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Introduction

THE TALK BRIEFLY SURVEYS SOME RECENTS WORKS IN COLLABORATION WITH N.
CINDEA, E. FERNANDEZ-CARA, DIEGO DE SOUZA CONCERNING THE NUMERICAL
APPROXIMATIONS OF CONTROL FOR DISTRIBUTED SYSTEMS

SO-CALLED "PRIMAL METHODS" ARE USED : THE IDEA IS TO SOLVE DIRECTLY
OPTIMALITY CONDITIONS RELATED TO A EXTREMAL PROBLEM LEADING TO STRONG
CONVERGENT APPROXIMATIONS

IDEAS CAN BE FOUND IN LIONS’S BOOKS AND IN
FURSIKoV-92 : Lagrange principle for problems of optimal control of ill-posed or

singular distributed systems. J. Math. Pures Appl. (1992)

WE CONSIDER THE WAVE EQUATION, THE HEAT EQUATION THEN THE STOKES SYSTEM

Is by primal methods



| - WAVE TYPE EQUATION : BOUNDARY CASE
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Boundary controllability of the 1D wave equation (2 = (0, 1))

Qr = (0,1) x (0, T); a€ C3([0,1]), a(x) > ay > 0in [0, 1], b € L=°(Qr),

yi — (a(x)yx)x + b(x, t)y =0, (x,t) € Qr
y(0,~)=0, y(17'):V7 fE(O,T) (1)
(y(vo)f.yt(ro)) = (y07y1) € Lz(o’ 1) X H_1(071)7 X € (07 1)

v = v(t) is the control in L2(0, T) and y = y(x, t) is the associated state.

We associate the extremal problem :
Minimize J(y, v // PPly2dxdt+ = / po?|v]? dt
Subjectto (y,v) € C(yo,y1: T)

Cyo,y1; T)={(y,v): veL?0,T), ysolves (1) and satisfies y(-, T) = y¢(-, T) = 0}.

pE C(QT7R+)1 Po € C((07 T)>Rj;)
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For any xg < 0 and ag > 0, we assume that the function a belongs to

A(xp, a0) = {ae C3([0,1]) : a(x) > ap >0,

_ [Riﬂ (a(x) +(x - xo)ax(x)) < {Riﬂ (a(x) + %(x - xo)ax(x)) } ©)

and then that

2
T>T*a):= 5 max a(x)"3(x — xp).

for any 8 > 0 such that

— H)],i” (a(x) +(x— Xo)ax(x)) < B < min (a(x) + %(x — xo)ax(x))

[0,1]

Constant diffusion a := ag € A(xg, @) and leads to T*(a) = 2(1/;%(0) > %
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Boundary controllability of the 1D wave equation : classical dual approach

[GLOWINSKI-LIONS’ 95]
T > T*(a). Duality arguments lead to the unconstrained dual problem

N 1 1 /7 _
Minimize J*(s1, o, 1) = 5//0 P2l o it + 5/0 oy 2la(1)éx(1, D2 ot
T

:
[ 9000 61(x,0) & = (1,9 0y 4
0 0

Subjectto (1, do, é1) € L3(Qr) x HY () x L2(R),
)

where ¢ solves

Lp=p inQr, ¢=0 onXr, (¢, T),#:(-, T)) = (b0, #1) in(0,1).

THE (NUMERICAL) DIFFICULTY IS TO FIND A FINITE CONFORMAL APPROXIMATION OF
[2(Qr) x H} x L2 SATISFYING THE CONSTRAINT L¢ = pu |

THE TRICK IS TO CONTROL A FINITE DIMENSIONAL AND CONSISTENT APPROXIMATION
OF THE WAVE EQ. : THIS REQUIRES TO PROVE UNIFORM DISCRETE INEQUALITY
OBSERVABILITY, STILL OPEN IN THE GENERAL CASE.
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I-1 THE CASE p UNIFORMLY POSITIVE

N. Cindea, E. Fernandez-Cara and AM,

Numerical controllability of the wave equation through primal methods and Carleman
estimates,

ESAIM:COCV (2013),
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Boundary controllability of the 1D wave equation : primal approach

Let T > T*(a) and P be the completion of Py = { g € C°°(Qr) : ¢ = 0 on 7 } with
respect to the scalar product

.
(.= [[ ottpLadxat+ [ op?at1)? et D (1. Dot
- 0
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Boundary controllability of the 1D wave equation : primal approach

Let T > T*(a) and P be the completion of Py = { g € C°°(Qr) : ¢ = 0 on 7 } with

respect to the scalar product

)
(0.0 = [[ o 2Lotadxat+ [ pp?a(1) et et et
T 0

(Cindea, Fernandez-Cara, M’ 13)

Let us assume that p > px > 00n Qr, po > p» >00n(0,T). Let(y,v) € C(¥o, Y1, T)

be the solution to (2). Then there exists p € P such that
y=-p2Lp, v=—(a(x)py?px)|,_;-
Moroever, p is the unique solution to the variational equality:
! il
(.@)p = [ 1000 (. 0) o = (y'.a(- )1 oy VA € P.

