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Motivation of the present work

Related to the work [Relaxation of an optimal design problem for the heat equation, J. Math. Pures Appl. (2008)
AM-Pedregal-Periago] where the following optimal design problem is analyzed :

1 T
(P7) MinimizeinX € CD: Jr(X) = T / / K (x) Vu(t, x) - Vu(t, x) dxdt
0JQ

Q C RN, where the state variable u = u (t, x) is the solution of the system

{ B (x) U (t,x) —div (K(x) Vu(t,x)) = f(t,x)
u=0

in 0, T) x Q
on (0,T)x oQ (1)
u (0, x) = ug (x) in Q,

with

{ B(x) =X (x) By + (1 — X (X)) B2
K(x)=X () kily+ (1 — X (X)) kaly.

ki > 0 - thermal conductivity, 3; = p;cj (p; > 0 mass density - ¢; > 0 specific heat)

The design variable X indicates the region occupied by the material (31, k1) and is subjected to belong to the class
of classical designs CD defined as

cD = {x € L (2;{0,1}) : /QX(x)dx = Lm|}, )
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Goal of the work

= Study the asymptotic behavior as T — oo of the solution (67, K7) of the relaxed
problem (RP7)

Parabolic problem Elliptic problem
(PTXT> (Peo Xoc)
T — 400
Homadgenization Homogdnization
Relaxed parabolic problem Relaxed elliptic problem
(RPr, (01, K7)) (RPs, (0o0, K5.))
Laminate of rank< N T — +o0 Laminate of rank= 1

Figure: Commutation between Homogenization process and limit of the heat system
as T — 00?7?77

= We assume that X is time independent and use tools from Homogenization theory.
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o Overview of the relaxed formulation (RPt) and (RP)
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o Overview of the relaxed formulation (RPt) and (RP)

e H-convergence of optimal effective tensors K7 toward K2,

Q Structure of the optimal effective tensor K7 in term of sequential laminates

0 (Formal) Analysis of the micro-structure of K7 for T arbitrarily large (and small)
e Numerical experiments for N = 2

e A word about the open case where X is time-dependent.
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The relaxed formulation (RP7) (T fixed) - Overview

The relaxed formulation (RPr) involves the space of relaxed designs
RD — {(e, K*) € L ([0,1] x M3y (ki k2)) : K* (x) € Gy ae. x € 2, [60]],1(0) = L|Q|} ,

where M3, (k1, ko) is the space of real symmetric squared matrices M of order N
satisfying, forall ¢ € RN, ky |¢]2 < M¢-gand ks |€]2 < M~ ¢ - €.

For a given 6 € L™ (£; [0, 1]), the so-called Gy-closure is the set of all symmetric
matrices with eigenvalues A4, - - - , Ay satisfying

<N <AL, 1<j<N,

N 1 < 1 N—1
Z/:1 )‘j_k1 = )‘977K1 + A;—lﬁ’

N o1 o 14 N
2= k=X = k-2, | k=Aj’

-1
where A\, = (% + %) is the harmonic mean and A} = 0k; + (1 — 0) ko the

arithmetic mean of (kq, k2).
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The relaxed formulation (RP7) (T fixed) - Overview

(PARABOLIC CASE - AM-Pedregal-Periago, JMPA 2008)

The following problem

1 T
(RP7) Minimizein (6,K*) € RD: J3 (6,K*) = 7 / / K* (x) Vu(t, x) - Vu(t, x) dxat
JOo JQ

where u solves

{ B* (x) U (t,x) — div (K* (x) Vu(t,x)) =f(t,x) in (0,T) xQ
u=0 on (0,T)x 0 (3)
u (0, x) = up (x) inQ,

with 8* (x) = 6 (x) B1 + (1 — 6 (X)) B2 Is a relaxation of (P ) in the following sense:
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The relaxed formulation (RP7) (T fixed) - Ov

(PARABOLIC CASE - AM-Pedregal-Periago, JMPA 2008)

The following problem
* 1 T
(RP7) Minimizein (6,K*) € RD: JF (0,K*) = = / / K* (x) Vu(t, x) - Vu(t, x) dxdt
Jo Jqo

where u solves

X il
—0 on (0,T)x 8Q (3)

B* (x) U (t,x) — div (K* (x) Vu(t,x)) =f(t,x) in (0,T) xQ
Z(O,x) = up (x) in

with 8* (x) = 6 (x) B1 + (1 — 6 (X)) B2 Is a relaxation of (P ) in the following sense:
(i) there exists at least one minimizer for (RPt) in the space RD,

(i) up to a subsequence, every minimizing sequence of classical designs X converges, weak-x in
L®° (; [0, 1]) , to a relaxed density 6, and its associated sequence of tensors

