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Problem statement

QcRVN(N>1)-T>0.

{ Ly :=yy — V- (c(x)Vy)+d(x,t)y=f, Qr:=Qx(0,T)
y=0, Yr:=00x(0,T)
(y("o)v}/t("o)) = (YO7y1)7 Q.

c e C'(Q,R)) ¢(x)

>c>0
(Yo, 1) € L3(Q) x H™

0 inQ, d € L>(Q7);
(Q)=H;fe -
Letw CcQandgr:=w x (0, T) C Qr.
(IP)-Given yops € L2(q7), find y the solution of (1) such thaty = yops on  qr.

From a "good" measurement y,,s on gr, we want to recover y solution of (1).

(1)



Problem statement (2)

Z:={y:yec(o,T],L2Q)nC'([0,T], H'(Q)), Ly € X}.

Introducing the operator P : Z — X x L?(qr)
Py :=(LY,¥q;)
the problem is reformulated as :

findy € Z solution of Py = (f, Yops)- (IP)

From the unique continuation property for (1), if g7 satisfies some geometric conditions
and if yops is a restriction to g7 of a solution of (1), then the problem is well-posed in
the sense that the state y corresponding to the pair (yops, f) is unique.



Problem statement (2)

Z:={y:yec(o,T],L2Q)nC'([0,T], H'(Q)), Ly € X}.

Introducing the operator P : Z — X x L?(qr)
Py :=(LY,¥q;)
the problem is reformulated as :

findy € Z solution of Py = (f, Yops)- (IP)

From the unique continuation property for (1), if g7 satisfies some geometric conditions
and if yops is a restriction to g7 of a solution of (1), then the problem is well-posed in
the sense that the state y corresponding to the pair (yops, f) is unique.

Objective - Find a convergent (numerical) approximation of the solution



Most natural approach: Relaxation via Least-squares method

The most natural (and widely used in practice) approach consists in introducing a
least-squares type technic, i.e. consider the extremal problem

. 1
minimize J(Yo,y1) 1= EHY - ygbs”iz(qr)

(LS) subjectto (Yo, ¥1) € H @

where y solves (1)

A minimizing sequence (¥o, ¥1)(x>o0) is defined in term of the solution of an adjoint
problem.
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The most natural (and widely used in practice) approach consists in introducing a
least-squares type technic, i.e. consider the extremal problem

. 1
minimize J(Yo,y1) 1= EHY - ygbs”iz(qr)

(LS) subjectto (Yo, ¥1) € H @

where y solves (1)

A minimizing sequence (¥o, ¥1)(x>o0) is defined in term of the solution of an adjoint
problem.

A difficulty : it is not possible to minimize over a discrete subspace of
{yeYiLly —f=0}1Ifdim(Yy) < oo, {yn € Yo C Y : Ly, =0}is 0 orempty

The minimization procedure first requires the discretization of J and of the system (1);

This raises the issue of uniform coercivity property of the discrete functional with
respect to the approximation parameter h.



Luenberger observers type approach

[Auroux-Blum 2005],[Chapelle,Cindea,Moireau,2012], [Ramdani-Tucsnak 2011], etc...

Define a dynamic

Ly = G(Yobs, ar)  ¥(-,0) fixed
such that
G, ) =y Dling) — 0 as t— o0
N(R) - appropriate norm
The reversibility of the wave equation then allows to recover y for any time.

But, for the same reasons, on a numerically point of view, this method requires to prove
uniform discrete observability properties.



Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]

QR: method (Quasi-Reversibility): for any e > 0, find y. € A such that
(PYe; PY) xx12(gr) +€We, ¥)a = ((f, Yobs), PY) xxc12(g7), X x L2(q7) » (QR)

forally € A,

» A denotes a functional space which gives a meaning to the first term
» ¢ > 0 a Tikhonov parameter which ensures the well-posedness
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[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]

QR: method (Quasi-Reversibility): for any e > 0, find y. € A such that

(PYe; PY) xx12(gr) +€We, ¥)a = ((f, Yobs), PY) xxc12(g7), X x L2(q7) » (QR)
forally € A,

» A denotes a functional space which gives a meaning to the first term
» ¢ > 0 a Tikhonov parameter which ensures the well-posedness

equivalent to the minimization over A of

y = 1Py = (f, Yobs) I3 2(gr) + NIV I



Main assumption: a generalized observability inequality

Without loss of generality, f = 0.
Z:={y:y e C([0,T],L3(Q)) N C'([0, T, H(Q)), Ly € X}. @)

Hypothesis (Generalized Observability Inequality)
Assume that there exists a constant Cops = C(w, T, ||C|| o1 @) ldll o< (q)) such that the
following estimate holds :

(0 Y00 Oy < Cote (Wl + NG ). WEZ @)

ein1-D, (4) if T > T*(c, d) [Fernandez-Cara, Cindea,Miinch, COCV 2013],
einN-D, forc =1and d =0, (4) if (Q,w, T) satisfies geometric optic condition
[Bardos, Lebeau, Rauch, 1992]
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12082 0y < Ca.r (CotslzlBaggyy + (1 + CalLzl}) V22 (9



