Approximation of controls by primal methods

Arnaud Münch

Université Blaise Pascal - Clermont-Ferrand - France

Craiova, CDPS 2013

joint works with Nicolae Cîndea (Clermont-Ferrand), Enrique Fernández-Cara and Diego A. de Souza (Sevilla)

The talk briefly surveys some recents works in collaboration with N. Cîndea, E. Fernández-Cara, Diego de Souza concerning the numerical approximations of control for distributed systems

So-CALLEd "PRIMAL METHODS" ARE USED : THE IDEA IS TO SOLVE DIRECTLY OPTIMALITY CONDITIONS RELATED TO A EXTREMAL PROBLEM LEADING TO STRONG CONVERGENT APPROXIMATIONS

Ideas can be found in Lions's books and in
FURSIKOV-92 : Lagrange principle for problems of optimal control of ill-posed or singular distributed systems. J. Math. Pures Appl. (1992)

We consider the wave equation, the heat equation then the Stokes system

I - Wave type equation: bOUNDARY CASE

$$
\begin{align*}
Q_{T}= & (0,1) \times(0, T) ; a \in C^{3}([0,1]), a(x) \geq a_{0}>0 \text { in }[0,1], b \in L^{\infty}\left(Q_{T}\right), \\
& \begin{cases}y_{t t}-\left(a(x) y_{x}\right)_{x}+b(x, t) y=0, & (x, t) \in Q_{T} \\
y(0, \cdot)=0, \quad y(1, \cdot)=v, & t \in(0, T) \\
\left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right) \in L^{2}(0,1) \times H^{-1}(0,1), & x \in(0,1) .\end{cases} \tag{1}
\end{align*}
$$

$v=v(t)$ is the control in $L^{2}(0, T)$ and $y=y(x, t)$ is the associated state.

We associate the extremal problem :

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \iint_{Q_{T}} \rho^{2}|y|^{2} d x d t+\frac{1}{2} \int_{0}^{T} \rho_{0}^{2}|v|^{2} d t \tag{2}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)
\end{array}\right.
$$

$\mathcal{C}\left(y_{0}, y_{1} ; T\right)=\left\{(y, v): v \in L^{2}(0, T), y\right.$ solves (1) and satisfies $\left.y(\cdot, T)=y_{t}(\cdot, T)=0\right\}$.
$\rho \in C\left(Q_{T}, \mathbb{R}^{+}\right), \rho_{0} \in C\left((0, T), \mathbb{R}_{\star}^{+}\right)$.

Minimal time

For any $x_{0}<0$ and $a_{0}>0$, we assume that the function a belongs to

$$
\begin{align*}
\mathcal{A}\left(x_{0}, a_{0}\right) & =\left\{a \in C^{3}([0,1]): a(x) \geq a_{0}>0,\right. \\
& \left.-\min _{[0,1]}\left(a(x)+\left(x-x_{0}\right) a_{x}(x)\right)<\min _{[0,1]}\left(a(x)+\frac{1}{2}\left(x-x_{0}\right) a_{x}(x)\right)\right\} \tag{3}
\end{align*}
$$

and then that

$$
T>T^{\star}(a):=\frac{2}{\beta} \max _{[0,1]} a(x)^{1 / 2}\left(x-x_{0}\right) .
$$

for any $\beta>0$ such that

$$
-\min _{[0,1]}\left(a(x)+\left(x-x_{0}\right) a_{x}(x)\right)<\beta<\min _{[0,1]}\left(a(x)+\frac{1}{2}\left(x-x_{0}\right) a_{x}(x)\right)
$$

Constant diffusion $a:=a_{0} \in \mathcal{A}\left(x_{0}, a_{0}\right)$ and leads to $T^{\star}(a)=\frac{2\left(1-x_{0}\right)}{\sqrt{a_{0}}}>\frac{2}{\sqrt{a_{0}}}$.

Boundary controllability of the 1D wave equation : classical dual approach

[GLOWINSKI-LIONS' 95]
$T>T^{\star}(a)$. Duality arguments lead to the unconstrained dual problem

$$
\left\{\begin{align*}
\text { Minimize } J^{\star}\left(\mu, \phi_{0}, \phi_{1}\right) & =\frac{1}{2} \iint_{Q_{T}} \rho^{-2}|\mu|^{2} d x d t+\frac{1}{2} \int_{0}^{T} \rho_{0}^{-2}\left|a(1) \phi_{x}(1, t)\right|^{2} d t \\
& +\int_{0}^{1} y_{0}(x) \phi_{t}(x, 0) d x-\left\langle y_{1}, \phi(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} \\
\text { Subject to }\left(\mu, \phi_{0}, \phi_{1}\right) \in & L^{2}\left(Q_{T}\right) \times H_{0}^{1}(\Omega) \times L^{2}(\Omega), \tag{4}
\end{align*}\right.
$$

where ϕ solves

$$
L \phi=\mu \quad \text { in } Q_{T}, \quad \phi=0 \quad \text { on } \Sigma_{T}, \quad\left(\phi(\cdot, T), \phi_{t}(\cdot, T)\right)=\left(\phi_{0}, \phi_{1}\right) \quad \text { in }(0,1) .
$$

THE (NUMERICAL) DIFFICULTY IS TO FIND A FINITE CONFORMAL APPROXIMATION OF $L^{2}\left(Q_{T}\right) \times H_{0}^{1} \times L^{2}$ SATISFYING THE CONSTRAINT $L \phi=\mu$!

THE TRICK IS TO CONTROL A FINITE DIMENSIONAL AND CONSISTENT APPROXIMATION OF THE WAVE EQ. : THIS REQUIRES TO PROVE UNIFORM DISCRETE INEQUALITY OBSERVABILITY, STILL OPEN IN THE GENERAL CASE.

I-1 The CASE ρ UNIFORMLY POSItive

N. Cîndea, E. Fernández-Cara and AM,

Numerical controllability of the wave equation through primal methods and Carleman estimates,
ESAIM:COCV (2013),

Boundary controllability of the 1D wave equation : primal approach

Let $T>T^{\star}(a)$ and P be the completion of $P_{0}=\left\{q \in C^{\infty}\left(\overline{Q_{T}}\right): q=0\right.$ on $\left.\Sigma_{T}\right\}$ with respect to the scalar product

$$
(p, q)_{P}:=\iint_{Q_{T}} \rho^{-2} L p L q d x d t+\int_{0}^{T} \rho_{0}^{-2} a(1)^{2} p_{x}(1, t) q_{x}(1, t) d t
$$

Boundary controllability of the 1D wave equation : primal approach

Let $T>T^{\star}(a)$ and P be the completion of $P_{0}=\left\{q \in C^{\infty}\left(\overline{Q_{T}}\right): q=0\right.$ on $\left.\Sigma_{T}\right\}$ with respect to the scalar product

$$
(p, q)_{P}:=\iint_{Q_{T}} \rho^{-2} L p L q d x d t+\int_{0}^{T} \rho_{0}^{-2} a(1)^{2} p_{x}(1, t) q_{x}(1, t) d t
$$

(Cindea, Fernandez-Cara, M’ 13)

Let us assume that $\rho \geq \rho_{\star}>0$ on $Q_{T}, \rho_{0} \geq \rho_{\star}>0$ on $(0, T)$. Let $(y, v) \in \mathcal{C}\left(y_{0}, y_{1}, T\right)$ be the solution to (2). Then there exists $p \in P$ such that

$$
\begin{equation*}
y=-\rho^{-2} L p, \quad v=-\left.\left(a(x) \rho_{0}^{-2} p_{x}\right)\right|_{x=1} . \tag{5}
\end{equation*}
$$

Moroever, p is the unique solution to the variational equality:

$$
\begin{equation*}
(p, q)_{P}=\int_{0}^{1} y_{0}(x) q_{t}(x, 0) d x-\left\langle y^{1}, q(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} \quad \forall q \in P \tag{6}
\end{equation*}
$$

Here :

$$
\left\langle y^{1}, q(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}}=\int_{0}^{1} \frac{\partial}{\partial x}\left((-\Delta)^{-1} y_{1}\right)(x) q_{x}(x, 0) d x
$$

where $-\Delta$ is the Dirichlet Laplacian in $(0,1)$.

