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Statement

ω ⊂ (0, 1), a ∈ C1([0, 1],R+
∗ ), y0 ∈ L2(0, 1), QT = (0, 1)× (0,T ), qT = ω × (0,T ),

v ∈ L∞(qT ) 8><>:
yt − (a(x)yx )x + f (y) = v1ω , (x , t) ∈ QT

y(x , t) = 0, (x , t) ∈ {0, 1} × (0,T )

y(x , 0) = y0(x), x ∈ (0, 1).

(1)

f : R→ R is, at least, locally Lipschitz-continuous.

|f ′(s)| ≤ C(1 + |s|p) a.e., with p ≤ 5. (2)

Under this condition, (1) possesses exactly one local in time solution.
Under the growth condition [Cazenave-Haraux’89]

|f (s)| ≤ C(1 + |s| log(1 + |s|)) ∀s ∈ R, (3)

the solutions to (1) are globally defined in [0,T ] and one has

y ∈ C0([0,T ]; L2(0, 1)) ∩ L2(0,T ; H1
0 (0, 1)). (4)
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Statement

The goal is to analyze numerically the null controllability properties of (1), in particular
when blow-up occurs.
Without a growth condition of the kind (3), the solutions to (1) can blow up before
t = T ; in general, the blow-up time depends on the sizes of ‖y0‖L2(0,1) and ‖a‖L∞ .

Assume f (0) = 0. The system (1) is said to be "null-controllable" at time T if, for any
y0 ∈ L2(0, 1), there exist controls v ∈ L2(qT ) and associated states y that are again
globally defined in [0,T ] and satisfy (4) and

y(x ,T ) = 0, x ∈ (0, 1). (5)
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Controllability results

The first one states that, if f is “too super-linear” at infinity, then the control cannot
compensate the blow-up phenomena occurring in (0, 1)\ω:

Theorem (Fernandez-Cara and Zuazua’00)

There exist locally Lipschitz-continuous functions f with f (0) = 0 and

|f (s)| ∼ |s| logp(1 + |s|) as |s| → ∞, p > 2, (6)

such that (1) fails to be null-controllable for all T > 0.

The second result provides conditions under which (1) is null-controllable:

Theorem (Fernandez-Cara and Zuazua’00, Barbu’00)

Let T > 0 be given. Assume that f : R→ R is locally Lipschitz-continuous and satisfies
(2) and

f (s)

|s| log3/2(1 + |s|)
→ 0 as |s| → ∞. (7)

Then (1) is null-controllable at time T .
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The proof in [Fernandez-Cara & Zuazua, 2000] is based on

a linearization of the eq.

yt − (a(x)yx )x + g(z)y = v 1ω , QT (8)

with

g(z) =
f (z)

z
(9)

a fixed point argument : it is shown that the operator Λ0 : z → y is continuous
compact from L2(QT ) to L2(QT ) and maps the closed ball B(0,M) ⊂ L2(QT )
into itself. Then, Schauder Theorem provides the existence of at least one fixed
point for Λ0.
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Step 1: Numerical approximation of controls for linear heat eq.
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Step 1: A linear control problem

First, we deal with the controllability properties of the following linear system8><>:
LAy := yt − (a(x)yx )x + A(x , t)y = v 1ω + B(x , t), (x , t) ∈ QT

y(x , t) = 0, (x , t) ∈ ΣT

y(x , 0) = y0(x), x ∈ (0, 1)

(10)

that arises naturally after linearization of (1). From Lebeau-Robbiano’95 and
Fursikov-Imanuvilov’96, (10) is null-controllable.
We give some numerical methods to address the extremal problem8><>: Minimize J(y , v) =

1
2

ZZ
QT

ρ2|y |2 dx dt +
1
2

ZZ
qT

ρ2
0|v |

2 dx dt

Subject to (y , v) ∈ Clin(y0,T )

(11)

where Clin(y0,T ) is the linear manifold

Clin(y0,T ) = { (y , v) : v ∈ L2(qT ), y solves (10) and satisfies y(T ) = 0 }.