Non cylindrical situation in 1D

[Castro-Cindea-Minch, SICON 2014],
In 1D with ¢ = 1 and d = 0, the observability inequality also holds for non cylindrical

domains.
TF ]
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Time dependent domains qgr C Qr = Q2 x (0, T)



Generalized Observability inequality: weaker hypothesis

Then, within this hypothesis, for any n > 0, we define on Z the bilinear form
— — T — —
¥z :=/ yydxdt+n/0 Ly, L)yt vy, y€Z. (6)
ar

(Z, |l - 1) is a Hilbert space.
Then, we consider the following extremal problem :

i — 1 2
(P) Ian(y) = EHyfyObSHLZ(qT)
subjectto y e W:={ye Z, Ly=0in X}

(P) is well posed : J is continuous over W, strictly convex and J(y) — +oo as
Iyllw — oo.

The solution of (P) in W does not depend on 7.

From (4), the solution y in Z of (P) satisfies (y(-,0), y:(-,0)) € H, so that problem (P)
is equivalent to the minimization of J w.r.t (yo,y1) € H.
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— — T — —
¥z :=/ yydxdt+n/0 Ly, L)yt vy, y€Z. (6)
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(Z, |l - 1) is a Hilbert space.
Then, we consider the following extremal problem :

. ) r 2
- {me(y). SV = Yobslzqqy + Iy r=0

subjectto y e W:={ye Z, Ly=0in X}

(P) is well posed : J is continuous over W, strictly convex and J(y) — +oo as
I¥llw — oo.

The solution of (P) in W does not depend on 7.

From (4), the solution y in Z of (P) satisfies (y(-,0), y:(-,0)) € H, so that problem (P)
is equivalent to the minimization of J w.r.t (yo,y1) € H.



Direct approach

In order to solve (P), we have to deal with the constraint equality which appears W.
We introduce a Lagrange multiplier A € X’ and the following mixed formulation: find
(¥,A\) € Z x X’ solution of

I(y), vyeZ
0, VX €N,

@)

{ ar(y,¥) + b(y, )
b(y, )

where
T
ar:ZxZ—-R, al(yy) = / yy dxdt + r/ (Ly, LY)H,WQ) dt, (8)
ar 0
.
b:ZxX —R, b(y.\) :=/O O L)y 1y (©)
1:Z =R, I(y):= // Vovs y dxt. (10)
ar

System (7) is nothing else than the optimality system corresponding to the extremal
problem (P).



Direct approach

Theorem
Under the hypothesis (H), forany r > 0,

1. The mixed formulation (7) is well-posed.

2. The unique solution (y,\) € Z x X’ is the unique saddle-point of the Lagrangian
L:Z x X' — R defined by

1
Ly, ) ::§ar(y7y) +b(y,A) = I(y)-
3. We have the estimate

Wiy = 1¥l2ayy < Woslliziarys 1A < 24/Car + nllyosllizggry- (1)



Direct approach

The kernel N (b) = {y € Z; b(y,\) =0 VA € X’} coincides with W: we easily get

ar(y,y) = lyllz, Yy eN(b)=W.
It remains to check the inf-sup constant property : 3§ > 0 such that

bly,n)
Aex'yez IyllzINx

(12)



Direct approach

The kernel N (b) = {y € Z; b(y,\) =0 VA € X’} coincides with W: we easily get

ar(y,y) = lyllz, VyeN(b)=W
It remains to check the inf-sup constant property : 3§ > 0 such that

bly,n)
Aex'yez IyllzINx

For any fixed A € X’, we define y° € Z as the unique solution of

Lyo =—AXin QT7 (yo(vo)vy?(vo)) = (070) on €, yO =0 on X7

We get b(y°, ) = [IX%, and [l = lI¥°I%, ., + 7l

L2(qr)

The estimate [|y°||2(q,) < v/Ca,7|[Allx implies that

by, ) b(y°.N) 1

sup > >
vez WlvlAlx: = lIyPllvIMix: = /Car+7

leading to the result with § = (Cq, 1 + n)~"/2.

>0

(12)

(13)



Remark 1

Assuming enough regularity on the solution ), at the optimality, the Lagrange Multiplier

solves ]
A= _(y_}’obs)1qr7 A=0 in Xr, (14)
A=Xx=0 onQx{0,T}.

) (defined in the weak sense) is a null controlled solution of the hyperbolic equation by
the control —(y — Yops) 1w-



Remark 1

Assuming enough regularity on the solution ), at the optimality, the Lagrange Multiplier

solves ]
{LA—_(.V_,Vobs)h,Tv A=0 in Xr,

(14)
A=Xx=0 onQx{0,T}.

) (defined in the weak sense) is a null controlled solution of the hyperbolic equation by
the control —(y — Yops) 1w

If yops is the restriction to g7 of a solution of (1), then A must vanish almost everywhere.