Boundary controllability of the 1D wave equation : primal approach

Lemma

Let us assume that $a \in \mathcal{A}\left(x_{0}, a_{0}\right)$ and that $T>T^{\star}(a)$. Then there exists a constant $C_{0}>0$, only depending on $x_{0}, a_{0},\|a\|_{C^{3}([0,1])},\|b\|_{L^{\infty}\left(Q_{T}\right)}$ and T, such that

$$
\begin{equation*}
\left\|p(\cdot, 0), p_{t}(\cdot, 0)\right\|_{H_{0}^{1}(0,1) \times L^{2}(0,1)}^{2} \leq C_{0}(p, p)_{P} \quad \forall p \in P . \tag{7}
\end{equation*}
$$

Proof -

(see Puel'00, Zhang'00, Immanuvilov'02, Baudouin-de
BUHAN-ERVEDOZA'11, ETC) andvia Multipliers technics [YAO' 99]

The weights ρ, ρ_{0} are arbitrary. In particular P does not depend on ρ and ρ_{0}

Boundary controllability of the 1D wave equation : primal approach

Let us assume that $a \in \mathcal{A}\left(x_{0}, a_{0}\right)$ and that $T>T^{\star}(a)$. Then there exists a constant $C_{0}>0$, only depending on $x_{0}, a_{0},\|a\|_{C^{3}([0,1])},\|b\|_{L^{\infty}\left(Q_{T}\right)}$ and T, such that

$$
\begin{equation*}
\left\|p(\cdot, 0), p_{t}(\cdot, 0)\right\|_{H_{0}^{1}(0,1) \times L^{2}(0,1)}^{2} \leq C_{0}(p, p)_{P} \quad \forall p \in P \tag{7}
\end{equation*}
$$

Proof -

(1) via Carleman estimate: technical exponential form for the weight appears :

$$
\rho(x, t):=e^{-s \varphi(x, 2 t-T)}, \quad \rho_{0}(t):=\rho(1, t)(x, t) \in Q_{T}
$$

(see Puel'00, Zhang'00, Immanuvilov'02, Baudouin-de
Buhan-Ervedoza'11, etc) andvia Multipliers technics [YAO' 99]

The weights ρ, ρ_{0} are arbitrary. In particular P does not depend on ρ and ρ_{0}.

Boundary controllability of the 1D wave equation : primal approach

Let us assume that $a \in \mathcal{A}\left(x_{0}, a_{0}\right)$ and that $T>T^{\star}(a)$. Then there exists a constant $C_{0}>0$, only depending on $x_{0}, a_{0},\|a\|_{C^{3}([0,1])},\|b\|_{L^{\infty}\left(Q_{T}\right)}$ and T, such that

$$
\begin{equation*}
\left\|p(\cdot, 0), p_{t}(\cdot, 0)\right\|_{H_{0}^{1}(0,1) \times L^{2}(0,1)}^{2} \leq C_{0}(p, p)_{P} \quad \forall p \in P \tag{7}
\end{equation*}
$$

Proof -

(1) via Carleman estimate: technical exponential form for the weight appears :

$$
\rho(x, t):=e^{-s \varphi(x, 2 t-T)}, \quad \rho_{0}(t):=\rho(1, t)(x, t) \in Q_{T}
$$

(see Puel'00, Zhang'00, Immanuvilov'02, Baudouin-de Buhan-Ervedoza'11, etc) and
(2) via Multipliers technics [YAO' 99]

[^0]
Boundary controllability of the 1D wave equation : primal approach

Lemma

Let us assume that $a \in \mathcal{A}\left(x_{0}, a_{0}\right)$ and that $T>T^{\star}(a)$. Then there exists a constant $C_{0}>0$, only depending on $x_{0}, a_{0},\|a\|_{C^{3}([0,1])},\|b\|_{L^{\infty}\left(Q_{T}\right)}$ and T, such that

$$
\begin{equation*}
\left\|p(\cdot, 0), p_{t}(\cdot, 0)\right\|_{H_{0}^{1}(0,1) \times L^{2}(0,1)}^{2} \leq C_{0}(p, p)_{P} \quad \forall p \in P \tag{7}
\end{equation*}
$$

Proof -
(1) via Carleman estimate: technical exponential form for the weight appears :

$$
\rho(x, t):=e^{-s \varphi(x, 2 t-T)}, \quad \rho_{0}(t):=\rho(1, t)(x, t) \in Q_{T}
$$

(see Puel'00, Zhang'00, Immanuvilov'02, Baudouin-de Buhan-Ervedoza'11, etc) and
(2) via Multipliers technics [YAO' 99]

The weights ρ, ρ_{0} are arbitrary. In particular P does not depend on ρ and ρ_{0}.

Theorem (Cindea-Fernandez-Cara, M'13)

Let us assume that $x_{0}<0, a_{0}>0$ and $a \in \mathcal{A}\left(x_{0}, a_{0}\right)$. Moreover, let us assume that $T>T^{\star}(a)$.
Then there exist positive constants s_{0} and M, only depending on $x_{0}, a_{0},\|a\|_{C^{3}([0,1])}$, $\|b\|_{L \infty\left(Q_{T}\right)}$ and T, such that, for all $s>s_{0}$, one has

$$
\begin{aligned}
& s \int_{-T}^{T} \int_{0}^{1} e^{2 s \varphi}\left(\left|w_{t}\right|^{2}+\left|w_{x}\right|^{2}\right) d x d t+s^{3} \int_{-T}^{T} \int_{0}^{1} e^{2 s \varphi}|w|^{2} d x d t \\
& \quad \leq M \int_{-T}^{T} \int_{0}^{1} e^{2 s \varphi}|L w|^{2} d x d t+M s \int_{-T}^{T} e^{2 s \varphi}\left|w_{x}(1, t)\right|^{2} d t
\end{aligned}
$$

for any $w \in L^{2}\left(-T, T ; H_{0}^{1}(0,1)\right)$ satisfying $L w \in L^{2}((0,1) \times(-T, T))$ and $w_{x}(1, \cdot) \in L^{2}(-T, T)$.
extends Puel'00, Baudouin'01, Baudouin-De Buhan-Ervedoza'11 to non constant diffusion a.

Boundary value problem

$$
\left\{\begin{array}{l}
\iint_{Q_{T}} \rho^{-2} L p L q d x d t+\int_{0}^{T} \rho_{0}^{-2} a^{2}(1) p_{x}(1, \cdot) q_{x}(1, \cdot) d t \\
=\int_{0}^{1} y_{0} q_{t}(\cdot, 0) d x-\left\langle y^{1}, q(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} \quad \forall q \in P ; \quad p \in P
\end{array}\right.
$$

Remark

The function p solves, at least in the distributional sense, the following differential problem, that is of the fourth-order in time and space:

$$
\begin{cases}L\left(\rho^{-2} L p\right)=0, & (x, t) \in Q_{T} \\ p(0, \cdot)=\left(\rho^{-2} L p\right)(0, \cdot)=0, & t \in(0, T) \\ p(1, \cdot)=\left(\rho^{-2} L p+a \rho_{0}^{-2} p_{x}\right)(1, \cdot)=0, & t \in(0, T) \\ \left(\rho^{-2} L p\right)(\cdot, 0)=y_{0}, \quad\left(\rho^{-2} L p\right)(\cdot, T)=0, & x \in(0,1) \\ \left(\rho^{-2} L p\right) t(\cdot, 0)=y_{1}, \quad\left(\rho^{-2} L p\right)_{t}(\cdot, T)=0, & x \in(0,1) .\end{cases}
$$

Notice that the "boundary" conditions at $t=0$ and $t=T$ are of the Neumann kind.

Finite dimensional approximation / Strong convergence

For any given finite dimensional space $P_{h} \subset P$ for each $h \in \mathbb{R}_{+}$, we define $p_{h} \in P_{h}$ the unique solution of

$$
\begin{equation*}
\left(p_{h}, q_{h}\right)_{P}=\left\langle\ell, q_{h}\right\rangle, \quad \forall q_{h} \in P_{h} . \tag{8}
\end{equation*}
$$

We define the interpolation operator $\Pi_{h}: P_{0} \rightarrow P_{h}$ and we assume that From the density of P_{0} into P for the P - norm,

Finite dimensional approximation / Strong convergence

For any given finite dimensional space $P_{h} \subset P$ for each $h \in \mathbb{R}_{+}$, we define $p_{h} \in P_{h}$ the unique solution of

$$
\begin{equation*}
\left(p_{h}, q_{h}\right)_{P}=\left\langle\ell, q_{h}\right\rangle, \quad \forall q_{h} \in P_{h} . \tag{8}
\end{equation*}
$$

We define the interpolation operator $\Pi_{h}: P_{0} \rightarrow P_{h}$ and we assume that

$$
\left\|p-\Pi_{h} p\right\|_{P} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0, \quad \forall p \in P_{0}
$$

From the density of P_{0} into P for the P - norm,

Let $p_{h} \in P_{h}$ the unique solution of (18) and let $p \in P$ the solution of the variational formulation. Then,

$$
\left\|p-p_{h}\right\|_{P} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

Moreover, if we set

$$
y_{h}:=\rho^{-2} L p_{h}, \quad v_{h}:=-\left.\rho_{0}^{-2} a(x) p_{h, x}\right|_{x=1} .
$$

Then one has

$$
\left\|y-y_{h}\right\|_{L^{2}\left(Q_{T}\right)} \rightarrow 0 \text { and }\left\|v-v_{h}\right\|_{L^{2}(0, T)} \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

where (y, v) is the solution to (2).
C^{1} finite element approximation P_{h}

The spaces P_{h} must be chosen such that $\rho^{-1} L p_{h} \in L^{2}\left(Q_{T}\right)$ for any $p_{h} \in P_{h}$.
A conformal approximation based on a standard quadrangulation of Q_{T} "requires" spaces of functions continuously differentiable with respect to both variables x and t.