We assume that A ∈ L∞(QT ) and B ∈ L2(QT ) and, also, that B vanishes at t = T in

an appropriate sense (i.e.
ZZ

QT

ρ2
0|B|

2 dx dt < +∞).
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Duality : The control of minimal L2-norm: ρ = 0, ρ0 = 1, B = 0

inf
(y,v)∈C(y0,T )

J(y , v) = − inf
φT∈H

J?(φT ), J?(φT ) =
1
2

Z
qT

φ2dxdt +

Z
Ω
φ(0, ·)y0dx

where φ solves the backward system(
L?Aφ := −φ′ − (a(x)φx )x + Aφ = 0 QT

φ = 0 ΣT = (0,T )× ∂Ω, φ(T , ·) = φT Ω.

The Hilbert space H is defined as the completion of D(0, 1) with respect to the norm

‖φT ‖H =

„Z
qT

φ2(t , x)dxdt
«1/2

.

From the observability inequality

C(T , ω)‖φ(0, ·)‖2
L2(Ω)

≤ ‖φT ‖2
H , ∀φT ∈ L2(Ω),

J? is coercive on H and control of minimal L2-norm is given by v = φXω on QT .

The completed space H is huge: H−s ⊂ H ∀s > 0! and the minimization is severally
ill-posed !!
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Duality : The control of minimal L2-norm: ρ = 0, ρ0 = 1, B = 0

Micu recently proved in [Micu’11, SCL], using moment theory, that

the set of initial data y0, for which the corresponding φT , minimizer of J?, does not
belong to any negative Sobolev spaces, is dense in L2(0, 1) !!!
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L2(0,1)-norm of the HUM control with respect to time
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Figure: y0(x) = sin(πx) - T = 1 - ω = (0.2, 0.8) - t → ‖v(·, t)‖L2(0,1) in [0,T ]

Arnaud Münch Null Controllability / Semi-linear heat equation



L2-norm of the HUM control with respect to time: Zoom near T

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.05

0.1

0.15

0.2

0.25

t

Figure: y0(x) = sin(πx) - T = 1 - ω = (0.2, 0.8) - t → ‖v(·, t)‖L2(0,1) in [0.92T ,T ]
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Optimal backward solution φ on ∂ω × [0,T ]

T = 1, y0(x) = sin(πx), a(x) = a0 = 1/10, ω = (0.2, 0.8)
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Figure: T = 1 - ω = (0.2, 0.8) - φN (·, 0.8) for N = 80 on [0,T ] (Left) and on
[0.92T ,T ] (Right).

[Carthel-Glowinski-Lions’94, JOTA], [AM-Zuazua’11, Inverse Problems]
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Primal (direct) approach with appropriate weights

8><>: Minimize J(y , v) =
1
2

ZZ
QT

ρ2|y |2 dx dt +
1
2

ZZ
qT

ρ2
0|v |

2 dx dt

Subject to (y , v) ∈ Clin(y0,T )

(12)

There are “good” weight functions ρ and ρ0 that blow up at t = T and provide a very
suitable solution to the original null controllability problem. They were determined and
systematically used by Fursikov and Imanuvilov’96 and are the following:

8>><>>:
ρ(x , t) = exp

„
β(x)

T − t

«
, ρ0(x , t) = (T − t)3/2ρ(x , t), β(x) = K1

“
eK2 − eβ0(x)

”
the Ki are large positive constants (depending on T , a0, ‖a‖C1 and ‖A‖∞)

and β0 ∈ C∞([0, 1]), β0 > 0 in (0, 1), β0(0) = β0(1) = 0, |β′0| > 0 outside ω.
(13)
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Numerical solution via a primal method

The roles of ρ and ρ0 are clarified by the following arguments and results, which are
mainly due to Fursikov and Imanuvilov. First, let us set
P0 = { q ∈ C2(QT ) : q = 0 on ΣT }. In this linear space, the bilinear form

(p, q)P :=

ZZ
QT

ρ−2L∗Ap L∗Aq dx dt +

ZZ
qT

ρ−2
0 p q dx dt

is a scalar product. Let P be the completion of P0 for this scalar product. Then P is a
Hilbert space and the usual global Carleman estimates for the solutions to parabolic
equations lead to the following result (see EFC-AM’10).

