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Problem statement

LetQ c RNV (N> 1)and T > 0.

{ Ly = yy — V- (c(x)Vy) +d(x,t)y = f, (x, )€ Qr:=Qx(0,T)
y=0, (x,t)elr:=00Qx (0, T) (1)
(y(’vo)vyf(’vo)) = (y07y1)y X eN.

ce C'(QR)) c(x) > ¢ >0inQ, d e L>(Qr), (Yo, 1) € H}(Q) x L2();
f e [2(Qr).
Letw Cc Qandgr:=w x (0, T) C Qr.

(IP)-Given an element yops € L2(qr), find y the solution of (1) such that
Y =VYobs in Qr.

From a "good" measurement y,ps On q7, we want to recover y solution of (1).

From the unique continuation property for (1), if g7 satisfies some geometric
conditions, then the state y corresponding to y,ps is unique.

Inverse problems for linear hyperbolic equation via mixed formula



Problem statement

LetQ c RNV (N> 1)and T > 0.

{ Ly = yy — V- (c(x)Vy) +d(x,t)y = f, (x, )€ Qr:=Qx(0,T)
y=0, (x,t)elr:=00Qx (0, T) (1)
(y(’vo)vyf(’vo)) = (y07y1)y X eN.

ce C'(QR)) c(x) > ¢ >0inQ, d e L>(Qr), (Yo, 1) € H}(Q) x L2();
f e [2(Qr).
Letw Cc Qandgr:=w x (0, T) C Qr.

(IP)-Given an element yops € L2(qr), find y the solution of (1) such that
Y =VYobs in Qr.

From a "good" measurement y,ps On q7, we want to recover y solution of (1).

From the unique continuation property for (1), if g7 satisfies some geometric
conditions, then the state y corresponding to y,ps is unique.

Objective - Find a convergent approximation of the solution
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Most natural approach: Least-squares method

The most natural (and widely used in practice) approach consists to introduce a
least-squares type technic, i.e. consider the extremal problem

L 1
minimize J(y0, 1) = 51 ~ YobollZaqy)
subject o (yo, 1) € HY(R) x L2(Q) x L2(Qr) @

where y solves (1)

(TP)

A minimizing sequence (o, 1) k>o0) is defined in term of the solution of an adjoint
problem.
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Most natural approach: Least-squares method

The most natural (and widely used in practice) approach consists to introduce a
least-squares type technic, i.e. consider the extremal problem

minimize J(Yo,y1) = §Hy _y‘”’sHi?(qr)

(ZP) subjectto (Yo, Y1) € H&(Q) x L2(Q) x L2(Qr) @)

where y solves (1)

A minimizing sequence (o, 1) k>o0) is defined in term of the solution of an adjoint
problem.

A difficulty, when one wants to prove the convergence of a discrete approximation : it is
not possible to minimize over a discrete subspace of {y; Ly — f = 0}: If dim(Y}) < oo,
{yn € Yy C Y:Ly,—f=0}is 0 orempty

The minimization procedure first requires the discretization of J and of the system (1);

This raises the issue of uniform coercivity property of the discrete functional with
respect to the approximation parameter h.
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Luenberger observers type approach

[Auroux-Blum 2005],[Chapelle,Cindea,Moireau,2012], [Ramdani-Tucsnak 2011], etc...

Define a dynamic

Ly = G(y0b57 qT) 7(7 0) fixed

such that
V() =y Dlingy =0 as t— o0

The reversibility of the wave equation then allows to recover y for any time.

But, for the same reasons, on a numerically point of view, this method requires to prove
uniform discrete observability properties.
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Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]

X, D Hilbert spaces - P : X — D, P linear continuous, Ker(P) = {0}
e>0.Forde D, findy € Yst Py =ad:

QR: method : for d € D, find y. € Y such that

(Pye, Py) +e(ye,y)y = (d,Py), VyeY

Here, d = (f, Yobs) - Py = (LY, Ya;)
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Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]

X, D Hilbert spaces - P : X — D, P linear continuous, Ker(P) = {0}
e>0.Forde D, findy € Yst Py =ad:

QR: method : for d € D, find y. € Y such that

(Pye, Py) +e(ye,y)y = (d,Py), VyeY

Here, d = (f, Yobs) - Py = (LY, Ya;)

_ £ 2
'e”;fszS()' fIILy fIILZQT LAY @)

@ A denotes a functional space which gives a meaning to the first term
@ ¢ > 0 a Tikhonov parameter which ensures the well-posedness

@ )y a subset of A involving the data of the problem (for instance the observation
Yobs ON gT, or some Cauchy data on the boundary).
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Main assumption: a generalized obs. inequality

Without loss of generality, f = 0
We consider the vectorial space Z defined by

Z:={y:y € C([0, T}, H(2)) n C'([0, T], L*()), Ly € L*(Qr)}- 4)

and then introduce the following hypothesis :

There exists a constant Cops = C(w, T, [|Cl| 51 @) ld|l L= (@)) such that the following
estimate holds :

) IO, XLZQ)<cobs(||yHLz(qT+||Ly||i2(or)), vy eZ. (5)

hold true if (w, T, Q) satisfies a geometric optic condition. "Any characteristic line
starting at the point x € Q at time ¢ = 0 and following the optical geometric laws when
reflecting at 9Q must meet q7".

