Z defined by

Z:={y:yeC([0,T],L5(Q)) N C'([0, T, H (), Ly € X}. (3)

and then introduce the following hypothesis :

There exists a constant Cops = C(w, T, [|C]| 51 @) ld|l L= (q)) such that the following
estimate holds :

(1) 1Y 0 1Oy < o (Wl + 1413 ). Wy 2 (4

hold true if (w, T, Q) satisfies a geometric optic condition. "Any characteristic line
starting at the point x € Q at time ¢ = 0 and following the optical geometric laws when
reflecting at 9Q must meet q7".
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Main assumption: a generalized obs. inequality

Without loss of generality, f = 0
We consider the vectorial space Z defined by

Z:={y:yeC([0,T],L5(Q)) N C'([0, T, H (), Ly € X}. (3)

and then introduce the following hypothesis :

There exists a constant Cops = C(w, T, [|C]| 51 @) s 11l oo (@)) such that the following
estimate holds :

(") Iy, 0)m( 0)||H<cobs(||y|\Lz . +||Ly||§), wez. @

hold true if (w, T, Q) satisfies a geometric optic condition. "Any characteristic line
starting at the point x € Q at time ¢ = 0 and following the optical geometric laws when
reflecting at 9Q must meet q7".

12082 0y) < Cor (Callleqy + (1 + CalLzl}) vzeZ. ()
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Non cylindrical situation in 1D

[Castro-Cindea-Minch, SICON 2014],
In 1D with ¢ = 1 and d = 0, the observability inequality also holds for non cylindrical
domains.

qar

1F [ah
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Generalized Observability inequality: weaker hypothesis

Then, within this hypothesis, for any n > 0, we define on Z the bilinear form
¥z / yydxdt+n/ (Ly, Ly) -1y @t Vy,y€Z. (6)
ar

(Z, 1l - I) is a Hilbert space.
Then, we consider the following extremal problem :

(P) infJ(y) := 7Hy ,VobsHLz(qT
subjectto y € W:={y e Z, Ly =0in X}

(P) is well posed : J is continuous over W, strictly convex and J(y) — +oo as
Iyllw — oo.

The solution of (P) in W does not depend on 7.

From (4), the solution y in Z of (P) satisfies (y(-,0), y:(-,0)) € H, so that problem (P)
is equivalent to the minimization of J w.r.t (yo,y1) € H .

Inverse problems for linear hyperbolic equation via mixed formula



Generalized Observability inequality: weaker hypothesis

Then, within this hypothesis, for any n > 0, we define on Z the bilinear form
¥z / yydxdt+n/ (Ly, Ly) -1y @t Vy,y€Z. (6)
ar

(Z, 1l - I) is a Hilbert space.
Then, we consider the following extremal problem :

. _ 5 2
) infJ(y) := Hy Yobsllfa(qpy + 5lILVI% 70
subject to ye W:={yeZ Ly=0in X}

(P) is well posed : J is continuous over W, strictly convex and J(y) — +oo as
Iyllw — oo.

The solution of (P) in W does not depend on 7.

From (4), the solution y in Z of (P) satisfies (y(-,0), y:(-,0)) € H, so that problem (P)
is equivalent to the minimization of J w.r.t (yo,y1) € H .
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Direct approach

In order to solve (P), we have to deal with the constraint equality which appears W.
We introduce a Lagrange multiplier A € X’ and the following mixed formulation: find
(¥, ) € Z x X’ solution of

{ar<y,y)+b(y>,x> = 1), vy €z
b(y,\) 0, Y €A,

where
.
a:ZxZ—R, al(y,y) ::/ yy dxdt + r/ (Ly, LY>H71(Q) dt, (8)
ar 0
.
b:ZxX =R, by,\) ::/O O L) sy ©)

1:Z—-R, I(y):= / Yobs ¥ dxdt. (10)
qr

System (7) is nothing else than the optimality system corresponding to the extremal
problem (P).
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Direct approach

Under the hypothesis (), for any r > 0,
@ The mixed formulation (7) is well-posed.

