Inverse problems for linear hyperbolic equations via mixed formulations

ARNAUD MÜNCH

Université Blaise Pascal - Clermont-Ferrand - France

9th CDPS - Beijing, July 3, 2015

joint work with NICOLAE CÎNDEA (Clermont-Ferrand)

Inverse problems for linear hyperbolic equation via mixed formulations, Inverse Problems, 31(7), 2015

Outline

- Statement of the inverse problem
- Standard methods and drawbacks
- Mixed formulation in the state variable
- Numerical analysis and experiments
- Conclusion Extension of the approach

Problem statement

$$\Omega \subset \mathbb{R}^N \ (N \geq 1) - T > 0.$$

$$\begin{cases}
Ly := y_{tt} - \nabla \cdot (c(x)\nabla y) + d(x,t)y = f, & Q_T := \Omega \times (0,T) \\
y = 0, & \Sigma_T := \partial\Omega \times (0,T) \\
(y(\cdot,0), y_t(\cdot,0)) = (y_0, y_1), & \Omega.
\end{cases} (1)$$

$$\begin{array}{l} c\in C^1(\overline{\Omega},\mathbb{R}))\; c(x)\geq c_0>0 \text{ in } \overline{\Omega},\, d\in L^\infty(Q_T);\\ (y_0,y_1)\in L^2(\Omega)\times H^{-1}(\Omega)\equiv \textbf{\textit{H}};\, f\in L^2(H^{-1})=X. \end{array}$$

Let
$$\omega \subset \Omega$$
 and $q_T := \omega \times (0, T) \subset Q_T$.

(IP)-Given
$$y_{obs} \in L^2(q_T)$$
, find y the solution of (1) such that $y \equiv y_{obs}$ on q_T .

From a "good" measurement y_{obs} on q_T , we want to recover y solution of (1).

Problem statement (2)

$$Z := \{ y : y \in C([0,T], L^2(\Omega)) \cap C^1([0,T], H^{-1}(\Omega)), Ly \in X \}.$$

Introducing the operator $P: Z \to X \times L^2(q_T)$

$$Py:=(Ly,y_{|q_T}),$$

the problem is reformulated as:

find
$$y \in Z$$
 solution of $P y = (f, y_{obs})$. (IP)

From the unique continuation property for (1), if q_T satisfies some geometric conditions and if y_{obs} is a restriction to q_T of a solution of (1), then the problem is well-posed in the sense that the state y corresponding to the pair (y_{obs}, f) is unique.

Objective - Find a convergent (numerical) approximation of the solution

Problem statement (2)

$$Z := \{ y : y \in C([0,T], L^2(\Omega)) \cap C^1([0,T], H^{-1}(\Omega)), Ly \in X \}.$$

Introducing the operator $P: Z \rightarrow X \times L^2(q_T)$

$$P y := (Ly, y_{|q_T}),$$

the problem is reformulated as:

find
$$y \in Z$$
 solution of $P y = (f, y_{obs})$. (IP)

From the unique continuation property for (1), if q_T satisfies some geometric conditions and if y_{obs} is a restriction to q_T of a solution of (1), then the problem is well-posed in the sense that the state y corresponding to the pair (y_{obs}, f) is unique.

Objective - Find a convergent (numerical) approximation of the solution

Most natural approach: Relaxation via Least-squares method

The most natural (and widely used in practice) approach consists in introducing a least-squares type technic, i.e. consider the extremal problem

(LS)
$$\begin{cases} \text{minimize} \quad J(y_0, y_1) := \frac{1}{2} \|y - y_{obs}\|_{L^2(q_T)}^2 \\ \text{subject to} \quad (y_0, y_1) \in \mathbf{H} \\ \text{where} \quad y \quad \text{solves} \quad (1) \end{cases}$$
 (2)

A minimizing sequence $(y_0, y_1)_{(k>0)}$ is defined in term of the solution of an adjoint problem.

A difficulty: it is not possible to minimize over a discrete subspace of $\{y \in Y; Ly - f = 0\}$: If $\dim(Y_h) < \infty$, $\{y_h \in Y_h \subset Y: Ly_h = 0\}$ is 0 or empty

The minimization procedure first requires the discretization of J and of the system (1):

This raises the issue of uniform coercivity property of the discrete functional with respect to the approximation parameter *h*.

Most natural approach: Relaxation via Least-squares method

The most natural (and widely used in practice) approach consists in introducing a least-squares type technic, i.e. consider the extremal problem

(LS)
$$\begin{cases} \text{minimize} \quad J(y_0, y_1) := \frac{1}{2} \|y - y_{obs}\|_{L^2(q_T)}^2 \\ \text{subject to} \quad (y_0, y_1) \in \mathbf{H} \\ \text{where} \quad y \quad \text{solves} \quad (1) \end{cases}$$
 (2)

A minimizing sequence $(y_0, y_1)_{(k>0)}$ is defined in term of the solution of an adjoint problem.

A difficulty: it is not possible to minimize over a discrete subspace of $\{y \in Y; Ly - f = 0\}$: If $\dim(Y_h) < \infty$, $\{y_h \in Y_h \subset Y: Ly_h = 0\}$ is 0 or empty

The minimization procedure first requires the discretization of J and of the system (1);

This raises the issue of uniform coercivity property of the discrete functional with respect to the approximation parameter *h*.

Luenberger observers type approach

[Auroux-Blum 2005],[Chapelle,Cindea,Moireau,2012], [Ramdani-Tucsnak 2011], etc...

Define a dynamic

$$L\overline{y} = G(y_{obs}, q_T) \quad \overline{y}(\cdot, 0)$$
 fixed

such that

$$\|\overline{y}(\cdot,t)-y(\cdot,t)\|_{N(\Omega)}\to 0$$
 as $t\to\infty$

 $N(\Omega)$ - appropriate norm

The reversibility of the wave equation then allows to recover *y* for any time.

But, for the same reasons, on a numerically point of view, this method requires to prove uniform discrete observability properties.

Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]

 $\mathsf{QR}_{\varepsilon}$ method (Quasi-Reversibility): for any $\varepsilon>0$, find $y_{\varepsilon}\in\mathcal{A}$ such that

$$\langle Py_{\varepsilon}, P\overline{y} \rangle_{X \times L^{2}(q_{T})} + \varepsilon \langle y_{\varepsilon}, \overline{y} \rangle_{\mathcal{A}} = \langle (f, y_{obs}), P\overline{y} \rangle_{X \times L^{2}(q_{T}), X \times L^{2}(q_{T})}, \qquad (QR)$$

for all $\overline{y} \in \mathcal{A}$,

- A denotes a functional space which gives a meaning to the first term
- $\epsilon > 0$ a Tikhonov parameter which ensures the well-posedness

equivalent to the minimization over A of

$$y \to \| \mathbf{P}y - (f, y_{obs}) \|_{X \times L^2(q_T)}^2 + \varepsilon \| y \|_{\mathcal{A}}^2$$

Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]

 $\mathsf{QR}_{\varepsilon}$ method (Quasi-Reversibility): for any $\varepsilon>0$, find $y_{\varepsilon}\in\mathcal{A}$ such that

$$\langle Py_{\varepsilon}, P\overline{y} \rangle_{X \times L^{2}(q_{T})} + \varepsilon \langle y_{\varepsilon}, \overline{y} \rangle_{\mathcal{A}} = \langle (f, y_{obs}), P\overline{y} \rangle_{X \times L^{2}(q_{T}), X \times L^{2}(q_{T})}, \qquad (QR)$$

for all $\overline{y} \in \mathcal{A}$,

- A denotes a functional space which gives a meaning to the first term
- $\epsilon > 0$ a Tikhonov parameter which ensures the well-posedness

equivalent to the minimization over ${\cal A}$ of

$$y \rightarrow \| Py - (f, y_{obs}) \|_{X \times L^{2}(q_{T})}^{2} + \varepsilon \| y \|_{\mathcal{A}}^{2}$$

Main assumption: a generalized observability inequality

Without loss of generality, $f \equiv 0$.

$$Z := \{ y : y \in C([0, T], L^2(\Omega)) \cap C^1([0, T], H^{-1}(\Omega)), Ly \in X \}.$$
 (3)

Hypothesis (Generalized Observability Inequality)

Assume that there exists a constant $C_{obs} = C(\omega, T, \|c\|_{C^1(\overline{\Omega})}, \|d\|_{L^\infty(\Omega)})$ such that the following estimate holds :

$$(\mathcal{H}) \qquad \|y(\cdot,0), y_t(\cdot,0)\|_{H}^2 \le C_{obs} \Big(\|y\|_{L^2(q_T)}^2 + \|Ly\|_{X}^2 \Big), \quad \forall y \in Z.$$

- in 1-D, (4) if $T \geq T^*(c, d)$ [Fernandez-Cara, Cindea, Münch, COCV 2013],
- in N-D, for c=1 and d=0, (4) if (Ω,ω,T) satisfies geometric optic condition [Bardos, Lebeau, Rauch, 1992]

$$||z||_{L^{2}(Q_{T})}^{2} \le C_{\Omega,T} \left(C_{obs} ||z||_{L^{2}(q_{T})}^{2} + (1 + C_{obs}) ||Lz||_{X}^{2} \right) \quad \forall z \in Z.$$
 (5)

Main assumption: a generalized observability inequality

Without loss of generality, $f \equiv 0$.

$$Z := \{ y : y \in C([0, T], L^2(\Omega)) \cap C^1([0, T], H^{-1}(\Omega)), Ly \in X \}.$$
 (3)

Hypothesis (Generalized Observability Inequality)

Assume that there exists a constant $C_{obs} = C(\omega, T, \|c\|_{C^1(\overline{\Omega})}, \|d\|_{L^\infty(\Omega)})$ such that the following estimate holds :

$$(\mathcal{H}) \qquad \|y(\cdot,0), y_t(\cdot,0)\|_{H}^2 \le C_{obs} \Big(\|y\|_{L^2(q_T)}^2 + \|Ly\|_{X}^2 \Big), \quad \forall y \in Z.$$

- in 1-D, (4) if $T \geq T^*(c, d)$ [Fernandez-Cara, Cindea, Münch, COCV 2013],
- in N-D, for c=1 and d=0, (4) if (Ω,ω,T) satisfies geometric optic condition [Bardos, Lebeau, Rauch, 1992]

$$||z||_{L^{2}(Q_{T})}^{2} \le C_{\Omega,T} \left(C_{obs} ||z||_{L^{2}(q_{T})}^{2} + (1 + C_{obs}) ||Lz||_{X}^{2} \right) \quad \forall z \in Z.$$
 (5)

Main assumption: a generalized observability inequality

Without loss of generality, $f \equiv 0$.

$$Z := \{ y : y \in C([0, T], L^2(\Omega)) \cap C^1([0, T], H^{-1}(\Omega)), Ly \in X \}.$$
 (3)

Hypothesis (Generalized Observability Inequality)

Assume that there exists a constant $C_{obs} = C(\omega, T, \|c\|_{C^1(\overline{\Omega})}, \|d\|_{L^\infty(\Omega)})$ such that the following estimate holds :

$$(\mathcal{H}) \qquad \|y(\cdot,0), y_t(\cdot,0)\|_{H}^2 \le C_{obs} \left(\|y\|_{L^2(q_T)}^2 + \|Ly\|_{X}^2 \right), \quad \forall y \in Z.$$
 (4)

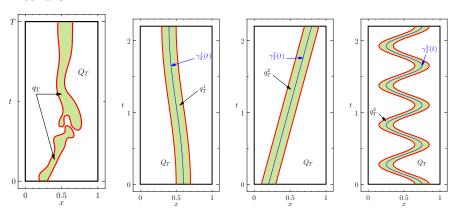
- in 1-D, (4) if $T \ge T^*(c, d)$ [Fernandez-Cara, Cindea, Münch, COCV 2013],
- in N-D, for c=1 and d=0, (4) if (Ω,ω,T) satisfies geometric optic condition [Bardos, Lebeau, Rauch, 1992]

$$||z||_{L^{2}(Q_{T})}^{2} \leq C_{\Omega,T} \left(C_{obs} ||z||_{L^{2}(q_{T})}^{2} + (1 + C_{obs}) ||Lz||_{X}^{2} \right) \quad \forall z \in Z.$$
 (5)

Non cylindrical situation in 1D

[Castro-Cindea-Münch, SICON 2014],

In 1D with $c\equiv 1$ and $d\equiv 0$, the observability inequality also holds for non cylindrical domains.



Time dependent domains $q_T \subset Q_T = \Omega \times (0, T)$

Generalized Observability inequality: weaker hypothesis

Then, within this hypothesis, for any $\eta > 0$, we define on Z the bilinear form

$$\langle y, \overline{y} \rangle_{Z} := \iint_{q_{T}} y \, \overline{y} \, dx dt + \eta \int_{0}^{T} \langle Ly, L \overline{y} \rangle_{H^{-1}(\Omega)} \, dt \quad \forall y, \overline{y} \in Z.$$
 (6)

 $(Z, \|\cdot\|)$ is a Hilbert space.