[ cQ,T(cobsuzniz(q,) HO+ Con)lLzlygy ) VZEZ @
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Non cylindrical situation in 1D

[Castro-Cindea-Miinch, SICON 2014],
In 1D, the observability inequality also holds for non cylindrical domains.

Qr

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
T T r x

Time dependent domains qgr C Qr = Q2 x (0, T)

[Lebeau et al, 20xx] for N > 1
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Generalized Observability inequality: weaker hypothesis

Then, within this hypothesis, for any n > 0, we define on Z the bilinear form

vz= [[ yyadrn [[ wyae  yiz=Viyvz wyez
qar T
@)
(Z, | - 1) is a Hilbert space.
Then, we consider the following extremal problem :

H — 1 2
- { inf () = 311y = Yool 22 qr)
subjectto y € W:={y € Z; Ly =0 in [2(Qr)}

(P) is well posed : J is continuous over W, strictly convex and J(y) — +oo as
I¥llw — oo.

The solution of (P) in W does not depend on 7.

From (5), the solution y in Z of (P) satisfies (y(-,0), y:(-,0)) € H}(Q) x L3(R), so that
problem (P) is equivalent to the minimization of J w.r.t (yo, y1) € H}(Q) x L3(R) .
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Generalized Observability inequality: weaker hypothesis

Then, within this hypothesis, for any n > 0, we define on Z the bilinear form

vz= [[ yyadrn [[ wyae  yiz=Viyvz wyez
qar T
@)
(Z, | - 1) is a Hilbert space.
Then, we consider the following extremal problem :

- { 1) = 1Y~ Yobsllaqry + 51110y 720
subjectto y € W:={y € Z; Ly =0 in [2(Qr)}

(P) is well posed : J is continuous over W, strictly convex and J(y) — +oo as
Iyllw — oo.

The solution of (P) in W does not depend on 7.

From (5), the solution y in Z of (P) satisfies (y(-,0), y:(-,0)) € H}(Q) x L3(R), so that
problem (P) is equivalent to the minimization of J w.r.t (yo, y1) € H}(Q) x L3(R) .
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Direct approach

In order to solve (P), we have to deal with the constraint equality which appears W.
We introduce a Lagrange multiplier A € A := L?(Qr) and the following mixed
formulation: find (y, A) € Z x A solution of

by,N) = o, VX € A,
where
a:ZxZ—R, a7 ::/ y}7dxdt+r/ Ly L dxdt, ©)
ar Qr
b:ZxA—R, by, ::// ALy dxt, (10)
Qr

1:Z—-R, Iy) ::/ Yobs ¥ dxdt. (11)

ar

System (8) is nothing else than the optimality system corresponding to the extremal
problem (P).

Inverse problems for linear hyperbolic equation via mixed formula



Direct approach

Under the hypothesis (H),
@ The mixed formulation (8) is well-posed.

e The unique solution (y,\) € Z x A is the unique saddle-point of the Lagrangian
L :Z x N — R defined by

£(,0) = a(y,9) + by ) — ().

© We have the estimate

iylly = Hy”LQ(qT) < H.yObSHLZ(qT)z ”)‘”LZ(QT) <2y/Cqr1+ 77||}’obs||L2(qT)~
(12)
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Direct approach

The kernel N'(b) = {y € Z; b(y,A) =0 VX € A} coincides with W: we easily get
ar(y.y) =yl VyeN(®b) =W
It remains to check the inf-sup constant property : 35 > 0 such that

b(y, ) > (13)
Aenyez [yl zIIMIA

For any fixed A € A, we define y as the unique solution of
Ly =X in OT7 (}’(10)7}4(70)) = (070) on €, y=0on X7. (14)

We get b(y, A) = AR and [ly[1Z = Y1, , +nlMZ o

L2(qr)
The estimate Hy||L2(qT) < \/CQ,T||>\||L2(QT) implies that y € Z and that

b))

sup >
yez IWYlvlIAan = /Ca, 1t +1

leading to the result with § = (Cq 1 + n)~"/2.

>0
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Assuming enough regularity on the solution ), at the optimality, the Lagrange Multiplier

solves )
Lh=—(y— YObs)1qT7 A=0 in X7, (15)
A=X=0 onQx{0,T}.

A (defined in the weak sense) is a null controlled solution of the wave equation through
the control —(y — Yops) 1w-
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Assuming enough regularity on the solution ), at the optimality, the Lagrange Multiplier

solves )
{L)‘:(y}/obs)1qT7 A=0 in Xr,

(15)
A=X=0 onQx{0,T}.