9 The unique solution (y,\) € Z x X' is the unique saddle-point of the Lagrangian
L:Z x X' — R defined by

1
L{y,2) =5ar(y,y) + bly; A) = I(y)-
© We have the estimate

ity = ||.y||L2(qT) < ||}’obs||L2(qT)7 [INxr <24/Ca,1 +71||}’obsHL2(qT)- (11)
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Direct approach

The kernel N (b) = {y € Z; b(y,\) =0 VA € X’} coincides with W: we easily get
ar(y,y) =lyll%, vy eN(b)=W.
It remains to check the inf-sup constant property : 35 > 0 such that

by, )

= > (12)
AeX yez 1Yz IIMx:
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Direct approach

The kernel N (b) = {y € Z; b(y,\) =0 VA € X’} coincides with W: we easily get
ar(y,y) =lyll%, vy eN(b)=W.
It remains to check the inf-sup constant property : 35 > 0 such that

by N (12)
reX yez IyllzlIMx:

For any fixed A € X’, we define y as the unique solution of

Ly=-AXxin Qr, (¥(-0),5(-0))=(0,0) on ©, y=0on X7. (13)
We get b(y, A) = [IA1%, and [Iy[1Z = 1Y [1%, ) + 7l A3
The estimate ||yll,2(q,) < /Ca,TlIAllx implies that y € Z and that

bly,n) 1

sup >
yez WliviXlx: = /Ca,r+n

leading to the result with § = (Cq 1 + n)~"/2.

>0

Inverse problems for linear hyperbolic equation via mixed formula



Assuming enough regularity on the solution A, at the optimality, the Lagrange Multiplier

solves ]
Lx=—(y - YObs)1qTa A=0 in X, (1)
A=X=0 onQx{0,T}.

A (defined in the weak sense) is a null controlled solution of the wave equation through
the control —(y — Yops) 1w-
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Assuming enough regularity on the solution A, at the optimality, the Lagrange Multiplier

solves ]
{L/\:(y}’obs)1qT’ A=0 in Xy,

(14)
A=X=0 onQx{0,T}.

A (defined in the weak sense) is a null controlled solution of the wave equation through
the control —(y — Yops) 1w-

If yops is the restriction to g7 of a solution of (1), then A must vanish almost everywhere.

In that case, supycp infycy Lr(y, A) = inf,cy Lr(y,0) = inf,cy Jr(y) with

1 r
Jr(y) = 1Y = Yobs 2 apy + 5 1LV I (15)

The corresponding variational formulation is then : find y € Z such that

.
aly.9) = [[ yyaeter [0 e @t =10). Wez
qr
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In the general case, the mixed formulation can be rewritten as follows: find
(z,\) € Z x X’ solution of

(16)

(Pry, P’?>X><L2(q7—) + (LY, M) x x> = {(0, Yobs), Pry>X><L2(qT)7 VyeZ,
<Ly7 )\)ny/ =0, v eX

with Pry := (VTLy, ¥|g;)-

This approach may be seen as generalization of the (QR) problem (see (QR)), where
the variable X is adjusted automatically (while the choice of the parameter ¢ in (QR) is
in general a delicate issue).
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Remark 3: Stabilized mixed formulation

A:={xe (o, T]; Ha () n C'([0, T]; L2(Q)), LA € L2(Q7), A(+,0) = \(+,0) = 0}.

sup inf Lro(y, )
AeNYEZ

«
Lr,a(y, >‘) = ,Cr(y, >‘)_5||L>‘ + (y - }/Obs)1w“i2(o7_)-
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Remark 3: Stabilized mixed formulation

AN:={Xe C([0, T]; H&(Q)) N C'([0, T]; L3(R)), L\ € L2(Q7), A(,0) = \(-,0) = 0}.
sup inf Lro(y, )
XenyeZ

«
Lr,a(y, >‘) = ,Cr(y, >‘)_5||L>\ + (y - }/Obs)1w“i2(o7_)-

For a € (0, 1), find (y,\) € Z x A such that

= - - L (7
bcv(y’ >‘) - C(,(>\, )‘) - I2,a()‘)7 A2NS A,

{ar,a(y,y)+ba(y,A) = hao(), ey

.
fro ZxZ =R aa(rn3) =0 =) [[ yyader [Twy.m), gt
Jor
V4 7 L) d L\ dxdf
: — = — t,
bt Zx A= B balr )= [0 oyt a/qry y
Ca :ANXNAN—=R, Cca(MA)i=a // L LX, dxdt
JJag
Mo Z =R ha®)i=(=a) [[ yoyaat,
ar

ba:N=R, byA):=—a // Yobs L dxdt.
ar
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Remark 3: Stabilized mixed formulation

Under the hypothesis (H), for any o € (0, 1), the corresponding mixed formulation is
well-posed. The unique pair (y,\) in Z x A satisfies

1—q)? a?
011113 + BalIA|E < (u + o

2
0, 6, ) ”yobs”LZ(qT)' (18)

with 01 := min(1 = a,fn’1)792 = %mi” (0‘7 C§1T>'
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Remark 3: Stabilized mixed formulation