In that case, sup, ¢ inf,cy Lr(y, A) = inf ey Lr(y,0) = infycy Jr(y) with

Jf( ) = 7”}/ yobs“LZ (Qr) +3 HLyHi (15)

The corresponding variational formulation is then : find y € Z such that

;
ar(%?):/q ydedt‘f"'/o A Ly>Ha(Q),H—1(Q)dt:I(7)7 vy ez
T



Remark 2

In the general case, the mixed formulation can be rewritten as follows: find
(z,X) € Z x X’ solution of

{ (Pry, Pry) xx12(qr) + (Vs Mx.xt

X = <(O7yobs)7Pf7>X><L2(qT)7 W€Z7
(Ly. Mx.x: =0,

vae X
with Pry := (VLY. Y|q;)-

This approach may be seen as generalization of the (QR) problem (see (QR)), where
the variable X is adjusted automatically (while the choice of the parameter ¢ in (QR) is
in general a delicate issue).



Remark 3: Stabilized mixed formulation
A= {Xx e C([0, T]; H{(R2)) N C'([0, T]; L3(R)), LA € L3(Qr), A(,0) = At(-,0) = 0}

sup inf Lro(y, A
{Aee\yez ra(y:A)

[0}
‘nyll(.yv )‘) = £'f(.y7 )‘)7§”L/\ + (y - YObs)1WHfz(QT)~



Remark 3: Stabilized mixed formulation
A= {Xx e C([0, T]; H{(R2)) N C'([0, T]; L3(R)), LA € L3(Qr), A(,0) = At(-,0) = 0}

sup |nf Lra(y, )
AEANYE

[0}
[:f,a(.yv )‘) = £'f(.y7 )‘)7§”L/\ + (y - YObs)1WHfz(QT)~

For a € (0,1), find (y, A) € Z x A such that

{ ar,a(}/:y) +bﬂt(Y7 )‘) = I1,a(?)7 We Y (17)

b&(y» X) - CCX(AVX) IZ,Q(X)z VX S K»

araZxZ—R, araly,y)=(1- a)/

;
y7dxdt+r/ (Ly, LF), o1 oty
- Jo H=1(2)

;
ba  ZXA—R, baly) ;:/O (A,Ly)Ha(Q)YHq(Q)dt—a//quL)\dxdt,
Co i ANXN—R, ca(X ) ::oc/ L LX, dxdt

ar
o :Z—=R ()= —a)// Yobs ¥ dxct,

ba:N—=R, byA):=—a // Yobs L dxdt.



Remark 3: Stabilized mixed formulation

Proposition
Under the hypothesis (H), for any o € (0, 1), the corresponding mixed formulation is
well-posed. The unique pair (y,\) in Z x N\ satisfies

1—a)? a?
u + *) ”yobS”fZ(qT)- (18)

01lyll% + o ,\2<(
1Yz + 027 < o, o

with 64 := min(1 - a,fn‘1),92 = min (a’ Cg}).



Remark 3: Stabilized mixed formulation

Proposition
Under the hypothesis (H), for any o € (0, 1), the corresponding mixed formulation is
well-posed. The unique pair (y,\) in Z x N\ satisfies

1—a)? a?
u + *) ”yobS”fZ(qT)- (18)

01lyll% + o ,\2<(
1Yz + 027 < o, o

with 64 := min(1 - a,fn‘1),92 = min (a’ Cg}).

Proposition

If the solution (y, \) € Z x X' of (7) enjoys the property A € A, then the solutions of (7)
and (17) coincide.



Remark 4 - Link with controllability

The mixed formulation has a structure very closed to the one we get when we address

- using the same approach - the null controllability of (1): the control of minimal

L2(qgr)-norm which drives to rest (yo, 1) € HJ(Q) x L3(Q) is given by v = ¢ 14,

where (¢, \) € ¢ x L2(0, T; H}(Q)) solves

I(®), Ve o
0, VX € [3(0, T; H{ (),

{ a(e, @) + b7, A)
b(p, )

where
a:0xd R, a(p,P) = // o(x, )B(x, t) dx dt
ar
.
b:ox [2(0, T; H)(0,1)) = R, b(p,\) :/ Lo A >yt
0 Y
1
e =R, I(p)=—<ei0), % >H71(Q)’H&(Q) +/O ©(+,0) y1 dx.

with ® = {¢ € L?(qgr), ¢ = 0 on X7 such that Ly € L2(0, T; H='(0,1))}.
[Cindea- Miinch, Calcolo 2015]



Remark 5

"Reversing the order of priority" between the constraint y — yops = 0 in L2(g7) and
Ly — f = 0in X, a possibility could be to minimize the functional

minimize J(y) := ||Ly — f||%
subjecttoy € Z andto ¥y — yops =0 in L2(gy)

via the introduction of a Lagrange multiplier in L2(qg7).

The proof of the inf-sup property : there exists § > 0 such that

Mg, Ay axat
ret2(ar) yez Ml 2 I¥lly

of the corresponding mixed-formulation is however unclear.