Then, we consider the following extremal problem:

$$(\mathcal{P}) \begin{cases} \inf J(y) := \frac{1}{2} \|y - y_{obs}\|_{L^{2}(q_{T})}^{2} + \frac{r}{2} \|Ly\|_{X}^{2}, & r \geq 0 \\ \text{subject to} & y \in W := \{y \in Z; Ly = 0 \text{ in } X\} \end{cases}$$

 (\mathcal{P}) is well posed : J is continuous over W, strictly convex and $J(y) \to +\infty$ as $\|y\|_W \to \infty$.

The solution of (P) in W does not depend on η .

From (4), the solution y in Z of (\mathcal{P}) satisfies $(y(\cdot,0),y_t(\cdot,0)) \in \mathbf{H}$, so that problem (\mathcal{P}) is equivalent to the minimization of J w.r.t $(y_0,y_1) \in \mathbf{H}$.

Generalized Observability inequality: weaker hypothesis

Then, within this hypothesis, for any $\eta > 0$, we define on Z the bilinear form

$$\langle y, \overline{y} \rangle_{Z} := \iint_{q_{T}} y \, \overline{y} \, dxdt + \eta \int_{0}^{T} \langle Ly, L\overline{y} \rangle_{H^{-1}(\Omega)} \, dt \quad \forall y, \overline{y} \in Z.$$
 (6)

 $(Z, \|\cdot\|)$ is a Hilbert space.

Then, we consider the following extremal problem:

$$(\mathcal{P}) \quad \begin{cases} \inf J(y) := \frac{1}{2} \|y - y_{obs}\|_{L^{2}(q_{T})}^{2} + \frac{r}{2} \|Ly\|_{X}^{2}, & r \geq 0 \\ \text{subject to} \quad y \in W := \{y \in Z; \, Ly = 0 \text{ in } X\} \end{cases}$$

 (\mathcal{P}) is well posed : J is continuous over W, strictly convex and $J(y) \to +\infty$ as $\|y\|_W \to \infty$.

The solution of (\mathcal{P}) in W does not depend on η .

From (4), the solution y in Z of (\mathcal{P}) satisfies $(y(\cdot,0),y_t(\cdot,0))\in \mathbf{H}$, so that problem (\mathcal{P}) is equivalent to the minimization of J w.r.t $(y_0,y_1)\in \mathbf{H}$.

In order to solve (\mathcal{P}) , we have to deal with the constraint equality which appears W. We introduce a Lagrange multiplier $\lambda \in X'$ and the following mixed formulation: find $(y,\lambda) \in Z \times X'$ solution of

$$\begin{cases}
 a_r(y, \overline{y}) + b(\overline{y}, \lambda) &= l(\overline{y}), & \forall \overline{y} \in \mathbb{Z} \\
 b(y, \overline{\lambda}) &= 0, & \forall \overline{\lambda} \in \Lambda,
\end{cases}$$
(7)

where

$$a_r: Z \times Z \to \mathbb{R}, \quad a_r(y, \overline{y}) := \iint_{q_T} y \, \overline{y} \, dxdt + r \int_0^T \langle Ly, L\overline{y} \rangle_{H^{-1}(\Omega)} \, dt,$$
 (8)

$$b: Z \times X' \to \mathbb{R}, \quad b(y,\lambda) := \int_0^T \langle \lambda, Ly \rangle_{H_0^1(\Omega), H^{-1}(\Omega)} dt,$$
 (9)

$$I: Z \to \mathbb{R}, \quad I(y) := \iint_{q_T} y_{obs} y \, dx dt.$$
 (10)

System (7) is nothing else than the optimality system corresponding to the extremal problem (\mathcal{P}) .

Theorem

Under the hypothesis (\mathcal{H}) , for any $r \geq 0$,

- 1. The mixed formulation (7) is well-posed.
- 2. The unique solution $(y, \lambda) \in Z \times X'$ is the unique saddle-point of the Lagrangian $\mathcal{L}: Z \times X' \to \mathbb{R}$ defined by

$$\mathcal{L}(y,\lambda) := \frac{1}{2}a_r(y,y) + b(y,\lambda) - I(y).$$

3. We have the estimate

$$||y||_{Y} = ||y||_{L^{2}(q_{T})} \le ||y_{obs}||_{L^{2}(q_{T})}, \quad ||\lambda||_{X'} \le 2\sqrt{C_{\Omega,T} + \eta}||y_{obs}||_{L^{2}(q_{T})}. \quad (11)$$

The kernel $\mathcal{N}(b) = \{y \in Z; b(y, \lambda) = 0 \mid \forall \lambda \in X'\}$ coincides with W: we easily get

$$a_r(y,y) = ||y||_Z^2, \quad \forall y \in \mathcal{N}(b) = W.$$

It remains to check the inf-sup constant property : $\exists \delta > 0$ such that

$$\inf_{\lambda \in X'} \sup_{y \in Z} \frac{b(y, \lambda)}{\|y\|_Z \|\lambda\|_{X'}} \ge \delta. \tag{12}$$

For any fixed $\lambda \in X'$, we define $y^0 \in Z$ as the unique solution of

$$Ly^0 = -\Delta\lambda \text{ in } Q_T, \quad (y^0(\cdot, 0), y_t^0(\cdot, 0)) = (0, 0) \text{ on } \Omega, \quad y^0 = 0 \text{ on } \Sigma_T.$$
 (13)

We get $b(y^0, \lambda) = \|\lambda\|_{X'}^2$ and $\|y^0\|_Z^2 = \|y^0\|_{L^2(q_T)}^2 + \eta \|\lambda\|_{X'}^2$.

The estimate $||y^0||_{L^2(q_T)} \leq \sqrt{C_{\Omega,T}} ||\lambda||_{X'}$ implies that

$$\sup_{y \in Z} \frac{b(y, \lambda)}{\|y\|_{Y} \|\lambda\|_{X'}} \ge \frac{b(y^{0}, \lambda)}{\|y^{0}\|_{Y} \|\lambda\|_{X'}} \ge \frac{1}{\sqrt{C_{\Omega, T} + \eta}} > 0$$

leading to the result with $\delta = (C_{\Omega,T} + \eta)^{-1/2}$

The kernel $\mathcal{N}(b) = \{y \in Z; b(y, \lambda) = 0 \mid \forall \lambda \in X'\}$ coincides with W: we easily get

$$a_r(y,y) = ||y||_Z^2, \quad \forall y \in \mathcal{N}(b) = W.$$

It remains to check the inf-sup constant property : $\exists \delta > 0$ such that

$$\inf_{\lambda \in X'} \sup_{y \in Z} \frac{b(y, \lambda)}{\|y\|_Z \|\lambda\|_{X'}} \ge \delta. \tag{12}$$

For any fixed $\lambda \in X'$, we define $y^0 \in Z$ as the unique solution of

$$Ly^0 = -\Delta\lambda \text{ in } Q_T, \quad (y^0(\cdot,0), y^0_t(\cdot,0)) = (0,0) \text{ on } \Omega, \quad y^0 = 0 \text{ on } \Sigma_T.$$
 (13)

We get
$$b(y^0, \lambda) = \|\lambda\|_{X'}^2$$
 and $\|y^0\|_Z^2 = \|y^0\|_{L^2(g_T)}^2 + \eta \|\lambda\|_{X'}^2$.

The estimate $\|y^0\|_{L^2(q_T)} \leq \sqrt{C_{\Omega,T}} \|\lambda\|_{X'}$ implies that

$$\sup_{y\in Z} \frac{b(y,\lambda)}{\|y\|_Y \|\lambda\|_{X'}} \geq \frac{b(y^0,\lambda)}{\|y^0\|_Y \|\lambda\|_{X'}} \geq \frac{1}{\sqrt{C_{\Omega,T}+\eta}} > 0$$

leading to the result with $\delta = (C_{\Omega,T} + \eta)^{-1/2}$.

Assuming enough regularity on the solution λ , at the optimality, the Lagrange Multiplier solves

$$\begin{cases} L\lambda = -(y - y_{obs})_{1q_T}, & \lambda = 0 \text{ in } \Sigma_T, \\ \lambda = \lambda_t = 0 \text{ on } \Omega \times \{0, T\}. \end{cases}$$
(14)

 λ (defined in the weak sense) is a null controlled solution of the hyperbolic equation by the control $-(y-y_{obs})\,\mathbf{1}_{\omega}$.

If y_{obs} is the restriction to q_T of a solution of (1), then λ must vanish almost everywhere.

In that case, $\sup_{\lambda \in \Lambda} \inf_{y \in Y} \mathcal{L}_r(y, \lambda) = \inf_{y \in Y} \mathcal{L}_r(y, 0) = \inf_{y \in Y} J_r(y)$ with

$$J_r(y) := \frac{1}{2} \|y - y_{obs}\|_{L^2(Q_T)}^2 + \frac{r}{2} \|Ly\|_X^2.$$
 (15)

The corresponding variational formulation is then : find $y \in Z$ such that

$$a_r(y,\overline{y}) = \iint_{q_T} y\,\overline{y}\,dxdt + r\int_0^T \langle \lambda,\, Ly \rangle_{H^1_0(\Omega),H^{-1}(\Omega)}dt = I(\overline{y}), \quad \forall \overline{y} \in Z$$

Assuming enough regularity on the solution λ , at the optimality, the Lagrange Multiplier solves

$$\begin{cases} L\lambda = -(y - y_{obs})_{1q_T}, & \lambda = 0 \text{ in } \Sigma_T, \\ \lambda = \lambda_t = 0 \text{ on } \Omega \times \{0, T\}. \end{cases}$$
(14)

 λ (defined in the weak sense) is a null controlled solution of the hyperbolic equation by the control $-(y-y_{obs})\,\mathbf{1}_{\omega}$.

If y_{obs} is the restriction to q_T of a solution of (1), then λ must vanish almost everywhere.

In that case, $\sup_{\lambda \in \Lambda} \inf_{y \in Y} \mathcal{L}_r(y, \lambda) = \inf_{y \in Y} \mathcal{L}_r(y, 0) = \inf_{y \in Y} J_r(y)$ with

$$J_r(y) := \frac{1}{2} \|y - y_{obs}\|_{L^2(Q_T)}^2 + \frac{r}{2} \|Ly\|_X^2.$$
 (15)

The corresponding variational formulation is then : find $y \in Z$ such that

$$a_r(y,\overline{y}) = \iint_{q_T} y\,\overline{y}\,dxdt + r\int_0^T \langle \lambda, \, Ly \rangle_{H_0^1(\Omega),H^{-1}(\Omega)}dt = I(\overline{y}), \quad \forall \overline{y} \in Z.$$

In the general case, the mixed formulation can be rewritten as follows: find $(z,\lambda)\in Z\times X'$ solution of

$$\begin{cases}
\langle P_r y, P_r \overline{y} \rangle_{X \times L^2(q_T)} + \langle L \overline{y}, \lambda \rangle_{X,X'} = \langle (0, y_{obs}), P_r \overline{y} \rangle_{X \times L^2(q_T)}, & \forall \overline{y} \in \mathbb{Z}, \\
\langle L y, \overline{\lambda} \rangle_{X,X'} = 0, & \forall \overline{\lambda} \in X'
\end{cases}$$
(16)

with $P_r y := (\sqrt{r} L y, y_{|q_T})$.

This approach may be seen as generalization of the (QR) problem (see (QR)), where the variable λ is adjusted automatically (while the choice of the parameter ε in (QR) is in general a delicate issue).

$$\Lambda := \{\lambda \in C([0,T]; H^1_0(\Omega)) \cap C^1([0,T]; L^2(\Omega)), L\lambda \in L^2(Q_T), \lambda(\cdot,0) = \lambda_t(\cdot,0) = 0\}.$$

$$\begin{cases} \sup_{\lambda \in \Lambda} \inf_{y \in Z} \mathcal{L}_{r,\alpha}(y,\lambda) \\ \mathcal{L}_{r,\alpha}(y,\lambda) := \mathcal{L}_r(y,\lambda) - \frac{\alpha}{2} \|L\lambda + (y-y_{obs})\mathbf{1}_{\omega}\|_{L^2(Q_T)}^2. \end{cases}$$