Under the hypothesis (H), for any o € (0, 1), the corresponding mixed formulation is
well-posed. The unique pair (y,\) in Z x A satisfies

(1 7a)2 a?
01yl + 822 < (7 4+

2
0, 6, ) ”yobs”LZ(qT)' (18)

with 6 = min(1 —a, rn*1),92 = S min (a, CS;}).
If the solution (y, \) € Z x X' of (7) enjoys the property \ € A, then the solutions of (7)
and (17) coincide.
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Remark 4 - Link with controllability

The mixed formulation has a structure very closed to the one we get when we address
- using the same approach - the null controllability of (1): the control of minimal
[2(qgr)-norm which drives to rest (yo, y1) € H}(Q) x L?(Q) is givenby v = ¢ 14,
where (¢, ) € ® x L2(0, T; H}(Q)) solves

(%), Vo€ o
0, VX € [3(0, T; H{ (),

{a%w+m%m
b(, A)

where
aioxo—R aw.e) = [[ olx0pxndrat
ar
.
b:ox [2(0, T; HI(0,1)) = R, b(p,\) :/ <Lp Ay ot
A ,
1
l:® =R, I(SO) =—-< wt('70)7YO >H—1(Q)7H8(Q) +/O @(‘70)}/1 ax.

with & = {y € L?(g7), ¢ = 0 on 7 such that Ly € L2(0, T; H~'(0,1))}.
[Cindea- Miinch, Calcolo 2015]
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"Reversing the order of priority" between the constraint y — yops = 0 in L2(g7) and
Ly — f = 0in X, a possibility could be to minimize the functional

{minimize J(y) = Ly — fII%

(20)
subjecttoy € Z andto Yy — yops =0 in L%(qr)
via the introduction of a Lagrange multiplier in L2(qr).

The proof of the inf-sup property : there exists § > 0 such that

Mg, Ay dxat

in up —r— >
xet?(ar) yez Mz Iylly
of the corresponding mixed-formulation is however unclear.

This issue is solved by the introduction of a e-term in J. (Klibanov-Beilina 20xx).
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"Reversing the order of priority" between the constraint y — yops = 0 in L2(g7) and
Ly — f = 0in X, a possibility could be to minimize the functional

minimize J = |lLy — f||% + <||y|2
{ ) =Ly = fI& +<lyl% 20)

subjecttoy € Z andto Yy — yops =0 in L%(qr)

via the introduction of a Lagrange multiplier in L2(qr).

The proof of the inf-sup property : there exists § > 0 such that

Mg, Ay dxat

in up —r— >
xet?(ar) yez Ml zgnIylly
of the corresponding mixed-formulation is however unclear.

This issue is solved by the introduction of a e-term in J. (Klibanov-Beilina 20xx).
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(Important) Remark 6 : Dual of the mixed problem

Let P, be the linear operator from X' into X" defined by

Phi= —AT(Ly), YAEX where yeZ solves ar(y,y)=by,\), VycZ

For any r > 0, the operator P, is a strongly elliptic, symmetric isomorphism from X’
into X'.
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(Important) Remark 6 : Dual of the mixed problem

Let P, be the linear operator from X' into X" defined by
Phi= —AT(Ly), YAEX where yeZ solves ar(y,y)=by,\), VycZ

For any r > 0, the operator P, is a strongly elliptic, symmetric isomorphism from X’
into X'.

inf Lr(y,A) =— inf J*(A Lr(¥0,0
sup jnf ¥, A) = = inf =)+ Lr(¥0,0)

where yy € Z solves ar(yo,y) = I(¥),Vy € Y and J}* : X' — R defined by

1 T
SN =5 /0 (Prds A g oy It = D00, A)-
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Remark 7 - Boundary observation

(Yo, 1) € H{(Q) x L3(Q) - Q of class C?

The results apply if the distributed observation on g7 is replaced by a Neumann
boundary observation on a sufficiently large subset X of 9Q x (0, T) (i.e. assuming
% = Yu.0bs € L3(Z7) is known on X 7).