This issue is solved by the introduction of a e-term in J: (Klibanov-Beilina 20xx).
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(Important) Remark 6 : Dual of the mixed problem

Lemma
Let P be the linear operator from X’ into X' defined by

Pr:=—AT"(Ly), VA€ X' where yeZ solves al(y,y)=b(y,\), VyeZ

For any r > 0, the operator P, is a strongly elliptic, symmetric isomorphism from X’
into X'.



(Important) Remark 6 : Dual of the mixed problem

Lemma
Let P be the linear operator from X’ into X' defined by

Pr:=—AT"(Ly), VA€ X' where yeZ solves al(y,y)=b(y,\), VyeZ

For any r > 0, the operator P, is a strongly elliptic, symmetric isomorphism from X’
into X'.

Theorem

inf A) = — inf JF(A
iﬁg#ﬂ%) Jnf, T (A) -+ Lr(¥0,0)

where yy € Z solves ar(yo,y) = I(¥),Vy € Y and J;* : X’ — R defined by

1 T
ﬁqM:§A<nx»%®m—m%Ay



Remark 7 - Boundary observation

(Yo, y1) € HI(Q) x [2(Q) - Q of class C?

The results apply if the distributed observation on g7 is replaced by a Neumann
boundary observation on a sufficiently large subset X 1 of 9Q x (0, T) (i.e. assuming

% =y, 0bs € L2(T7) is known on ¥7).

If (Qr, X7, T) satisfy some geometric condition, then there exists a positive constant
Cobs = C(w, T, HCHC1 @) 19l oo (@)) such that

0
1030 O 5y < e 5

Ly ) wez (1)
25 12(ar

It suffices to re-define the form ain by a(y, y) := [fy, 2 %Y dodx and the form / by
I(y) = fsz 61,}’0[)5 dodx forally,y € Z.



Recovering the solution and the source f when the pair (y, f) is unique
f(x, 1) = o()u(x)



Recovering the solution and the source f when the pair (y, f) is unique

f(x, 1) = o(t)p(x)
ci=1,d(x,1) = d(x) € LP(Q), o € C'([0, T]), 0(0) # 0, u € H~1(Q)

Theorem (Yamamoto-Zhang 2001)

Let us assume that the triplet (T r, T, Qr) satisfies the geometric optic condition. Let
y =y(u) € C([0, T]; H{()) N C'([0, T]; L(2)) be the weak solution of (1) with
c:=1and (yo,y1) = (0,0). Then, there exists a positive constant C such that

¢ lelly—1) < Nle(x) vy e,y < Clielly-1q), YrE H™(Q). (22)
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f(x, 1) = o(t)p(x)
ci=1,d(x,1) = d(x) € LP(Q), o € C'([0, T]), 0(0) # 0, u € H~1(Q)

Theorem (Yamamoto-Zhang 2001)

Let us assume that the triplet (T r, T, Qr) satisfies the geometric optic condition. Let
y =y(u) € C([0, T]; H{()) N C'([0, T]; L(2)) be the weak solution of (1) with
c:=1and (yo,y1) = (0,0). Then, there exists a positive constant C such that

¢ lelly—1) < Nle(x) vy e,y < Clielly-1q), YrE H™(Q). (22)

We consider the following extremal problem :

: 1 2
{ inf (Y, 1) 1= 31000 = Vuot) e -
subjectto  (y,pn) € W
where W is the space defined by
W= {(y,u):y € C([0, T]; Hy () N C'([0, TJ; LA(Q)), 1 € H'(9),
(23)

Ly —op=0inQr,y(-,0) = y1(-,0) = 0}~

Attached to the norm ||(y, u)[lw := llc(X)Ov ¥ Il 2y, W is a Hiloert space.



Recovering the solution and the source f when the pair (y, f) is unique

Y= {(y,u);y € C([0, TI: () n €' ([0, T); LA(Q), 1 € H~'(),
(24)
Ly~ on € (@0, ¥(.0) =1 0) =0}.

Hypothesis
There exists a constant Cops = C(I'1, T, |||l 1 @) ldll o< (q)) such that the following
estimate holds :

||p’||;2./—1(Q) S CObS(HC(X)aVy”EZ(rT) + ||Ly - O-NHEZ(QT))v V(y,u) € Y. (HZ)

Then, for any > 0, we define on Y the bilinear form

(s ), o))y = //r (e 0y 0.7 dodtn [ /Q (Ly—ou) (Ly—ofi) dxat Yy, € Z.

(25)
H(yvz)”Y:: <(,V7,u),(y7u) >y.
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Y= {(y,u);y € C([0, TI: () n €' ([0, T); LA(Q), 1 € H~'(),
(24)
Ly~ on € (@0, ¥(.0) =1 0) =0}.

Hypothesis
There exists a constant Cops = C(I'1, T, |||l 1 @) ldll o< (q)) such that the following
estimate holds :

||p’||;2./—1(Q) S CObS(HC(X)aVy”EZ(rT) + ||Ly - O-NHEZ(QT))v V(y,u) € Y. (HZ)

Then, for any > 0, we define on Y the bilinear form

(s ), o))y = //r (e 0y 0.7 dodtn [ /Q (Ly—ou) (Ly—ofi) dxat Yy, € Z.
(25)
H(yvz)”Y:: <(,V7,u),(y7u) >y.