For $\alpha \in (0, 1)$, find $(y, \lambda) \in Z \times \Lambda$ such that

$$\begin{cases}
 a_{r,\alpha}(y,\overline{y}) + b_{\alpha}(\overline{y},\lambda) &= l_{1,\alpha}(\overline{y}), & \forall \overline{y} \in Y \\
 b_{\alpha}(y,\overline{\lambda}) - c_{\alpha}(\lambda,\overline{\lambda}) &= l_{2,\alpha}(\overline{\lambda}), & \forall \overline{\lambda} \in \widetilde{\Lambda},
\end{cases}$$
(17)

$$\begin{aligned} &a_{r,\alpha}: Z \times Z \to \mathbb{R}, \quad a_{r,\alpha}(y,\overline{y}) := (1-\alpha) \iint_{q_T} y\overline{y} \, dxdt + r \int_0^T (Ly,L\overline{y})_{H^{-1}(\Omega)} \, dt \\ &b_\alpha: Z \times \Lambda \to \mathbb{R}, \quad b_\alpha(y,\lambda) := \int_0^T \langle \lambda, Ly \rangle_{H_0^1(\Omega),H^{-1}(\Omega)} \, dt - \alpha \iint_{q_T} y \, L\lambda \, dxdt, \\ &c_\alpha: \Lambda \times \Lambda \to \mathbb{R}, \quad c_\alpha(\lambda,\overline{\lambda}) := \alpha \iint_{Q_T} L\lambda \, L\overline{\lambda}, \, dxdt \\ &l_{1,\alpha}: Z \to \mathbb{R}, \quad l_{1,\alpha}(y) := (1-\alpha) \iint_{q_T} y_{obs} \, y \, dxdt, \\ &l_{2,\alpha}: \Lambda \to \mathbb{R}, \quad l_{2,\alpha}(\lambda) := -\alpha \iint_{q_T} y_{obs} \, L\lambda \, dxdt. \end{aligned}$$

$$\Lambda := \{\lambda \in C([0,T]; H_0^1(\Omega)) \cap C^1([0,T]; L^2(\Omega)), L\lambda \in L^2(Q_T), \lambda(\cdot,0) = \lambda_t(\cdot,0) = 0\}.$$

$$\begin{cases} \sup_{\lambda \in \Lambda} \inf_{y \in \mathcal{I}} \mathcal{L}_{r,\alpha}(y,\lambda) \\ \mathcal{L}_{r,\alpha}(y,\lambda) := \mathcal{L}_r(y,\lambda) - \frac{\alpha}{2} \|L\lambda + (y-y_{obs})\mathbf{1}_{\omega}\|_{L^2(Q_T)}^2. \end{cases}$$

For $\alpha \in (0,1)$, find $(y,\lambda) \in Z \times \Lambda$ such that

$$\begin{cases}
a_{r,\alpha}(y,\overline{y}) + b_{\alpha}(\overline{y},\lambda) &= l_{1,\alpha}(\overline{y}), & \forall \overline{y} \in Y \\
b_{\alpha}(y,\overline{\lambda}) - c_{\alpha}(\lambda,\overline{\lambda}) &= l_{2,\alpha}(\overline{\lambda}), & \forall \overline{\lambda} \in \widetilde{\Lambda},
\end{cases}$$
(17)

$$\begin{split} &a_{r,\alpha}: Z \times Z \to \mathbb{R}, \quad a_{r,\alpha}(y,\overline{y}) := (1-\alpha) \iint_{q_T} y\overline{y} \, dx dt + r \int_0^T (Ly,L\overline{y})_{H-1}{}_{(\Omega)} dt, \\ &b_\alpha: Z \times \Lambda \to \mathbb{R}, \quad b_\alpha(y,\lambda) := \int_0^T \langle \lambda, Ly \rangle_{H_0^1(\Omega),H^{-1}(\Omega)} dt - \alpha \iint_{q_T} y \, L\lambda \, dx dt, \\ &c_\alpha: \Lambda \times \Lambda \to \mathbb{R}, \quad c_\alpha(\lambda,\overline{\lambda}) := \alpha \iint_{Q_T} L\lambda \, L\overline{\lambda}, \, dx dt \\ &l_{1,\alpha}: Z \to \mathbb{R}, \quad l_{1,\alpha}(y) := (1-\alpha) \iint_{q_T} y_{obs} \, y \, dx dt, \\ &l_{2,\alpha}: \Lambda \to \mathbb{R}, \quad l_{2,\alpha}(\lambda) := -\alpha \iint_{q_T} y_{obs} \, L\lambda \, dx dt. \end{split}$$

Proposition

Under the hypothesis (\mathcal{H}) , for any $\alpha \in (0,1)$, the corresponding mixed formulation is well-posed. The unique pair (y,λ) in $Z \times \Lambda$ satisfies

$$\theta_1 \|y\|_Z^2 + \theta_2 \|\lambda\|_{\Lambda}^2 \le \left(\frac{(1-\alpha)^2}{\theta_1} + \frac{\alpha^2}{\theta_2}\right) \|y_{obs}\|_{L^2(q_T)}^2.$$
 (18)

with
$$\theta_1 := \min\left(1 - \alpha, r\eta^{-1}\right), \theta_2 := \frac{1}{2}\min\left(\alpha, C_{\Omega, T}^{-1}\right).$$

Proposition

If the solution $(y, \lambda) \in Z \times X'$ of (7) enjoys the property $\lambda \in \Lambda$, then the solutions of (7) and (17) coincide.

Proposition

Under the hypothesis (\mathcal{H}) , for any $\alpha \in (0,1)$, the corresponding mixed formulation is well-posed. The unique pair (y,λ) in $Z \times \Lambda$ satisfies

$$\theta_1 \|y\|_Z^2 + \theta_2 \|\lambda\|_{\Lambda}^2 \le \left(\frac{(1-\alpha)^2}{\theta_1} + \frac{\alpha^2}{\theta_2}\right) \|y_{obs}\|_{L^2(q_T)}^2.$$
 (18)

with
$$\theta_1 := \min\left(1 - \alpha, r\eta^{-1}\right), \theta_2 := \frac{1}{2}\min\left(\alpha, C_{\Omega, T}^{-1}\right).$$

Proposition

If the solution $(y, \lambda) \in Z \times X'$ of (7) enjoys the property $\lambda \in \Lambda$, then the solutions of (7) and (17) coincide.

Remark 4 - Link with controllability

The mixed formulation has a structure very closed to the one we get when we address - using the same approach - the null controllability of (1): the control of minimal $L^2(q_T)$ -norm which drives to rest $(y_0,y_1)\in H^1_0(\Omega)\times L^2(\Omega)$ is given by $v=\varphi 1_{q_T}$ where $(\varphi,\lambda)\in \Phi\times L^2(0,T;H^1_0(\Omega))$ solves

$$\begin{cases}
 a(\varphi, \overline{\varphi}) + b(\overline{\varphi}, \lambda) &= l(\overline{\varphi}), & \forall \overline{\varphi} \in \Phi \\
 b(\varphi, \overline{\lambda}) &= 0, & \forall \overline{\lambda} \in L^2(0, T; H_0^1(\Omega)),
\end{cases}$$
(19)

where

$$\begin{split} a: \Phi \times \Phi &\to \mathbb{R}, \quad a(\varphi, \overline{\varphi}) = \iint_{q_T} \varphi(x, t) \overline{\varphi}(x, t) \, dx \, dt \\ b: \Phi \times L^2(0, T; H_0^1(0, 1)) &\to \mathbb{R}, \quad b(\varphi, \lambda) = \int_0^T \langle L\varphi, \lambda \rangle_{H^{-1}, H_0^1} \, dt \\ I: \Phi &\to \mathbb{R}, \quad I(\varphi) = -\langle \varphi_t(\cdot, 0), y_0 \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} + \int_0^1 \varphi(\cdot, 0) \, y_1 \, dx. \end{split}$$

with $\Phi = \{ \varphi \in L^2(q_T), \ \varphi = 0 \text{ on } \Sigma_T \text{ such that } L\varphi \in L^2(0,T;H^{-1}(0,1)) \}.$ [Cîndea- Münch, Calcolo 2015]

"Reversing the order of priority" between the constraint $y-y_{obs}=0$ in $L^2(q_T)$ and Ly-f=0 in X, a possibility could be to minimize the functional

$$\begin{cases} \text{minimize} \quad J(y) := \|Ly - f\|_X^2 + \varepsilon \|y\|_A^2 \\ \text{subject to } y \in Z \quad \text{and to} \quad y - y_{obs} = 0 \quad \text{in} \quad L^2(q_T) \end{cases}$$
 (20)

via the introduction of a Lagrange multiplier in $L^2(q_T)$.

The proof of the inf-sup property : there exists $\delta > 0$ such that

$$\inf_{\lambda \in L^2(q_T)} \sup_{y \in Z} \frac{\iint_{q_T} \lambda y \, dx dt}{\|\lambda\|_{L^2(q_T)} \|y\|_Y} \ge \delta$$

of the corresponding mixed-formulation is however unclear.

This issue is solved by the introduction of a ε -term in J_{ε} (Klibanov-Beilina 20xx).

"Reversing the order of priority" between the constraint $y-y_{obs}=0$ in $L^2(q_T)$ and Ly-f=0 in X, a possibility could be to minimize the functional

$$\begin{cases} \text{minimize} \quad J(y) := \|Ly - f\|_X^2 + \varepsilon \|y\|_{\mathcal{A}}^2 \\ \text{subject to } y \in Z \quad \text{and to} \quad y - y_{obs} = 0 \quad \text{in} \quad L^2(q_T) \end{cases}$$
 (20)

via the introduction of a Lagrange multiplier in $L^2(q_T)$.

The proof of the inf-sup property : there exists $\delta > 0$ such that

$$\inf_{\lambda \in L^2(q_T)} \sup_{y \in Z} \frac{\iint_{q_T} \lambda y \, dx dt}{\|\lambda\|_{L^2(q_T)} \|y\|_Y} \ge \delta$$

of the corresponding mixed-formulation is however unclear.

This issue is solved by the introduction of a ε -term in J_{ε} (Klibanov-Beilina 20xx).

(Important) Remark 6: Dual of the mixed problem

Lemma

Let \mathcal{P}_r be the linear operator from X' into X' defined by

$$\mathcal{P}_r\lambda:=-\Delta^{-1}(Ly), \quad \forall \lambda \in X' \quad \text{where} \quad y \in Z \quad \text{solves} \quad a_r(y,\overline{y})=b(\overline{y},\lambda), \quad \forall \overline{y} \in Z.$$

For any r > 0, the operator \mathcal{P}_r is a strongly elliptic, symmetric isomorphism from X' into X'.

Theorem

$$\sup_{\lambda \in X'} \inf_{y \in Z} \mathcal{L}_r(y, \lambda) = -\inf_{\lambda \in X'} J_r^{\star \star}(\lambda) + \mathcal{L}_r(y_0, 0)$$

where $y_0 \in Z$ solves $a_r(y_0, \overline{y}) = I(\overline{y}), \forall \overline{y} \in Y$ and $J_r^{**}: X' \to \mathbb{R}$ defined by

$$J_r^{\star\star}(\lambda) = \frac{1}{2} \int_0^T \langle \mathcal{P}_r \lambda, \lambda \rangle_{H_0^1(\Omega)} dt - b(y_0, \lambda)$$

(Important) Remark 6: Dual of the mixed problem

Lemma

Let \mathcal{P}_r be the linear operator from X' into X' defined by

$$\mathcal{P}_r\lambda:=-\Delta^{-1}(Ly), \quad \forall \lambda \in X' \quad \text{where} \quad y \in Z \quad \text{solves} \quad a_r(y,\overline{y})=b(\overline{y},\lambda), \quad \forall \overline{y} \in Z.$$

For any r > 0, the operator \mathcal{P}_r is a strongly elliptic, symmetric isomorphism from X' into X'.

Theorem

$$\sup_{\lambda \in X'} \inf_{y \in Z} \mathcal{L}_r(y, \lambda) = -\inf_{\lambda \in X'} J_r^{\star\star}(\lambda) + \mathcal{L}_r(y_0, 0)$$

where $y_0 \in Z$ solves $a_r(y_0, \overline{y}) = I(\overline{y}), \forall \overline{y} \in Y$ and $J_r^{\star\star} : X' \to \mathbb{R}$ defined by

$$J_r^{\star\star}(\lambda) = \frac{1}{2} \int_0^T \langle \mathcal{P}_r \lambda, \lambda \rangle_{H_0^1(\Omega)} dt - b(y_0, \lambda).$$

Remark 7 - Boundary observation

$$(y_0, y_1) \in H_0^1(\Omega) \times L^2(\Omega)$$
 - Ω of class C^2

The results apply if the distributed observation on q_T is replaced by a Neumann boundary observation on a sufficiently large subset Σ_T of $\partial\Omega \times (0,T)$ (i.e. assuming $\frac{\partial y}{\partial \nu} = y_{\nu,obs} \in L^2(\Sigma_T)$ is known on Σ_T).

If (Q_T, Σ_T, T) satisfy some geometric condition, then there exists a positive constant $C_{obs} = C(\omega, T, \|c\|_{C^1(\overline{\Omega})}, \|d\|_{L^\infty(\Omega)})$ such that

$$\|y(\cdot,0),y_{t}(\cdot,0)\|_{H_{0}^{1}(\Omega)\times L^{2}(\Omega)}^{2} \leq C_{obs}\left(\left\|\frac{\partial y}{\partial \nu}\right\|_{L^{2}(\Sigma_{T})}^{2} + \|Ly\|_{L^{2}(Q_{T})}^{2}\right), \quad \forall y \in Z$$
 (21)

It suffices to re-define the form a in by $a(y,y):=\iint_{\Sigma_T} \frac{\partial y}{\partial \nu} \frac{\partial \overline{y}}{\partial \nu} \, d\sigma dx$ and the form I by $I(y):=\iint_{\Sigma_T} \frac{\partial y}{\partial \nu} y_{obs} \, d\sigma dx$ for all $y, \overline{y} \in Z$.