Kn = Xnkyly + (1 — Xn) ko Iy

H—converges to an effective tensor K* such that (6, K*) is a minimizer for (RPt), and
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The relaxed formulation (RP7) (T fixed) - Ov

(PARABOLIC CASE - AM-Pedregal-Periago, JMPA 2008)

The following problem
* 1 T
(RP7) Minimizein (6,K*) € RD: JF (0,K*) = = / / K* (x) Vu(t, x) - Vu(t, x) dxdt
Jo Jqo
where u solves

B* (x) U (t,x) — div (K* (x) Vu(t,x)) =f(t,x) in (0,T) xQ
u=0 on (0,T)x 0 (3)
u (0, x) = ug (x) in  Q,
with 8* (x) = 6 (x) B1 + (1 — 6 (X)) B2 Is a relaxation of (P ) in the following sense:
(i) there exists at least one minimizer for (RPt) in the space RD,

(i) up to a subsequence, every minimizing sequence of classical designs X converges, weak-x in
L®° (; [0, 1]) , to a relaxed density 6, and its associated sequence of tensors

Kn = Xnkyly + (1 — Xn) ko Iy

H—converges to an effective tensor K* such that (6, K*) is a minimizer for (RPt), and
(iii) conversely, every relaxed minimizer (9, K *) € RD of (RPt) is attained by a minimizing sequence X, of

(Pt) in the sense that
{ Xp — 0 weak x inL> (Q),

Kn 2 K*.
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The limit (P,) of (Pr) as T — oo and its relaxation (RP,) - Overview

Assuming that the heat source f depends only on the space variable, the unique solution of (1) converges as
t— ocotou € H&(Q), solution of the stationary equation

{ —div (K(x) Vi (x)) =f(x) in Q @
u=0 on 99.

Associated with this PDE we consider the design problem

(Po) Minimizein X € CD: Joo(X) = / K(x)Vu(x) - Vu(x)dx.
JQ
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The limit (P,) of (Pr) as T — oo and its relaxation (RP,) - Overview

Assuming that the heat source f depends only on the space variable, the unique solution of (1) converges as
t— ocotou € H&(Q), solution of the stationary equation

{ —div (K(x) Vi (x)) =f(x) in Q @
u=0 on 99.

Associated with this PDE we consider the design problem

(Po) Minimizein X € CD: Joo(X) = / K(x)Vu(x) - Vu(x)dx.
JQ

(ELLIPTIC CASE)

Consider the following problem

(RP..) Minimizein (6,K*) € RD: Ji (0,K") :/ K* (x)VU(x) - V(x)dx
Q

whereu € Hg, (Q2) solves
—div (K*VU) =f in Q
u=0 on 9Q.

(RP) is a relaxation of (P~ ) is the sense of the previous theorem. Moreover, the optimal effective tensor for
(RP ) is obtained in the form of a first-order laminate in any direction orthogonal to Vu.
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Asymptotics of (07, K7) for T — oo

We assume henceforth that f € L2() is time independent and that uy € L2(Q).

Let {Th},cn be an increasing sequence of positive times converging to infinity. For
each Ty, problem (RP7,) has (at least) a minimizer (97,,, K;n> € RD.

Since (Hrn, K7*-n> is bounded in L*>° (Q; [0, 1] x M3, (K, kz)), up to subsequences still
labeled by n, we have

a n—oo

0r, — O weak-"inL>®(Q;[0,1])
L
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each Ty, problem (RP7,) has (at least) a minimizer (97,,, K;n> € RD.

Since (Hrn, K7*-n> is bounded in L*>° (Q; [0, 1] x M3, (K, kz)), up to subsequences still
labeled by n, we have

a n—oo

0r, — O weak-"inL>®(Q;[0,1])
L

(Allaire-AM-Periago)

If (OTH, K;n) is an optimal solution of (RPz,), then any weak limit (GTOQ , K;OO) ofa
converging subsequence of (0,, K7*-n) is an optimal solution of (RPw).
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Asymptotics of (01, K7) for T — oo: a lemma

Let up be the solution of

B (x) ul (t, x) — div <K7*.n (X) Vun (t, x)) =f(x) in (0,00) x Q
Un=0 on (0,00) x 6Q ©)
un (0, x) = up (x) in  Q,

with 85 (x) = 07, (x) B1 + (1 — 07, (x)) B2. Then,

nimoo %n /OTH/Q KT, (x) Vun (8, x)-Vup (t, x) dxdt = /Q K7, (X) Voo (X)- VU (X) c(;:),

where Too (X) € H} (Q) is the solution of

Uso =0 on 0N.