Lemma
Under the hypotheses (H.), the space (Y, || - ||y) is a Hilbert space.



Recovering the solution and the source f: mixed formulation

Find ((y, 1), A) € Y x L2(Qr) solution of

{ ar((y,n), (v, m) +b((y,;R),\) = Iy, m), v(y,m) ey
b((y7 M)VX) = 0 VA e Lz(OT)7

where

a:YxY =R al(yn) )= // C2(x)0, YD, ¥ doct
rr

b ¥ x 2(Qr) =&, b((y,),\) i= //Q MLy — op)dx dt,

DY =R, l(y,p):= // C?(X) DuY Yo, obs dordlt.
rr

(26)

(27)



Recovering the solution and the source f: mixed formulation

Find ((y, 1), A) € Y x L2(Qr) solution of

{ ar((y, ), (v, m) + b((y,m),») = Iy, ;m), v(y,m) ey (26)
b((y7 M)VX) = 0 VA e LZ(OT)v
where
a: YxY R, aly ), 75) = //r R(X)0,y0,7 dodt 27)

Jrl’/:/l (Ly — op)(Ly — o) dxdt,r > 0
Qr
bi ¥ x12(Qr) — B, b((.m) )= [ /Q ALy — op)dx o,

T

DY =R, ly,p):= // C?(X) DuY Yo, obs dordlt.
rr



Conformal approximation of the space-time variational framework

(boundary observation case, to fix idea)

Let Z, and A4, be two finite dimensional spaces parametrized by the variable h such
that Z, C Z, Ap, C L2(Qr) for every h > 0. Find the (yh, An) € Z, x Ap solution of

{ a(yn¥n) + 6w An) = I0n)  VVn€Z 28)
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Conformal approximation of the space-time variational framework

(boundary observation case, to fix idea)

Let Z, and A4, be two finite dimensional spaces parametrized by the variable h such
that Z, C Z, Ap, C L2(Qr) for every h > 0. Find the (yh, An) € Z, x Ap solution of

{ a(yn¥n) + 6w An) = I0n)  VVn€Z 28)
b(yh7Xh) 07 VXh € /\h.

if r >0, ar is coercive on Z: ar(y,y) > iHy||§ Vy € Z.

If there § > 0 such that

Yh>0 &= inf sup —2UmAN) (29)
An€An y, €2, HAh”L2(QT)”thZ

then, Vh > 0 fixed, if r > 0, there exists a unique couple (yp, Ay) solution of (28).



First estimate

Proposition
Leth > 0. Let(y,\) and (yn, A\n) be the solution of (7) and of (28) respectively. Let oy,
the discrete inf-sup constant defined by (29). Then,

1

Iy = ymllz <21+ )l Z) + 0 M), (30)
1 3

A= Anllizion < (2+ ﬂh) A,20) + o0 ) 31)

where d(A, Ap) :=infy, ep, 1A = Anll2(q,) and

dly, zp) = yhigfzh ly = ynllz
(32)

1/2
Ly = )l ) -

= it (10w~ e

,V



Linear system

Let np = dim Z,, m, = dim Ap, and let the real matrices A, , € R, By, € R™h"h,
Jp € RM:Mh and Ly, € R™ be defined by

ar(Yn: ¥n) = (Arn{¥n}, {(Vn ) ron gon VY, ¥n € Zn,
b(yn: An) = (Bn{yn}, {*n})rmn gma VYn € Zn, An € An,
— _ — (33)
/ o )‘h>\h dx dt = <Jh{>\h}7 {)‘h}>Rmh,]R’"h V)\h, )‘h c /\h,
.
I(yn) = (Ln, {¥n})rrn Vyh € Zp,

where {yx} € R"» denotes the vector associated to y, and (-, )gn, gn, the usual scalar
product over R™. With these notations, the problem (28) reads as follows: find
{yn} € R™ and {\p} € R™ such that

Bh 0 Rn+Mp:Np+mp {)\h} ROn+Mp 0 RA+Mp

The matrix of order my, + np, is symmetric but not positive definite.



Choice of the space Yj, and Ay,

We introduce a regular triangulation 7}, such that Q7 = UkeT, K- We note
h := max{diam(K), K € 7p}.
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Choice of the space Yj, and Ay,

We introduce a regular triangulation 7}, such that Q7 = UkeT, K- We note
h := max{diam(K), K € 7p}.

We introduce the space ¢, as follows:
Zh={yhneZ e C'(Qr): znlxk €P(K) VK €Tp, z,=00n %1}

where P(K) denotes an appropriate space of functions in x and t.

» The Bogner-Fox-Schmit (BFS for short) C' element defined for rectangles.
Therefore P(K) = P3 x @ P3¢

» The reduced Hsieh-Clough-Tocher (HCT for short) C' element defined for
triangles. This is a so-called composite finite element.
We also define the finite dimensional space

An = {An € C°(Qr), Anlk € P1(K) VK € Tp}

Forany h > 0, we have Y, := Z, x A, C Y and Ay C L2(Q7).