Here : -
0O iy = [ 5 ((A) )0 au(x,0) o,

where —A is the Dirichlet Laplacian in (0, 1).

(6)

(6)
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Boundary controllability of the 1D wave equation : primal approach

Let us assume that a € A(xg, ap) and that T > T*(a). Then there exists a constant
Co > 0, only depending on Xo, o, ||allcs((o,17)» 1bllLo<(ay) @nd T, such that

llp(-,0), pr(- 0)||H101xL2(01) Co(p,p)p VpeP. @)

PROOF -
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Boundary controllability of the 1D wave equation : primal approach

Let us assume that a € A(xg, ap) and that T > T*(a). Then there exists a constant
Co > 0, only depending on Xo, o, ||allcs((o,17)» 1bllLo<(ay) @nd T, such that

llp(-,0), pr(- 0)||H101xL2(01) Co(p,p)p VpeP. @)

PROOF -
0 via Carleman estimate: technical exponential form for the weight appears :

p(X» t) = e—Sgp(X,Zt—T)7 pO(t) = p(1zt)(X7 t) € QT7

(see PUEL00, ZHANG'00, IMMANUVILOV'02, BAUDOUIN-DE
BUHAN-ERVEDOZA’11, ETC) and
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Boundary controllability of the 1D wave equation : primal approach

Let us assume that a € A(xg, ap) and that T > T*(a). Then there exists a constant
Co > 0, only depending on Xo, o, ||allcs((o,17)» 1bllLo<(ay) @nd T, such that

llp(-,0), pr(- 0)||H101xL2(01) Co(p,p)p VpeP. @)

PROOF -
0 via Carleman estimate: technical exponential form for the weight appears :

p(X» t) = e—Sgp(X,Zt—T)7 pO(t) = p(1zt)(X7 t) € QT7

(see PUEL00, ZHANG'00, IMMANUVILOV'02, BAUDOUIN-DE
BUHAN-ERVEDOZA’11, ETC) and

@ via Multipliers technics [YAO” 99]
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Boundary controllability of the 1D wave equation : primal approach

Let us assume that a € A(xg, ap) and that T > T*(a). Then there exists a constant
Co > 0, only depending on Xo, o, ||allcs((o,17)» 1bllLo<(ay) @nd T, such that

llp(-,0), pr(- 0)||H101xL2(01) Co(p,p)p VpeP. @)

PROOF -
0 via Carleman estimate: technical exponential form for the weight appears :

p(X» t) = e—Sgp(X,Zt—T)7 pO(t) = p(1zt)(X7 t) € QT7

(see PUEL00, ZHANG'00, IMMANUVILOV'02, BAUDOUIN-DE
BUHAN-ERVEDOZA’11, ETC) and

@ via Multipliers technics [YAO” 99]

The weights p, pg are arbitrary. In particular P does not depend on p and pg.
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Boundary controllability of the 1D wave equation : Carleman inequality

Theorem (Cindea-Fernandez-Cara, M'13)

Let us assume that xo < 0, ap > 0 and a € A(xo, ay). Moreover, let us assume that
T > T*(a).

Then there exist positive constants sy and M, only depending on xo, o, ||all ca((o,1}):
|6l oo (@ry @nd T, such that, for all s > sy, one has

T T M
s/ /e25¢(|wt|2+|wx|2) dxdt+s3/ /ezsﬂwlzdxdt
—1Jo —1Jo
T 0
gM/ / eZS‘P|Lw|2dxdt+Ms/ 52wy (1, 1)[2 ot
—1Jo -7

forany w € L2(—T, T; H}(0,1)) satisfying Lw € L2((0,1) x (—T, T)) and
WX(17’) € L2(7T7 T)

extends PUEL'00, BAUDOUIN'01, BAUDOUIN-DE BUHAN-ERVEDOZA’11 to non
constant diffusion a.
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Boundary value problem

.
// p—2Lqudxdt+/ Py 2@ (1)px(1,) ax(1, ) ot

;
=/0 ,VOQt(':O)dX*<y1»CI('70)>H—1,H8 vge P, peP.