If (Qr, <7, T) satisfy some geometric condition, then there exists a positive constant
Cobs = C(w, T, HCHC1 @) Hd||L°°(Q)) such that

ay||?
2 —_
”y(':0)7yf('70)||H6(Q)XL2(Q) < CObS(H 9 ()

HIWlBgy): WEZ (@)

It suffices to re-define the form ain by a(y, y) := [fs, 2 9V dodx and the form / by
I(y) = ff):T %yobs dodx forally,y € Z.
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Recovering the solution and the source f when the pair (y, f) is unique

f(x, 1) = o(t)u(x)
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Recovering the solution and the source f when the pair (y, f) is unique

=d(x) € LP(Q), 5 € C'([0, T]),0(0) # 0, p € H1(Q)
Theorem (Yamamoto-Zhang 2001)

Let us assume that the triplet (T r, T, Qr) satisfies the geometric optic condition. Let
y = y(u) € C([0, T]; H}(€2)) N C'([0, T]; L2(2)) be the weak solution of (1) with
c:=1and (yo,y1) = (0,0). Then, there exists a positive constant C such that

C M lully-1(@) < 16(X) uylliz(ryy < Cllully-1(0y  Yr € HTH(Q). (22)
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=d(x) € LP(Q), 5 € C'([0, T]),0(0) # 0, p € H1(Q)
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Recovering the solution and the source f when the pair (y, f) is unique

=d(x) € LP(Q), o € C'([0, T]),5(0) # 0, u € H-1(Q)

Theorem (Yamamoto-Zhang 2001)

Let us assume that the triplet (T r, T, Qr) satisfies the geometric optic condition. Let
y = y(u) € C([0, T]; H}(€2)) N C'([0, T]; L2(2)) be the weak solution of (1) with
c:=1and (yo,y1) = (0,0). Then, there exists a positive constant C such that

C M lully-1(@) < 16(X) uylliz(ryy < Cllully-1(0y  Yr € HTH(Q). (22)

We consider the following extremal problem :

. 1
{ infJ(y, u) = EHC(X)(&/}’ - }’u,obs)Hiz(rTV (Py.n)
subjectto  (y,u) € W
where W is the space defined by
W= {(y,u);y € C([0, TI; Hy(2)) n C'([0, T]; L2(Q)), n € H™1(Q),
(23)

Ly — o = 0in Qr.y(-,0) = yi(-0) = 0}-

Attached to the norm ||(y, u)llw = [|e(X)Ouy Il ;2(r ;) W is a Hilbert space.

Inverse problems for linear hyperbolic equation via mixed formula



Recovering the solution and the source f when the pair (y, f) is unique

v= {(y, n)iy € C([0, TI; H5(2)) N C'([0, T]; L(Q), 1 € (D),
(24)
Ly on € L(0).¥(-0) = (- 0) =0 }.

There exists a constant Cops = C(I'7, T, ||C|| o1 @) (19l o0 (@)) Such that the following
estimate holds :

il 1 gy < cobs(uc( 0wy Iz + 1Ly = ol QT) Wy eY. ()

Then, for any n > 0, we define on Y the bilinear form

(s ), T )y = //r (c())2 8oy 0,7 dodtn | [ (o) (7-om et vy.7 e 2.

(25)
H(y)z)lly:: <(yuu‘)1(yuu‘) >y
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Recovering the solution and the source f when the pair (y, f) is unique

v= {(y, n)iy € C([0, TI; H5(2)) N C'([0, T]; L(Q), 1 € (D),
(24)
Ly on € L(0).¥(-0) = (- 0) =0 }.

There exists a constant Cops = C(I'7, T, ||C|| o1 @) (19l o0 (@)) Such that the following
estimate holds :

il 1 gy < cobs(nc( 0wy Iz + 1Ly = ol QT) Wy eY. ()

Then, for any n > 0, we define on Y the bilinear form
(.. Gy = [[ (e oyogdadien [[ (Ly—am) (-omant vy.yez.
T T

(25)
H(y)z)lly:: <(yuu‘)1(yuu‘) >y

Under the hypotheses (Hy), the space (Y, || - ||ly) is a Hilbert space.
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Recovering the solution and the source f: mixed formulation

Find ((y, 1), A) € Y x L2(Qr) solution of

{ a(y,m). 7. A) +6(F.m)N) = I7E,  YTEEY (26)
b((y,u).X) = 0, VA € L2(Qr),
where
aiYxY R, aly,n) 7.0) = // )0, y9,7 dordt (27)
b:Y xL2(Qr) =R, b((y, )\ // MLy — op)ax dt,
Y SR,y —// ) 0¥ Vo obs o,
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Recovering the solution and the source f: mixed formulation

Find ((y, 1), A) € Y x L2(Qr) solution of

{ar((%u),(y,u))+b((y,u)7A) = I(y.n), v(y.m) €Y (26)
b((y,m),A) = 0, VX € [2(Qr),
where
ar:YxY =R al(ly,n),n) —// )0y y 8,y dodt (27)