$$
\left\{\begin{array}{l}
P_{h}=\left\{z_{h} \in C^{1}\left(\overline{Q_{T}}\right): z_{h} \mid K \in \mathbb{P}(K) \forall K \in \mathcal{Q}_{h}, z_{h}=0 \text { on } \Sigma_{T}\right\} \subset P \\
\mathcal{Q}_{h} \text { a regular triangulation } \overline{Q_{T}}=\bigcup_{K \in \mathcal{Q}_{h}} K \\
\mathbb{P}(K) \text { denotes space of polynomial functions in } x \text { and } t
\end{array}\right.
$$

Bogner-fox C^{1} element: $\mathbb{P}(K)=\left(\mathbb{P}_{3, x} \otimes \mathbb{P}_{3, t}\right)(K)$
Composite C^{1} finite element : Reduced Fraeijs de Veubeke-Sanders for rectangle, Reduced Hsieh-Clough-Tocker for triangle

The resolution of the elliptic formulation

amounts to solve a symmetric, positive definite, sparse linear system.
C^{1} finite element approximation P_{h}

The spaces P_{h} must be chosen such that $\rho^{-1} L p_{h} \in L^{2}\left(Q_{T}\right)$ for any $p_{h} \in P_{h}$.
A conformal approximation based on a standard quadrangulation of Q_{T} "requires" spaces of functions continuously differentiable with respect to both variables x and t.

$$
\left\{\begin{array}{l}
P_{h}=\left\{z_{h} \in C^{1}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{P}(K) \forall K \in \mathcal{Q}_{h}, z_{h}=0 \text { on } \Sigma_{T}\right\} \subset P \\
\mathcal{Q}_{h} \text { a regular triangulation } \overline{Q_{T}}=\bigcup_{K \in \mathcal{Q}_{h}} K \\
\mathbb{P}(K) \text { denotes space of polynomial functions in } x \text { and } t
\end{array}\right.
$$

Bogner-fox C^{1} element: $\mathbb{P}(K)=\left(\mathbb{P}_{3, x} \otimes \mathbb{P}_{3, t}\right)(K)$
Composite C^{1} finite element : Reduced Fraeijs de Veubeke-Sanders for rectangle, Reduced Hsieh-Clough-Tocker for triangle

The resolution of the elliptic formulation

$$
\left(p_{h}, q_{h}\right)_{P}=\left\langle\ell, q_{h}\right\rangle, \quad \forall q_{h} \in P_{h} .
$$

amounts to solve a symmetric, positive definite, sparse linear system.

$$
T=2.2 ; \quad\left\{\begin{array}{lr}
y_{0}(x)=e^{-500(x-0.2)^{2}} \\
y_{1}(x)=0 ; & x \in[0,0.45] \\
\in[1 ., 5 .] \quad\left(a^{\prime}>0\right), & x \in(0.45,0.55) \\
5 & x \in[0.55,1]
\end{array}\right.
$$

p_{h} over Q_{T} and $v_{h}=-a(1) p_{h, x}(1, \cdot)$ on $(0, T)-h=(1 / 80,1 / 80)$.

One example - Bi-cubic element

$\Delta x, \Delta t$	$1 / 10$	$1 / 20$	$1 / 40$	$1 / 80$	$1 / 160$		
$\left\\|\hat{p}_{h}-p\right\\|_{P_{h}}$	1.25×10^{-1}	5.75×10^{-2}	2.64×10^{-2}	1.01×10^{-2}	-		
$\left\\|\hat{v}_{h}-v\right\\|_{L^{2}(0, T)}$	5.07×10^{-1}	4.17×10^{-2}	2.03×10^{-2}	4.86×10^{-3}	-		
$\left\\|\hat{y}_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	1.09×10^{-1}	7.89×10^{-2}	1.81×10^{-2}	1.16×10^{-2}	1.71×10^{-3}		
$\left\\|\hat{y}_{t, h}(\cdot, T)\right\\|_{H^{-1}(0,1)}$	1.01×10^{-1}	8.39×10^{-2}	4.81×10^{-2}	7.52×10^{-3}	1.55×10^{-3}		

$\left\|p-\hat{p}_{h}\right\|_{P}=\mathcal{O}\left(h^{1.91}\right) \quad\left\|v-\hat{v}_{h}\right\|_{L^{2}(0, T)}=\mathcal{O}\left(h^{1.56}\right) \quad\left\|\hat{y}_{h}(\cdot, T)\right\|_{L^{2}(0,1)}=\mathcal{O}\left(h^{1.71}\right) \quad\left\|\hat{y}_{t, h}(\cdot, T)\right\|_{H^{-1}(0,1)}=\mathcal{O}\left(h^{1.31}\right)$

Approximation y_{h} of the controlled state.

$$
\begin{gathered}
\text { I-2 Case } \rho:=0 \\
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \int_{0}^{T} \rho_{0}^{2}|v|^{2} d t \\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)
\end{array}\right.
\end{gathered}
$$

The previous approach DOES NOT apply, but we can adapt it ! In the sequel, to simplify, $\rho_{0}:=1$
N. Cîndea and AM, Mixed formulation for the direct approximation of the HUM control for linear wave equation,
Preprint (2013),

$$
\begin{aligned}
& \min J^{\star}\left(\varphi_{0}, \varphi_{1}\right)=\frac{1}{2} \int_{0}^{T}\left|a(1) \varphi_{x}(1, t)\right|^{2} d t+\int_{0}^{1} y_{0} \varphi_{t}(\cdot, 0) d x-\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} \\
& L \varphi=0 \quad \text { in } Q_{T}, \quad \varphi=0 \quad \text { on } \quad \Sigma_{T}, \quad\left(\varphi(\cdot, T), \varphi_{t}(\cdot, T)\right)=\left(\varphi_{0}, \varphi_{1}\right) \quad \text { in }(0,1)
\end{aligned}
$$

Since the variable φ is completely and uniquely determined by $\left(\varphi_{0}, \varphi_{1}\right)$, we keep φ as the main variable and consider the extremal problem:

$$
\begin{align*}
& \min _{\varphi \in W} J^{\prime}, *(\varphi)=\frac{1}{2} \int_{0}^{T}\left|a(1) \varphi_{x}(1, t)\right|^{2} d t+\int_{0}^{1} y_{0} \varphi_{t}(\cdot, 0) d x-\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{H-1}, H_{0}^{1} \\
& \left\{\begin{array}{l}
W=\left\{\varphi \in L^{2}\left(Q_{T}\right): \varphi=0 \text { on } \Sigma_{T} ; \quad L \varphi=0 \in L^{2}\left(Q_{T}\right) ; \quad \varphi_{x}(1, \cdot) \in L^{2}(0, T)\right\}, \\
W \text {-Hilbert space endowed with the inner product } \\
(\varphi, \bar{\varphi}) W=\int_{0}^{T} a(1) \varphi_{x}(1, t) \bar{\varphi}_{x}(1, t) d t+\eta \iint_{Q_{T}} L \varphi L \bar{\varphi} d x d t, \quad \forall \varphi, \bar{\varphi} \in W, \eta>0 .
\end{array}\right.
\end{align*}
$$

$$
\begin{aligned}
& \min J^{\star}\left(\varphi_{0}, \varphi_{1}\right)=\frac{1}{2} \int_{0}^{T}\left|a(1) \varphi_{x}(1, t)\right|^{2} d t+\int_{0}^{1} y_{0} \varphi_{t}(\cdot, 0) d x-\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} \\
& L \varphi=0 \quad \text { in } Q_{T}, \quad \varphi=0 \quad \text { on } \quad \Sigma_{T}, \quad\left(\varphi(\cdot, T), \varphi_{t}(\cdot, T)\right)=\left(\varphi_{0}, \varphi_{1}\right) \quad \text { in }(0,1)
\end{aligned}
$$

Since the variable φ is completely and uniquely determined by $\left(\varphi_{0}, \varphi_{1}\right)$, we keep φ as the main variable and consider the extremal problem:

$$
\begin{align*}
& \min _{\varphi \in W} J^{\prime}, \star(\varphi)=\frac{1}{2} \int_{0}^{T}\left|a(1) \varphi_{x}(1, t)\right|^{2} d t+\int_{0}^{1} y_{0} \varphi_{t}(\cdot, 0) d x-\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} \\
& \left\{\begin{array}{l}
W=\left\{\varphi \in L^{2}\left(Q_{T}\right): \varphi=0 \text { on } \Sigma_{T} ; \quad L \varphi=0 \in L^{2}\left(Q_{T}\right) ; \quad \varphi_{x}(1, \cdot) \in L^{2}(0, T)\right\}, \\
W \text {-Hilbert space endowed with the inner product } \\
(\varphi, \bar{\varphi}) W=\int_{0}^{T} a(1) \varphi_{x}(1, t) \bar{\varphi}_{x}(1, t) d t+\eta \iint_{Q_{T}} L \varphi L \bar{\varphi} d x d t, \quad \forall \varphi, \bar{\varphi} \in W, \eta>0 .
\end{array}\right.
\end{align*}
$$

Equivalent Mixed formulation

The main variable is now φ submitted to the constraint equality $L \varphi=0$. This constraint is addressed introducing a mixed formulation. We define the space Φ larger than W (endowed with the same norm) by

$$
\Phi=\left\{\varphi \in L^{2}\left(Q_{T}\right): \varphi=0 \text { on } \Sigma_{T} ; L \varphi \in L^{2}\left(Q_{T}\right) ; \varphi_{x}(1, \cdot) \in L^{2}(0, T)\right\} .
$$