Recovering the solution and the source f when the pair (y, f) is unique $f(x, t) = \sigma(t)\mu(x)$

$$c := 1, d(x, t) = d(x) \in L^p(\Omega), \sigma \in C^1([0, T]), \sigma(0) \neq 0, \mu \in H^{-1}(\Omega)$$

Theorem (Yamamoto-Zhang 2001)

Let us assume that the triplet (Γ_T, T, Q_T) satisfies the geometric optic condition. Let $y = y(\mu) \in C([0, T]; H_0^1(\Omega)) \cap C^1([0, T]; L^2(\Omega))$ be the weak solution of (1) with c := 1 and $(y_0, y_1) = (0, 0)$. Then, there exists a positive constant C such that

$$C^{-1}\|\mu\|_{H^{-1}(\Omega)} \le \|c(x)\,\partial_{\nu}y\|_{L^{2}(\Gamma_{\tau})} \le C\|\mu\|_{H^{-1}(\Omega)}, \quad \forall \mu \in H^{-1}(\Omega). \tag{22}$$

We consider the following extremal problem:

$$\begin{cases} \inf J(y,\mu) := \frac{1}{2} \|c(x)(\partial_{\nu}y - y_{\nu,obs})\|_{L^{2}(\Gamma_{T})}^{2}, \\ \text{subject to} \quad (y,\mu) \in W \end{cases}$$
 $(\mathcal{P}_{y,\mu})$

where W is the space defined by

$$W := \left\{ (y, \mu); y \in C([0, T]; H_0^1(\Omega)) \cap C^1([0, T]; L^2(\Omega)), \mu \in H^{-1}(\Omega), \\ Ly - \sigma\mu = 0 \text{ in } Q_T, y(\cdot, 0) = y_t(\cdot, 0) = 0 \right\}.$$
(23)

Attached to the norm $\|(y,\mu)\|_W:=\|c(x)\partial_\nu y\|_{L^2(\Gamma_T)},\ W$ is a Hilbert space.

Recovering the solution and the source f when the pair (y, f) is unique

$$f(x,t) = \sigma(t)\mu(x)$$

 $c := 1, d(x,t) = d(x) \in L^p(\Omega), \sigma \in C^1([0,T]), \sigma(0) \neq 0, \mu \in H^{-1}(\Omega)$

Theorem (Yamamoto-Zhang 2001)

Let us assume that the triplet (Γ_T, T, Q_T) satisfies the geometric optic condition. Let $y = y(\mu) \in C([0,T]; H^1_0(\Omega)) \cap C^1([0,T]; L^2(\Omega))$ be the weak solution of (1) with c := 1 and $(y_0,y_1) = (0,0)$. Then, there exists a positive constant C such that

$$C^{-1}\|\mu\|_{H^{-1}(\Omega)} \le \|c(x)\,\partial_{\nu}y\|_{L^{2}(\Gamma_{T})} \le C\|\mu\|_{H^{-1}(\Omega)}, \quad \forall \mu \in H^{-1}(\Omega).$$
 (22)

We consider the following extremal problem:

$$\begin{cases} \inf J(y,\mu) := \frac{1}{2} \|c(x)(\partial_{\nu}y - y_{\nu,obs})\|_{L^{2}(\Gamma_{T})}^{2}, \\ \text{subject to} \quad (y,\mu) \in W \end{cases}$$
 $(\mathcal{P}_{y,\mu})$

where W is the space defined by

$$W := \left\{ (y, \mu); y \in C([0, T]; H_0^1(\Omega)) \cap C^1([0, T]; L^2(\Omega)), \mu \in H^{-1}(\Omega), \\ Ly - \sigma\mu = 0 \text{ in } Q_T, y(\cdot, 0) = y_t(\cdot, 0) = 0 \right\}.$$
(23)

Attached to the norm $\|(y,\mu)\|_W := \|c(x)\partial_\nu y\|_{L^2(\Gamma_T)}$, W is a Hilbert space.

Recovering the solution and the source f when the pair (y, f) is unique

$$f(x,t) = \sigma(t)\mu(x)$$

 $c := 1, d(x,t) = d(x) \in L^p(\Omega), \sigma \in C^1([0,T]), \sigma(0) \neq 0, \mu \in H^{-1}(\Omega)$

Theorem (Yamamoto-Zhang 2001)

Let us assume that the triplet (Γ_T, T, Q_T) satisfies the geometric optic condition. Let $y = y(\mu) \in C([0,T]; H^1_0(\Omega)) \cap C^1([0,T]; L^2(\Omega))$ be the weak solution of (1) with c := 1 and $(y_0,y_1) = (0,0)$. Then, there exists a positive constant C such that

$$C^{-1}\|\mu\|_{H^{-1}(\Omega)} \le \|c(x)\,\partial_{\nu}y\|_{L^{2}(\Gamma_{T})} \le C\|\mu\|_{H^{-1}(\Omega)}, \quad \forall \mu \in H^{-1}(\Omega).$$
 (22)

We consider the following extremal problem:

$$\begin{cases} \inf J(y,\mu) := \frac{1}{2} \|c(x)(\partial_{\nu}y - y_{\nu,obs})\|_{L^{2}(\Gamma_{T})}^{2}, \\ \text{subject to} \quad (y,\mu) \in W \end{cases}$$
 $(\mathcal{P}_{y,\mu})$

where W is the space defined by

$$W := \left\{ (y, \mu); y \in C([0, T]; H_0^1(\Omega)) \cap C^1([0, T]; L^2(\Omega)), \mu \in H^{-1}(\Omega), \\ Ly - \sigma\mu = 0 \text{ in } Q_T, y(\cdot, 0) = y_t(\cdot, 0) = 0 \right\}.$$
(23)

Attached to the norm $\|(y,\mu)\|_W := \|c(x)\partial_\nu y\|_{L^2(\Gamma_T)}$, W is a Hilbert space.

Recovering the solution and the source f when the pair (y, f) is unique $f(x, t) = \sigma(t)\mu(x)$

$$c := 1, d(x, t) = d(x) \in L^p(\Omega), \sigma \in C^1([0, T]), \sigma(0) \neq 0, \mu \in H^{-1}(\Omega)$$

Theorem (Yamamoto-Zhang 2001)

Let us assume that the triplet (Γ_T, T, Q_T) satisfies the geometric optic condition. Let $y = y(\mu) \in C([0, T]; H_0^1(\Omega)) \cap C^1([0, T]; L^2(\Omega))$ be the weak solution of (1) with c := 1 and $(y_0, y_1) = (0, 0)$. Then, there exists a positive constant C such that

$$C^{-1}\|\mu\|_{H^{-1}(\Omega)} \le \|c(x)\,\partial_{\nu}y\|_{L^{2}(\Gamma_{T})} \le C\|\mu\|_{H^{-1}(\Omega)}, \quad \forall \mu \in H^{-1}(\Omega). \tag{22}$$

We consider the following extremal problem:

$$\begin{cases} \inf J(y,\mu) := \frac{1}{2} \|c(x)(\partial_{\nu}y - y_{\nu,obs})\|_{L^{2}(\Gamma_{T})}^{2}, \\ \text{subject to} \quad (y,\mu) \in W \end{cases}$$
 $(\mathcal{P}_{y,\mu})$

where W is the space defined by

$$W := \left\{ (y, \mu); y \in C([0, T]; H_0^1(\Omega)) \cap C^1([0, T]; L^2(\Omega)), \mu \in H^{-1}(\Omega), \\ Ly - \sigma\mu = 0 \text{ in } Q_T, y(\cdot, 0) = y_t(\cdot, 0) = 0 \right\}.$$
 (23)

Attached to the norm $\|(y,\mu)\|_W:=\|c(x)\partial_\nu y\|_{L^2(\Gamma_T)},\ W$ is a Hilbert space.

Recovering the solution and the source f when the pair (y, f) is unique

$$Y := \left\{ (y, \mu); y \in C([0, T]; H_0^1(\Omega)) \cap C^1([0, T]; L^2(\Omega)), \mu \in H^{-1}(\Omega), \right.$$

$$Ly - \sigma \mu \in L^2(Q_T), y(\cdot, 0) = y_t(\cdot, 0) = 0 \right\}.$$
(24)

Hypothesis

There exists a constant $C_{obs}=C(\Gamma_T,T,\|c\|_{C^1(\overline{\Omega})},\|d\|_{L^\infty(\Omega)})$ such that the following estimate holds :

$$\|\mu\|_{H^{-1}(\Omega)}^2 \leq C_{obs}\bigg(\|c(x)\partial_{\nu}y\|_{L^2(\Gamma_T)}^2 + \|Ly - \sigma\mu\|_{L^2(Q_T)}^2\bigg), \quad \forall (y,\mu) \in Y.$$
 (\mathcal{H}_2)

Then, for any $\eta > 0$, we define on Y the bilinear form

$$\langle (y,\mu), (\overline{y},\overline{\mu}) \rangle_{Y} := \iint_{\Gamma_{T}} (c(x))^{2} \partial_{\nu} y \, \partial_{\nu} \overline{y} \, d\sigma dt + \eta \iint_{Q_{T}} (Ly - \sigma\mu) \, (L\overline{y} - \sigma\overline{\mu}) \, dx dt \quad \forall y, \overline{y} \in Z.$$

$$(25)$$

$$\|(y,z)\|_{Y} := \sqrt{\langle (y,\mu), (y,\mu) \rangle_{Y}}.$$

Lemma

Under the hypotheses (\mathcal{H}_2) , the space $(Y, \|\cdot\|_Y)$ is a Hilbert space.

Recovering the solution and the source f when the pair (y, f) is unique

$$Y := \left\{ (y, \mu); y \in C([0, T]; H_0^1(\Omega)) \cap C^1([0, T]; L^2(\Omega)), \mu \in H^{-1}(\Omega), \right.$$

$$Ly - \sigma \mu \in L^2(Q_T), y(\cdot, 0) = y_t(\cdot, 0) = 0 \right\}.$$
(24)

Hypothesis

There exists a constant $C_{obs}=C(\Gamma_T,T,\|c\|_{C^1(\overline{\Omega})},\|d\|_{L^\infty(\Omega)})$ such that the following estimate holds :

$$\|\mu\|_{H^{-1}(\Omega)}^2 \leq C_{obs}\bigg(\|c(x)\partial_{\nu}y\|_{L^2(\Gamma_T)}^2 + \|Ly - \sigma\mu\|_{L^2(Q_T)}^2\bigg), \quad \forall (y,\mu) \in Y.$$
 (\mathcal{H}_2)

Then, for any $\eta > 0$, we define on Y the bilinear form

$$\langle (y,\mu), (\overline{y},\overline{\mu}) \rangle_{Y} := \iint_{\Gamma_{T}} (c(x))^{2} \partial_{\nu} y \, \partial_{\nu} \overline{y} \, d\sigma dt + \eta \iint_{Q_{T}} (Ly - \sigma\mu) \, (L\overline{y} - \sigma\overline{\mu}) \, dx dt \quad \forall y, \overline{y} \in Z.$$

$$(25)$$

$$\|(y,z)\|_{Y} := \sqrt{\langle (y,\mu), (y,\mu) \rangle_{Y}}.$$

Lemma

Under the hypotheses (\mathcal{H}_2) , the space $(Y, \|\cdot\|_Y)$ is a Hilbert space.

Recovering the solution and the source *f*: mixed formulation

Find $((y, \mu), \lambda) \in Y \times L^2(Q_T)$ solution of

$$\begin{cases}
 a_r((y,\mu),(\overline{y},\overline{\mu})) + b((\overline{y},\overline{\mu}),\lambda) &= l(\overline{y},\overline{\mu}), & \forall (\overline{y},\overline{\mu}) \in Y \\
 b((y,\mu),\overline{\lambda}) &= 0, & \forall \overline{\lambda} \in L^2(Q_T),
\end{cases}$$
(26)

where

$$a_{r}: Y \times Y \to \mathbb{R}, \quad a_{r}((y,\mu),(\overline{y},\overline{\mu})) := \iint_{\Gamma_{T}} c^{2}(x)\partial_{\nu}y\partial_{\nu}\overline{y} \,d\sigma dt$$

$$+ r \iint_{Q_{T}} (Ly - \sigma\mu)(L\overline{y} - \sigma\overline{\mu}) \,dxdt, r \ge 0$$

$$b: Y \times L^{2}(Q_{T}) \to \mathbb{R}, \quad b((y,\mu),\lambda) := \iint_{Q_{T}} \lambda(Ly - \sigma\mu)dx \,dt,$$

$$l: Y \to \mathbb{R}, \quad l(y,\mu) := \iint_{\Gamma_{T}} c^{2}(x) \,\partial_{\nu}y \,y_{\nu,obs} \,d\sigma dt.$$

$$(27)$$

Recovering the solution and the source *f*: mixed formulation

Find $((y, \mu), \lambda) \in Y \times L^2(Q_T)$ solution of

$$\begin{cases}
 a_r((y,\mu),(\overline{y},\overline{\mu})) + b((\overline{y},\overline{\mu}),\lambda) &= l(\overline{y},\overline{\mu}), & \forall (\overline{y},\overline{\mu}) \in Y \\
 b((y,\mu),\overline{\lambda}) &= 0, & \forall \overline{\lambda} \in L^2(Q_T),
\end{cases} (26)$$

where

$$a_{r}: Y \times Y \to \mathbb{R}, \quad a_{r}((y,\mu),(\overline{y},\overline{\mu})) := \iint_{\Gamma_{T}} c^{2}(x)\partial_{\nu}y\partial_{\nu}\overline{y} \,d\sigma dt$$

$$+ r \iint_{Q_{T}} (Ly - \sigma\mu)(L\overline{y} - \sigma\overline{\mu}) \,dx dt, r \ge 0$$

$$b: Y \times L^{2}(Q_{T}) \to \mathbb{R}, \quad b((y,\mu),\lambda) := \iint_{Q_{T}} \lambda(Ly - \sigma\mu) dx \,dt,$$

$$l: Y \to \mathbb{R}, \quad l(y,\mu) := \iint_{\Gamma_{T}} c^{2}(x) \,\partial_{\nu}y \,y_{\nu,obs} \,d\sigma dt.$$

$$(27)$$

Conformal approximation of the space-time variational framework

(boundary observation case, to fix idea)