Lemma

Let ρ and ρ0 be given by (13). Then, for any δ > 0, one has
P ↪→ C0([0,T − δ]; H1

0 (0, 1)) and the embedding is continuous. In particular, there
exists C0 > 0, only depending on ω, T , a0, ‖a‖C1 and ‖A‖∞, such that

‖q(· , 0)‖2
H1

0 (0,1)
≤ C0

 ZZ
QT

ρ−2|L∗Aq|2 dx dt +

ZZ
qT

ρ−2
0 |q|

2 dx dt

!
(14)

for all q ∈ P.
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Primal (direct) approach

Proposition

Let ρ and ρ0 be given by (13). Let (y , v) be the corresponding optimal pair for J. Then
there exists p ∈ P such that

y = ρ−2L∗Ap, v = −ρ−2
0 p|qT . (15)

The function p is the unique solution in P of

(p, q)P =

Z 1

0
y0(x) q(x , 0) dx +

ZZ
QT

Bq dx dt , ∀q ∈ P (16)

Remark

p solves, at least in D′, the following differential problem, that is second order in time
and fourth order in space:8>><>>:

LA(ρ−2L∗Ap) + ρ−2
0 p 1ω = B, (x , t) ∈ (0, 1)× (0,T )

p(x , t) = 0, (ρ−2L∗p)(x , t) = 0 (x , t) ∈ {0, 1} × (0,T )

(ρ−2L∗Ap)(x , 0) = y0(x), (ρ−2L∗Ap)(x ,T ) = 0, x ∈ (0, 1).

(17)

The “boundary” conditions at t = 0 and t = T appear as Neumann conditions.
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Conformal finite element approximation

For any dimensional space Ph ⊂ P, we can introduce the following approximate
problem:

(ph, ph)P =< l, ph >, ∀ph ∈ Ph; ph ∈ Ph. (18)

Ph = { zh ∈ C1,0
x,t (QT ) : zh|K ∈ (P3,x ⊗ P1,t )(K ) ∀K ∈ Qh, zh = 0 on ΣT }. (19)

Theorem (Fernandez-Cara, AM)

Let ph ∈ Ph be the unique solution to (18), where Ph is given by (19). Let us set

yh := ρ−2L?Aph, vh := −ρ−2
0 ph 1qT .

Then one has

‖y − yh‖L2(QT ) → 0 and ‖v − vh‖L2(qT ) → 0, as h→ 0

where (y , v) is the minimizer of J.
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A mixed formulation to solve the primal (direct) approach

In order to avoid the use of C1- finite element and to keep explicit the variable y , we
rewrote (16) as an equivalent mixed variational problem: find (y , p, λ) ∈ Z × P × Z
such that8>>>>>>>><>>>>>>>>:

ZZ
QT

ρ2y z dx dt +

ZZ
qT

ρ−2
0 p q dx dt +

ZZ
QT

(L∗Aq − ρ2z)λ dx dt

=

Z 1

0
y0(x) q(x , 0) dx +

ZZ
QT

B q dx dt ∀(z, q) ∈ Z × PZZ
QT

(L∗Ap − ρ2y)µ dx dt = 0 ∀µ ∈ Z

(20)

where
Z = L2(ρ2; QT ) := { z ∈ L1

loc(QT ) :

ZZ
QT

ρ2|z|2 dx dt < +∞}. (21)

This mixed formulation is well-posed over Z × P × Z .
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A second equivalent mixed formulation

Let us now present a second mixed formulation, equivalent to (20), that does not use
unbounded weights. This will be particularly important at the numerical level.
The key idea is to perform the following change of variables :

η = ρ−1
0 p, m = ρy = ρ−1L?A(ρ0η).