The function p solves, at least in the distributional sense, the following differential
problem, that is of the fourth-order in time and space:

L(p=2Lp) =0, (x,t) € Qr
p(0,-) = (p~2Lp)(0,-) =0, te(0,7)
p(1,-) = (p~2Lp +apy °px)(1,) = 0, te 0,7
(P_ZLP)(', O) = Yo, (p_ZLp)('7 T) =0, ( ) )
(piaLp)t('vo) =0, (pizl—p)f('v T) = 07 (07 )

Notice that the “boundary” conditions att = 0 and t = T are of the Neumann kind.
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Finite dimensional approximation / Strong convergence

For any given finite dimensional space P, C P for each h € R, we define p, € Py, the
unique solution of
(PnsGn)p = (£,an),  Vqn € Ph. (8)
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Finite dimensional approximation / Strong convergence

For any given finite dimensional space P, C P for each h € R, we define p, € Py, the
unique solution of

(Pn, Gn)p = (£,an), Vaqn € Ph. (8)
We define the interpolation operator Ny, : Py — Pp and we assume that

[p—Thpllp —0 as h—0, Vpe Py

From the density of Py into P for the P — norm,

Let p, € Py, the unique solution of (18) and let p € P the solution of the variational
formulation. Then,
lp—pullp —0 as h—0

Moreover, if we set
-2 =P
Yh=p “Lpp, Vvh:i= —Po a(X)ph,x|X:1-
Then one has
Iy = ¥nll2(q;y — 0 @and [[v — vl 20,7y =0 as h—0,

where (y, v) is the solution to (2).
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C' finite element approximation Py,

The spaces P, must be chosen such that p~"Lpy, € L?(Qr) for any py € Pp.

A conformal approximation based on a standard quadrangulation of Q7 "requires”
spaces of functions continuously differentiable with respect to both variables x and t.

Pn={z,eC(Qr): zplx € P(K) VK € Qp, Z,=00onEr} C P
Qy, aregular triangulation Qr = U K
KeQy

P(K) denotes space of polynomial functions in X and t
Bogner-fox C' element : P(K) = (P3,x ®P3¢)(K)

Composite C! finite element : Reduced Fraeijs de Veubeke-Sanders for rectangle,
Reduced Hsieh-Clough-Tocker for triangle
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C' finite element approximation Py,

The spaces P, must be chosen such that p~"Lpy, € L?(Qr) for any py € Pp.

A conformal approximation based on a standard quadrangulation of Q7 "requires”
spaces of functions continuously differentiable with respect to both variables x and t.

Pn={z,eC(Qr): zplx € P(K) VK € Qp, Z,=00onEr} C P

Qy, aregular triangulation Qr = U K
KeQy

P(K) denotes space of polynomial functions in X and t

Bogner-fox C! element : P(K) = (P3,x ® P3 ¢)(K)
Composite C! finite element : Reduced Fraeijs de Veubeke-Sanders for rectangle,
Reduced Hsieh-Clough-Tocker for triangle

The resolution of the elliptic formulation

(P> an)p = (£, an), Yqn € Ph.

amounts to solve a symmetric, positive definite, sparse linear system.
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1D example - Bi-cubic element - Uniform quadrangulation

Yo(x) = —500(x—0.2)? 1 x € [0,0.45]
T=22 9 . a(x)=q €[1.,5] (& >0), xe&(0.45,0.55)
70 =0 5 x € [0.55,1]
x10™

0.2]

-0.1

-0.2

0% 05 1 15 >

00 t

pr over Qr and v, = —a(1)pn x(1,-) on (0, T) - h = (1/80,1/80).
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One example - Bi-cubic elem

Ax, A /10 1/20 1/40 1/80 1/160
B — plip, 1.25x 1077 575x 1072 264 x 1072  1.01x 10~ 2 -
1 = vll20. 7 5.07 x 107" 417 x 1072 2.03x 1072 4.86 x 1073 -
17nC s Tl 20,1 1.09 x 107! 7.89x 1072  1.81x 1072  1.16x 1072  1.71 x 1073
196,6C » Dlly=10,4) | 1:01 % 107" 839x1072 481 x1072 752x107% 1.55x 1073

lp=Bnllp = O™ Iv=tll 200 1) = O %) 1I5n(, Dl 20,1y = OB 134,00 Dll =104y = ON"*h)




-2 Case p:=0

.