+r/ (Ly — op)(Ly — om) dxdt,r > 0
Qr
b:Y x(2(0r) =R, b((y, ), // ALy — op)dx dt,

1Y =B )= [[ 0000y yons doct
rr
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Conformal approximation of the space-time variational framework

(boundary observation case, to fix idea)

Let Z, and Ay, be two finite dimensional spaces parametrized by the variable h such
that Z, C Z, A, C L2(Qy) for every h > 0. Find the (yp, Ap) € Z x Ap solution of

{ a(ynVn) + b dn) = MVh).  VInEZy 28)
b(yh,Xh) 01 VXh S Ah~
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that Z, C Z, A, C L2(Qy) for every h > 0. Find the (yp, Ap) € Z x Ap solution of

{ a(ynVn) + b dn) = MVh).  VInEZy 28)
b(yh,Xh) 01 VXh S Ah~

it r >0, ar is coercive on Z: a(y,y) > L|ly|2 Vy e Z.

=7

A
Vh>0 &= inf sup —2UmA) g (29)
A€M yezy I Mnlli2(aryl1Yallz

Consequently, Vh > 0 fixed, if r > 0, there exists a unique couple (¥, Ap) solution of
(28).
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First estimate

Leth > 0. Let (y,\) and (yn, \n) be the solution of (7) and of (28) respectively. Let oy,
the discrete inf-sup constant defined by (29). Then,

1y — yallz < 2(1 + ﬁ)d(y, Zy)+ ifd(A, An), (30)
A= Mnllizan < (24— ) Ly, Z0) + —>—d(x An) (31)
cen = (2+ 722 )5 T

where d(X, Ap) = infx e, 1A = Anll 2,y and

Ay, Zy) = inf |y —
(v, Zn) yhezhlly Yollz
, 1/2 (32)
= i, (100 = Ol + 1LY — )y ) -
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Let np = dim Z,, m, = dim Ap, and let the real matrices A, , € R, By, € R™n",
Jp € R™:Mh and L, € R™ be defined by

ar(Yn, ¥n) = (Ar.ni¥n} {¥n})rrn mom YYh, ¥ € Zh,
b(yn, An) = (Bniyn}t, {An})rmn gmn VyYh € Zhy An € An,
_ _ _ (33)
/ /Q Ankn A dt = (n{Anb {30} s s VAn An € Ap,
:
I(yn) = (Ln, {¥n})rrn Vyh € Zp,

where {yn} € R™ denotes the vector associated to y, and (-, -)gn, gn, the usual scalar
product over R™. With these notations, the problem (28) reads as follows: find
{yn} € R™ and {\p} € R™ such that

An Bl ) ( {yn} ) _( Ly ) 34
( Bh 0 RMh+Mp,np+mp {/\h} Rh+Mp 0 Rthrmh. ( )

The matrix of order my + np, is symmetric but not positive definite.
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Choice of the space Yj and Ap

We introduce a regular triangulation 7, such that Qr = Uke7, K. We note
h := max{diam(K), K € Tp}.
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Choice of the space Yj and Ap

We introduce a regular triangulation 7, such that Qr = Uke7, K. We note
h := max{diam(K), K € Tp}.

We introduce the space @, as follows:
Zy={yre€Ze C'(Qr): znlk e P(K) VK €Th, z,=0o0n X7}

where P(K) denotes an appropriate space of functions in x and .

@ The Bogner-Fox-Schmit (BFS for short) C' element defined for rectangles.
Therefore P(K) = P3 x @ P ;

@ The reduced Hsieh-Clough-Tocher (HCT for short) C' element defined for
triangles. This is a so-called composite finite element.
We also define the finite dimensional space

An = {Xn € C%(Qr), Anlk € P1(K) VK € Tp}

For any h > 0, we have Y, := Z, x A, C Y and A, C L2(Q7).
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Convergence rate in Z

(BFS element for N = 1 - Rate of convergence for the norm Z2)

Leth > 0, let k < 2 be a nonnegative integer. Let (y,\) and (yn, An) be the solution of
(7) and (28) respectively. If the solution (y, \) belongs to H*2(Qr) x HX(Qr), then
there exists two positives constants

Ki = Ki(llyllwere(arys el cr@zy 19l @), 7€ {1,2},

independent of h, such that

1 1
— < Kq1 — )h¥
Iy = yullz < 1( +\/ﬁ5h+\/ﬁ) ) (35)
1 1 1
A=A <Ko (1 — H. 36
1A= 2nllizar) < 2(( +\/’775h)5h+\/’7]5h) =
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Convergence rate in L2(Qr)

Precisely, we write that (y — y,) solves the hyperbolic equation

Ly =yn) =—=Lyn inQr
((y = yn), (y —yn)1)(0) € V
Yy—yn=0 onXxr.