Convergence rate in Z

Proposition (BFS element for N = 1 - Rate of convergence for the
norm 2)

Leth > 0, let k < 2 be a nonnegative integer. Let (y,\) and (yn, An) be the solution of
(7) and (28) respectively. If the solution (y, \) belongs to H*2(Qr) x H*(Qr), then
there exists two positives constants

K = Ki(I¥llt-2(apy: Iellorary, Idllimap). 7€ {12},

independent of h, such that

1 k
Iy =yl < 6 (1 < + == ) (@)
1 1 1
A= Anlliz(ar) < Ke ((1 " f5h) " f&y)hk. 0



Convergence rate in L2(Qr)
Precisely, we write that (y — yp) solves the hyperbolic equation

Ly =yn) =—-Lyn inQr
(Y =yn), (y —ym))(0) e V
Yy—yh=0 onXr.

The continuous dependance combined with the observability inequality applied to
(¥ — yn) lead to

Iy = ¥4lle(q,y < Ca.(Cobs + Y = Y Eeqr,, + IL¥nl22 1)

from which we deduce, in view of the definition of the norm Y, that

Iy = ¥alliz(ap) < Ca,7(Cobs + 1) max(1, f)lly Yhllz- (37)



Convergence rate in L2(Qr)

Precisely, we write that (y — yp) solves the hyperbolic equation
Ly —yn) ==Ly inQr
((y = yn), (¥ —yn)1)(0) € V
yYy—yn=0 onXxr.

The continuous dependance combined with the observability inequality applied to

(¥ — yn) lead to

1y = ¥alZ2q,y < Ca,7(Cons + 110y = ¥n)lZery + 1Lyal%2 0, )

from which we deduce, in view of the definition of the norm Y, that

Iy = ¥alliz(ap) < Ca,7(Cobs + 1) max(1, f)lly Yhllz- (37)

Theorem (BFS element for N = 1 - Rate of convergence for the norm
L?(Qr))

Assume that the hypothesis (4) holds. Let h > 0, let k < 2 be a positive integer. Let
(v, A\) and (yn, A\n) be the solution of (7) and (28) respectively. If the solution (y, \)
belongs to H*t2(Qr) x HX(Qr), then there exists two positives constant

K = K(llyllgr+2qpy» €l o1 @r)’ l9ll oo (07)> Ca, T, Cobs), independent of h, such that

2 1 1
Iy = ¥allizqpy < Kmax(1, \[)(1 + o 4 f)hk. (38)



Choice of r versus dp,
(n=r)

5p = inf{\/S L BhA Br{dn} = 6 Jn{An}, Y {An} € RN\ {0}} (39)

Srn = Cr as h— 0", Cr>0 (40)

h
W

Figure: BFS finite element - Evolution of \/76p, , with respectto hfor r = 1 (), r = 1072 (o), r = h () and
r=m (<)



Choice of r versus dp,

2 1 1 P
1y = Yallizay) < K max(i, W)O T W)” .

The right hand side is minimal for r of the order one leading to ||y — ynll;2(q,) < Kh*~'.



Choice of r versus dp,

2 1 B
Iy = vullz(ay) < Kmax(1, \[)(1 ot 7)#}

The right hand side is minimal for r of the order one leading to ||y — ynll;2(q,) < Kh*~'.

Vr 1,1
1 —)h*.
(+5+2)
The optimal value of the augmentation parameter is now r = h? leading to
IA = Anllziap) < Kohk=1.

1A= Anllizay) < Kol



€ (0, 1) - Stabilized mixed formulation

The problem (17) becomes : find (yn, Ap) € Zn x Ap solution of

{ aralynVn) +ban¥n) = ha(n).  VIh€Zn @)
ba (X, ¥n) = €a(MnAn) = .a(An), VA € An,
Ap = {)‘ € Zp; )‘(7 0) = )‘f('v 0) = O} (42)

Proposition (BFS element for N = 1 - Rates of convergence -
Stabilized mixed formulation)
Assume that the hypothesis (4) holds. Let h > 0, let k < 2 be a positive integer. Let

(v, A) and (yn, A\n) be the solution of (7) and (28) respectively. If the solution (y, A)
belongs to H*2(Q7) x HX(Q7), then there exists two positives constant

K = K(Iyll yr2(gpy- ll€ll o @r)’ ll9llLeo(07)> Ca,T, Cobs), independent of h, such that

Iy = Yallz + IX = Anlla < KHE. (43)



Recovering the solution and the source € H='(Q)

{ ar (Yo n)s T ) + 6T An) - = IFn), VO €Yo 4
b((Yn, n)s An) = O, Yap € Ap.