Let us introduce the space P∗ := ρ−1
0 P. Then, (20) is rewritten as follows: find

(m, η, µ) ∈ L2(QT )× P∗ × L2(QT ) such that

8>>>>>>>><>>>>>>>>:

ZZ
QT

mmdx dt +

ZZ
qT

η η dx dt +

ZZ
QT

„
ρ−1L?A(ρ0η)−m

«
µ dx dt

=

Z 1

0
ρ0(x , 0)y0(x)η(x , 0)dx +

ZZ
QT

ρ0B η dx dt ∀(m, η) ∈ L2(QT )× P∗ZZ
QT

„
ρ−1L?A(ρ0η)−m

«
µ dx dt = 0, ∀µ ∈ L2(QT )

(22)

Proposition

There exists a unique solution (m, η, µ) ∈ L2(QT )× P∗ × L2(QT ) to (22). Moreover,
y = ρ−1m is, together with v = ρ−1η 1ω , the unique solution to (12).
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Step 2: Fixed points
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Step 2 : Back to the nonlinear problem
For simplicity, we will assume that y0 ∈ L∞(0, 1) and f ∈ C1(R) and is globally
Lipschitz-continuous. Let us introduce the function g, with

g(s) =
f (s)

s
if s 6= 0, g(0) = f ′(0) otherwise.

Then g ∈ C0
b (R) and f (s) = g(s) s for all s (recall that f (0) = 0). We will set

G0 = ‖g‖L∞(R).
For any z ∈ L1(QT ), let us introduce the bilinear form

m(z; p, q) =

ZZ
QT

ρ−2L∗g(z)p L∗g(z)q dx dt +

ZZ
qT

ρ−2
0 p q dx dt ∀p, q ∈ P0. (23)

Then m(z; · , ·) is a scalar product in P0 and can be used to construct a Hilbert space P
that, in principle, may depend on z. We will use the following result, which is a direct
consequence of the Carleman estimates :

Lemma

Under the previous conditions, if the constants Ki in (13) are large enough (depending
on ω, T , a0, ‖a‖C1 and G0), then there exist C1,C2 > 0 such that

C1 m(0; p, p) ≤ m(z; p, p) ≤ C2 m(0; p, p) ∀p ∈ P0 (24)

for all z ∈ L1(QT ).
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Back to the nonlinear problem

Accordingly, all the spaces P provided by the bilinear forms m(z; · , ·) are the same
and, in fact, (24) holds for all p ∈ P:

C1 m(0; p, p) ≤ m(z; p, p) ≤ C2 m(0; p, p) ∀p ∈ P. (25)

We will fix the following norm in P:

‖p‖P = m(0; p, p)1/2 ∀p ∈ P. (26)
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The operator Λ0

Let us introduce the mapping Λ0 : L2(QT ) 7→ L2(QT ) where, for any z ∈ L2(QT ),
yz = Λ0(z) is, together with vz , the unique solution to the linear extremal problem

Minimize J(z; y , v) :=
1
2

ZZ
QT

ρ2|y |2 dx dt +
1
2

ZZ
qT

ρ2
0|v |

2 dx dt (27)

subject to v ∈ L2(qT ) and8><>:
yt − (a(x)yx )x + g(z) y = v 1ω (x , t) ∈ QT

y(x , t) = 0, (x , t) ∈ ΣT

y(x , 0) = y0(x), x ∈ (0, 1)

(28)

such that y(·,T ) = 0. Λ0 : L2(QT ) 7→ L2(QT ) is well defined. Furthermore, applying
proposition 1 with A = g(z) and B = 0, we obtain that yz and vz are characterized as
follows :

yz = Λ0(z) = ρ−2L∗g(z)pz , vz = −ρ−2
0 pz |qT , (29)

where pz ∈ P is the unique solution to the linear problem

m(z; pz , q) =

Z 1

0
y0(x) q(x , 0) dx ∀q ∈ P. (30)
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A fixed point method

In order to solve the null controllability problem for (1), it suffices to find a solution to the
fixed point equation

y = Λ0(y), y ∈ L2(QT ). (31)

ALG 1 (fixed point):

y0 ∈ L2(QT ), yn+1 = Λ0(yn), n ≥ 0 (32)

If (yn, vn) ⇀ (y , v) in L2(QT )× L2(qT ), then (y , v) solves the nonlinear null
controllability problem. Indeed, since the g(yn) are uniformly bounded in L∞(QT ),
after extraction of a subsequence it can be assumed that yn (resp. yn

t ) converges
weakly in L2(0,T ; H1

0 (0, 1)) (resp. L2(0,T ; H−1(0, 1))). Therefore, yn converges
strongly in L2(QT ) and a.e., g(yn) converges to g(y) weakly-∗ in L∞(QT ) and we can
take limits and deduce that y solves, together with v , the nonlinear system.