A (defined in the weak sense) is a null controlled solution of the wave equation through
the control —(y — Yops) 1w

If yops is the restriction to g7 of a solution of (1), then A must vanish almost everywhere.
In that case, supycp infycy Lr(y, A) = inf,cy Lr(y,0) = inf,cy Jr(y) with
Jr(y) = *Hy }’obsHLz(QT ||L}’||L2 ) (16)

The corresponding variational formulation is then : find y € Z such that

a,(y,?):/ y?dxdt—&-r/o Ly Ly dxdt = I(y), Vye€Z.
ar T
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Assuming enough regularity on the solution ), at the optimality, the Lagrange Multiplier

solves )
{L)‘:(y}/obs)1qT7 A=0 in Xr,

(15)
A=X=0 onQx{0,T}.

A (defined in the weak sense) is a null controlled solution of the wave equation through
the control —(y — Yops) 1w

If yops is the restriction to g7 of a solution of (1), then A must vanish almost everywhere.

In that case, supycp infycy Lr(y, A) = inf,cy Lr(y,0) = inf,cy Jr(y) with

Jr(y) = *Hy }’obsHLz(QT ||L}’||L2 ) (16)

The corresponding variational formulation is then : find y € Z such that
a,(y,?):/ y?dxdt—&-r/ Ly Ly dxdt = I(y), Vye€Z.
ar Qr

= QR. method with Py = (v/rLy,y 14;), d = (0, Yobs), € = 0
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Stabilized mixed formulation

A= {Xx € C([0, T]; H{(2)) N C'([0, T]; L2(Q)), LX € L2(Qr), A(+,0) = X(+,0) = 0}.

sup inf Lro(y,)), a€(0,1)
AeAVEZ

«
Ll’,a(y7 )‘) = Lr(y, )‘)_E”L/\ + (y - }’obs)1w“i2(QT)'
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Stabilized mixed formulation

A= {Xx € C([0, T]; H{(2)) N C'([0, T]; L2(Q)), LX € L2(Qr), A(+,0) = X(+,0) = 0}.

sup inf Lro(y,)), a€(0,1)
AeAVEZ

6%
Ll’,a(y7 )‘) = Lr(y, )‘)_E”L/\ + (y - }’obs)1w“i2(QT)'
Find (¥, A) € Z x A such that

{ar,a(y,y)+ba(y,x> = ha®,  WyeY a7

ba(yv X) - Ca(Avx) IZ,Q(X)7 VX € K?

Gt ¥ XY oR aa(ny)=(1-a

V¥ dxat + / / Ly Ly dxat,
JJar JJar

ba: Y x A — R, ba(y,/\)::// ALydxdt—a/ y L dxet,
Qr ar

Ca :AXAN—R, ca(,\,i)::a// LA LX, dxdt
ar

Mot Y =B han) = (1= ) [[ ossy o,
Jar

bo i A—R, hao(\)=—a // Yobs L) axe.
ar

Inverse problems for linear hyperbolic equation via mixed formula



Stabilized mixed formulation

Under the hypothesis (H), for any o € (0, 1), the corresponding mixed formulation is
well-posed. The unique pair (y,\) in Z x A satisfies

1—-a)? ao?
B1ly113 + B2lIN2 < (u 4+

2
0, 6, ) ||YObS||L2(qT)‘ (18)

with 61 := min(1 = a,fn’1)792 = %mi” (a, C§1T>'
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Stabilized mixed formulation

Under the hypothesis (H), for any o € (0, 1), the corresponding mixed formulation is
well-posed. The unique pair (y,\) in Z x A satisfies

1 — a)? a?
6111y 12 + B2l AIE < (u Lo

2
0, 6, ) ||YObS||L2(qT)‘ (18)

with 64 = min(1 —a, rn*1),92 = S min (a, C§1T>.
If the solution (y, \) € Z x A of (8) enjoys the property X € A, then the solutions of (8)
and (17) coincide.

A\
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Remarks - Boundary measurement

The results apply if the distributed observation on gr is replaced by a Neumann
boundary observation on a sufficiently large subset X 1 of 9Q x (0, T) (i.e. assuming
9 — yons € L2(£7) is known on 7).