Minimize J(y, v) = %/ palvI? dt
0

Subjectto (y,v) € C(yo,y1; T)

The previous approach DOES NOT apply, but we can adapt it !
In the sequel, to simplify, pg := 1

N. Cindea and AM,

Mixed formulation for the direct approximation of the HUM control for linear wave
equation,

Preprint (2013),
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min J* (@07991)*2/ ex(1, )2 dH‘/ Yoei(+,0) dx — (y1, (-, 0)) - 1 H

LgOZO in QT, (P:O on va (@(')T)7<pt(.7T)):(<po7<p1) in (0’1)
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min J* (tpo,<p1)72/ Dex(1, )2 dH‘/ Yowt(-,0) adx — (y1,0(-,0)) - K]

LS":O in QT: =0 on X, (@('1T)7SDY('7T)):(<F07901) in (0’1)

Since the variable ¢ is completely and uniquely determined by (g, ¢1), we keep ¢ as
the main variable and consider the extremal problem:

. . 1 T 1
min J"*(p) = f/ |a(1)<px(1,t)|2dt+/ Yo et(-,0)ax — (y1,0(-,0)) y—1 41
peWw 2 0 0 >0

W={pecl?@r): p=0mEr Lp=0€L2Qr) wx(1,)€L0,T)},
W -Hilbert space endowed with the inner product
T
(ePw = [ atex(0p (1. 0dt+0 [[ Lolpdrat,  vopeWn>o0.
0 Qr
(€)
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Equivalent Mixed formulation

The main variable is now ¢ submitted to the constraint equality Ly = 0. This constraint
is addressed introducing a mixed formulation. We define the space ¢ larger than W
(endowed with the same norm) by

® = {cp € L?(Qr): ¢ =00nX7; Lo € L2(Q7); wx(1,-) € L2(0, T)}
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Equivalent Mixed formulation

The main variable is now ¢ submitted to the constraint equality Ly = 0. This constraint
is addressed introducing a mixed formulation. We define the space ¢ larger than W
(endowed with the same norm) by

& ={pel3(Qr): p=00onTr; Ly e L2(Qr): px(1,)) € 20, T)}.
We define the mixed formulation : find (p, ) € ® x L2(Qr) solution of

{ar(w7¢)+b(%/\) = (), VE € b
b(go,X) = 0, VXGLZ(OT),

where (r > 0 - augmentation parameter)
-
a dxd R, a(sP) :/ a(1)gox(1,~)¢X(1,-)dt+r// LoLzox dt
0 Qr
b:d x [2(Qr) — R, b(p,)) = // Lo A dxdlt
Qr

1
[:® — R’ /(gO) = 7‘/0 yOKPt(',O)dX“F <y17<P("o)>H*1,Hg'
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Mixed formulation

Theorem (Cindea, M)

The well-posedness of the mixed formulation is a consequence of two properties
[FORTIN-BREZZI'91] :
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Mixed formulation

Theorem (Cindea, M)

@ The mixed formulation is well-posed.

The well-posedness of the mixed formulation is a consequence of two properties
[FORTIN-BREZZI'91] :
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Mixed formulation

Theorem (Cindea, M)

@ The mixed formulation is well-posed.

@ The unique solution (o, \) € ® x L2(Qr) is the unique saddle-point of the
Lagrangian L : ® x L?(Qr) — R defined by

L(p.0) = alp,0) +blg, ) — (9.

The well-posedness of the mixed formulation is a consequence of two properties
[FORTIN-BREZZI'91] :
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Mixed formulation

Theorem (Cindea, M)

@ The mixed formulation is well-posed.

@ The unique solution (o, \) € ® x L2(Qr) is the unique saddle-point of the
Lagrangian L : ® x L?(Qr) — R defined by

L(p.0) = alp,0) +blg, ) — (9.

e The optimal function  is the minimizer of J'»* over ® while the optimal function
X € L?(Qy) is the state of the controlled wave equation (1) in the transposition
sense.

The well-posedness of the mixed formulation is a consequence of two properties
[FORTIN-BREZZI'91] :
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Mixed formulation

Theorem (Cindea, M)

@ The mixed formulation is well-posed.

@ The unique solution (o, \) € ® x L2(Qr) is the unique saddle-point of the
Lagrangian L : ® x L?(Qr) — R defined by

L(p.0) = alp,0) +blg, ) — (9.

e The optimal function  is the minimizer of J'»* over ® while the optimal function
X € L?(Qy) is the state of the controlled wave equation (1) in the transposition
sense.

The well-posedness of the mixed formulation is a consequence of two properties
[FORTIN-BREZZI'91] :

@ ais coercive on Ker(b) = {p € ® such that b(p, \) = 0 forevery A € L2(Q7)}.
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Mixed formulation

Theorem (Cindea, M)

@ The mixed formulation is well-posed.