This fixed point formulation has been used in [Fernandez-Cara, Zuazua, 2000] to prove
Theorem 2. Precisely, it is shown there that Λ0 : L2(QT ) 7→ L2(QT ) is continuous and
compact and, also that there exists M > 0 such that Λ0 maps the whole space L2(QT )
inside the ball B(0; M). Then, Schauder’s Theorem provides the existence of at least
one fixed point for Λ0.

It is however important to note that this does not imply the convergence of the

sequence {yn} defined by yn+1 = Λ0(yn).
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A fixed point : a numerical application

f (s) = Cf s logp(1 + |s|) ∀s ∈ R. (33)

We consider the following data:

a(x) = 1/10, p = 1.4, Cf = −5, T = 1/2, y0(x) = α sin(πx)

In the uncontrolled situation, these data lead to the blow-up of the solution of (1) at time
tc ≈ 0.406, 0.367, 0.339, 0.318 for α = 10, 20, 40 and 80, respectively.

We first take ω = (0.2, 0.8) and initialize ALG 1 with

y0(x , t) = y0(x)(1− t/T )2.
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A fixed point : a numerical application - Lack of convergence
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Figure: Fixed point method - h = (1/60, 1/60) - y0(x) = α sin(πx) - Evolution of
log10(‖Λ0(yn

h )− yn
h ‖L2(QT )/‖yn

h ‖L2(QT )) vs. n for α = 10, 20, 40 and 80.
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A fixed point : a numerical application

‖vh‖L2(qT ) ‖vh‖L∞(qT ) ‖yh‖L2(QT ) ] iterates
α = 10 3.531× 101 2.542× 102 1.742 20
α = 40 2.142× 102 2.053× 103 6.654 14
α = 80 5.109× 102 7.021× 103 14.410 81

Table: Fixed point method - h = (1/60, 1/60) - y0(x) = α sin(πx) - Norms for
α = 10, 40 and α = 80.
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A fixed point : a numerical application
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Figure: Fixed point method - h = (1/60, 1/60) - y0(x) = 40 sin(πx) - Control vh
(Left) and corresponding controlled solution yh (Right) in QT .

Arnaud Münch Null Controllability / Semi-linear heat equation



A fixed point : a numerical application : p ≥ 3/2
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Figure: Fixed point method - h = (1/60, 1/60) - y0(x) ≡ 40 sin(πx) - p = 1.4 -
Evolution of log10(‖Λ0(yn

h )− yn
h ‖L2(QT )/‖yn

h ‖L2(QT )) for p = 1.4, 1.5, 1.6 and p = 1.7.
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Least squares reformulation

We now introduce the function ζ(t) = (T − t)−1/2 for all t in (0,T ) and the space
Z := L2(ζ2,QT ). We will denote by Λ the restriction to Z of the mapping Λ0. Obviously,
Λ(z) ∈ Z for all z ∈ Z .

Let us consider the following least squares reformulation of (31):8<: Minimize R(z) :=
1
2
‖z − Λ(z)‖2

Z

Subject to z ∈ Z .
(34)

Any solution to (31) solves (34). Conversely, if y solves (34), we necessarily have
R(y) = 0 (because (1) is null controllable with control-states (y , v) such that
J(z; y , v) < +∞); hence, y also solves (31). This shows that (31) and (34) are, in the
present context, equivalent.
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Least squares reformulation

Proposition

Let us assume that g ∈ C1
b (R). Then R ∈ C1(Z ). Moreover, for any z ∈ Z, the

gradient of R with respect to the inner product of Z is given by

DR(z) =
`
1− ρ−2g′(z)pz

´
(z − yz ) + ζ−2g′(z)

`
yzλz + pzµz

´
, (35)

where pz is the unique solution to (30), yz = ρ−2L∗g(z)
pz , λz is the unique solution to

the linear (adjoint) problem

m(z; q, λz ) = (z − yz , ρ
−2L∗g(z)q)Z ∀q ∈ P; λz ∈ P (36)

and, finally, µz = ρ−2L∗g(z)
λz .