Let Z_h and Λ_h be two finite dimensional spaces parametrized by the variable h such that $Z_h \subset Z$, $\Lambda_h \subset L^2(Q_T)$ for every h > 0. Find the $(y_h, \lambda_h) \in Z_h \times \Lambda_h$ solution of

$$\begin{cases}
 a_r(y_h, \overline{y}_h) + b(\overline{y}_h, \lambda_h) &= l(\overline{y}_h), & \forall \overline{y}_h \in Z_h \\
 b(y_h, \overline{\lambda}_h) &= 0, & \forall \overline{\lambda}_h \in \Lambda_h.
\end{cases} (28)$$

if r > 0, a_r is coercive on Z: $a_r(y, y) \ge \frac{r}{\eta} ||y||_Z^2 \quad \forall y \in Z$

If there $\delta > 0$ such that

$$\forall h > 0 \qquad \delta_h := \inf_{\lambda_h \in \Lambda_h} \sup_{y_h \in Z_h} \frac{b(y_h, \lambda_h)}{\|\lambda_h\|_{L^2(Q_T)} \|y_h\|_Z} > \delta. \tag{29}$$

then, $\forall h > 0$ fixed, if r > 0, there exists a unique couple (y_h, λ_h) solution of (28).

Conformal approximation of the space-time variational framework

(boundary observation case, to fix idea)

Let Z_h and Λ_h be two finite dimensional spaces parametrized by the variable h such that $Z_h \subset Z$, $\Lambda_h \subset L^2(Q_T)$ for every h > 0. Find the $(y_h, \lambda_h) \in Z_h \times \Lambda_h$ solution of

$$\begin{cases}
 a_r(y_h, \overline{y}_h) + b(\overline{y}_h, \lambda_h) &= l(\overline{y}_h), & \forall \overline{y}_h \in Z_h \\
 b(y_h, \overline{\lambda}_h) &= 0, & \forall \overline{\lambda}_h \in \Lambda_h.
\end{cases}$$
(28)

if r > 0, a_r is coercive on Z: $a_r(y, y) \ge \frac{r}{\eta} ||y||_Z^2 \quad \forall y \in Z$.

If there $\delta > 0$ such that

$$\forall h > 0 \qquad \delta_h := \inf_{\lambda_h \in \Lambda_h} \sup_{y_h \in Z_h} \frac{b(y_h, \lambda_h)}{\|\lambda_h\|_{L^2(Q_T)} \|y_h\|_Z} > \delta. \tag{29}$$

then, $\forall h > 0$ fixed, if r > 0, there exists a unique couple (y_h, λ_h) solution of (28).

Conformal approximation of the space-time variational framework

(boundary observation case, to fix idea)

Let Z_h and Λ_h be two finite dimensional spaces parametrized by the variable h such that $Z_h \subset Z$, $\Lambda_h \subset L^2(Q_T)$ for every h > 0. Find the $(y_h, \lambda_h) \in Z_h \times \Lambda_h$ solution of

$$\begin{cases}
 a_r(y_h, \overline{y}_h) + b(\overline{y}_h, \lambda_h) &= l(\overline{y}_h), & \forall \overline{y}_h \in Z_h \\
 b(y_h, \overline{\lambda}_h) &= 0, & \forall \overline{\lambda}_h \in \Lambda_h.
\end{cases}$$
(28)

if r > 0, a_r is coercive on Z: $a_r(y, y) \ge \frac{r}{\eta} ||y||_Z^2 \quad \forall y \in Z$.

If there $\delta > 0$ such that

$$\forall h > 0 \qquad \delta_h := \inf_{\lambda_h \in \Lambda_h} \sup_{y_h \in Z_h} \frac{b(y_h, \lambda_h)}{\|\lambda_h\|_{L^2(Q_T)} \|y_h\|_Z} > \delta. \tag{29}$$

then, $\forall h > 0$ fixed, if r > 0, there exists a unique couple (y_h, λ_h) solution of (28).

First estimate

Proposition

Let h > 0. Let (y, λ) and (y_h, λ_h) be the solution of (7) and of (28) respectively. Let δ_h the discrete inf-sup constant defined by (29). Then,

$$||y - y_h||_{\mathcal{Z}} \le 2\left(1 + \frac{1}{\sqrt{\eta}\delta_h}\right)d(y, Z_h) + \frac{1}{\sqrt{\eta}}d(\lambda, \Lambda_h), \tag{30}$$

$$\|\lambda - \lambda_h\|_{L^2(Q_T)} \le \left(2 + \frac{1}{\sqrt{\eta}\delta_h}\right) \frac{1}{\delta_h} d(y, Z_h) + \frac{3}{\sqrt{\eta}\delta_h} d(\lambda, \Lambda_h)$$
(31)

where $d(\lambda, \Lambda_h) := \inf_{\lambda_h \in \Lambda_h} \|\lambda - \lambda_h\|_{L^2(Q_T)}$ and

$$d(y, Z_h) := \inf_{y_h \in Z_h} \|y - y_h\|_Z$$

$$= \inf_{y_h \in Z_h} \left(\|\partial_{\nu} y - \partial_{\nu} y_h\|_{L^2(\Gamma_T)}^2 + \eta \|L(y - y_h)\|_{L^2(Q_T)}^2 \right)^{1/2}.$$
(32)

Linear system

Let $n_h = \dim Z_h$, $m_h = \dim \Lambda_h$ and let the real matrices $A_{r,h} \in \mathbb{R}^{n_h,n_h}$, $B_h \in \mathbb{R}^{m_h,n_h}$, $J_h \in \mathbb{R}^{m_h,m_h}$ and $L_h \in \mathbb{R}^{n_h}$ be defined by

$$\begin{cases}
a_{r}(y_{h}, \overline{y_{h}}) = \langle A_{r,h}\{y_{h}\}, \{\overline{y_{h}}\}\rangle_{\mathbb{R}^{n_{h}}, \mathbb{R}^{n_{h}}} & \forall y_{h}, \overline{y_{h}} \in Z_{h}, \\
b(y_{h}, \lambda_{h}) = \langle B_{h}\{y_{h}\}, \{\lambda_{h}\}\rangle_{\mathbb{R}^{m_{h}}, \mathbb{R}^{m_{h}}} & \forall y_{h} \in Z_{h}, \lambda_{h} \in \Lambda_{h}, \\
\iint_{Q_{T}} \lambda_{h} \overline{\lambda_{h}} dx dt = \langle J_{h}\{\lambda_{h}\}, \{\overline{\lambda_{h}}\}\rangle_{\mathbb{R}^{m_{h}}, \mathbb{R}^{m_{h}}} & \forall \lambda_{h}, \overline{\lambda_{h}} \in \Lambda_{h}, \\
I(y_{h}) = \langle L_{h}, \{y_{h}\}\rangle_{\mathbb{R}^{n_{h}}} & \forall y_{h} \in Z_{h},
\end{cases} (33)$$

where $\{y_h\} \in \mathbb{R}^{n_h}$ denotes the vector associated to y_h and $\langle \cdot, \cdot \rangle_{\mathbb{R}^{n_h}, \mathbb{R}^{n_h}}$ the usual scalar product over \mathbb{R}^{n_h} . With these notations, the problem (28) reads as follows: find $\{y_h\} \in \mathbb{R}^{n_h}$ and $\{\lambda_h\} \in \mathbb{R}^{m_h}$ such that

$$\begin{pmatrix} A_{r,h} & B_h^T \\ B_h & 0 \end{pmatrix}_{\mathbb{R}^{n_h+m_h,n_h+m_h}} \begin{pmatrix} \{y_h\} \\ \{\lambda_h\} \end{pmatrix}_{\mathbb{R}^{n_h+m_h}} = \begin{pmatrix} L_h \\ 0 \end{pmatrix}_{\mathbb{R}^{n_h+m_h}}.$$
 (34)

The matrix of order $m_h + n_h$ is symmetric but not positive definite.

We introduce a regular triangulation \mathcal{T}_h such that $\overline{Q_T} = \bigcup_{K \in \mathcal{T}_h} K$. We note $h := \max\{\operatorname{diam}(K), K \in \mathcal{T}_h\}$.

We introduce the space Φ_h as follows:

$$Z_h = \{ y_h \in Z \in C^1(\overline{Q_T}) : z_h|_K \in \mathbb{P}(K) \quad \forall K \in T_h, \ z_h = 0 \text{ on } \Sigma_T \}$$

where $\mathbb{P}(K)$ denotes an appropriate space of functions in x and t.

- ▶ The Bogner-Fox-Schmit (BFS for short) C^1 element defined for rectangles Therefore $\mathbb{P}(K) = \mathbb{P}_{3,r} \otimes \mathbb{P}_{3,t}$
- The reduced Hsieh-Clough-Tocher (HCT for short) C¹ element defined for triangles. This is a so-called composite finite element.

We also define the finite dimensional space

$$\Lambda_h = \{\lambda_h \in C^0(\overline{Q_T}), \lambda_h|_K \in \mathbb{P}_1(K) \quad \forall K \in \mathcal{T}_h\}$$

We introduce a regular triangulation \mathcal{T}_h such that $\overline{Q_T} = \bigcup_{K \in \mathcal{T}_h} K$. We note $h := \max\{\operatorname{diam}(K), K \in \mathcal{T}_h\}$.

We introduce the space Φ_h as follows:

$$Z_h = \{y_h \in Z \in C^1(\overline{Q_T}) : z_h|_K \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_h, \ z_h = 0 \ \text{on} \ \Sigma_T\}$$

where $\mathbb{P}(K)$ denotes an appropriate space of functions in x and t.

- ▶ The *Bogner-Fox-Schmit* (BFS for short) C^1 element defined for rectangles. Therefore $\mathbb{P}(K) = \mathbb{P}_{3,x} \otimes \mathbb{P}_{3,t}$
- ▶ The reduced Hsieh-Clough-Tocher (HCT for short) C¹ element defined for triangles. This is a so-called composite finite element.

We also define the finite dimensional space

$$\Lambda_h = \{\lambda_h \in C^0(\overline{Q_T}), \lambda_h|_K \in \mathbb{P}_1(K) \quad \forall K \in \mathcal{T}_h\}$$

We introduce a regular triangulation \mathcal{T}_h such that $\overline{Q_T} = \bigcup_{K \in \mathcal{T}_h} K$. We note $h := \max\{\operatorname{diam}(K), K \in \mathcal{T}_h\}$.

We introduce the space Φ_h as follows:

$$Z_h = \{y_h \in Z \in C^1(\overline{Q_T}) : z_h|_K \in \mathbb{P}(K) \quad \forall K \in T_h, \ z_h = 0 \text{ on } \Sigma_T\}$$

where $\mathbb{P}(K)$ denotes an appropriate space of functions in x and t.

- ▶ The *Bogner-Fox-Schmit* (BFS for short) C^1 element defined for rectangles. Therefore $\mathbb{P}(K) = \mathbb{P}_{3,x} \otimes \mathbb{P}_{3,t}$
- ► The reduced Hsieh-Clough-Tocher (HCT for short) C¹ element defined for triangles. This is a so-called composite finite element.

We also define the finite dimensional space

$$\Lambda_h = \{\lambda_h \in C^0(\overline{Q_T}), \lambda_h|_K \in \mathbb{P}_1(K) \quad \forall K \in \mathcal{T}_h\}$$

We introduce a regular triangulation \mathcal{T}_h such that $\overline{Q_T} = \bigcup_{K \in \mathcal{T}_h} K$. We note $h := \max\{\operatorname{diam}(K), K \in \mathcal{T}_h\}$.

We introduce the space Φ_h as follows:

$$Z_h = \{y_h \in Z \in C^1(\overline{Q_T}) : z_h|_K \in \mathbb{P}(K) \quad \forall K \in T_h, \ z_h = 0 \text{ on } \Sigma_T\}$$

where $\mathbb{P}(K)$ denotes an appropriate space of functions in x and t.

- ▶ The *Bogner-Fox-Schmit* (BFS for short) C^1 element defined for rectangles. Therefore $\mathbb{P}(K) = \mathbb{P}_{3,x} \otimes \mathbb{P}_{3,t}$
- ► The reduced Hsieh-Clough-Tocher (HCT for short) C¹ element defined for triangles. This is a so-called composite finite element.