@ The unique solution (o, \) € ® x L2(Qr) is the unique saddle-point of the
Lagrangian L : ® x L?(Qr) — R defined by

L(p.0) = alp,0) +blg, ) — (9.

e The optimal function  is the minimizer of J'»* over ® while the optimal function
X € L?(Qy) is the state of the controlled wave equation (1) in the transposition
sense.

The well-posedness of the mixed formulation is a consequence of two properties
[FORTIN-BREZZI'91] :

@ ais coercive on Ker(b) = {p € ® such that b(p, \) = 0 forevery A € L2(Q7)}.

@ b satisfies the usual "inf-sup” condition over ® x L2(Q7): there exists § > 0 such
that
A
inf by (10)
xel?(ar) peo llellolM 2,
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Inf-Sup condition

For any )\ € L?(Qr), we define the (unique) element g such that

Lpo=X0 Qr,  ¢o(,0)=w0o:(,00=0 Q, @o=0 Xr

From the direct inequality,

|a(1)900x(1 t?dt < Co,ra (1)||/\o||Lz
(Qr)

we get that wg x(1,-) € L2(0, T) and ¢ € ®. In particular, b(¢g, Ag) = ||>\0||f2(o )
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Inf-Sup condition

For any )\ € L?(Qr), we define the (unique) element g such that

Lpo=X0 Qr,  ¢o(,0)=w0o:(,00=0 Q, @o=0 Xr

From the direct inequality,
[ 1800001070t < Cor #Pln
we get that wg x(1,-) € L2(0, T) and ¢ € ®. In particular, b(¢g, Ag) = ”)\OHiZ(Qr) and

b, M) b(0, M) INZ (a0,

o lellollMolliziayy — llvollollhollizgyy (o7 2 '
eee IellelPollean — lieollelollzan (1 la(1)ex(1, D2at +nllMolZ, o)) 1Polliz(ay)

Combining the above two inequalities, we obtain

b((P07)‘0) 1
voeo llvollollMoll 2oy — Car2(1) +1n

_1
2.

and, hence, (10) holds with § = (Cq,722(1) + 1)
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Discrete inf-sup condition for uniform quadrangulation

For any h > 0, we note &, C &, My C L2(Q7) (dim(®p), dim(Mp) < oo).
Find (¢n, An) € & X My C @ x LZ(QT) solution of

{ a(on Bn) + b@nAn) = (@), Ve € @
b(@h,Xh) 0, th S Mh,
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Discrete inf-sup condition for uniform quadrangulation

For any h > 0, we note &, C &, My C L2(Q7) (dim(®p), dim(Mp) < oo).
Find (¢n, An) € & X My C @ x LZ(QT) solution of

{ a(on Bn) + b@nAn) = (@), Ve € @
b((ph,xh) 0, th S Mh,

Theorem (Cindea, M)
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Discrete inf-sup condition for uniform quadrangulation

For any h > 0, we note &, C &, My C L2(Q7) (dim(®p), dim(Mp) < oo).
Find (¢n, An) € & X My C @ x LZ(QT) solution of

a(en, @p) +b(@p, An) = 1(Bp), Vop € P
b((ph,xh) 0, th S Mh,

Theorem (Cindea, M)

o For any &, My, ar is coercive on &4, and so on the subset
{® € ®p; b(wn, An) =0 VAp € Mp}
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Discrete inf-sup condition for uniform quadrangulation

For any h > 0, we note &, C &, My C L2(Q7) (dim(®p), dim(Mp) < oo).
Find (¢n, An) € & X My C @ x LZ(QT) solution of

a(en, @p) +b(@p, An) = 1(Bp), Vop € P
b((ph,xh) 0, th S Mh,

Theorem (Cindea, M)

o For any &, My, ar is coercive on &4, and so on the subset
{® € ®p; b(wn, An) =0 VAp € Mp}
e For some appropriate r > 0 and

={2,€ CY(Qr) : zylk € Q3(K) VK € Qp, 2, =0 onXr},

(11)
Mh—{ZhE C%(Qr) : znlk € Q1(K) VK € Qp, },

3c>0, inf sup —2emin) oo o (12)

hEMh oped), ||<Ph||¢h||)‘||M,,
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Discrete inf-sup condition for uniform quadrangulation

For any h > 0, we note &, C &, My C L2(Q7) (dim(®p), dim(Mp) < oo).
Find (¢n, An) € & X My C @ x LZ(QT) solution of

a(en, @p) +b(@p, An) = 1(Bp), Vop € P
b((ph,xh) 0, th S Mh,

Theorem (Cindea, M)

o For any &, My, ar is coercive on &4, and so on the subset
{® € ®p; b(wn, An) =0 VAp € Mp}
e For some appropriate r > 0 and