We define the mixed formulation : find $(\varphi, \lambda) \in \Phi \times L^{2}\left(Q_{T}\right)$ solution of

where ($r>0$ - augmentation parameter)

Equivalent Mixed formulation

The main variable is now φ submitted to the constraint equality $L \varphi=0$. This constraint is addressed introducing a mixed formulation. We define the space Φ larger than W (endowed with the same norm) by

$$
\Phi=\left\{\varphi \in L^{2}\left(Q_{T}\right): \varphi=0 \text { on } \Sigma_{T} ; L \varphi \in L^{2}\left(Q_{T}\right) ; \varphi_{x}(1, \cdot) \in L^{2}(0, T)\right\} .
$$

We define the mixed formulation : find $(\varphi, \lambda) \in \Phi \times L^{2}\left(Q_{T}\right)$ solution of

$$
\left\{\begin{aligned}
a_{r}(\varphi, \bar{\varphi})+b(\bar{\varphi}, \lambda) & =l(\bar{\varphi}), & & \forall \bar{\varphi} \in \Phi \\
b(\varphi, \bar{\lambda}) & =0, & & \forall \bar{\lambda} \in L^{2}\left(Q_{T}\right),
\end{aligned}\right.
$$

where ($r>0$ - augmentation parameter)

$$
\begin{aligned}
a_{r}: \Phi \times \Phi & \rightarrow \mathbb{R}, \quad a_{r}(\varphi, \bar{\varphi})=\int_{0}^{T} a(1) \varphi_{x}(1, \cdot) \bar{\varphi}_{x}(1, \cdot) d t+r \iint_{Q_{T}} L \varphi L \bar{\varphi} d x d t \\
b: \Phi \times L^{2}\left(Q_{T}\right) & \rightarrow \mathbb{R}, \quad b(\varphi, \lambda)=\iint_{Q_{T}} L \varphi \lambda d x d t \\
I: \Phi & \rightarrow \mathbb{R}, \quad I(\varphi)=-\int_{0}^{1} y_{0} \varphi_{t}(\cdot, 0) d x+\left\langle y_{1}, \varphi(\cdot, 0)\right\rangle_{H^{-1}, H_{0}^{1}} .
\end{aligned}
$$

Mixed formulation

Theorem (Cîndea, M)

(1) The mixed formulation is well-posed.

(2) The unique solution $(\varphi, \lambda) \in \Phi \times L^{2}\left(Q_{T}\right)$ is the unique saddle-point of the Lagrangian $\mathcal{L}: \Phi \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(\varphi, \lambda)=\frac{1}{2} a(\varphi, \varphi)+b(\varphi, \lambda)-I(\varphi) .
$$

(3) The optimal function φ is the minimizer of $J^{\prime, \star}$ over Φ while the optimal function $\lambda \in L^{2}\left(Q_{T}\right)$ is the state of the controlled wave equation (1) in the transposition sense.

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91]:

- a is coercive on $\operatorname{Ker}(b)=\left\{\varphi \in \Phi\right.$ such that $b(\varphi, \lambda)=0$ for every $\left.\lambda \in L^{2}\left(Q_{T}\right)\right\}$
- b satisfies the usual "inf-sup" condition over $\Phi \times L^{2}\left(Q_{T}\right)$: there exists $\delta>0$ such that

$$
\begin{equation*}
\inf _{\lambda \in L^{2}\left(Q_{T}\right)} \sup _{\varphi \in \Phi} \frac{D^{\prime}(\varphi, \lambda)}{\|\varphi\|_{\Phi}\|\lambda\|_{L^{2}\left(Q_{T}\right)}} \geq \delta \tag{10}
\end{equation*}
$$

Mixed formulation

Theorem (Cîndea, M)
(1) The mixed formulation is well-posed.
(2) The unique solution $(\varphi, \lambda) \in \Phi \times L^{2}\left(Q_{T}\right)$ is the unique saddle-point of the Lagrangian $\mathcal{L}: \Phi \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ defined by

(3) The optimal function φ is the minimizer of $J^{\prime \prime, \star}$ over Φ while the optimal function $\lambda \in L^{2}\left(Q_{T}\right)$ is the state of the controlled wave equation (1) in the transposition sense.

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91]:

- a is coercive on $\operatorname{Ker}(b)=\left\{\varphi \in \Phi\right.$ such that $b(\varphi, \lambda)=0$ for every $\left.\lambda \in L^{2}\left(Q_{T}\right)\right\}$
- b satisfies the usual "inf-sup" condition over $\Phi \times L^{2}\left(Q_{T}\right)$: there exists $\delta>0$ such that

Mixed formulation

Theorem (Cîndea, M)

(1) The mixed formulation is well-posed.
(2) The unique solution $(\varphi, \lambda) \in \Phi \times L^{2}\left(Q_{T}\right)$ is the unique saddle-point of the Lagrangian $\mathcal{L}: \Phi \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(\varphi, \lambda)=\frac{1}{2} a(\varphi, \varphi)+b(\varphi, \lambda)-I(\varphi) .
$$

(3) The optimal function φ is the minimizer of $J^{1, \star}$ over Φ while the optimal function $\lambda \in L^{2}\left(Q_{T}\right)$ is the state of the controlled wave equation (1) in the transposition sense.

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91]:

- a is coercive on $\operatorname{Ker}(b)=\left\{\varphi \in \Phi\right.$ such that $b(\varphi, \lambda)=0$ for every $\left.\lambda \in L^{2}\left(Q_{T}\right)\right\}$
- b satisfies the usual "inf-sup" condition over $\Phi \times L^{2}\left(Q_{T}\right)$: there exists $\delta>0$ such that

Mixed formulation

Theorem (Cîndea, M)

(1) The mixed formulation is well-posed.
(2) The unique solution $(\varphi, \lambda) \in \Phi \times L^{2}\left(Q_{T}\right)$ is the unique saddle-point of the Lagrangian $\mathcal{L}: \Phi \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(\varphi, \lambda)=\frac{1}{2} a(\varphi, \varphi)+b(\varphi, \lambda)-I(\varphi) .
$$

(3) The optimal function φ is the minimizer of $J^{\prime \prime, \star}$ over Φ while the optimal function $\lambda \in L^{2}\left(Q_{T}\right)$ is the state of the controlled wave equation (1) in the transposition sense.

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-BREZZI'91]:

- a is coercive on $\operatorname{Ker}(b)=\left\{\varphi \in \Phi\right.$ such that $b(\varphi, \lambda)=0$ for every $\left.\lambda \in L^{2}\left(Q_{T}\right)\right\}$
- b satisfies the usual "inf-sup" condition over $\Phi \times L^{2}\left(Q_{T}\right)$: there exists $\delta>0$ such that

Mixed formulation

Theorem (Cîndea, M)

(1) The mixed formulation is well-posed.
(2) The unique solution $(\varphi, \lambda) \in \Phi \times L^{2}\left(Q_{T}\right)$ is the unique saddle-point of the Lagrangian $\mathcal{L}: \Phi \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(\varphi, \lambda)=\frac{1}{2} a(\varphi, \varphi)+b(\varphi, \lambda)-I(\varphi) .
$$

(3) The optimal function φ is the minimizer of $J^{\prime \prime, \star}$ over Φ while the optimal function $\lambda \in L^{2}\left(Q_{T}\right)$ is the state of the controlled wave equation (1) in the transposition sense.

The well-posedness of the mixed formulation is a consequence of two properties [Fortin-Brezzi'91]:

- a is coercive on $\operatorname{Ker}(b)=\left\{\varphi \in \Phi\right.$ such that $b(\varphi, \lambda)=0$ for every $\left.\lambda \in L^{2}\left(Q_{T}\right)\right\}$.

- b satisfies the usual "inf-sup" condition over $\Phi \times L^{2}\left(Q_{T}\right)$: there exists $\delta>0$ such

 that

Mixed formulation

Theorem (Cîndea, M)

(1) The mixed formulation is well-posed.
(2) The unique solution $(\varphi, \lambda) \in \Phi \times L^{2}\left(Q_{T}\right)$ is the unique saddle-point of the Lagrangian $\mathcal{L}: \Phi \times L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(\varphi, \lambda)=\frac{1}{2} a(\varphi, \varphi)+b(\varphi, \lambda)-I(\varphi) .
$$

(3) The optimal function φ is the minimizer of $J^{\prime \prime, \star}$ over Φ while the optimal function $\lambda \in L^{2}\left(Q_{T}\right)$ is the state of the controlled wave equation (1) in the transposition sense.