We also define the finite dimensional space

$$\Lambda_h = \{\lambda_h \in C^0(\overline{Q_T}), \lambda_h|_K \in \mathbb{P}_1(K) \quad \forall K \in \mathcal{T}_h\}$$

We introduce a regular triangulation \mathcal{T}_h such that $\overline{Q_T} = \bigcup_{K \in \mathcal{T}_h} K$. We note $h := \max\{\operatorname{diam}(K), K \in \mathcal{T}_h\}$.

We introduce the space Φ_h as follows:

$$Z_h = \{y_h \in Z \in C^1(\overline{Q_T}) : z_h|_K \in \mathbb{P}(K) \quad \forall K \in \mathcal{T}_h, \ z_h = 0 \ \text{on} \ \Sigma_T\}$$

where $\mathbb{P}(K)$ denotes an appropriate space of functions in x and t.

- ▶ The *Bogner-Fox-Schmit* (BFS for short) C^1 element defined for rectangles. Therefore $\mathbb{P}(K) = \mathbb{P}_{3,x} \otimes \mathbb{P}_{3,t}$
- ► The reduced Hsieh-Clough-Tocher (HCT for short) C¹ element defined for triangles. This is a so-called composite finite element.

We also define the finite dimensional space

$$\Lambda_h = \{\lambda_h \in C^0(\overline{Q_T}), \lambda_h|_K \in \mathbb{P}_1(K) \quad \forall K \in \mathcal{T}_h\}$$

Convergence rate in Z

Proposition (BFS element for N = 1 - Rate of convergence for the norm Z)

Let h > 0, let $k \le 2$ be a nonnegative integer. Let (y, λ) and (y_h, λ_h) be the solution of (7) and (28) respectively. If the solution (y, λ) belongs to $H^{k+2}(Q_T) \times H^k(Q_T)$, then there exists two positives constants

$$\textit{K}_{\textit{i}} = \textit{K}_{\textit{i}}(\|\textit{y}\|_{\textit{H}^{k+2}(\textit{Q}_{\textit{T}})}, \|\textit{c}\|_{\textit{C}^{1}(\overline{\textit{Q}_{\textit{T}}})}, \|\textit{d}\|_{\textit{L}^{\infty}(\textit{Q}_{\textit{T}})}), \qquad \textit{i} \in \{1,2\},$$

independent of h, such that

$$\|y - y_h\|_{\mathcal{Z}} \le K_1 \left(1 + \frac{1}{\sqrt{\eta}\delta_h} + \frac{1}{\sqrt{\eta}}\right) h^k,$$
 (35)

$$\|\lambda - \lambda_h\|_{L^2(Q_T)} \le K_2\left(\left(1 + \frac{1}{\sqrt{\eta}\delta_h}\right)\frac{1}{\delta_h} + \frac{1}{\sqrt{\eta}\delta_h}\right)h^k. \tag{36}$$

Convergence rate in $L^2(Q_T)$

Precisely, we write that $(y - y_h)$ solves the hyperbolic equation

$$\begin{cases} L(y-y_h) = -Ly_h & \text{in } Q_T \\ ((y-y_h), (y-y_h)_t)(0) \in \textbf{\textit{V}} \\ y-y_h = 0 & \text{on } \Sigma_T. \end{cases}$$

The continuous dependance combined with the observability inequality applied to $(y-y_h)$ lead to

$$\|y-y_h\|_{L^2(Q_T)}^2 \leq C_{\Omega,T}(C_{obs}+1)(\|\partial_{\nu}(y-y_h)\|_{L^2(\Gamma_T)}^2 + \|Ly_h\|_{L^2(Q_T)}^2)$$

from which we deduce, in view of the definition of the norm Y, that

$$||y - y_h||_{L^2(Q_T)} \le C_{\Omega,T}(C_{obs} + 1) \max(1, \frac{2}{\sqrt{\eta}}) ||y - y_h||_{Z}.$$
 (37)

Theorem (BFS element for $\mathcal{N}=1$ - Rate of convergence for the norm $L^2(\mathcal{Q}_T))$

Assume that the hypothesis (4) holds. Let h > 0, let $k \le 2$ be a positive integer. Let (y, λ) and (y_h, λ_h) be the solution of (7) and (28) respectively. If the solution (y, λ) belongs to $H^{k+2}(Q_T) \times H^k(Q_T)$, then there exists two positives constant $K = K(\|y\|_{H^{k+2}(Q_T)}, \|c\|_{C^{1}(Q_T)}, \|d\|_{L^{\infty}(Q_T)}, C_{\Omega,T}, C_{\text{obs}})$, independent of h, such that

Convergence rate in $L^2(Q_T)$

Precisely, we write that $(y - y_h)$ solves the hyperbolic equation

$$\begin{cases} L(y-y_h) = -Ly_h & \text{in } Q_T \\ ((y-y_h), (y-y_h)_t)(0) \in \mathbf{V} \\ y-y_h = 0 & \text{on } \Sigma_T. \end{cases}$$

The continuous dependance combined with the observability inequality applied to $(y-y_h)$ lead to

$$\|y-y_h\|_{L^2(Q_T)}^2 \leq C_{\Omega,T}(C_{obs}+1)(\|\partial_{\nu}(y-y_h)\|_{L^2(\Gamma_T)}^2 + \|Ly_h\|_{L^2(Q_T)}^2)$$

from which we deduce, in view of the definition of the norm Y, that

$$||y - y_h||_{L^2(Q_T)} \le C_{\Omega,T}(C_{obs} + 1) \max(1, \frac{2}{\sqrt{\eta}}) ||y - y_h||_{\mathcal{Z}}.$$
 (37)

Theorem (BFS element for N=1 - Rate of convergence for the norm $L^2(Q_T)$)

Assume that the hypothesis (4) holds. Let h>0, let $k\leq 2$ be a positive integer. Let (y,λ) and (y_h,λ_h) be the solution of (7) and (28) respectively. If the solution (y,λ) belongs to $H^{k+2}(Q_T)\times H^k(Q_T)$, then there exists two positives constant $K=K(\|y\|_{H^{k+2}(Q_T)},\|c\|_{C^1(\overline{Q_T})},\|d\|_{L^\infty(Q_T)},C_{\Omega,T},C_{obs})$, independent of h, such that

$$\|y - y_h\|_{L^2(Q_T)} \le K \max(1, \frac{2}{\sqrt{\eta}}) \left(1 + \frac{1}{\sqrt{\eta}\delta_h} + \frac{1}{\sqrt{\eta}}\right) h^k.$$
 (38)

Choice of r versus δ_h $(\eta = r)$

$$\delta_{h} = \inf \left\{ \sqrt{\delta} : B_{h} A_{r,h}^{-1} B_{h}^{T} \{ \lambda_{h} \} = \delta J_{h} \{ \lambda_{h} \}, \quad \forall \{ \lambda_{h} \} \in \mathbb{R}^{m_{h}} \setminus \{ 0 \} \right\}$$

$$\delta_{r,h} \approx C_{r} \frac{h}{\sqrt{r}} \quad \text{as} \quad h \to 0^{+}, \qquad C_{r} > 0$$

$$(40)$$

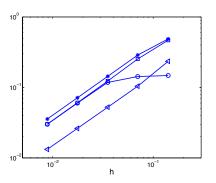


Figure: BFS finite element - Evolution of $\sqrt{r}\delta_{h,r}$ with respect to h for r=1 (\square), $r=10^{-2}$ (\circ), $r=h(\star)$ and $r=h^2$ (<).

Choice of r versus δ_h

$$\|y - y_h\|_{L^2(Q_T)} \le K \max(1, \frac{2}{\sqrt{r}}) \left(1 + \frac{1}{h} + \frac{1}{\sqrt{r}}\right) h^k.$$

The right hand side is minimal for r of the order one leading to $||y - y_h||_{L^2(Q_T)} \le Kh^{k-1}$.

$$|\lambda - \lambda_h||_{L^2(Q_T)} \le K_2 \frac{\sqrt{r}}{h} (1 + \frac{1}{h} + \frac{1}{\sqrt{r}}) h^k$$

The optimal value of the augmentation parameter is now $r=h^2$ leading to $\|\lambda-\lambda_h\|_{L^2(Q_T)}\leq K_2h^{k-1}$.

Choice of r versus δ_h

$$\|y - y_h\|_{L^2(Q_T)} \le K \max(1, \frac{2}{\sqrt{r}}) \left(1 + \frac{1}{h} + \frac{1}{\sqrt{r}}\right) h^k.$$

The right hand side is minimal for r of the order one leading to $\|y - y_h\|_{L^2(Q_T)} \le Kh^{k-1}$.

$$\|\lambda - \lambda_h\|_{L^2(Q_T)} \leq K_2 \frac{\sqrt{r}}{h} (1 + \frac{1}{h} + \frac{1}{\sqrt{r}}) h^k.$$

The optimal value of the augmentation parameter is now $r=h^2$ leading to $\|\lambda-\lambda_h\|_{L^2(Q_T)}\leq K_2h^{k-1}$.

$\alpha \in (0,1)$ - Stabilized mixed formulation

The problem (17) becomes : find $(y_h, \lambda_h) \in Z_h \times \Lambda_h$ solution of

$$\begin{cases}
a_{r,\alpha}(y_h, \overline{y}_h) + b_{\alpha}(\lambda_h, \overline{y}_h) &= l_{1,\alpha}(\overline{y}_h), & \forall \overline{y}_h \in Z_h \\
b_{\alpha}(\overline{\lambda}_h, y_h) - c_{\alpha}(\lambda_h, \overline{\lambda}_h) &= l_{2,\alpha}(\overline{\lambda}_h), & \forall \overline{\lambda}_h \in \widetilde{\Lambda}_h,
\end{cases}$$
(41)

$$\Lambda_h = \{ \lambda \in Z_h; \lambda(\cdot, 0) = \lambda_t(\cdot, 0) = 0 \}. \tag{42}$$

Proposition (BFS element for N = 1 - Rates of convergence - Stabilized mixed formulation)

Assume that the hypothesis (4) holds. Let h > 0, let $k \le 2$ be a positive integer. Let (y,λ) and (y_h,λ_h) be the solution of (7) and (28) respectively. If the solution (y,λ) belongs to $H^{k+2}(Q_T) \times H^k(Q_T)$, then there exists two positives constant $K = K(\|y\|_{H^{k+2}(Q_T)}, \|c\|_{C^1(\overline{Q_T})}, \|d\|_{L^\infty(Q_T)}, C_{\Omega,T}, C_{obs})$, independent of h, such that

$$||y - y_h||_{\mathcal{Z}} + ||\lambda - \lambda_h||_{\Lambda} \le Kh^k. \tag{43}$$

Recovering the solution and the source $\mu \in H^{-1}(\Omega)$

$$\begin{cases}
 a_r((y_h, \mu_h), (\overline{y}_h, \overline{\mu}_h)) + b(\overline{y}_h, \lambda_h) &= l(\overline{y}_h), & \forall (\overline{y}_h, \overline{\mu}_h) \in Y_h \\
 b((y_h, \mu_h), \overline{\lambda}_h) &= 0, & \forall \overline{\lambda}_h \in \Lambda_h.
\end{cases}$$
(44)

Theorem (BFS element for N = 1 - Rate of convergence for the $L^2(Q_T)$ -norm)

Let h>0, let $k,q\leq 2$ be two nonnegative integers. Let (y,λ) and (y_h,λ_h) be the solution of (26) and (44) respectively. If the solution $((y,\mu),\lambda)$ belongs to $H^{k+2}(Q_T)\times H^q(\Omega)\times H^k(Q_T)$, then there exists a positive constant

$$K = K(\|y\|_{H^{k+2}(Q_T)}, \|\mu\|_{H^k(\Omega)}, \|c\|_{C^1(\overline{Q_T})}, \|d\|_{L^\infty(Q_T)}),$$

independent of h, such that

$$||y - y_h||_{L^2(Q_T)} \le KC_{\Omega,T} (1 + ||\sigma||_{L^2(0,T)} \sqrt{C_{obs}}) \max(1, \frac{1}{\sqrt{\eta}}) \left[\left(1 + \frac{1}{\sqrt{\eta}\delta_h} + \frac{1}{\sqrt{\eta}} \right) h^k + \left(1 + \frac{1}{\sqrt{\eta}\delta_h} \right) (\Delta x)^q \right].$$
(45)

Numerical illustration - N = 1

(EX1)
$$y_0(x) = 1 - |2x - 1|, \quad y_1(x) = 1_{(1/3,2/3)}(x), \quad x \in (0,1)$$

in $H_0^1 \times L^2$ for which the Fourier coefficients are

$$a_k = \frac{4\sqrt{2}}{\pi^2 k^2} \sin(\pi k/2), \quad b_k = \frac{1}{\pi k} (\cos(\pi k/3) - \cos(2\pi k/3)), \quad k > 0$$

f= 0. T= 2 - The corresponding solution of (1) with $c\equiv$ 1, $d\equiv$ 0 is given by

$$y(x,t) = \sum_{k>0} \left(a_k \cos(k\pi t) + \frac{b_k}{k\pi} \sin(k\pi t) \right) \sqrt{2} \sin(k\pi x)$$