={2,€ CY(Qr) : zylk € Q3(K) VK € Qp, 2, =0 onXr},

(11)
Mh—{ZhE C%(Qr) : znlk € Q1(K) VK € Qp, },

3c>0, inf sup —2emin) oo o (12)

hEMh oped), ||<Ph||¢h||)‘||M,,

Q 11X — Alli2(a,) + llon — plle — 0 as  h— 0 where (¢, \) is the saddle point
of L.
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Adaptation of the Qr mesh

6 0.5 1 0 0.5 1
X X
Time-Space Refinement of the mesh according to the gradient of A\,
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Dual of the dual problem (UZAWA type algorithm)

Let A be the linear operator from L?(Qr) into L?(Qt) defined by

A\ :=Lp, YA€ L?(Qr) where ped solves ar(e,@)=b(@,)\), Voo

For any r > 0, the operator A is a strongly elliptic, symmetric isomorphism from L?(Qr)
into L?(Qr).
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Dual of the dual problem (UZAWA type algorithm)

Let A be the linear operator from L?(Qr) into L?(Qt) defined by

A\ :=Lp, YA€ L?(Qr) where ped solves ar(e,@)=b(@,)\), Voo

For any r > 0, the operator A is a strongly elliptic, symmetric isomorphism from L?(Qr)

into L?(Qr). )
sup inf Lr(p,A)=— inf  J*(A)  + Lr(po,0)
AeL2(Qr) pe® \EL2(QT)

where ¢y €  solves ar(po, B) = I(%), V@ € ¢ and J** : L2(Qr) — R defined by

JHO) = % /O AN(x, IA(x, 1) dx dt — b(wg, A) (13)
T
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[1- WAVE TYPE EQUATION : DISTRIBUTED CASE

w a nonempty subset of Q,
Ly :==yx — (@(X)yx)x + Ay = v 1o (x,t) e Qr

Arnaud Miinch Approximation of controls by primal methods



Time dependent supp

T=22; yo(x)=sin(mx), yi(x)=0, a(x):=1;
2 -

15
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Time dependent control support and corresponding controlled solution yj,

= POSSIBILITY TO OPTIMIZE RIGOROUSLY AND EASILY THE SUPPORT OF THE
CONTROL ! (IN PROGRESS)




I1l- (LINEAR) HEAT TYPE EQUATION : DISTRIBUTED CASE

(p#0)

ac C'([0,1],RY), yo € L?(0,1), 7 = w x (0, T), v € L*(qr), A € L>(Qr)

Lay = yi — (@X)yx)x + Ay = vie, Qr
y=0, Xr, y(-0) =y, Q.

[LEBEAU ROBBIANO’95] [FURSIKOV IMANUVILOV’95]
Notation : L*p := —p; — (a(x)px)x + Ap

E. Fernandez-Cara and AM,

Numerical controllability of the wave equation through primal methods and Carleman
estimates,

SéMA (2013),
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L2(0, 1)-norm of the HUM control with respect to time




Primal (direct) approach with appropriate weights

First, let us set Py = { g € C?(Q7) : =0 on X7 }. In this linear space, the bilinear

form
(P, q)p :=// p‘zL*pL*qudtJr// po 2P qax dt
Qr qr

is a scalar product.

(Characterization of the optimal pair)

Let p and pg be given by (16). Let (y, v) be the corresponding optimal pair for J. Then
there exists p € P such that

y=p"2L"p, v=—py°plas- (14)

The function p is the unique solution in P of

1
(p,q)P:/O ¥0q(-,0)dx, ¥geP (15)
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Well-posedness

There are “good” weight functions p and pg that blow up at t = T and provide a very
suitable solution to the original null controllability problem. They were determined and
systematically used by Fursikov and Imanuvilov’'96 and are the following:

ploct) = 0x0 (00 ). ol t) = (T = 09/2p(0x,1), 5x) = K (/% — 50)

the K; are large positive constants (depending on T, &y, ||al| ;1 and |[|A]| )

and o € C>([0,1]), Bo > 0in (0, 1), Bo(0) = Bo(1) = 0, |B}| > 0 outside w.
(16)

(Global Carleman estimate - Fursikov-lImanuvilov’95)

Let p and po be given by (16). Then, for any § > 0, P — C°([0, T — §]; H}(0,1)) and
the embedding is continuous. In particular, there exists Cy > 0, only depending on w,
T, ap, ||al| 1 and ||Al|, such that

a0}y .1) < (// _ZIL*qlzdxdtJr//p IQ|2dxdt> (17)

forall g € P.
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Conformal finite element approximation