The well-posedness of the mixed formulation is a consequence of two properties [FORTIN-Brezzi'91]:

- a is coercive on $\operatorname{Ker}(b)=\left\{\varphi \in \Phi\right.$ such that $b(\varphi, \lambda)=0$ for every $\left.\lambda \in L^{2}\left(Q_{T}\right)\right\}$.
- b satisfies the usual "inf-sup" condition over $\Phi \times L^{2}\left(Q_{T}\right)$: there exists $\delta>0$ such that

$$
\begin{equation*}
\inf _{\lambda \in L^{2}\left(Q_{T}\right)} \sup _{\varphi \in \Phi} \frac{b(\varphi, \lambda)}{\|\varphi\|_{\Phi}\|\lambda\|_{L^{2}\left(Q_{T}\right)}} \geq \delta \tag{10}
\end{equation*}
$$

Inf-Sup condition

For any $\lambda_{0} \in L^{2}\left(Q_{T}\right)$, we define the (unique) element φ_{0} such that

$$
L \varphi_{0}=\lambda_{0} \quad Q_{T}, \quad \varphi_{0}(\cdot, 0)=\varphi_{0, t}(\cdot, 0)=0 \quad \Omega, \quad \varphi_{0}=0 \quad \Sigma_{T}
$$

From the direct inequality,

$$
\int_{0}^{T}\left|a(1) \varphi_{0, x}(1, t)\right|^{2} d t \leq C_{\Omega, T} a^{2}(1)\left\|\lambda_{0}\right\|_{L^{2}\left(Q_{T}\right)}^{2}
$$

we get that $\varphi_{0, x}(1, \cdot) \in L^{2}(0, T)$ and $\varphi_{0} \in \Phi$. In particular, $b\left(\varphi_{0}, \lambda_{0}\right)=\left\|\lambda_{0}\right\|_{L^{2}\left(Q_{T}\right)}^{2}$

Combining the above two inequalities, we obtain

Inf-Sup condition

For any $\lambda_{0} \in L^{2}\left(Q_{T}\right)$, we define the (unique) element φ_{0} such that

$$
L \varphi_{0}=\lambda_{0} \quad Q_{T}, \quad \varphi_{0}(\cdot, 0)=\varphi_{0, t}(\cdot, 0)=0 \quad \Omega, \quad \varphi_{0}=0 \quad \Sigma_{T}
$$

From the direct inequality,

$$
\int_{0}^{T}\left|a(1) \varphi_{0, x}(1, t)\right|^{2} d t \leq C_{\Omega, T} a^{2}(1)\left\|\lambda_{0}\right\|_{L^{2}\left(Q_{T}\right)}^{2}
$$

we get that $\varphi_{0, x}(1, \cdot) \in L^{2}(0, T)$ and $\varphi_{0} \in \Phi$. In particular, $b\left(\varphi_{0}, \lambda_{0}\right)=\left\|\lambda_{0}\right\|_{L^{2}\left(Q_{T}\right)}^{2}$ and

$$
\sup _{\varphi \in \Phi} \frac{b\left(\varphi, \lambda_{0}\right)}{\|\varphi\|_{\Phi}\left\|\lambda_{0}\right\|_{L^{2}\left(Q_{T}\right)}} \geq \frac{b\left(\varphi_{0}, \lambda_{0}\right)}{\left\|\varphi_{0}\right\|_{\Phi}\left\|\lambda_{0}\right\|_{L^{2}\left(Q_{T}\right)}}=\frac{\|\lambda\|_{L^{2}\left(Q_{T}\right)}^{2}}{\left(\int_{0}^{T}\left|a(1) \varphi_{x}(1, t)\right|^{2} d t+\eta\left\|\lambda_{0}\right\|_{L^{2}\left(Q_{T}\right)}^{2}\right)^{\frac{1}{2}}\left\|\lambda_{0}\right\|_{L^{2}\left(Q_{T}\right)}} .
$$

Combining the above two inequalities, we obtain

$$
\sup _{\varphi_{0} \in \Phi} \frac{b\left(\varphi_{0}, \lambda_{0}\right)}{\left\|\varphi_{0}\right\|_{\Phi}\left\|\lambda_{0}\right\|_{L^{2}\left(Q_{T}\right)}} \geq \frac{1}{\sqrt{C_{\Omega, T} a^{2}(1)+\eta}}
$$

and, hence, (10) holds with $\delta=\left(C_{\Omega, T} a^{2}(1)+\eta\right)^{-\frac{1}{2}}$.

Discrete inf-sup condition for uniform quadrangulation

For any $h>0$, we note $\Phi_{h} \subset \Phi, M_{h} \subset L^{2}\left(Q_{T}\right)\left(\operatorname{dim}\left(\Phi_{h}\right), \operatorname{dim}\left(M_{h}\right)<\infty\right)$. Find $\left(\varphi_{h}, \lambda_{h}\right) \in \Phi_{h} \times M_{h} \subset \Phi \times L^{2}\left(Q_{T}\right)$ solution of

$$
\left\{\begin{aligned}
a\left(\varphi_{h}, \bar{\varphi}_{h}\right)+b\left(\bar{\varphi}_{h}, \lambda_{h}\right) & =I\left(\bar{\varphi}_{h}\right), & & \forall \bar{\varphi}_{h} \in \Phi_{h} \\
b\left(\varphi_{h}, \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in M_{h}
\end{aligned}\right.
$$

Discrete inf-sup condition for uniform quadrangulation

For any $h>0$, we note $\Phi_{h} \subset \Phi, M_{h} \subset L^{2}\left(Q_{T}\right)\left(\operatorname{dim}\left(\Phi_{h}\right), \operatorname{dim}\left(M_{h}\right)<\infty\right)$. Find $\left(\varphi_{h}, \lambda_{h}\right) \in \Phi_{h} \times M_{h} \subset \Phi \times L^{2}\left(Q_{T}\right)$ solution of

$$
\left\{\begin{aligned}
a\left(\varphi_{h}, \bar{\varphi}_{h}\right)+b\left(\bar{\varphi}_{h}, \lambda_{h}\right) & =l\left(\bar{\varphi}_{h}\right), & & \forall \bar{\varphi}_{h} \in \Phi_{h} \\
b\left(\varphi_{h}, \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in M_{h}
\end{aligned}\right.
$$

Theorem (Cîndea, M)

(2) For some appropriate $r>0$ and

$$
\begin{aligned}
& \Phi_{h}=\left\{z_{h} \in C^{1}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{Q}_{3}(K) \forall K \in \mathcal{Q}_{h}, z_{h}=0 \text { on } \Sigma_{T}\right\}, \\
& M_{h}=\left\{z_{h} \in C^{0}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{Q}_{1}(K) \forall K \in \mathcal{Q}_{h},\right\},
\end{aligned}
$$

$\exists C>0, \quad \inf _{\lambda_{h} \in M_{h}} \sup _{\varphi_{h} \in \Phi_{h}} \frac{b\left(\varphi_{h}, \lambda_{h}\right)}{\left\|\varphi_{h}\right\|_{\Phi_{h}}\|\lambda\|_{M_{h}}} \geq \delta_{h}>C$

Discrete inf-sup condition for uniform quadrangulation

For any $h>0$, we note $\Phi_{h} \subset \Phi, M_{h} \subset L^{2}\left(Q_{T}\right)\left(\operatorname{dim}\left(\Phi_{h}\right), \operatorname{dim}\left(M_{h}\right)<\infty\right)$. Find $\left(\varphi_{h}, \lambda_{h}\right) \in \Phi_{h} \times M_{h} \subset \Phi \times L^{2}\left(Q_{T}\right)$ solution of

$$
\left\{\begin{aligned}
a\left(\varphi_{h}, \bar{\varphi}_{h}\right)+b\left(\bar{\varphi}_{h}, \lambda_{h}\right) & =I\left(\bar{\varphi}_{h}\right), & & \forall \bar{\varphi}_{h} \in \Phi_{h} \\
b\left(\varphi_{h}, \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in M_{h}
\end{aligned}\right.
$$

Theorem (Cîndea, M)

(1) For any Φ_{h}, M_{h}, a_{r} is coercive on Φ_{h} and so on the subset $\left\{\varphi \in \Phi_{h} ; b\left(\varphi_{h}, \lambda_{h}\right)=0 \quad \forall \lambda_{h} \in M_{h}\right\}$
(2) For some appropriate $r>0$ and
$\Phi_{h}=\left\{z_{h} \in C^{1}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{Q}_{3}(K) \forall K \in \mathcal{Q}_{h}, z_{h}=0\right.$ on $\left.\Sigma_{T}\right\}$

Discrete inf-sup condition for uniform quadrangulation

For any $h>0$, we note $\Phi_{h} \subset \Phi, M_{h} \subset L^{2}\left(Q_{T}\right)\left(\operatorname{dim}\left(\Phi_{h}\right), \operatorname{dim}\left(M_{h}\right)<\infty\right)$. Find $\left(\varphi_{h}, \lambda_{h}\right) \in \Phi_{h} \times M_{h} \subset \Phi \times L^{2}\left(Q_{T}\right)$ solution of

$$
\left\{\begin{aligned}
a\left(\varphi_{h}, \bar{\varphi}_{h}\right)+b\left(\bar{\varphi}_{h}, \lambda_{h}\right) & =l\left(\bar{\varphi}_{h}\right), & & \forall \bar{\varphi}_{h} \in \Phi_{h} \\
b\left(\varphi_{h}, \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in M_{h}
\end{aligned}\right.
$$

Theorem (Cîndea, M)