Theorem (BFS element for N = 1 - Rate of convergence for the
L2(Qr)-norm)

Leth > 0, let k,q < 2 be two nonnegative integers. Let (y,\) and (yn, An) be the
solution of (26) and (44) respectively. If the solution ((y, 1), ) belongs to
Hf2(Qr) x HA(Q) x HX(Qr), then there exists a positive constant

K = K1yl r+2(apys Nl ey €l o (@) 1d]lLo0 (@)

independent of h, such that

1
Iy = ¥alli2(qr) < KCa,7(1 + lloll 20,7y V Cobs) max(1, ﬁ)

[(1 \;(Sh + 7)hk + (1 + \/%%)(Ax)q}
(45)




Numerical illustration - N = 1

(EX1) yo(x) =1—12x 1], y1(x) =1@/3.2/3(x),  x€(0,1)

in H} x L2 for which the Fourier coefficients are

42 1
& = 542 sin(rk/2), by = H(cos(rrk/3) —cos(2rk/3)), k>0

f=0. T =2 - The corresponding solution of (1) with ¢ = 1, d = 0 is given by

y(x,t) = Z (ak cos(kmt) + %‘r sin(kwt)) V25sin(kmx)

k>0



Example 1 - N = 1 - Observation on gr

gr = (0.1,0.3) x (0, T)

h 701 x 1072 353 x102 176 x 102 883 x 105  4.42x 103
Ty=ynll,2
@D | 401 x 107" 481 x1072  234x1072 1.45x 1072  5.68 x 1073
T2y
ly=ynll, 2
2 PEED | 134% 10" 5.05x 1072 2.37x 1072  1.16x 102  5.80 x 10~3
2@

HLthLZ(QT) 718 x 1072 659 x 1072  6.11x 1072 555x 1072 510 x 1072

Xl 20y 1.07x 1074 470x 1075 232x1075 1.156x10°5 576 x10°°
# CG iterates 29 46 83 133 201
Iy = ynll 2 Iy = ynll 2
@ _ O(ho.574 , Llar) _ O(h0'94). (46)
Y1l 207y 171l 247,
_ 0.123
Itynll 2qpy = OB ). (47)

Enough to guarantee the convergence of y;, toward a solution of the wave equation: recall that then

”L}/hHLz(O,T;H*WoJ)) - O(h1'123),



Example 1 - N =1 - Observation on gr




Example 2 - N = 1 - Observation on gr

Y—yn and Xp

in Qr



Example 1 - N =1 - Observation on gr - Minimization of J**

h [ 701 x 1072 353x10°2 176 x 102 8.83x10°°  4.42x 103 |
[ #CG iterates | 29 % 83 133 201 ]

13 20 40 60 80 100

iterates

logy of the residus w.r.t. iterates
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1 - Mesh adaptat
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Iterative local refinement of the mesh according to the gradient of y,



Example 1 - N = 1 - Mesh adaptation

t 0o X
Reconstructed state y;, on the adapted mesh
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Exemple 2 : N =1 - Non cylindrical domain qr
Triangular meshes - reduced HCT elements

Domain q‘T (a) and domain q% (b) triangulated using some coarse meshes.



2D example: Q = (0,1)? - Observation on gr

(a)

(b)

Mesh Number 0 1 2 3
Number of elements | 5320 15320 31740 120160
Number of nodes 3234 8799 17 670 64 411

Characteristics of the three meshes associated with Q7.




2D example: Q = (0,1)? - Observation on gr
(Y0, y1) € H3(Q) x L3(Q):

Yo(xq, X2)

— (1= [2x1 —1))(1 — 2% — 1
(EX2-2D) {y1(x1,x2):g( [2x; — 1])(1 — [2x2 — 1)

122(X1,%2)
3’3

The Fourier coefficients of the corresponding solution are

(X1 9X2) €Q

(48)

Mesh number 0 1 2 3
Ty—=yall
CMRE@D | 47451072 372x 1072 24x 1072 1.35x 102
2@,
ILynlli2ay) 1.18 0.89 0.99 0.99

IMllizigpy | 321x10°5  1.46x10°% 1.02x 1075 3.56 x 10

Table: Example EX2-2D — r = A2



2D example - Observation on gr

0.5

Q

>

-0.2

T T T
0.33 0.85 1.4

(a)

(b)

Mesh number

0 1 2

Number of elements
Number of nodes

5730 44900 196 040
3432 24633 103566

Characteristics of the three meshes associated with Q7.



2D example - Observation on gr

Ay =10, inQ 3
{ Yo =0, on a9, yi =0
Mesh number 0 1 2
IZ=2l
PO | 188 x 10~ 8.04x 1072 5.41 x 102
2
ILYall2ar) 3.21 2.01 1.17

[Anllzq,) | 826x 1075 3.62x 1075 2.24 x 10-°

r=h-T=2



2D example - Observation on qr

y and y, in Qr



Numerical illustration - N = 1 - Observationon 't
f=0-T=2

(EX2) yo(x)=1—[2x—1], y1(x) =11/3,2/3(x), x€(0,1)

in H} x L2 for which the Fourier coefficients are

——

U
3 0.5 1 15 2
t

Figure: The observation y,, ops 0n {1} x (0, T) associated to initial data EX1.