For any dimensional space P, C P, we can introduce the following approximate
problem:
(bn,Pp)p =< 1,pp >, VP, € Pn; pn € Ph. (18)

Ph={zn€ C{(Qr) : Znlk € (Pax @ P1,1)(K) VK € Qn, z,=0 onTr}.  (19)
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Conformal finite element approximation

For any dimensional space P, C P, we can introduce the following approximate
problem:
(bn,Pp)p =< 1,pp >, VP, € Pn; pn € Ph. (18)

Ph={zn€ C{(Qr) : Znlk € (Pax @ P1,1)(K) VK € Qn, z,=0 onTr}.  (19)

(Fernandez-Cara, AM)

Let pp € Py be the unique solution to (18), where Py, is given by (19). Let us set
Yn=p 2Lipn,  Vhi=—py Pn lqr-
Then one has
Ily — yh“L?(OT) —0and |lv— VI‘IHL2(qT) — 0, as h—0

where (y, v) is the minimizer of J.
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1D example - Bi-cubic element - Uniform quadrangulation - y(x) = sin(rx) -

T=1/2-a(x)=1/10-w =(0.3,0.6)

Ax, At
||VhHL2(qT)
ynll2(ar)

lya( Dl 20,1
Iy = ynll 20
llv— Vhlle(qT)

7720
1.597

1.879 x 10~

4.96 x 1073

7.52 x 10~2
1.57

/40
2.023

1.834 x 10"

1.82 x 1073

4.82 x 10~2
1.04

7780
2.348

1.826 x 10~

5.91 x 10~4

2.62 x 1072
0.59

/160
2.58

1.827 x 10"

1.71 x 1074

1.04 x 1072
0.25

17320
2.733

1.829 x 10~
4.65 x 1075




IV- SEMI-LINEAR HEAT TYPE EQUATION : DISTRIBUTED CASE

(p#0)

ye = (@()yx)x +Hy) = vie, Qr
y=0, X, Y('70):y07 Q.

Yo € L, f € C'(R) globally Lipschitz continuous.
f(0) = 0. f(s)/(slog®/?(1 + |s|)) — 0 as |s| — occ.
[BARBU’00] [FERNANDEZ-CARA ZUAZUA’00]

E. Fernandez-Cara and AM,

Numerical null controllability of semi-linear 1D heat equations : fixed point, least
squares and Newton methods,

Mathematical Control and Related Fields, (2012)
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Constructive approximation (3 steps)

| - Linearization of the equation :

Yt — (a(X)yX)X +g(Z)y = V1w7 QTv (21)
with
9(s) = L:) if s#0, g(0)=f(0) otherwise.

Il - Definition of the operator A : L?(Qr) — L?(Q7) defined by :

Nz:=y
y € C(y0,2,T) suchthat (yz,Vz)minimizeJ(yz, Vz)

III - Approximation of a fixed point iteratively :
- Relaxed Picard iterates :

D el?Qr), 2" =az"+(1-a)AZ", n>0, ac(0,1)

- Least-Squares type approach :

L 2
minimize, ¢ 2(q.) 112 = M2)llz(q,)
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A fixed point : a numerical application

f(s) = —5s Iog%(1 +|s]) VseR, a(x)=1/10; T =1/2 y(x)=40sin(wx)

without control, blow up time #; =~ 0.339 < T.
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A fixed point : a numerical application

f(s) = —5s log5(1 + |s|) Vse€R, a(x)=1/10; T=1/2 y(x) = 40sin(rx)

without control, blow up time #; ~ 0.339 < T.
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V- STOKES / NS SYSTEM : DISTRIBUTED CASE

Q c RN bounded, connected open set whose boundary 8% is regular enough (for
instance of class C2; N =2 or N = 3)

{Ly+V7r=v1w, V.y=0 in Qr (22)

y=0 on X7, y(0)=y, in Q

[FURSIKOV IMANUVILOV’'95]
Notations : Ly :=y; — vAYy ; L*p := —pt — VAP

D. Araujo de Souza, E. Fernandez-Cara and AM,
Numerical null controllability of the Stokes system, In progress .
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Optimality

¢0={(p,o') :pji,o € C3(Qr), V-p=0, pj=00onx, /a(x, t)dx=0 Vt}.
Q

Let ® be the completion of ®4 with respect to the scalar product defined by

m(@.0). () = [[ (A UP+ Vo) (L + V) +1upy % p) okt
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Optimality

¢o={(p,a):pno € C3(Qr), V-p=0, pj=00n%, /a(x, )dx=0 vr}.
Q

Let ® be the completion of ®4 with respect to the scalar product defined by

m(@.0). () = [[ (A UP+ Vo) (L + V) +1upy % p) okt

(Characterization of the optimality)