Example 1 - N = 1 - Observation on q_T

$$q_T = (0.1, 0.3) \times (0, T)$$

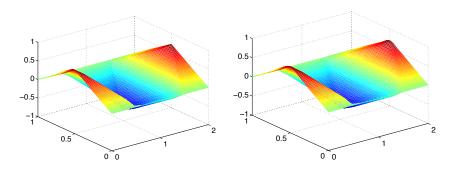
h	7.01×10^{-2}	3.53×10^{-2}	1.76×10^{-2}	8.83×10^{-3}	4.42×10^{-3}
$\frac{\ y-y_h\ _{L^2(Q_T)}}{\ y\ _{L^2(Q_T)}}$		4.81×10^{-2}	2.34×10^{-2}	1.15×10^{-2}	5.68×10^{-3}
$\frac{\ y - y_h\ _{L^2(q_T)}}{\ y\ _{L^2(q_T)}}$	1.34 × 10 ⁻¹	5.05×10^{-2}	2.37×10^{-2}	1.16×10^{-2}	5.80×10^{-3}
$\ Ly_h\ _{L^2(Q_T)}$	7.18×10^{-2}	6.59×10^{-2}	6.11×10^{-2}	5.55×10^{-2}	5.10×10^{-2}
$\ \lambda_h\ _{L^2(Q_T)}$	1.07×10^{-4}	4.70×10^{-5}	2.32×10^{-5}	1.15×10^{-5}	5.76×10^{-6}
# CG iterates	29	46	83	133	201

$$\frac{\|y - y_h\|_{L^2(Q_T)}}{\|y\|_{L^2(Q_T)}} = \mathcal{O}(h^{0.574}), \quad \frac{\|y - y_h\|_{L^2(q_T)}}{\|y\|_{L^2(q_T)}} = \mathcal{O}(h^{0.94}). \tag{46}$$

$$\|Ly_h\|_{L^2(Q_T)} = \mathcal{O}(h^{0.123}).$$
 (47)

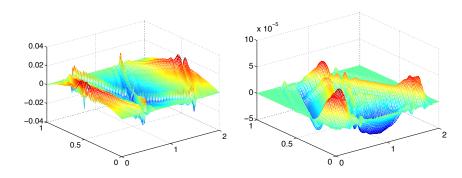
Enough to guarantee the convergence of y_h toward a solution of the wave equation: recall that then $\|Ly_h\|_{L^2(0,T;H^{-1}(0,1))}=\mathcal{O}(h^{1.123})$.

Example 1 - N = 1 - Observation on q_T



y and y_h in Q_T

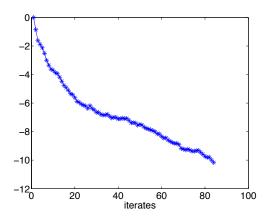
Example 2 - N = 1 - Observation on q_T



 $y - y_h$ and λ_h in Q_T

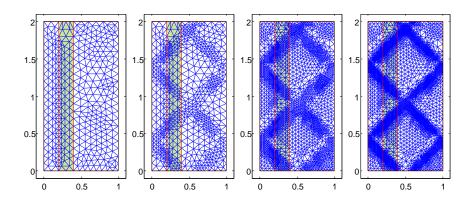
Example 1 - N = 1 - Observation on q_T - Minimization of J^{**}

h	7.01×10^{-2}	3.53×10^{-2}	1.76×10^{-2}	8.83×10^{-3}	4.42×10^{-3}
# CG iterates	29	46	83	133	201



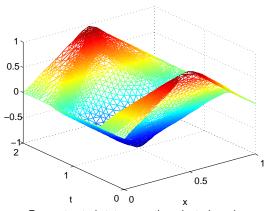
log₁₀ of the residus w.r.t. iterates

Example 1 - N = 1 - Mesh adaptation



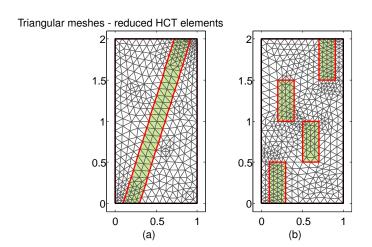
Iterative local refinement of the mesh according to the gradient of y_h

Example 1 - N = 1 - Mesh adaptation



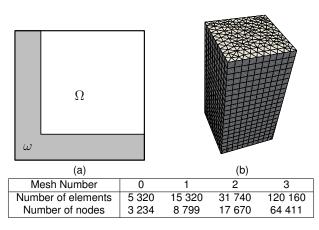
Reconstructed state y_h on the adapted mesh

Exemple 2 : N = 1 - Non cylindrical domain q_T



Domain q_T^1 (a) and domain q_T^2 (b) triangulated using some coarse meshes.

2D example: $\Omega = (0,1)^2$ - Observation on q_T



Characteristics of the three meshes associated with Q_T .

2*D* example: $\Omega = (0,1)^2$ - Observation on q_T

$$(y_0,y_1)\in H_0^1(\Omega)\times L^2(\Omega)$$
:

$$(\textbf{EX2-2D}) \quad \left\{ \begin{array}{l} y_0(x_1, x_2) = (1 - |2x_1 - 1|)(1 - |2x_2 - 1|) \\ y_1(x_1, x_2) = \mathbf{1}_{\left(\frac{1}{3}, \frac{2}{3}\right)^2}(x_1, x_2) \end{array} \right. \quad (48)$$

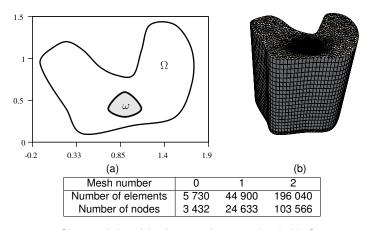
The Fourier coefficients of the corresponding solution are

$$\begin{aligned} a_{kl} &= \frac{2^5}{\pi^4 k^2 l^2} \sin \frac{\pi k}{2} \sin \frac{\pi l}{2} \\ b_{kl} &= \frac{1}{\pi^2 k l} \left(\cos \frac{\pi k}{3} - \cos \frac{2\pi k}{3} \right) \left(\cos \frac{\pi l}{3} - \cos \frac{2\pi l}{3} \right). \end{aligned}$$

Mesh number	0	1	2	3
$\frac{\ y - y_h\ _{L^2(Q_T)}}{\ y\ _{L^2(Q_T)}}$	4.74×10^{-2}	3.72×10^{-2}	2.4×10^{-2}	1.35×10^{-2}
$ Ly_h _{L^2(Q_T)}$	1.18	0.89	0.99	0.99
$\ \lambda_h\ _{L^2(Q_T)}$	3.21×10^{-5}	1.46×10^{-5}	1.02×10^{-5}	$3.56 imes 10^{-6}$

Table: Example **EX2–2D** – $r = h^2$

2D example - Observation on q_T



Characteristics of the three meshes associated with Q_T .

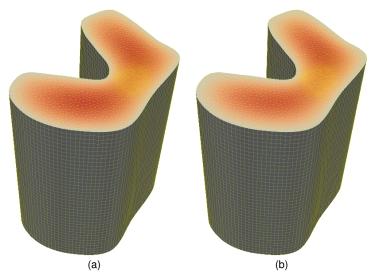
2D example - Observation on q_T

$$\begin{cases}
-\Delta y_0 = 10, & \text{in } \Omega \\
y_0 = 0, & \text{on } \partial \Omega,
\end{cases} y_1 = 0. \tag{49}$$

Mesh number	0	1	2
$\frac{\left\ \overline{y}_h - y_h\right\ _{L^2(Q_T)}}{\left\ \overline{y}_h\right\ _{L^2(Q_T)}}$	1.88×10^{-1}	8.04×10^{-2}	5.41×10^{-2}
$ Ly_h _{L^2(Q_T)}$	3.21	2.01	1.17
$\ \lambda_h\ _{L^2(Q_T)}$	8.26×10^{-5}	3.62×10^{-5}	2.24×10^{-5}

$$r=h^2-T=2$$

2D example - Observation on q_T



y and y_h in Q_T

Numerical illustration - N = 1 - Observation on Γ_T

$$f = 0 - T = 2$$

(**EX2**)
$$y_0(x) = 1 - |2x - 1|$$
, $y_1(x) = 1_{(1/3,2/3)}(x)$, $x \in (0,1)$

in $H_0^1 \times L^2$ for which the Fourier coefficients are

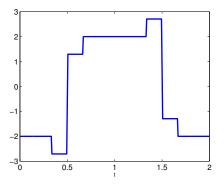


Figure: The observation $y_{\nu,obs}$ on $\{1\} \times (0,T)$ associated to initial data **EX1**.

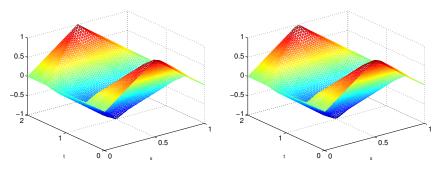
Numerical illustration - N = 1 - Observation on Γ_T

h	7.07×10^{-2}	3.53×10^{-2}	1.76×10^{-2}	8.83×10^{-3}	4.42×10^{-3}
$\frac{\ y - y_h\ _{L^2(Q_T)}}{\ y\ _{L^2(Q_T)}}$	1.63 × 10 ⁻²	6.63×10^{-3}	2.78×10^{-3}	1.29×10^{-3}	5.72×10^{-4}
$\frac{\ \partial_{\nu}(y-y_h)\ _{L^2(\Gamma_T)}^{\gamma}}{\ \partial_{\nu}y\ _{L^2(\Gamma_T)}}$	7.67×10^{-3}	4.95×10^{-3}	3.24×10^{-3}	2.16×10^{-3}	1.48 × 10 ⁻³
$ Ly_h _{L^2(Q_T)}$	0.937	1.204	1.496	1.798	2.135
$\ \lambda_h\ _{L^2(Q_T)}$	7.74×10^{-3}	3.74×10^{-3}	1.72×10^{-3}	7.90×10^{-4}	3.60×10^{-4}
$\operatorname{card}(\{\lambda_h\})$	861	3 321	13 041	51 681	205 761
# CG iterates	57	103	172	337	591

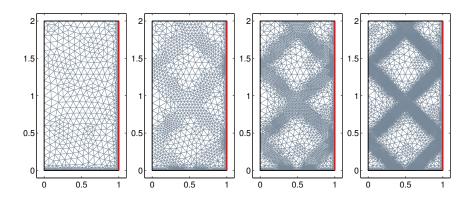
$$r = h^{2}: \frac{\|y - y_{h}\|_{L^{2}(\Omega_{T})}}{\|y\|_{L^{2}(\Omega_{T})}} = \mathcal{O}(h^{1.20}), \frac{\|\partial_{\nu}(y - y_{h})\|_{L^{2}(\Gamma_{T})}}{\|\partial_{\nu}y\|_{L^{2}(\Gamma_{T})}} = \mathcal{O}(h^{0.59}),$$

$$\|\lambda_{h}\|_{L^{2}(\Omega_{T})} = \mathcal{O}(h^{1.11}), \quad \|Ly_{h}\|_{L^{2}(\Omega_{T})} = \mathcal{O}(h^{-0.29}).$$
(50)

Example 2 - N=1 - Observation on $\Gamma_{\mathcal{T}}$



Example 2 - N = 1 - Mesh adaptation



Iterative local refinement of the mesh according to the gradient of y_h (reduced HCT element)

Example 2 - N = 2 - The stadium

T=3

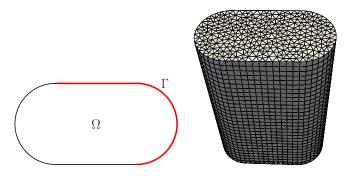


Figure: Bunimovich's stadium and the subset Γ of $\partial\Omega$ on which the observations are available. Example of mesh of the domain Q_T .

Example 2 - N = 2 - Recovering of the initial data

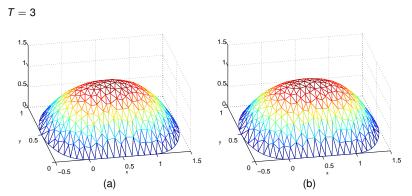


Figure: (a) Initial data y_0 given by (49). (b) Reconstructed initial data $y_h(\cdot,0)$.

N=1 - Reconstruction of y and μ from the boundary

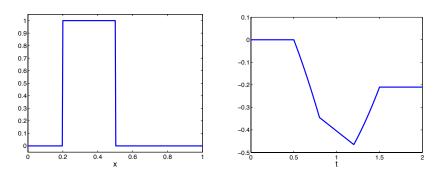
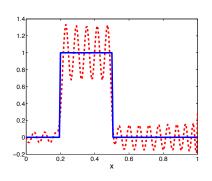


Figure: $\mu(x)$ and corresponding $\partial_{\nu} y|_{q_T} = y_x(1, t)$ on (0, T).