If (Qr, X7, T) satisfy some geometric condition, then there exists a positive constant
Cobs = C(w, T, lIcll ¢t (qy ldllLoo ()) such that

ay |I?
2
||}’(':0)7YI('70)||H(1)(Q)XL2(Q) < Cobs(' 9 2

L I, ) ez (19)

It suffices to re-define the form ain by a(y,y) := [fs g{ glyl dodx and the form / by
I(y) := ff):T Eyobs dodx forally,y € Z.
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Remarks - Connection with controllability

The mixed formulation has a structure very closed to the one we get when we address
- using the same approach - the null controllability of (1): the control of minimal
[2(qgr)-norm which drives to rest (yo, y1) € H}(Q) x L?(Q) is givenby v = ¢ 14,
where (¢, ) € ® x L2(0, T; H}(Q)) solves

{4%m+m%m = I®), VEEd (20)
b(p,\) = 0, VX € L2(0, T; H{(0,1)),

where
aioxo—R awe) = [[ olx0p(xndrat
ar

.
b:ox [2(0, T, H)(0,1)) = R, b(p,\) :/ <Lp Ay ot

| ,

1

[:¢ =R, l(@) =—-< L%7t('70)7y0 >H—1(O’1)’H(;(O’1) +/O 90('70)}/1 dx.

with & = {¢ € L?(g7), ¢ = 0 on X7 such that Ly € L2(0, T; H~'(0,1))}.
[Cindea - Fernandez-Cara - Miinch, COCV 2013] [Cindea- Miinch, Calcolo 2014]
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"Reversing the order of priority" between the constraint y — yops = 0 in L?(g7) and
Ly — f = 0in L2(Qr), a possibility could be to minimize the functional

.. L g2
minimize J(y) := ||Ly fHLZ(QT) @1)
subjecttoy € Z andto Yy — Yops =0 in  L2(gr)

via the introduction of a Lagrange multiplier in L2(g7).

The proof of the inf-sup property : there exists § > 0 such that

Mg, Ay dxat

inf up————— >
xet2(qr)yez Ml zgnllylly
of the corresponding mixed-formulation is however unclear.

This issue is solved by the introduction of a e-term in J: (Klibanov-Beilina 20xx).
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Dual of the mixed problem

Let A be the linear operator from L?(Qr) into L?(Qr) defined by

AX:=Ly, VYAel?(Qr) where yeZ solves ar(y,y)=b(y,\), VyeZ

For any r > 0, the operator A, is a strongly elliptic, symmetric isomorphism from
L2(Q7) into L2(Q7).
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Dual of the mixed problem

Let A be the linear operator from L?(Qr) into L?(Qr) defined by

AX:=Ly, VYAel?(Qr) where yeZ solves ar(y,y)=b(y,\), VyeZ

For any r > 0, the operator A, is a strongly elliptic, symmetric isomorphism from
L2(Q7) into L2(Q7).

sup inf L,(y,\)=— inf J*(A\) + Lr(%,0)
Ael2(Qr) V€2 AeL3(Qr)

where yo € Z solves ar(yo,y) = I(¥),Vy € Y and J;* : L2(Qr) — R defined by

1

VAR

(A, )Adx dt — b(yo, A)
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Recovering the solution and the source f

We assume again that () holds. We note Y := Z x L?(Qr) and define on Y the
bilinear form, forany e, > 0

(v, 1), 7. D)y ::/qudedt—&-n/QT(Ly—f)(L?—f) dxdt+s/ATf?dxdt, Y(y, ), (7
(22)
I Dlly ==V, 1), (¥, )y

Then, for any € > 0, we consider the following extremal problem :

) { 0o, 1) = 21— YorslZagary + 511 1Beqary
subjectto (y,f)e W:={(y,f)eY;Ly—f=0in LZ(QT)}

Ve > 0, (P:) is well posed.
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Recovering the solution and the source f

Find ((ye, f=), Ac) € Y x A solution of

a:((V=, ), 7. ) + b((V. 1), Ae) = 1y, 5), vy, f ey (23)
b((ye, £),X) = 0, VA €A,

where

a:YxY—R, a(yfh7hH) ::/ yydxdt+a/ ffoxdt,  (24)
qr Qr
b:YxA—R, by, )\ = // ALy — f) dxet, (25)
Qr

1Y —=R, l(yf):= / Yobs ¥ dxdt. (26)
ar

Theorem

Under the hypothesis (H), the mixed formulation (23) is well-posed and

1/2
1, )y = (Ielegq,y + lelPergy) < Wobsllizar) (27)

IXelliz(ap) < 24/ Ca, + nllYobslli2(qr) (28)

and




Recovering the solution and the source f

: b((y7 f)z)‘) : b((or)‘)r)‘) —-1/2
dc := inf sup > inf =(e+n) (29)
2en iy ney 1 DlvlIAIa — 2en (10, MllvIIAlla

@ ). is an exact controlled solution of the wave equation through the control
—(Ye = Yobs) 1w

Lxe = —(Ye — Yobs)1,,» €fe —Ae =0 in Qr,
Ae=0 in X7,
Ae =X =0 onQx{0, T}

Q@ |ly: = Yobslliz(q) — 0ase = 0= [l Xcll2q,) > 0ase —0
@ |VEL 2,y < Cbutnot [I£]2(q,
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Recovering the solution and the source f when the pair (y, f) is unique