The continuous dependance combined with the observability inequality applied to
(y — yn) lead to

Iy = ¥8ll22(qy < Ca.(Cobs + 1Y = Y eqr,, + IL¥nlZ2 1)

from which we deduce, in view of the definition of the norm Y, that

2
Iy = ¥nlli2(ay) < Ca,7(Cobs + 1) max(1, %)Hy = ¥nllz- (37)
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Convergence rate in L2(Qr)

Precisely, we write that (y — y,) solves the hyperbolic equation

Ly =yn) =—=Lyn inQr
((y = yn), (y —yn)1)(0) € V
Yy—yn=0 onXxr.

The continuous dependance combined with the observability inequality applied to
(y — yn) lead to

Iy = ¥8ll22(qy < Ca.(Cobs + 1Y = Y eqr,, + IL¥nlZ2 1)

from which we deduce, in view of the definition of the norm Y, that

2
Iy — ¥nlli2(q,) < Ca,7(Cobs + 1) max(1, —)|ly — yallz- (37)
(Qr) NG

Theorem (BFS element for N = 1 - Rate of convergence for the norm L?(Qr))

Assume that the hypothesis (4) holds. Let h > 0, let k < 2 be a positive integer. Let
(v, A) and (yn, A\n) be the solution of (7) and (28) respectively. If the solution (y, \)
belongs to H*2(Qr) x HX(Qr), then there exists two positives constant

K = K(||yH,_,k+2(QT), HCHC‘(CTT)’ ll9lleo (07)> Ca, T, Cobs), independent of h, such that

2 1 1
= < Kmax(1, — <1+ +—)hk. (38)
Iy = ¥all 2o ( \/ﬁ) T

Arnau h Inverse problems for linear hyperbolic equation via mixed formula




Choice of r versus dp

(n=r)

oh = inf{\/S : BhA; Bl {An} = 8 dp{An}, Y {An} € R™\ {0}} (39)

) c h—0F Cr>0 (40)
~ — as — s
r,h r\ﬁ r
10°
10”
107 - =
10 10
h

Figure: BFS finite element - Evolution of v/75, , with respectto hfor r = 1 (0), r = 1072 (o), r = h (x) and
r=r(<).
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Choice of r versus dp

2 1 1 p
Iy = ¥nlliz(apy < Kmax(1, W)(1 +7+ W)h 4

The right hand side is minimal for r of the order one leading to ||y — Yh”LZ(QT) < Khk—1,
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Choice of r versus dp

2 1 1
< K 1 1 hkA
Iy = yallizap) max(1, \[)< +o+ \[>

The right hand side is minimal for r of the order one leading to ||y — Yh”LZ(QT) < Khk—1,

NG 1 1 4
A=A <K 1+ -+ —=)h".
I = Mllzap) < Ko 1+ 5+ )

The optimal value of the augmentation parameter is now r = h? leading to
IA = Anllizeapy < Keh 1.
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€ (0, 1) - Stabilized mixed formulation

The problem (17) becomes : find (yn, Ap) € Zn x Ap solution of

{ aa(Yn¥n) +baGn¥n) = han)  YWh€Zh @)
ba(An, yn) = Ca(An, An) = ka(An), Vh € An,
Ap = {X € Zp; A(+,0) = X¢(+,0) = 0}. (42)

(BFS element for N = 1 - Rates of convergence - Stabilized mixed

formulation)

Assume that the hypothesis (4) holds. Let h > 0, let k < 2 be a positive integer. Let
(v, ) and (yn, A\n) be the solution of (7) and (28) respectively. If the solution (y, \)
belongs to H*+2(Qr) x HX(Qr), then there exists two positives constant

K= K(||YHH’<+2(OT)7 HCHC‘(CTT)’ ll9llec (07)> Ca, T, Cobs), independent of h, such that

Iy = ¥allz + Ix = Anlla < KHE. (43)
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Recovering the solution and the source 1 € H='(Q)

I(¥n), V(Y n) € Yh

{ ar((Vhs 1), (T i) + b, An) 44)
0, VAp € Ap.

b((Yn, ph), An)

Theorem (BFS element for N = 1 - Rate of convergence for the L?(Qr)-norm)

Leth > 0, let k, g < 2 be two nonnegative integers. Let (y, \) and (yn, A\r) be the
solution of (26) and (44) respectively. If the solution ((y, i), A) belongs to
H2(Qr) x HI(Q) x HX(Q7), then there exists a positive constant