For the proof, we will need the following lemma:

Lemma

For any q ∈ P one has (ζρ)−1q ∈ L∞(QT ). Furthermore, there exists C > 0, only
depending on ω, T , a0, ‖a‖C1 and G0, such that

‖(ζρ)−1q‖2
L∞(QT ) ≤ C ‖q‖2

P ∀q ∈ P. (37)
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Least squares reformulation

Proposition

Let us assume that g ∈ C1
b (R). Then R ∈ C1(Z ). Moreover, for any z ∈ Z, the

gradient of R with respect to the inner product of Z is given by

DR(z) =
`
1− ρ−2g′(z)pz

´
(z − yz ) + ζ−2g′(z)

`
yzλz + pzµz

´
, (35)

where pz is the unique solution to (30), yz = ρ−2L∗g(z)
pz , λz is the unique solution to

the linear (adjoint) problem

m(z; q, λz ) = (z − yz , ρ
−2L∗g(z)q)Z ∀q ∈ P; λz ∈ P (36)

and, finally, µz = ρ−2L∗g(z)
λz .

For the proof, we will need the following lemma:

Lemma

For any q ∈ P one has (ζρ)−1q ∈ L∞(QT ). Furthermore, there exists C > 0, only
depending on ω, T , a0, ‖a‖C1 and G0, such that

‖(ζρ)−1q‖2
L∞(QT ) ≤ C ‖q‖2

P ∀q ∈ P. (37)

Arnaud Münch Null Controllability / Semi-linear heat equation



Least squares reformulation

Proposition

Let the assumptions in proposition 3 be satisfied and let us introduce G1 := ‖g′‖L∞(R).
There exists a constant K that depends on ω, T , a0, ‖a‖C1 and G0 but is independent
of z and y0, such that the following holds for all z ∈ Z:

‖DR(z)‖Z ≥ (1− K G1 ‖y0‖L∞ ) ‖z − Λ(z)‖Z . (38)

Lemma

With the notation of proposition 3, one has:

‖pz‖P ≤ C‖y0‖L∞ ∀z ∈ Z (39)

and
‖λz‖P ≤ C‖ζρ−1‖∞‖z − yz‖Z ∀z ∈ Z , (40)

where C depends on ω, T , a0, ‖a‖C1 and G0.
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Least squares reformulation

Let z ∈ Z be given and let us introduce f := z − yz . In view of proposition 3, one has

‖DR(z)‖Z ≥
1
‖f‖Z

(DR(z), f )