F(x, 1) = o (t)u(x)
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Recovering the solution and the source f when the pair (y, f) is unique

= a(t)u(x)
,d(x, 1) = d(x) € LP(Q), o € C'([0, T]),(0) # 0, u € H~1(Q)

Y= {(y,w)iy € C([0, T], Ky ()NC' ([0, T1, LA()), 8y € L3(E7), Ly—op € L*(Or)}
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Recovering the solution and the source f when the pair (y, f) is unique

o (t)u(x)

f(1) =
=1, d(x, ) = d(x) € LP(Q), 0 € C'([0, T]),0(0) # 0, 1 € H~'(2)

8}’

Y= {(y,n)iy € C([0, T], Hy(2))NC' ([0, T, L3(Q)), == € L3(7), Ly—o p € L3(Qr)}

Using [Yamamoto-Zhang 2001}, if ¢ := 1, d(x,t) = d(x) and (X, T, Qr) satisfies the
geometric optic condition, then 3C > 0

2
ul|? < C
I HH (Hau

Hu—dwm

):W%MGYBW

L2(T7) L1((0,7),L2(22))
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Recovering the solution and the source f when the pair (y, f) is unique

o (t)u(x)

f(1) =
=1, d(x, ) = d(x) € LP(Q), 0 € C'([0, T]),0(0) # 0, 1 € H~'(2)

8}’

Y= {(y,n)iy € C([0, T], Hy(2))NC' ([0, T, L3(Q)), == € L3(7), Ly—o p € L3(Qr)}

Using [Yamamoto-Zhang 2001}, if ¢ := 1, d(x,t) = d(x) and (X, T, Qr) satisfies the
geometric optic condition, then 3C > 0

2
ul|? < C
I HH (Hau

Hu—dwm

):W%MGYBW

L2(T7) L1((0,7),L2(22))

2
+ ALy — o) dx dt
L2(z7) Qr

su inf L((y,u),\) = =||=— —
AGLZ(%T)(MU (s 1), 2) = 5
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Conformal approximation of the space-time variational framework

Let Y, and Ap, be two finite dimensional spaces parametrized by h such that
YoCY, ApCA, Vh>O0.

Find ((Ve,n, f-,n)s Ac,n) € Yh x Ap solution of

I
o

{ae,r((ys,h,fa,h),m,m))+b((y,,,fh>,xs) N R AR AR

b((ys,h:fs,h):xh) VX/, € Ap.
(31)
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Conformal approximation of the space-time variational framework

Let Y, and Ap, be two finite dimensional spaces parametrized by h such that
YaCY, AhCA,  Vh>O.

Find ((Ve,n, f-,n)s Ac,n) € Yh x Ap solution of

{ 8 (e o). O T+ BT T) A) = 1T Ta)e  Y(TpTn) € Yo

b((ys,h:fs,h):xh) = 0, VX/, € Ap.
(31)

@ a. , is coercive on Ny(b) C Y thanks to :

acr((y. 1), (v, 1) = (r/m)lly, OIF VY

Consequently, for any fixed h > 0, there exists a unique couple (. n, A< ») solution of
(31).
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Conformal approximation of the space-time variational framework

Let Y, and Ap, be two finite dimensional spaces parametrized by h such that
YoCY, ApCA, Vh>O0.

Find ((Ve,n, f-,n)s Ac,n) € Yh x Ap solution of

aeaf((ys,/hfa,h)7(?h7?h)) +b((?h7?h)7>\5) = I(yhv?h)7 V(7h7?h) € Yh
b((Ye,ns fen)s An) = 0, VAn € Ap.
(31)
@ a. , is coercive on Ny(b) C Y thanks to :
as,r (v, 1) (v, 1) = (r/ml (v, DIF VY
@ For any A\, fixed in Ay, taking y, = 0 and f, = A\, € Ay C Fp, we get
657}7 — inf b((yfh fh)vAh) 2 1/@ (32)

A€M (v tye Y |(Vhs T)ll v [ AnllA

Consequently, for any fixed h > 0, there exists a unique couple (. s, A< ») solution of
(31).
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First estimate

Let (ye, e, Ac) and (Ve n, fz .0y Ac,n) be the solution of (23) and (31) respectively. The
following hold :

10602 = G temlly < 2(14 /55 (e ). Y + %d(xa,/\h)

||>\a—>\s,h||/\<\/77+8<2+ n: d((ye, o), Yn)+3\/ " Zd(A, An),

where d()\g,/\h) = inf)\he/\h ||)\5 = /\h”/\ = ianhe/\h ||)\5 = /\h”Lz(OT) and

d((ye, £), Yp) := inf £) — (v F
(06 £), Yh) (ym;;w)eyhn(ys 2) = U )l

2 _ A2
(,meh)EY (”yE yhllLZ(QT)+8Hf5 thL2(QT)+

1/2
L = 1) = (= o))
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Let np = dim Yy, my = dim A, and let the real matrices A, , p € R, By € R™h ",
Jp € R™:Mh and L, € R™ be defined by

ac,r((Yn, ), (7> ) =(Acr.n({¥n}, {f}), ((Fn}s {Ta}))mn o
b((¥n ) An) =(Bra{yn} {An})rmn g
S et =(hand (nbm
.
1(Yn, Tn) ={Ln, ({¥ns T }))rrn s

for every (yu, f,), (¥n, fn) € Yy and for every Ap, A € Ap.
The problem (31) reads as follows : find {yp, fo} € R™ and {A\p} € R™ such that