(1) For any Φ_{h}, M_{h}, a_{r} is coercive on Φ_{h} and so on the subset $\left\{\varphi \in \Phi_{h} ; b\left(\varphi_{h}, \lambda_{h}\right)=0 \quad \forall \lambda_{h} \in M_{h}\right\}$
(2) For some appropriate $r>0$ and

$$
\begin{align*}
& \Phi_{h}=\left\{z_{h} \in C^{1}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{Q}_{3}(K) \forall K \in \mathcal{Q}_{h}, z_{h}=0 \text { on } \Sigma_{T}\right\}, \\
& M_{h}=\left\{z_{h} \in C^{0}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{Q}_{1}(K) \forall K \in \mathcal{Q}_{h},\right\}, \tag{11}\\
& \quad \exists C>0, \quad \inf _{\lambda_{h} \in M_{h}} \sup _{\varphi_{h} \in \Phi_{h}} \frac{b\left(\varphi_{h}, \lambda_{h}\right)}{\left\|\varphi_{h}\right\|_{\Phi_{h}}\|\lambda\|_{M_{h}}} \geq \delta_{h}>C . \tag{12}
\end{align*}
$$

Discrete inf-sup condition for uniform quadrangulation

For any $h>0$, we note $\Phi_{h} \subset \Phi, M_{h} \subset L^{2}\left(Q_{T}\right)\left(\operatorname{dim}\left(\Phi_{h}\right), \operatorname{dim}\left(M_{h}\right)<\infty\right)$. Find $\left(\varphi_{h}, \lambda_{h}\right) \in \Phi_{h} \times M_{h} \subset \Phi \times L^{2}\left(Q_{T}\right)$ solution of

$$
\left\{\begin{aligned}
a\left(\varphi_{h}, \bar{\varphi}_{h}\right)+b\left(\bar{\varphi}_{h}, \lambda_{h}\right) & =I\left(\bar{\varphi}_{h}\right), & & \forall \bar{\varphi}_{h} \in \Phi_{h} \\
b\left(\varphi_{h}, \bar{\lambda}_{h}\right) & =0, & & \forall \bar{\lambda}_{h} \in M_{h}
\end{aligned}\right.
$$

Theorem (Cîndea, M)

(1) For any Φ_{h}, M_{h}, a_{r} is coercive on Φ_{h} and so on the subset $\left\{\varphi \in \Phi_{h} ; b\left(\varphi_{h}, \lambda_{h}\right)=0 \quad \forall \lambda_{h} \in M_{h}\right\}$
(2) For some appropriate $r>0$ and

$$
\begin{gather*}
\Phi_{h}=\left\{z_{h} \in C^{1}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{Q}_{3}(K) \forall K \in \mathcal{Q}_{h}, z_{h}=0 \text { on } \Sigma_{T}\right\}, \\
M_{h}=\left\{z_{h} \in C^{0}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in \mathbb{Q}_{1}(K) \forall K \in \mathcal{Q}_{h},\right\}, \tag{11}\\
\quad \exists C>0, \quad \inf _{\lambda_{h} \in M_{h}} \sup _{\varphi_{h} \in \Phi_{h}} \frac{b\left(\varphi_{h}, \lambda_{h}\right)}{\left\|\varphi_{h}\right\|_{\Phi_{h}}\|\lambda\|_{M_{h}}} \geq \delta_{h}>C . \tag{12}
\end{gather*}
$$

(3) $\left\|\lambda_{h}-\lambda\right\|_{L^{2}\left(Q_{T}\right)}+\left\|\varphi_{h}-\varphi\right\|_{\Phi} \rightarrow 0 \quad$ as $\quad h \rightarrow 0$ where (φ, λ) is the saddle point of \mathcal{L}.

Numerical illustration in a singular case : discontinuous y_{0}

Adaptation of the Q_{T} mesh

Let A be the linear operator from $L^{2}\left(Q_{T}\right)$ into $L^{2}\left(Q_{T}\right)$ defined by

$$
A \lambda:=L \varphi, \quad \forall \lambda \in L^{2}\left(Q_{T}\right) \quad \text { where } \quad \varphi \in \Phi \quad \text { solves } \quad a_{r}(\varphi, \bar{\varphi})=b(\bar{\varphi}, \lambda), \quad \forall \bar{\varphi} \in \Phi
$$

For any $r>0$, the operator A is a strongly elliptic, symmetric isomorphism from $L^{2}\left(Q_{T}\right)$ into $L^{2}\left(Q_{T}\right)$.

Dual of the dual problem (UZAWA type algorithm)

Lemma

Let A be the linear operator from $L^{2}\left(Q_{T}\right)$ into $L^{2}\left(Q_{T}\right)$ defined by

$$
A \lambda:=L \varphi, \quad \forall \lambda \in L^{2}\left(Q_{T}\right) \quad \text { where } \quad \varphi \in \Phi \quad \text { solves } \quad a_{r}(\varphi, \bar{\varphi})=b(\bar{\varphi}, \lambda), \quad \forall \bar{\varphi} \in \Phi .
$$

For any $r>0$, the operator A is a strongly elliptic, symmetric isomorphism from $L^{2}\left(Q_{T}\right)$ into $L^{2}\left(Q_{T}\right)$.

$$
\sup _{\lambda \in L^{2}\left(Q_{T}\right)} \inf _{\varphi \in \Phi} \mathcal{L}_{r}(\varphi, \lambda)=-\inf _{\lambda \in L^{2}\left(Q_{T}\right)} J^{\star \star}(\lambda) \quad+\mathcal{L}_{r}\left(\varphi_{0}, 0\right)
$$

where $\varphi_{0} \in \Phi$ solves $a_{r}\left(\varphi_{0}, \bar{\varphi}\right)=I(\bar{\varphi}), \forall \bar{\varphi} \in \Phi$ and $J^{\star \star}: L^{2}\left(Q_{T}\right) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
J^{\star \star}(\lambda)=\frac{1}{2} \iint_{Q_{T}} A \lambda(x, t) \lambda(x, t) d x d t-b\left(\varphi_{0}, \lambda\right) \tag{13}
\end{equation*}
$$

II- Wave type equation : Distributed case

$$
\left\{\begin{array}{l}
\omega \text { a nonempty subset of } \Omega, \\
L y:=y_{t t}-\left(a(x) y_{x}\right)_{x}+A y=v 1_{\omega} \quad(x, t) \in Q_{T}
\end{array}\right.
$$

Time dependent support

Time dependent control support and corresponding controlled solution y_{h}
\Rightarrow Possibility to optimize rigorousty and easily the support of the CONTROL! (IN PROGRESS)

III- (Linear) Heat type equation : Distributed case $(\rho \neq 0)$

$a \in C^{1}\left([0,1], \mathbb{R}_{*}^{+}\right), y_{0} \in L^{2}(0,1), q_{T}=\omega \times(0, T), v \in L^{2}\left(q_{T}\right), A \in L^{\infty}\left(Q_{T}\right)$

$$
\left\{\begin{array}{l}
L_{A} y:=y_{t}-\left(a(x) y_{x}\right)_{x}+A y=v 1_{\omega}, \quad Q_{T} \\
y=0, \quad \Sigma_{T}, \quad y(\cdot, 0)=y_{0}, \quad \Omega .
\end{array}\right.
$$

[Lebeau Robbiano'95] [Fursikov Imanuvilov'95]
Notation: $L^{\star} p:=-p_{t}-\left(a(x) p_{x}\right)_{x}+A p$
E. Fernández-Cara and AM,

Numerical controllability of the wave equation through primal methods and Carleman estimates,
SéMA (2013),

$L^{2}(0,1)$-norm of the HUM control with respect to time

Figure: $y_{0}(x)=\sin (\pi x)-T=1-\omega=(0.2,0.8)-t \rightarrow\|v(\cdot, t)\|_{L^{2}(0,1)}$ in $[0, T]$

Primal (direct) approach with appropriate weights

First, let us set $P_{0}=\left\{q \in C^{2}\left(\bar{Q}_{T}\right): q=0\right.$ on $\left.\Sigma_{T}\right\}$. In this linear space, the bilinear form

$$
(p, q)_{P}:=\iint_{Q_{T}} \rho^{-2} L^{*} p L^{*} q d x d t+\iint_{q_{T}} \rho_{0}^{-2} p q d x d t
$$

is a scalar product.

Proposition (Characterization of the optimal pair)

Let ρ and ρ_{0} be given by (16). Let (y, v) be the corresponding optimal pair for J. Then there exists $p \in P$ such that

$$
\begin{equation*}
y=\rho^{-2} L^{*} p, \quad v=-\left.\rho_{0}^{-2} p\right|_{q_{T}} . \tag{14}
\end{equation*}
$$

The function p is the unique solution in P of

$$
\begin{equation*}
(p, q)_{P}=\int_{0}^{1} y_{0} q(\cdot, 0) d x, \quad \forall q \in P \tag{15}
\end{equation*}
$$

Well-posedness

There are "good" weight functions ρ and ρ_{0} that blow up at $t=T$ and provide a very suitable solution to the original null controllability problem. They were determined and systematically used by Fursikov and Imanuvilov' 96 and are the following:

$$
\rho(x, t)=\exp \left(\frac{\beta(x)}{T-t}\right), \rho_{0}(x, t)=(T-t)^{3 / 2} \rho(x, t), \beta(x)=K_{1}\left(e^{K_{2}}-e^{\beta_{0}(x)}\right)
$$

the K_{i} are large positive constants (depending on $T, a_{0},\|a\|_{C^{1}}$ and $\|A\|_{\infty}$) and $\beta_{0} \in C^{\infty}([0,1]), \beta_{0}>0$ in $(0,1), \beta_{0}(0)=\beta_{0}(1)=0,\left|\beta_{0}^{\prime}\right|>0$ outside ω.