Numerical illustration - N = 1 - Observationon 't

h 7.07 x 10~ 353 x 1072 1.76 x 1072  8.83 x 1075  4.42 x 109

H,V—thLz(GT)
||YHL2(Q )
0w =yn)ll 2r 1y

1.63x 1072  6.63x 1073 278x107% 129x10~% 572x10~*

767 x107%  495x107% 324x107% 216x1073 1.48x 1073

HBV‘VHLZ(I’T)
Iynl2(ap) 0.937 1.204 1.496 1.798 2.135
I2nll 2 7.74x107%  374x107% 1.72x107% 7.90x10"* 3.60x 10~*
card({An}) 861 3321 13 041 51 681 205 761
# CG iterates 57 103 172 337 591
Iy = ynll,2 10w (y = ya)ll 21
@) _ h1-20), r) _ O(H-5),
F=Hh- HYHLZ(QT) Ha”yHLZ(I'T) (50)

Inll2gpy = OB Il 2, = O™ *#).



Example 2 - N =1 - Observationon 't




Example 2 - N = 1 - Mesh adaptation

Pl s avavavivavors: BICR e e eeavore:
i PRI DR
A A R
KEREKESOAA S Y,
150 [ 151 DRSO ddi
: PSR [ EREROOCK
KX Bl
VAR OO KRRk
YA ot OCIT
1oy 1} Kmsins
< e ¢VA gm. QUTRENIT\ ¥ B
ROVAVA VNN e
A SRR I
Pl z
LA %
SEREKS == ]
0.5 %ﬂ%ﬂ%i} LS 05t b N
SEAEREN B SO ReR
KNOSRRHN AN g
N 1] KIAAL
(e or E

Iterative local refinement of the mesh according to the gradient of y, (reduced HCT
element)




Example 2 - N = 2 - The stadium

AVp vaava
SR
R svANATAST

SOALE

STOEAT
RS

X
S 2 Zave
SRSEREE
LTAVAY AVAN o0

Figure: Bunimovich’s stadium and the subset I of 9Q on which the observations are
available. Example of mesh of the domain Q7.



2 - Recovering of the initial data

Example 2 - N

Figure: (a) Initial data yo given by (49). (b) Reconstructed initial data y(-, 0).



N = 1 - Reconstruction of y and p from the boundary

i[ 0.1
0.9F
0
0.8f
o7r -0.1
0.6/
0.5r -0.2
0.4¢
0.3f -0.3
0.2
0al -0.4
0
. . | | 05 . . .
0 0.2 0.4 0.6 0.8 1 (] 0.5 1 15
X t

Figure: u(x) and corresponding 9, y|q, = yx(1,t) on (0, T).




N = 1 - Reconstruction of y and p from the boundary

Ax = At =1/160

x10
1.4 1
1.2f '. 8
i o
M 6
0.8t L
[ T e v
0.6/ 4
0.4t 2
02t
0 ‘."‘.'.", - °
0% 02 0.4 o 0.2 0.4 0.6 0.8 1
X
. —1
Figure: and A _{n—pn)
gure: up, p T=a=1Gal
”H_P‘hHH71(Q) _2 —4
WN7.18>< 107+, \ly—yhlle(QT)~8.68x10



N = 1 - Reconstruction of y and p from the boundary

0
-05
-1
-15
-2
-25
0 0.2 0.4 0.6 0.8 1 ~o 0.5 1 15
X t

Figure: u(x) = % and corresponding du¥|q; = yx(1,t) on (0, T).



N = 1 - Reconstruction of y and p from the boundary

Ax = At = L

x10

0 02 0.4 06 0.8
X
. AT
Figure: pp, p and ﬁ'
0
le=pnlly—1@) 72 _ .
ilyrg 2211075y = yillizay) = 3:56 x 10



N = 1 - Reconstruction of y and p from the boundary

Figure: y — yp and \p
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Concluding remarks
MIXED FORMULATION ALLOWS TO RECONSTRUCT SOLUTION AND SOURCE

DIRECT AND ROBUST METHOD - STRONG CONVERGENCE

NO NEED TO PROVE UNIFORM DISCRETE OBSERVABILITY ESTIMATE

Iy (0, y1(, ) < cobs(||y||L2 o+ ||Ly||§), vy ez

195000 (- OV < ot (I¥nlEegqyy + L0010 € 20 2

THE MINIMIZATION OF Jf*(\) IS VERY ROBUST AND FAST CONTRARY TO THE
MINIMIZATION OF J()o, ¥1) (INVERSION OF SYMMETRIC DEFINITE POSITIVE AND VERY
SPARSE MATRIX WITH DIRECT CHOLESKY SOLVERS)

DIRECT APPROACH CAN BE USED FOR MANY OTHER OBSERVABLE SYSTEMS FOR
WHICH A GENERALIZED OBS. ESTIMATE IS AVAILABLE. IN PARTICULAR, HEAT, STOKES
[De Souza, Munch 2015]

100, oy < Cote (11106 W gy + 2 O By ) ¥ € 2

] 2 r 2
L0y, = 501V = Yor gy + 502 o gy + / [, ey
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RECONSTRUCTION OF POTENTIAL, COEFFICIENTS

THANK YOU FOR YOUR ATTENTION