AE,I’,I‘I sz— ) ( ({yh»fh} ) :( Lh ) 33
( Bh 0 RMh+Mp,np+mp {)\h} Rn+Mp 0 R +Mh ’ ( )

The matrix of order my + np, in (33) is symmetric but not positive definite.
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Choice of the space Yj and Ap

The space Y}, must be chosen such that Ly, € L?(Qy) for any y, € Yj. Thisis
guaranteed for instance as soon as y, possesses second-order derivatives in LIZOC(OT).
A conformal approximation based on standard triangulation of Qr is obtained with

spaces of functions continuously differentiable with respect to both x and t.

We introduce a triangulation 7, such that Qr = Uke T, K and we assume that {75} 10
is a regular family. We note h := max{diam(K), K € 7p}.
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Choice of the space Yj and Ap

The space Y}, must be chosen such that Ly, € L?(Qy) for any y, € Yj. Thisis
guaranteed for instance as soon as y, possesses second-order derivatives in LIZOC(OT).
A conformal approximation based on standard triangulation of Qr is obtained with

spaces of functions continuously differentiable with respect to both x and t.

We introduce a triangulation 7, such that Qr = Uke T, K and we assume that {75} 10
is a regular family. We note h := max{diam(K), K € 7p}.

We introduce the space @, as follows:

Zh={yn€Zec C'(Qr): zplxk €P(K) VK €T, zy=0o0n T1}
where P(K) denotes an appropriate space of polynomial functions in x and t. We
consider for P(K) the reduced Hsieh-Clough-Tocher C'-element ( Composite finite

element and involves as degrees of freedom the values of v, ©n x, @t ON the vertices
of each triangle K).
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Choice of the space Yj and Ap

The space Y}, must be chosen such that Ly, € L?(Qy) for any y, € Yj. Thisis

guaranteed for instance as soon as y, possesses second-order derivatives in LIZOC(OT).

A conformal approximation based on standard triangulation of Qr is obtained with
spaces of functions continuously differentiable with respect to both x and t.

We introduce a triangulation 7, such that Qr = Uke T, K and we assume that {75} 10
is a regular family. We note h := max{diam(K), K € 7p}.

We introduce the space @, as follows:

Zh={yn€Zec C'(Qr): zplxk €P(K) VK €T, zy=0o0n T1}
where P(K) denotes an appropriate space of polynomial functions in x and t. We
consider for P(K) the reduced Hsieh-Clough-Tocher C'-element ( Composite finite
element and involves as degrees of freedom the values of v, ©n x, @t ON the vertices
of each triangle K).
We also define the finite dimensional space

An = {xn € C%(Q1), Anlk € P1(K) VK € Tp}

For any h > 0, we have Y, := Z, x A, C Y and A, C L2(Q7).
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Convergence rate in Y

(BFS element for N = 1 - Rates of convergence for the norm Y)

Leth > 0 and an integer k < 2. Let (ye, -, Ac) and (Ve n, fz,n, Ac,n) be the solution of
(23) and (31) respectively. If (ye, f-) belongs to H*2(Qr) x H¥(Qr) and if A belongs
to HX(Qr), then there exists two positives constant K; = Ki(||y|| HK+2(Qp )

1l g (@py- Nll gt @’ l9lloo(0r)> €M), i = 1,2, independent of h, such that

(ye, =) = Ve, on)lly < KihK, A = Aenlla < Kah". (34)
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Convergence rate in L2(Qr)

We write that (y- — y. ») solves

L(yE - ys,h) = (fs - fs,h) + (fs,h - L}/s,h) in Qr

(Ve = Ye,n)s (Ve = Ye,n))(0) € H(Q) x L3(Q)
Ye—Yen=0 onkr.

Therefore using (6), there exists a constant C(Cq, 1, Cops) such that

1 1
lly= — y5h||L2(QT) < C(Cq,r, Cobs)\/émaX(L %7 %)”(ye’ fe) = Ve, ns o)l v
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Convergence rate in L2(Qr)

We write that (y- — y. ») solves

L(yE - ys,h) = (fs - fs,h) + (fs,h - Lys,h) in Qr
(Ve = ¥Ye,n)s (Ve = ¥e,n))(0) € H'(Q) x L3(R)
Ye—Yen=0 onkr.