=
1
‖f‖Z

ZZ
QT

“
ζ2(1 + ρ−2g′(z) pz ) |f |2 + g′(z)(yzλz + pzµz ) f

”
dx dt

≥ ‖f‖Z −
1
‖f‖Z

ZZ
QT

ζ2ρ−2|g′(z)| |pz | |f |2 dx dt

−
1
‖f‖Z

ZZ
QT

|g′(z)| (|yz ||λz |+ |pz ||µz |) |f | dx dt

In view of lemmas 3 and 4,

ZZ
QT

ζ2ρ−2|g′(z)| |pz | |f |2 dx dt ≤ ‖ρ−2g′(z) pz‖∞

 ZZ
QT

ζ2|f |2 dx dt

!
≤ ‖ζρ−1‖∞‖g′(z)‖∞ ‖(ζρ)−1pz‖∞‖f‖2

Z

≤ C G1 ‖pz‖P‖f‖2
Z

≤ C G1 ‖y0‖L∞‖f‖2
Z

Arnaud Münch Null Controllability / Semi-linear heat equation



Least squares reformulation

On the other hand, from lemma 3 we also haveZZ
QT

|g′(z)| (|yz ||λz |+ |pz ||µz |) |f | dx dt

=

ZZ
QT

|g′(z)|
“
|ρ−2L∗g(z)pz ||λz |+ |pz ||ρ−2L∗g(z)λz |

”
|f | dx dt

≤ ‖g′(z)‖∞

24 ZZ
QT

ρ−2|L∗g(z)pz |2 dx dt

!1/2

‖(ζρ)−1λz‖∞

+

 ZZ
QT

ρ−2|L∗g(z)λz |2 dx dt

!1/2

‖(ζρ)−1pz‖∞

35 ZZ
QT

ζ2|f |2 dx dt

!1/2

≤ C G1

h
‖y0‖L∞‖λz‖P + ‖pz‖P‖ζρ−1‖∞‖f‖Z

i
‖f‖Z

≤ C G1 ‖y0‖L∞‖f‖2
Z

Consequently,
‖R′(z)‖Z ≥ ‖f‖Z − K G1 ‖y0‖L∞‖f‖Z

and we get (38) for some K .
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Least squares : Gradient method for R

ALG 2 (Least square):

z0 ∈ L2(QT ), (zn+1, h)Z = (zn, h)Z − η (DR(zn), h)Z , n ≥ 0
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Least squares : a numerical application

fη(s) = Cf s logp(1 + |s|n) ∀s ∈ R, |s|η :=

q
s2 + η2 − η (41)

so that, for all η > 0, gη := Cf logp(1 + |s|η) belongs to C1
b (R). We have fη(0) = 0 and

Theorem applies for fη , since fη and f are equivalent at infinity. We take η = 10−1.
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Figure: Least squares method - h = (1/60, 1/60) - Evolution of
log10(‖Λ(zn

h )− zn
h‖L2(QT )/‖zn

h‖L2(QT )) - Left: α = 10, 20, 40, 80 and algorithm ALG 2’ -
Right: α = 80 and algorithms ALG 2 and ALG 2’.

Arnaud Münch Null Controllability / Semi-linear heat equation



Least squares reformulation : numerical application

fη(s) = Cf s logp(1 + |s|n) ∀s ∈ R, |s|η :=

q
s2 + η2 − η (42)

so that, for all η > 0, gη := Cf logp(1 + |s|η) belongs to C1
b (R). Moreover, we have

fη(0) = 0 and Theorem applies for fη , since fη and f are equivalent at infinity. We shall
take η = 10−1.

‖vh‖L2(qT ) ‖vh‖L∞(qT ) ‖zh‖L2(QT ) ‖R′(zh)‖L2(QT ) en

α = 10 3.507× 101 2.532× 102 1.753 1.27× 10−3 1.43× 10−3

α = 20 8.781× 101 7.323× 102 3.180 1.44× 10−3 1.54× 10−3

α = 40 2.137× 102 2.048× 103 6.651 5.42× 10−3 3.39× 10−3

α = 80 2.526× 102 3.299× 103 14.73 2.23× 10−1 7.89× 10−1

Table: Least squares method approach after 100 iterates - h = (1/60, 1/60) -
y0(x) ≡ α sin(πx) - p = 1.4 - Norms for α = 10, 20, 40, 80. Here,
en = ‖Λ(zn

h )− zn
h‖L2(QT )/‖zn

h‖L2(QT ).
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Newton-Raphson method (a different way to linearize f (yn+1))

Let us introduce the spaces

Y := { (y , v) : y ∈ L2(ρ2; QT ), yx ∈ L2(ρ2
1; QT ), yt − (ayx )x ∈ L2(ρ2

0; QT ),

y(0, t) = y(1, t) = 0 a.e., v ∈ L2(ρ2,QT ) }

and
W := L2(ρ2

0; QT )× L2(0, 1)

and the mapping F : Y 7→ W , with

F (y , v) = (yt − (ayx )x + f (y)− v1ω , y(· , 0)− y0) ∀(y , v) ∈ Y . (43)

Obviously, any solution to the nonlinear equation

F (y , v) = (0, 0), (y , v) ∈ Y (44)

solves the null controllability problem for (1).