K= K(||Y||Hk+2(or)7 ||M||Hk(Q)» ||C||C1 (@r)’ Hd||L°°(OT))7

independent of h, such that

1
1y = ¥all2(ap) < KCa, (1 + lloll2(0,7) V Cobs) Max(1, %)

[(1 \[15’7 + \%)h’”r (1 + \/;;5,1)(Ax)q]
(45)

v
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Numerical illustration - N = 1

(EX1) yo(x)=1—[2x—1], y1(x) =11/3,2/3(x), x€(0,1)

in H} x L2 for which the Fourier coefficients are

ax = 4v2 sin(rk/2), bx = L(cos(7rk/3) —cos(2nk/3)), k>0
m2k2 wk

f=0. T =2 - The corresponding solution of (1) with ¢ = 1, d = 0 is given by

yox=>" (ak cos(kt) + %‘T sin(knt)) V2sin(kmnx)

k>0
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Example 1 - N

gr =(0.1,0.3) x (0, T)

h 7.01 x 1072 3.53 x 10~ 1.76 x 1072 8.83x 10°°  4.42x 103
My=ypll,2
Z PO | 401 x 1077 481 x 1072 234x 1072 1.45x10~2  5.68 x 10~3
M2
ly=ynll,2
Z_PFED | q34x 107! 5.05x 1072 2.37x1072 1.16x10~2  5.80 x 10~3
IIYHLz(qT)

ILynll 2(ayy 718 x 1072  659x 1072 611 x 1072 555x 1072 510x 1072

Xl 20y 1.07x107%  470x 1075 232x107% 1.15x10~5 576x10°°
# CG iterates 29 46 83 133 201
Iy = yall 2.0 Ily = ynll2
@) _ O(H-574, (ar) — O, (46)
I¥ll2 (a7 Y1l 2
_ 0.123
ILynll2qpy = O ). (47)

Enough to guarantee the convergence of yj, toward a solution of the wave equation: recall that then

ILvnll 20, 701 (0,1)) = o(h'-128),
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Example 2 - N = 1 - Observation on gr

y and y, in Qr
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Example 2 - N = 1 - Observation on gr

Yy—yn and Xp, in Qr
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Example 2 - N = 1 - Observation on gr

h [ 701 x1072  353x10°2 1.76 x 10°2 883 x 10°°  4.42x10_° |
[ 7 CG iterates | 29 6 83 133 201 ]

20 40 60 80 100
iterates

logy of the residus w.r.t. iterates
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Mesh adaptat

1

ﬁd =

Iterative local refinement of the mesh according to the gradient of y,

Example 2




Example 2 - N = 1 - Mesh adaptation

0.5
t 0 o0 X
Reconstructed state y, on the adapted mesh
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Non cylindrical domain qr

Triangular meshes - reduced HCT elements

2r WAAVAVAVAVATAA S 55 7] 2r 1
AY, NORK
D TAAVAVATAS 5
5
i
15 K 15 ]
. KPX .
N/
VAVAYANANV VY
XRRERS
L VA AN A\ i L 4
1 AV AVAVAVAVAYaY 1
ANAVAVA%Y
N
3
0.5 ] 0.5 ]
RS OV % N
o BRI | ol ]
0 0.5 1 0 0.5 1
(a) (b)

Domain q‘T (a) and domain q'jl (b) triangulated using some coarse meshes.
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2D example: Q = (0, 1)? - Observation on gr

(a)

(b)

Mesh Number 0 1 2 3
Number of elements | 5320 15320 31740 120160
Number of nodes 3234 8799 17 670 64 411

Characteristics of the three meshes associated with Q7.
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2D example: Q = (0, 1)? - Observation on gr

(Yo, y1) € H3(Q) x L3(Q):

Yo(x1,x2) = (1 —[2xs —1[)(1 — [2x2 — 1])
1

(EX2-2D) { yi(xi,x2) = (1 202(X1, Xe) (X1, %) €. (48)

The Fourier coefficients of the corresponding solution are
25 ) .l
k22 2 2

b —L cosw—kfcoszik cosﬂfcosz—ﬂ/
M 2k 3 3 3 3 )

ay =

Mesh number 0 1 2 3
Ty—=yall
ZUOMR@D | 474%1072  372x 102 24x10-2  1.35x 10-2
2@y
ILynll2(ar) 1.18 0.89 0.99 0.99
IAnllizop) | 8211075 1.46x 1075 1.02x10° 3.56 x 10-°

Table: Example EX2-2D — r = h?
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2D example - Observation on qr