Therefore using (6), there exists a constant C(Cq, 1, Cops) such that

4

15 = Yerliop) < C(Ca.r, Cops)VBmax(1, —=, —

e, ) = Ve fen)lly-

Theorem (BFS element for N = 1 - Rate of convergence in L?(Q7))

Assume that the hypothesis () holds. Let h > 0 and an integer k < 2. Let (y., f-, \c)
and (ye,n, f-.n, Ac,n) be the solution of (23) and (31) respectively. If (y, f-) belongs to
HK2(Qr) x HX(Q7) and if A belongs to HX(Q7), then there exists a positive
constant K = K(Hy||Hk+2(QT), ||f||Hk(QT): Hch(O—T), ll9ll oo (0r)> €M) independent of h,
such that

1 1
V= = Ye,nlli2(0.) < C(Ca,T, Cops) max(1, —, —)KH*, vh>0.  (35)
(Qr) 7

NG

<
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e=0,aa€(0,1)

The problem (17) becomes : find (yp, A\p) € Zp X A solution of

{ ar,a(Yn¥n) +ba(An,¥n) = ha(Vn) Yyh € Zn (36)
ba(An, ¥8) = Ca(AmAn) = ha(Xn), VAp € Ap,
An = {X € Zy; A(-,0) = A(-,0) = 0} (37)

(BFS element for N = 1 - Rates of convergence - Stabilized mixed

formulation)

Leth > 0, let k < 2 be a positive integer and let o € (0,1). Let (y, A) and (yn, An) be
the solution of (17) and (36) respectively. If (y, \) belongs to H*2(Qr) x H2(Q7),
then there exists a positive constant

K = K(||yHHk+2(QT), HCHC‘(CTT)’ ldll o= (@y)» @ I, m) independent of h, such that

Iy = ¥allz + lIx = Anllx < KHE. (38)
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Numerical illustration- N=1-¢=0

x) = 16x3(1 — x)?,
(EX1) Yox) ( X ) 5 , x € (0,1)
y1(x) = (8x — 4x°) 1(0,0.5)(X) + (4x° — 12x= +9x — 1) 1(0.5 1) (X),
and f = 0. The corresponding solution of (1) with ¢ = 1, d = 0 is given by
yx, ) =>" (ak cos(krt) + be sin(kwt)) V2sin(knx)
km
k>0
with
32/2(n2k2 — 12 48+/2sin(rk/2
ay = %((71%7 1), bx= # k > 0.
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Numerical illustration - N

T=2-r=H-w=(01,03)-BFS

h 7.01 x 1072  353x 102 1.76x10 2 883 x10 3 4.42x 103
Ty—=ypll, 2
—— O | 9551072 458x 1072 224x 1072  1.40x 1072 552 x 1073
"M2an,
ly=ynll, 2
@D | 835 x 1072 4.28x1072  216x 1072 1.09 x 1072 551 x 103

T 2(qr)
ILynll 2 562x 1073 321 x107% 1.78x107% 9.99x10*% 854x 10~*

Il 27y 267x1075 137x107% 689x10°% 344x107% 1.76x10°°
Ily = ynll,2 ly = ynll2
(Qr) . L=(q7) . 0.98
————TL =oh"®), ————— = 0" %®), Ml = OHF). (@39)
Iyl 20 iyl 2 T
(Qr) (ar)
The L2-norm of Ly}, do also converges to 0 with h, with a lower rate:
_ 0.71
ILynll 2gpy = O ). (40)
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Example 1 - N

r=h>-h=0.0125

y and y, in Qr
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Example 1 - N

Y—yn and Xp, in Qr
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Example 1 - N

r=~h?-h=0.0125

yx and (yx)p in Qr
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Example 1 - N

r=H-h=0.0125

y+ and (y)p in Qr
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Example 1 - N

r=h>-h=0.0125

Y« and (Yxt)n in Qr
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Example 1 - Minimization of J**

h 7.01 x 10~ 353x 102 1.76 x 102 883 x 10 5  4.42x 103
K 1.4 x 1070 4.6 x 1071 1.3 x 1013 4.2 x 1014 1.3 x 1018
card({\p}) 861 3321 13 041 51 681 205 761
# CG iterates 27 42 70 96 90
0 . . .
-2
-4
-6
-8
-10
—12 . . .
0 20 40 60 80
iterates

logyg of the residus w.r.t. iterates
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Example2 - N =1

(EX2) yo(x)=1—[2x = 1], y1(x) =11/3,2/3(x), x€(0,1)

in H} x L2 for which the Fourier coefficients are

ay = 4v2 sin(rk/2), bx = L(cos(7rk/3) —cos(2wk/3)), k>0
T2k2 wk
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Example2 - N =1

h 701 x 1072 353x10 2 1.76x 102 8.83x 10 ° 4.42x 10 3
y=ynll,2
Z RO 01 %1071 481 x 1072 234 x 1072 1.45x 1072 5.68 x 1073
W20,
ly=ynll, 2
— _TPED | y34x1077  5.05x1072 237x 1072  1.16x 10~2  5.80 x 10~3
T 2(qp)