(Global Carleman estimate - Fursikov-Imanuvilov'95)

Let ρ and ρ_{0} be given by (16). Then, for any $\delta>0, P \hookrightarrow C^{0}\left([0, T-\delta] ; H_{0}^{1}(0,1)\right)$ and the embedding is continuous. In particular, there exists $C_{0}>0$, only depending on ω, $T, a_{0},\|a\|_{C^{1}}$ and $\|A\|_{\infty}$, such that

$$
\begin{equation*}
\|q(\cdot, 0)\|_{H_{0}^{1}(0,1)}^{2} \leq C_{0}\left(\iint_{Q_{T}} \rho^{-2}\left|L^{*} q\right|^{2} d x d t+\iint_{q_{T}} \rho_{0}^{-2}|q|^{2} d x d t\right) \tag{17}
\end{equation*}
$$

for all $q \in P$.

Conformal finite element approximation

For any dimensional space $P_{h} \subset P$, we can introduce the following approximate problem:

$$
\begin{equation*}
\left(p_{h}, \bar{p}_{h}\right)_{P}=<I, \bar{p}_{h}>, \quad \forall \bar{p}_{h} \in P_{h} ; \quad p_{h} \in P_{h} . \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
P_{h}=\left\{z_{h} \in C_{x, t}^{1,0}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{K} \in\left(\mathbb{P}_{3, x} \otimes \mathbb{P}_{1, t}\right)(K) \forall K \in \mathcal{Q}_{h}, z_{h}=0 \text { on } \Sigma_{T}\right\} \tag{19}
\end{equation*}
$$

Conformal finite element approximation

For any dimensional space $P_{h} \subset P$, we can introduce the following approximate problem:

$$
\begin{equation*}
\left(p_{h}, \bar{p}_{h}\right)_{P}=<I, \bar{p}_{h}>, \quad \forall \bar{p}_{h} \in P_{h} ; \quad p_{h} \in P_{h} . \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
P_{h}=\left\{z_{h} \in C_{x, t}^{1,0}\left(\overline{Q_{T}}\right):\left.z_{h}\right|_{k} \in\left(\mathbb{P}_{3, x} \otimes \mathbb{P}_{1, t}\right)(K) \forall K \in \mathcal{Q}_{h}, z_{h}=0 \text { on } \Sigma_{T}\right\} \tag{19}
\end{equation*}
$$

Theorem (Fernández-Cara, AM)

Let $p_{h} \in P_{h}$ be the unique solution to (18), where P_{h} is given by (19). Let us set

$$
y_{h}:=\rho^{-2} L_{A}^{\star} p_{h}, \quad v_{h}:=-\rho_{0}^{-2} p_{h} 1_{q_{T}} .
$$

Then one has

$$
\left\|y-y_{h}\right\|_{L^{2}\left(Q_{T}\right)} \rightarrow 0 \text { and }\left\|v-v_{h}\right\|_{L^{2}\left(q_{T}\right)} \rightarrow 0, \quad \text { as } \quad h \rightarrow 0
$$

where (y, v) is the minimizer of J.

1D example - Bi-cubic element - Uniform quadrangulation $-y_{0}(x)=\sin (\pi x)-$

$$
T=1 / 2-a(x)=1 / 10-\omega=(0.3,0.6)
$$

$\Delta x, \Delta t$	$1 / 20$	$1 / 40$	$1 / 80$	$1 / 160$	$1 / 320$		
$\left\\|v_{h}\right\\|_{L^{2}\left(q_{T}\right)}$	1.597	2.023	2.348	2.58	2.733		
$\left\\|y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	1.879×10^{-1}	1.834×10^{-1}	1.826×10^{-1}	1.827×10^{-1}	1.829×10^{-1}		
$\left\\|y_{h}(\cdot, T)\right\\|_{L^{2}(0,1)}$	4.96×10^{-3}	1.82×10^{-3}	5.91×10^{-4}	1.71×10^{-4}	4.65×10^{-5}		
$\left\\|y-y_{h}\right\\|_{L^{2}\left(Q_{T}\right)}$	7.52×10^{-2}	4.82×10^{-2}	2.62×10^{-2}	1.04×10^{-2}	-		
$\left\\|v-v_{h}\right\\|_{L^{2}\left(q_{T}\right)}$	1.57	1.04	0.59	0.25	-		

y_{h} and v_{h} over $Q_{T}-h=(1 / 80,1 / 80)$.

iV- Semi-Linear Heat type equation : Distributed case $(\rho \neq 0)$

$$
\begin{cases}y_{t}-\left(a(x) y_{x}\right)_{x}+f(y)=v 1_{\omega}, & Q_{T} \tag{20}\\ y=0, \quad \Sigma_{T}, \quad y(\cdot, 0)=y_{0}, & \Omega\end{cases}
$$

$y_{0} \in L^{\infty}, f \in C^{1}(R)$ globally Lipschitz continuous.
$f(0)=0 . f(s) /\left(s \log ^{3 / 2}(1+|s|)\right) \rightarrow 0$ as $|s| \rightarrow \infty$.
[Barbu'00] [FernÁndez-Cara Zuazua'00]
E. Fernández-Cara and AM, Numerical null controllability of semi-linear 1D heat equations : fixed point, least squares and Newton methods,
Mathematical Control and Related Fields, (2012)

Constructive approximation (3 steps)

I-Linearization of the equation :

$$
\begin{equation*}
y_{t}-\left(a(x) y_{x}\right)_{x}+g(z) y=v 1_{\omega}, \quad Q_{T} \tag{21}
\end{equation*}
$$

with

$$
g(s)=\frac{f(s)}{s} \text { if } s \neq 0, g(0)=f^{\prime}(0) \text { otherwise. }
$$

II - Definition of the operator $\Lambda: L^{2}\left(Q_{T}\right) \rightarrow L^{2}\left(Q_{T}\right)$ defined by :

$$
\left\{\begin{array}{l}
\wedge z:=y \\
y \in C\left(y_{0}, z, T\right) \quad \text { such that } \quad\left(y_{z}, v_{z}\right) \text { minimize } J\left(y_{z}, v_{z}\right)
\end{array}\right.
$$

III - Approximation of a fixed point iteratively :

- Relaxed Picard iterates :

$$
z^{0} \in L^{2}\left(Q_{T}\right), \quad z^{n+1}=\alpha z^{n}+(1-\alpha) \wedge z^{n}, \quad n \geq 0, \quad \alpha \in(0,1)
$$

- Least-Squares type approach :

$$
\operatorname{minimize}_{z \in L^{2}\left(Q_{T}\right)}\|z-\Lambda(z)\|_{L^{2}\left(Q_{T}\right)}^{2}
$$

A fixed point : a numerical application

$$
f(s)=-5 s \log ^{\frac{7}{5}}(1+|s|) \quad \forall s \in \mathbf{R}, \quad a(x)=1 / 10 ; \quad T=1 / 2 \quad y_{0}(x)=40 \sin (\pi x)
$$

without control, blow up time $t_{c} \approx 0.339<T$.

A fixed point : a numerical application

$$
f(s)=-5 s \log ^{\frac{7}{5}}(1+|s|) \quad \forall s \in \mathbf{R}, \quad a(x)=1 / 10 ; \quad T=1 / 2 \quad y_{0}(x)=40 \sin (\pi x)
$$

without control, blow up time $t_{c} \approx 0.339<T$.