N=1 - Reconstruction of y and μ from the boundary

$$\Delta x = \Delta t = 1/160$$



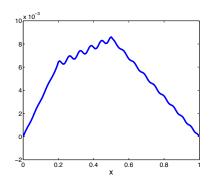


Figure: μ_h, μ

and

$$\frac{-\Delta^{-1}(\mu - \mu_h)}{\|-\Delta^{-1}(\mu)\|_{H_0^1}}$$

$$\frac{\|\mu-\mu_h\|_{H^{-1}(\Omega)}}{\|\mu\|_{H^{-1}(\Omega)}}\approx 7.18\times 10^{-2}, \qquad \|y-y_h\|_{L^2(Q_T)}\approx 8.68\times 10^{-4}$$

N = 1 - Reconstruction of y and μ from the boundary

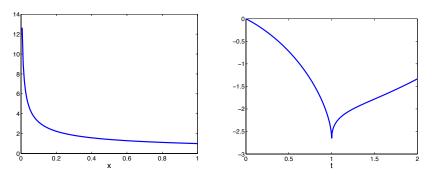
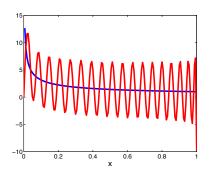


Figure: $\mu(x) = \frac{1}{\sqrt{x}}$ and corresponding $\partial_{\nu} y|_{q_T} = y_x(1,t)$ on (0,T).

N=1 - Reconstruction of y and μ from the boundary

$$\Delta x = \Delta t = \frac{1}{160}$$



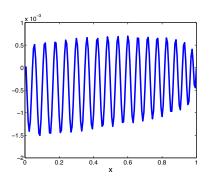


Figure: μ_h, μ

and

$$\frac{-\Delta^{-1}(\mu - \mu_h)}{\|-\Delta^{-1}(\mu)\|_{H_0^1}}.$$

$$\frac{\|\mu-\mu_h\|_{H^{-1}(\Omega)}}{\|\mu\|_{H^{-1}(\Omega)}}\approx 2.21\times 10^{-2}, \qquad \|y-y_h\|_{L^2(Q_T)}\approx 3.56\times 10^{-5}$$

N = 1 - Reconstruction of y and μ from the boundary

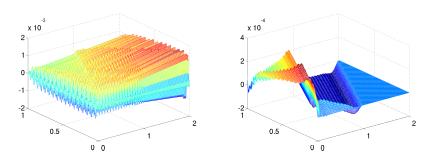


Figure: $y - y_h$ and λ_h

MIXED FORMULATION ALLOWS TO RECONSTRUCT SOLUTION AND SOURCE

DIRECT AND ROBUST METHOD - STRONG CONVERGENCE

NO NEED TO PROVE UNIFORM DISCRETE OBSERVABILITY ESTIMATE

$$||y(\cdot,0),y_{t}(\cdot,0)||_{H}^{2} \leq C_{obs} \left(||y||_{L^{2}(q_{T})}^{2} + ||Ly||_{X}^{2} \right), \quad \forall y \in Z$$

$$(\cdot,0),y_{h,t}(\cdot,0)||_{H}^{2} \leq C_{obs} \left(||y_{h}||_{L^{2}(q_{T})}^{2} + ||Ly_{h}||_{X}^{2} \right), \quad \forall y_{h} \in Z_{h} \subset Z_{h}$$

The minimization of $J_r^{**}(\lambda)$ is very robust and fast contrary to the minimization of $J(y_0,y_1)$ (inversion of symmetric definite positive and very sparse matrix with direct Cholesky solvers)

$$\|\rho(x,t)y\|_{L^{2}(Q_{T})}^{2} \leq C_{obs}\left(\|\rho_{1}(x,t)y\|_{L^{2}(Q_{T})}^{2} + \|\rho_{2}(x,t)Ly\|_{L^{2}(Q_{T})}^{2}\right), \quad \forall y \in Z$$

$$\mathcal{L}_{r}(y,\lambda) := \frac{1}{2}\|\rho_{1}(y-y_{obs})\|_{L^{2}(Q_{T})}^{2} + \frac{r}{2}\|\rho_{2}Ly\|_{L^{2}(Q_{T})}^{2} + \iint_{Q_{T}} \rho_{1}\lambda Ly$$

MIXED FORMULATION ALLOWS TO RECONSTRUCT SOLUTION AND SOURCE

DIRECT AND ROBUST METHOD - STRONG CONVERGENCE

NO NEED TO PROVE UNIFORM DISCRETE OBSERVABILITY ESTIMATE

$$||y(\cdot,0),y_{t}(\cdot,0)||_{H}^{2} \leq C_{obs}\left(||y||_{L^{2}(q_{T})}^{2} + ||Ly||_{X}^{2}\right), \quad \forall y \in Z$$

$$y_{h}(\cdot,0),y_{h,t}(\cdot,0)||_{H}^{2} \leq C_{obs}\left(||y_{h}||_{L^{2}(q_{T})}^{2} + ||Ly_{h}||_{X}^{2}\right), \quad \forall y_{h} \in Z_{h} \subset Z_{h}$$

The minimization of $J_r^{**}(\lambda)$ is very robust and fast contrary to the minimization of $J(y_0,y_1)$ (inversion of symmetric definite positive and very sparse matrix with direct Cholesky solvers)

$$\|\rho(x,t)y\|_{L^{2}(Q_{T})}^{2} \leq C_{obs}\left(\|\rho_{1}(x,t)y\|_{L^{2}(Q_{T})}^{2} + \|\rho_{2}(x,t)Ly\|_{L^{2}(Q_{T})}^{2}\right), \quad \forall y \in Z$$

$$\mathcal{L}_{r}(y,\lambda) := \frac{1}{2}\|\rho_{1}(y-y_{obs})\|_{L^{2}(Q_{T})}^{2} + \frac{r}{2}\|\rho_{2}Ly\|_{L^{2}(Q_{T})}^{2} + \iint_{Q_{T}} \rho_{1}\lambda Ly$$

MIXED FORMULATION ALLOWS TO RECONSTRUCT SOLUTION AND SOURCE

DIRECT AND ROBUST METHOD - STRONG CONVERGENCE

NO NEED TO PROVE UNIFORM DISCRETE OBSERVABILITY ESTIMATE

$$\begin{split} \|y(\cdot,0),y_{t}(\cdot,0)\|_{H}^{2} &\leq C_{obs}\bigg(\|y\|_{L^{2}(q_{T})}^{2} + \|Ly\|_{X}^{2}\bigg), \quad \forall y \in Z \\ \|y_{h}(\cdot,0),y_{h,t}(\cdot,0)\|_{H}^{2} &\leq C_{obs}\bigg(\|y_{h}\|_{L^{2}(q_{T})}^{2} + \|Ly_{h}\|_{X}^{2}\bigg), \quad \forall y_{h} \in Z_{h} \subset Z \end{split}$$

The minimization of $J_r^{**}(\lambda)$ is very robust and fast contrary to the minimization of $J(y_0,y_1)$ (inversion of symmetric definite positive and very sparse matrix with direct Cholesky solvers)

$$\|\rho(x,t)y\|_{L^{2}(Q_{T})}^{2} \leq C_{obs}\left(\|\rho_{1}(x,t)y\|_{L^{2}(Q_{T})}^{2} + \|\rho_{2}(x,t)Ly\|_{L^{2}(Q_{T})}^{2}\right), \quad \forall y \in Z$$

$$\mathcal{L}_{r}(y,\lambda) := \frac{1}{2}\|\rho_{1}(y-y_{obs})\|_{L^{2}(Q_{T})}^{2} + \frac{r}{2}\|\rho_{2}Ly\|_{L^{2}(Q_{T})}^{2} + \iint_{Q_{T}} \rho_{1}\lambda Ly$$

MIXED FORMULATION ALLOWS TO RECONSTRUCT SOLUTION AND SOURCE

DIRECT AND ROBUST METHOD - STRONG CONVERGENCE

NO NEED TO PROVE UNIFORM DISCRETE OBSERVABILITY ESTIMATE

$$\begin{split} \|y(\cdot,0),y_{t}(\cdot,0)\|_{H}^{2} &\leq C_{obs}\bigg(\|y\|_{L^{2}(q_{T})}^{2} + \|Ly\|_{X}^{2}\bigg), \quad \forall y \in Z \\ \|y_{h}(\cdot,0),y_{h,t}(\cdot,0)\|_{H}^{2} &\leq C_{obs}\bigg(\|y_{h}\|_{L^{2}(q_{T})}^{2} + \|Ly_{h}\|_{X}^{2}\bigg), \quad \forall y_{h} \in Z_{h} \subset Z \end{split}$$

The minimization of $J_r^{**}(\lambda)$ is very robust and fast contrary to the minimization of $J(y_0,y_1)$ (inversion of symmetric definite positive and very sparse matrix with direct Cholesky solvers)

$$\|\rho(x,t)y\|_{L^{2}(Q_{T})}^{2} \leq C_{obs}\left(\|\rho_{1}(x,t)y\|_{L^{2}(Q_{T})}^{2} + \|\rho_{2}(x,t)Ly\|_{L^{2}(Q_{T})}^{2}\right), \quad \forall y \in Z$$

$$\mathcal{L}_{r}(y,\lambda) := \frac{1}{2}\|\rho_{1}(y-y_{obs})\|_{L^{2}(Q_{T})}^{2} + \frac{r}{2}\|\rho_{2}Ly\|_{L^{2}(Q_{T})}^{2} + \iint_{Q_{T}} \rho_{1}\lambda Ly$$

MIXED FORMULATION ALLOWS TO RECONSTRUCT SOLUTION AND SOURCE

DIRECT AND ROBUST METHOD - STRONG CONVERGENCE

NO NEED TO PROVE UNIFORM DISCRETE OBSERVABILITY ESTIMATE

$$\begin{split} \|y(\cdot,0),y_{t}(\cdot,0)\|_{H}^{2} &\leq C_{obs}\bigg(\|y\|_{L^{2}(q_{T})}^{2} + \|Ly\|_{X}^{2}\bigg), \quad \forall y \in Z \\ \|y_{h}(\cdot,0),y_{h,t}(\cdot,0)\|_{H}^{2} &\leq C_{obs}\bigg(\|y_{h}\|_{L^{2}(q_{T})}^{2} + \|Ly_{h}\|_{X}^{2}\bigg), \quad \forall y_{h} \in Z_{h} \subset Z \end{split}$$

The minimization of $J_r^{**}(\lambda)$ is very robust and fast contrary to the minimization of $J(y_0,y_1)$ (inversion of symmetric definite positive and very sparse matrix with direct Cholesky solvers)

$$\|\rho(x,t)y\|_{L^{2}(Q_{T})}^{2} \leq C_{obs}\left(\|\rho_{1}(x,t)y\|_{L^{2}(Q_{T})}^{2} + \|\rho_{2}(x,t)Ly\|_{L^{2}(Q_{T})}^{2}\right), \quad \forall y \in Z$$

$$\mathcal{L}_{r}(y,\lambda) := \frac{1}{2}\|\rho_{1}(y-y_{obs})\|_{L^{2}(Q_{T})}^{2} + \frac{r}{2}\|\rho_{2}Ly\|_{L^{2}(Q_{T})}^{2} + \iint_{Q_{T}} \rho_{1}\lambda Ly$$

MIXED FORMULATION ALLOWS TO RECONSTRUCT SOLUTION AND SOURCE

DIRECT AND ROBUST METHOD - STRONG CONVERGENCE

NO NEED TO PROVE UNIFORM DISCRETE OBSERVABILITY ESTIMATE

$$\begin{split} \|y(\cdot,0),y_{t}(\cdot,0)\|_{H}^{2} &\leq C_{obs}\bigg(\|y\|_{L^{2}(q_{T})}^{2} + \|Ly\|_{X}^{2}\bigg), \quad \forall y \in Z \\ \|y_{h}(\cdot,0),y_{h,t}(\cdot,0)\|_{H}^{2} &\leq C_{obs}\bigg(\|y_{h}\|_{L^{2}(q_{T})}^{2} + \|Ly_{h}\|_{X}^{2}\bigg), \quad \forall y_{h} \in Z_{h} \subset Z \end{split}$$

The minimization of $J_r^{**}(\lambda)$ is very robust and fast contrary to the minimization of $J(y_0,y_1)$ (inversion of symmetric definite positive and very sparse matrix with direct Cholesky solvers)

$$\|\rho(x,t)y\|_{L^{2}(Q_{T})}^{2} \leq C_{obs}\left(\|\rho_{1}(x,t)y\|_{L^{2}(Q_{T})}^{2} + \|\rho_{2}(x,t)Ly\|_{L^{2}(Q_{T})}^{2}\right), \quad \forall y \in Z$$

$$\mathcal{L}_{r}(y,\lambda) := \frac{1}{2}\|\rho_{1}(y-y_{obs})\|_{L^{2}(Q_{T})}^{2} + \frac{r}{2}\|\rho_{2}Ly\|_{L^{2}(Q_{T})}^{2} + \iint_{Q_{T}} \rho_{1}\lambda Ly$$

Concluding remarks - The end

RECONSTRUCTION OF POTENTIAL, COEFFICIENTS

THANK YOU FOR YOUR ATTENTION

Concluding remarks - The end

RECONSTRUCTION OF POTENTIAL, COEFFICIENTS

THANK YOU FOR YOUR ATTENTION