Inll 2y | 718 % 1072 659 %1072  6.11x 1072  555x 1072  5.10 x 1072
Ixnll 2y 1.07 x 1074 470 x 1075 2.32x107%  1.15x 1075 576 x 1078
§ CG iterates 29 46 83 133 201

ILynll 2,y = O %), (a1)

Enough to guarantee the convergence of yj, toward a solution of the wave equation: recall (see Remark ??) that
then [ILynll 20 7.4—1(0,1y) = O "22).
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Example2 - N =1

in Qr
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Example2 - N =1

Yy—yn and Xp, in Qr
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Example2 - N =1

h [ 701 x1072  353x10°2 1.76 x 10°2 883 x 10°°  4.42x10_° |
[ 7 CG iterates | 29 6 83 133 201 ]

20 40 60 80 100
iterates

logy of the residus w.r.t. iterates
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Mesh adaptat

1

ﬁd =

Iterative local refinement of the mesh according to the gradient of y,

Example 2




Example 2 - N = 1 - Mesh adaptation

0.5
t 0 o0 X
Reconstruct state yh on the adapted mesh
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Non cylindrical domain qr

Triangular meshes - reduced HCT elements

2r WAAVAVAVAVATAA S 55 7] 2r 1
AY, NORK
D TAAVAVATAS 5
5
i
15 K 15 ]
. KPX .
N/
VAVAYANANV VY
XRRERS
L VA AN A\ i L 4
1 AV AVAVAVAVAYaY 1
ANAVAVA%Y
N
3
0.5 ] 0.5 ]
RS OV % N
o BRI | ol ]
0 0.5 1 0 0.5 1
(a) (b)

Domain q‘T (a) and domain q'jl (b) triangulated using some coarse meshes.
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2D example: Q = (0,1)?

(a)

(b)

Mesh Number 0 1 2 3
Number of elements | 5320 15320 31740 120160
Number of nodes 3234 8799 17 670 64 411

Characteristics of the three meshes associated with Q7.
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2D example: Q = (0,1)?

(Yo, y1) € H3(Q) x L3(Q):

Yo(x1,x2) = (1 —[2xs —1[)(1 — [2x2 — 1])
1

(EX2-2D) { yi(xi,x2) = (1 202(X1, Xe) (i, %) €. (42)

The Fourier coefficients of the corresponding solution are
25 ) .l
k22 2 2

1 wk 27k wl 27l
by = —— | cos — —cos — | (cos — —cos — | .
w2kl 3 3 3 3

ay =

Mesh number 0 1 2 3
Ty—=yall
ZUOMR@D | 474%1072  372x 102 24x10-2  1.35x 10-2
2@y
ILynll2(ar) 1.18 0.89 0.99 0.99
IAnllizop) | 8211075 1.46x 1075 1.02x10° 3.56 x 10-°

Table: Example EX2-2D — r = h?
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2D example

0.5

-0.2

T T T

0.33 0.85 1.4 1.9
(a) (b)
Mesh number 0 1 2
Number of elements | 5730 44900 196 040
Number of nodes 3432 24633 103566

Characteristics of the three meshes associated with Q7.
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2D example

—Ayp = 10, in Q
{ Yo :yOO on dQ y1=0 (43)

Mesh number 0 1 2

[Yh—=Ynll
o lizan |4 g8 %101 8.04x 102 541 x10-2

Wallzar)

ILyall2(ar) 3.21 2.01 1.17

IAnll2qp) | 826x107°  3.62x107° 2.24 x10°°

r=P-T=2
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2D example

y and y, in Qr

Inverse problems for linear hyperbolic equation via mixed formula



Concluding remarks

MIXED FORMULATION ALLOWS TO RECONSTRUCT SOLUTION AND SOURCE
DIRECT AND ROBUST METHOD - STRONG CONVERGENCE

THE MINIMIZATION OF J7*()) IS VERY ROBUST AND FAST CONTRARY TO THE
MINIMIZATION OF J(Yo, ¥1) (INVERSION OF SYMMETRIC DEFINITE POSITIVE AND VERY
SPARSE MATRIX WITH DIRECT CHOLESKY SOLVERS)

DIRECT APPROACH CAN BE USED FOR MANY OTHER OBSERVABLE SYSTEMS FOR
WHICH A GENERALIZED OBS. ESTIMATE IS AVAILABLE. IN PARTICULAR, HEAT, STOKES

1

r
£y ) = oy —Yor gy + ooy + [ ooty

(In progress with D. A. de Souza)

RECONSTRUCTION OF POTENTIAL, COEFFICIENTS
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