Let the weights p and pg as before and let (y,v) be the unique minimizer for J. Then
one has

y=p2(L'P+ Vo), V=—p°P| 07 23)

where (p, o) is the unique solution to the variational equality

{ m((p, o), ((plv U/)) = (Bo, (plv O'/)>
Y(p',0’) € ®; (p,o) € .

with By given by
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Stokes equation

The variational equality (24) can be regarded as the weak formulation of a (non-scalar)
boundary-value problem for a PDE that is fourth-order in x and second-order in t.
Indeed, taking “test functions” (p, o) € @ first with p;, o € C5°(Qr), then with

pi,o € C?(Q x (0, T)) and finally with p;, o € C?(Qr), we can easily deduce that
(p, o) satisfies, together with some = € D’(Qr), the following:

L(p=2(L*p + Vo)) + Vr + 1up, 2p =0 in Qr,
V- (p_2(L*p + VU)) = 07 \ P= 0 in QT} (25)
p=0, p2(L*p+Vo)=0 on ¥r,

p’Z(L*p+VU)|t:O = Yo, p72(L*p+VU)|t:T:0 in Q.
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Numerical experiments : control to trajectory for NS

Again Navier-Stokes, local ECT:

(NS) y(x,t)=0, (x,1)€oQx(0,T)

{ YVi+(y-V)y—Ay+Vp=vi,, V.y=0
y(x,0) = y°(x)

Fix a solution (y, p), withy € L>®

Goal: Find v such that y(T) = y(T)

Strategy:

@ Reformulation: NC

Approximation of controls by primal methods



Numerical experiments : control to trajectory for NS

Again Navier-Stokes, local ECT:

(NS) y(x,t)=0, (x,1)€oQx(0,T)

{ n+Wy-V)y—-Ay+Vp=vi,, V-y=0
y(x,0) = y°(x)

Fix a solution (y, p), withy € L>®
Goal: Find v such that y(T) = y(T)
Strategy:

@ Reformulation: NC

@ Fixed point

Approximation of controls by primal methods



Numerical experiments : control to trajectory for NS

Test 1: Poiseuille flow

Y =(4x2(1 — x2),0), p=4x

(stationary)

POISEVILLE

POISEVILLE

Figure: Poiseuille flow
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Numerical experiments : control to trajectory for NS

Test 1: Poiseuille flow © = (0,5) x (0,1), w = (1,2) x (0,1), T =2
VYo=Y +mz, z=V x1, = (1-y)°?y?(5-x)°x>(m<<1)
Approximation: P, in (x4, X2, t) + multipliers . ..— freefem++

k y%

Figure: The Mesh — Nodes: 1830, Elements: 7830, Variables: 7x 1830
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Numerics: results

Test 1: Poiseuille flow

STATE,x COMPONENT, CUT =0

ETATE, CUTt=0

Figure: The initial State
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Numerical experiments : control to trajectory for NS

Test 1: Poiseuille flow

STATE, x COMPONENT, CUT t=1.1

STATE;CUTt=1.1

Figure: The State at t = 1.1
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Numerical experiments : control to trajectory for NS

Test 1: Poiseuille flow

STATE, x COMFONENT; CUT t=17

STATE;CUTt=17

Figure: The State at t = 1.7
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Final comments

THE VARIATIONAL APPROACH CAN BE USED IN THE CONTEXT OF MANY OTHER
CONTROLLABLE SYSTEMS FOR WHICH APPROPRIATE CARLEMAN ESTIMATES ARE
AVAILABLE.

THE APPROXIMATION IS ROBUST (WE HAVE TO INVERSE SYMMETRIC DEFINITE
POSITIVE AND VERY SPARSE MATRICE WITH DIRECT LU AND CHOLESKY SOLVERS)

WITH CONFORMAL TIME-SPACE FINITE ELEMENTS APPROXIMATIONS, WE OBTAIN
STRONG CONVERGENCE RESULTS WITH RESPECT TO h = (Ax, At).

THE PRICE TO PAY IS TO USED C' FINITE ELEMENTS (AT LEAST IN SPACE).

IN THAT SPACE-TIME APPROACH, THE SUPPORT OF THE CONTROL MAY VARIES IN TIME
(WITHOUT ADDITIONAL DIFFICULTIES).

THIS APPROACH MAY BE APPLIED FOR INVERSE PROBLEMS, OBSERVATION PROBLEMS,
RECONSTRUCTION OF DATA, ....

Is by primal methods



The End

NADA MA(S) !

THANK YOU VERY MUCH FOR YOUR ATTENTION
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