0.5

-0.2

T T T

0.33 0.85 1.4 1.9
(a) (b)
Mesh number 0 1 2
Number of elements | 5730 44900 196 040
Number of nodes 3432 24633 103566

Characteristics of the three meshes associated with Q7.
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2D example - Observation on qr

—Ayp = 10, in Q
{ Yo :yOO on dQ y1=0 (49)

Mesh number 0 1 2
Yh—ynll
DrOR@n | 188 % 10~1  8.04x 10-2  5.41 x 10-2

Wallzar)

ILyall2(ar) 3.21 2.01 1.17

IAnll2qp) | 826x107°  3.62x107° 2.24 x10°°

r=H-T=2
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Numerical illustration - N = 1 - Observation on '+
f=0-T=2

(EX2) yo(x) =1—[2x=1|, y1(x) =1(1/32/3(x), x€(0,1)

in H} x L2 for which the Fourier coefficients are

3

ol

| g
0 0.5 1 1.5 2
t

-3

Figure: The observation y,, ops 0n {1} x (0, T) associated to initial data EX1.
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Numerical illustration - N - Observation on '+

h 7.07x 102 353x10 2 176 x 102 8.83x 10 ° 4.42x 109
Ty=ynll, 2
WL(OT) 1.63x 1072  6.63x10~% 278x10~% 1.20x10-3 572 x 104
L=(Qr)
180 (y=yn)ll, 2
T EMD | 767x107%  4.95x107%  3.24x107% 216 x 10~%  1.48 x 103
vy
Iyal 2y 0.937 1.204 1.496 1.798 2.135
Xl 774 x 1073 374x107% 172x107% 7.90x10"* 3.60x 104
hli2ar)
card({An}) 861 3321 13 041 51 681 205 761
# CG iterates 57 103 172 337 591
— oy —
Ily }’nlle(QT) o [0 (y yh)”LZ(rT) — o)
F=h ”}/”LZ(QT) Hau,VHLZ(rT) (50)

a2y = OB iyl g,y = OH~O%).
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Example 2 - N = 1 - Observation on It

y and y, in Qr
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Example 2 - N = 1 - Mesh adaptation

Iterative local refinement of the mesh according to the gradient of yj, (reduced HCT

element)
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via mixed formula
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The stadi

2

N:

Bunimovich’s stadium and the subset I' of 9Q2 on which the observations are

available. Example of mesh of the domain Q7.

Example 2
Figure




Example 2 - N = 2 - Recovering of the initial data

Figure: (a) Initial data y, given by (49). (b) Reconstructed initial data yj(, 0).
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N = 1 - Reconstruction of y and u from the boundary

i 0.1
0.9r
0
0.8f
0.7r ~01
0.6f
0.5f -0.2
0.4f
0.3} -0.3
0.2f
0.1k -0.4
0
-0.5
0 0.2 0.4 0.6 08 1 0 0.5 1 15 2
X t
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N = 1 - Reconstruction of y and x from the boundary

Ax = At=1/160

i 10><10
1.2 s
"l
6
08"
0.6t 4
04 2
0.2f
0 ‘."‘,:‘, - °
) 2 02 04
. —1
Figure: and A _lu—mn)
gure: pn, ==,
o
|IH7NhHH71(n) _2 —4
W~7.18X 107-, Hyfyhlle(OT)NS.68><10
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N = 1 - Reconstruction of y and u from the boundary

0 0.2 0.4 0.6 0.8 1 0 0.5 1 15 2

Figure: u(x) = % and corresponding O, y|q; = ¥x(1,t) on (0, T).
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N = 1 - Reconstruction of y and x from the boundary

1><10'
0.5
0
-0.5
-1
-15
> ‘ ‘ ‘ ‘
0 02 04 06 0.8 1
X
i : — A" (u—pn)
Figure: pn, - and  ZR=iG57,
0
le=rnlly—1q) " _ .
il 221X 1075y = yillizar) » 3:56 x 10
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N = 1 - Reconstruction of y and x from the boundary

Figure: y — ypand Ay
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SPARSE MATRIX WITH DIRECT CHOLESKY SOLVERS)

DIRECT APPROACH CAN BE USED FOR MANY OTHER OBSERVABLE SYSTEMS FOR
WHICH A GENERALIZED OBS. ESTIMATE IS AVAILABLE. IN PARTICULAR, HEAT, STOKES

1006, s g < Cate (110105 Wl gy + 2k, O gy ) ¥ € 2

£AY.0) = o1y = Yooe) e gy + ey + [ aLy
T
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THANK YOU FOR YOUR ATTENTION
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