Control v_{h} and corresponding controlled solution y_{h}

V- Stokes / NS system : distributed case

$\Omega \subset \mathbb{R}^{N}$ bounded, connected open set whose boundary $\partial \Omega$ is regular enough (for instance of class $C^{2} ; N=2$ or $N=3$)

$$
\left\{\begin{array}{l}
L \mathbf{y}+\nabla \pi=\mathbf{v} 1_{\omega}, \quad \nabla \cdot \mathbf{y}=0 \quad \text { in } Q_{T} \tag{22}\\
\mathbf{y}=\mathbf{0} \quad \text { on } \Sigma_{T}, \quad \mathbf{y}(\cdot, 0)=\mathbf{y}_{0} \quad \text { in } \Omega
\end{array}\right.
$$

[Fursikov Imanuvilov'95]
Notations : $L \mathbf{y}:=\mathbf{y}_{t}-\nu \Delta \mathbf{y} ; L^{\star} \mathbf{p}:=-\mathbf{p}_{t}-\nu \Delta \mathbf{p}$
D. Araujo de Souza, E. Fernández-Cara and AM, Numerical null controllability of the Stokes system, In progress .

$$
\Phi_{0}=\left\{(\mathbf{p}, \sigma): p_{i}, \sigma \in C^{2}\left(\overline{Q_{T}}\right), \nabla \cdot \mathbf{p} \equiv 0, p_{i}=0 \text { on } \Sigma, \int_{\Omega} \sigma(\mathbf{x}, t) d \mathbf{x}=0 \forall t\right\} .
$$

Let Φ be the completion of Φ_{0} with respect to the scalar product defined by

$$
m\left((\mathbf{p}, \sigma),\left(\mathbf{p}^{\prime}, \sigma^{\prime}\right)\right):=\iint_{Q_{T}}\left(\rho^{-2}\left(\mathbf{L}^{\star} \mathbf{p}+\nabla \sigma\right) \cdot\left(\mathbf{L}^{\star} \mathbf{p}^{\prime}+\nabla \sigma^{\prime}\right)+1_{\omega} \rho_{0}^{-2} \mathbf{p} \cdot \mathbf{p}^{\prime}\right) d \mathbf{x} d t
$$

$$
\Phi_{0}=\left\{(\mathbf{p}, \sigma): p_{i}, \sigma \in C^{2}\left(\overline{Q_{T}}\right), \nabla \cdot \mathbf{p} \equiv 0, p_{i}=0 \text { on } \Sigma, \int_{\Omega} \sigma(\mathbf{x}, t) d \mathbf{x}=0 \forall t\right\}
$$

Let Φ be the completion of Φ_{0} with respect to the scalar product defined by

$$
m\left((\mathbf{p}, \sigma),\left(\mathbf{p}^{\prime}, \sigma^{\prime}\right)\right):=\iint_{Q_{T}}\left(\rho^{-2}\left(\mathbf{L}^{\star} \mathbf{p}+\nabla \sigma\right) \cdot\left(\mathbf{L}^{\star} \mathbf{p}^{\prime}+\nabla \sigma^{\prime}\right)+1_{\omega} \rho_{0}^{-2} \mathbf{p} \cdot \mathbf{p}^{\prime}\right) d \mathbf{x} d t
$$

Theorem (Characterization of the optimality)

Let the weights ρ and ρ_{0} as before and let (\mathbf{y}, \mathbf{v}) be the unique minimizer for J. Then one has

$$
\begin{equation*}
\mathbf{y}=\rho^{-2}\left(\mathbf{L}^{\star} \mathbf{p}+\nabla \sigma\right), \quad \mathbf{v}=-\left.\rho_{0}^{-2} \mathbf{p}\right|_{\omega \times(0, T)} \tag{23}
\end{equation*}
$$

where (\mathbf{p}, σ) is the unique solution to the variational equality

$$
\left\{\begin{array}{c}
m\left((\mathbf{p}, \sigma),\left(\left(\mathbf{p}^{\prime}, \sigma^{\prime}\right)\right)=\left\langle B_{0},\left(\mathbf{p}^{\prime}, \sigma^{\prime}\right)\right\rangle\right. \tag{24}\\
\forall\left(\mathbf{p}^{\prime}, \sigma^{\prime}\right) \in \Phi ;(\mathbf{p}, \sigma) \in \Phi .
\end{array}\right.
$$

with B_{0} given by

$$
\left\langle B_{0},(\mathbf{p}, \sigma)\right\rangle:=\int_{\Omega} \mathbf{y}_{0} \cdot \mathbf{p}(\cdot, 0) d \mathbf{x} .
$$

The variational equality (24) can be regarded as the weak formulation of a (non-scalar) boundary-value problem for a PDE that is fourth-order in \mathbf{x} and second-order in t. Indeed, taking "test functions" $(\mathbf{p}, \sigma) \in \Phi$ first with $p_{i}, \sigma \in C_{0}^{\infty}\left(Q_{T}\right)$, then with $p_{i}, \sigma \in C^{2}(\bar{\Omega} \times(0, T))$ and finally with $p_{i}, \sigma \in C^{2}\left(\overline{Q_{T}}\right)$, we can easily deduce that (\mathbf{p}, σ) satisfies, together with some $\pi \in \mathcal{D}^{\prime}\left(Q_{T}\right)$, the following:

$$
\begin{cases}\mathbf{L}\left(\rho^{-2}\left(\mathbf{L}^{\star} \mathbf{p}+\nabla \sigma\right)\right)+\nabla \pi+\mathbf{1}_{\omega} \rho_{0}^{-2} \mathbf{p}=0 & \text { in } Q_{T}, \tag{25}\\ \nabla \cdot\left(\rho^{-2}\left(\mathbf{L}^{\star} \mathbf{p}+\nabla \sigma\right)\right)=0, \nabla \cdot \mathbf{p}=0 & \text { in } Q_{T} \\ \mathbf{p}=\mathbf{0}, \quad \rho^{-2}\left(\mathbf{L}^{\star} \mathbf{p}+\nabla \sigma\right)=\mathbf{0} & \text { on } \Sigma_{T} \\ \left.\rho^{-2}\left(\mathbf{L}^{\star} \mathbf{p}+\nabla \sigma\right)\right|_{t=0}=\mathbf{y}_{0},\left.\quad \rho^{-2}\left(\mathbf{L}^{\star} \mathbf{p}+\nabla \sigma\right)\right|_{t=T}=\mathbf{0} & \text { in } \Omega\end{cases}
$$

Numerical experiments : control to trajectory for NS

Again Navier-Stokes, local ECT:
(NS)

$$
\left\{\begin{array}{l}
y_{t}+(y \cdot \nabla) y-\Delta y+\nabla p=v 1_{\omega}, \quad \nabla \cdot y=0 \\
y(x, t)=0,(x, t) \in \partial \Omega \times(0, T) \\
y(x, 0)=y^{0}(x)
\end{array}\right.
$$

Fix a solution (\bar{y}, \bar{p}), with $\bar{y} \in L^{\infty}$
Goal: Find v such that $y(T)=\bar{y}(T)$
Strategy:

- Reformulation: NC

Numerical experiments : control to trajectory for NS

Again Navier-Stokes, local ECT:
(NS)

$$
\left\{\begin{array}{l}
y_{t}+(y \cdot \nabla) y-\Delta y+\nabla p=v 1_{\omega}, \quad \nabla \cdot y=0 \\
y(x, t)=0,(x, t) \in \partial \Omega \times(0, T) \\
y(x, 0)=y^{0}(x)
\end{array}\right.
$$

Fix a solution (\bar{y}, \bar{p}), with $\bar{y} \in L^{\infty}$
Goal: Find v such that $y(T)=\bar{y}(T)$
Strategy:

- Reformulation: NC
- Fixed point

Numerical experiments : control to trajectory for NS

Test 1: Poiseuille flow

$$
\bar{y}=\left(4 x_{2}\left(1-x_{2}\right), 0\right), \bar{p}=4 x_{1}
$$

(stationary)

POISEUILLE

Poiseuille

Figure: Poiseuille flow

Numerical experiments : control to trajectory for NS

Test 1: Poiseuille flow $\Omega=(0,5) \times(0,1), \omega=(1,2) \times(0,1), T=2$ $y_{0}=\bar{y}+m z, \quad z=\nabla \times \psi, \psi=(1-y)^{2} y^{2}(5-x)^{2} x^{2}(m \ll 1)$ Approximation: P_{2} in $\left(x_{1}, x_{2}, t\right)+$ multipliers $\ldots-$ freefem ++

Figure: The Mesh - Nodes: 1830, Elements: 7830, Variables: 7×1830

Numerics: results

Test 1: Poiseuille flow

STATE, x COMPONENT; CUT $t=0$

STATE; CUT $\mathrm{t}=0$

Figure: The initial State

Numerical experiments : control to trajectory for NS

Test 1: Poiseuille flow

STATE, \times COMPONENT; CUT $\mathrm{t}=1.1$

STATE; CUT $\mathrm{t}=1.1$

Figure: The State at $t=1.1$

Numerical experiments : control to trajectory for NS

Test 1: Poiseuille flow

STATE, x COMPONENT; CUT $t=1.7$

STATE; CUT $\mathrm{t}=1.7$

Figure: The State at $t=1.7$

```
ZPoisseuille.edp
```

The variational approach can be used in the context of many other controllable systems for which appropriate Carleman estimates are available.

The approximation is robust (we have to inverse symmetric definite positive and very sparse matrice with direct LU and Cholesky solvers)

With conformal time-space finite elements approximations, we obtain STRONG CONVERGENCE RESULTS WITH RESPECT TO $h=(\Delta x, \Delta t)$.

The price to pay is to used C^{1} finite elements (at least in space).
In THAT SPACE-TIME APPROACH, THE SUPPORT OF THE CONTROL MAY VARIES IN TIME (WITHOUT ADDITIONAL DIFFICULTIES).

THIS APPROACH MAY bE APPLIED FOR INVERSE PROBLEMS, OBSERVATION PROBLEMS, RECONSTRUCTION OF DATA,

NADA MA(S)!

Thank you very much for your attention

[^0]: The weights ρ, ρ_{0} are arbitrary. In particular P does not depend on ρ and ρ_{0}.