For their “natural” norms, Y and W are Hilbert spaces. On the other hand, since

f ∈ C1
b (R), F : Y 7→ W is well defined and C1.
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Newton-Raphson Algorithm

ALG 3’ (Newton):

1 Choose (y0, z0) ∈ Y .
2 Then, given n ≥ 0 and (yn, vn) ∈ Y , solve in (yn+1, vn+1) ∈ Y the linear

problem
F ′(yn, vn) · (yn+1 − yn, vn+1 − vn) = −F (yn, vn),

i.e. find yn+1 and vn+1 such that (yn+1, vn+1) ∈ Y and8>><>>:
yn+1

t − (a(x)yn+1
x )x + f ′(yn) yn+1 = vn+1 1ω + f ′(yn) yn − f (yn), QT

yn+1 = 0, ΣT

yn+1(·, 0) = y0, (0, 1).
(45)
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2 Then, given n ≥ 0 and (yn, vn) ∈ Y , solve in (yn+1, vn+1) ∈ Y the linear

problem
F ′(yn, vn) · (yn+1 − yn, vn+1 − vn) = −F (yn, vn),

i.e. find yn+1 and vn+1 such that (yn+1, vn+1) ∈ Y and8>><>>:
yn+1

t − (a(x)yn+1
x )x + f ′(yn) yn+1 = vn+1 1ω + f ′(yn) yn − f (yn), QT

yn+1 = 0, ΣT

yn+1(·, 0) = y0, (0, 1).
(45)
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Newton-Raphson: experiment

‖vh‖L2(qT ) ‖vh‖L∞(qT ) ‖yh‖L2(QT ) ] iterates
α = 10 3.489× 101 3.12× 102 1.467 58
α = 40 2.110× 102 2.587× 103 5.248 18
α = 80 5.033× 102 8.589× 103 10.976 > 500

Table: Newton-Raphson method - h = (1/60, 1/60) - y0(x) ≡ α sin(πx) - p = 1.4.
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Figure: Newton-Raphson method - h = (1/60, 1/60) - y0(x) ≡ α sin(πx) - p = 1.4 -
Evolution of log10(‖yn+1

h − yn
h ‖L2(QT )/‖yn

h ‖L2(QT )) for α = 10, 20, 40, 80.
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Newton-Raphson: experiment
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Figure: Newton-Raphson method - h = (1/60, 1/60) - y0(x) ≡ 40 sin(πx) - p = 1.4 -
Control vh (Left) and corresponding controlled solution yh (Right) in QT .
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smaller support ω
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Figure: Fixed point method - h = (1/60, 1/60) - y0(x) ≡ 10 sin(πx) - p = 1.4 -
ω = (0.2, 0.5) - Control vh (Left) and corresponding controlled solution yh (Right) in QT .
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Smaller support ω
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Figure: h = (1/60, 1/60) - y0(x) ≡ 10 sin(πx) - p = 1.4 - ω = (0.2, 0.5) - Evolution
of log10(‖yn+1

h − yn
h ‖L2(QT )/‖yn

h ‖L2(QT )).
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Final comments

The LS approach can be extended to higher spatial dimensions and can be used in the
context of many other controllable systems for which appropriate Carleman estimates
are available :

Stokes and Navier-Stokes system8>><>>:
yt −∆y +∇π = v1ω dans Q
∇ · y = 0 dans Q
y = 0 sur Σ
y(x, 0) = y0(x) dans Ω.

(46)

(in progress with Fernandez-Cara and Diego de. Souza)

Wave-like equations : (
ytt − (a(x)yx )x + f (y) = 0 QT

v = y ΣT
(47)

LInearized version treated in
N. Cindea-AM, Numerical controllability of the wave equation through a primal
method and Carleman estimates,
To appear in ESAIM:COCV -
http://hal.archives-ouvertes.fr/hal-00668951
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The End

THANK YOU VERY MUCH FOR YOUR ATTENTION
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