{ — div (K;w(x)vuw(x)) =f(x) in Q @)
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Convergence of I — 0as T, — oo

We decompose
Tn

%/ /K?—n (X) Vun (8, x)-Vun (1, X) dxdt—/ K3 (X) Voo (X)-Vloo (x) dx = I]+15

nJo JQ Q

where

Tn
= l/ Kz, Vun (t,x) - Vun (¢, X) dxdtf/ K3, Vn (x) - Viip (x) dx
Th o Ja " Q "

Iy = / K7, Vn (x) - Viin (x) dx — / K3 (X) Voo (X) - Voo (x) 0.
Q Q
where up, solves
—div (Kevun) =f in @ ®
up=0 on 09Q.
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Convergence of I — 0as T, — oo

We decompose

1 [T

= / / K (%) Vn (1, %)Vt (t, X) oxdlt— / Ki_ (%) Voo (X)-Vliao (x) d¥ = 1+1f
nJo Q Q

where

Tn
= l/ K7 Vun (t,x) - Vun (t, x) dxdt 7/ K7 VU (x) - VUn (x) dx
ThJo Ja " Q "

- /Q K VTin (x) - VIn (x) dx — /ﬂ Ki_ (X) Voo (X) - Voo () di.

where up solves
(oo
To show that /7 — 0, we prove that there exist Cy, C> > 0, independent of n, such that

[un (1) = Tnll2(q) < Cre~ %!, t>0, (9)
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Convergence of I — 0as T, — oo

We decompose

1 [T

= / / K (%) Vn (1, %)Vt (t, X) oxdlt— / Ki_ (%) Voo (X)-Vliao (x) d¥ = 1+1f
nJo Q Q

where

Tn
= l/ K7 Vun (t,x) - Vun (t, x) dxdt 7/ K7 VU (x) - VUn (x) dx
ThJo Ja " Q "

- /Q K VTin (x) - VIn (x) dx — /ﬂ Ki_ (X) Voo (X) - Voo () di.
where up solves
(oo
To show that /7 — 0, we prove that there exist Cy, C> > 0, independent of n, such that

[un (1) = Tnll2(q) < Cre~ %!, t>0, (9)

The function v, (t, x) = un (t, x) — Un (x) solves

B (x) Vi) (t, x) — div (K;:n (x)an(t,x)) =0 in (0,00)xQ
vn=0 on (0,00) x 9
vn (0,x) = up (X) — Un (x) in Q.
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Convergence of I — 0as T, — oo

Using the Fourier method,

2
wk wk| dx =1

> K 2 .
(=3 de 00, cher@. [, = [0
k=1 5

— div (K;nvw,’g) =MBEok in Q
wk=0 on 99,

with 0 < /\}, < A2 < X3 < - its associated eigenvalues, and

= [ 5100w ()~ Tn () () I, kene
Q
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Convergence of I — 0as T, — oo

Using the Fourier method,

2
wk wk| dx =1

> K 2 .
(=3 de 00, cher@. [, = [0
k=1 5

— div (K;nvw,’g) =MBEok in Q
wk=0 on 99,
with 0 < /\}, < A2 < X3 < - its associated eigenvalues, and

= [ 500 (w0 (0~ Tn () () . kome

Using that 8y < 8 (x) a.e. x € Q and Parseval’s identity, we have

> _oyk
B lIva (D22 < ”"”“)Hfgqm =3 e 2t .
k=1

2 oy _

ai| < e P ju— Tl g
A EH
Since K. SK: and 0 < By < B (x) < B ae. x € Q, the term ||ug — Tl @ s
uniformly bounded. Moreover, the uniform ellipticity of the sequence of tensors K7*-’1

lead to
Jo K7, Ve Ve K JaVe-Ve _ ki
> — | = = — )\,

2 - 2 -
erooeh el g B2 o0, 0ehy ol B2

n
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Asymptotics of (01, K7) for T — oo: a lemma

Using the weak form of (8), and multiplying the heat equation in system (5) by un (t, x)
and integrating by parts,

—‘3

/ﬂn U5 (x) — U3 (Tn, x) dx+—/ /f (un (t, x) — TUn(x)) dxdt.

By (9) and the boundedness of |[Unl| 2(q) , the first term in the right-hand side of this
expression converges to zero as T, — oo. Using once again (9) and the
Cauchy-Schwartz inequality,

1 Tn _ 1 Tn _
= [0 wn 0 ~Tn)d| < Ml 7 [ 10 (0) = Tnlley o
ThJo Ja Th Jo
LG —Cot
< Wl 7 [, Cre Gt

— 0 as Th— oo.
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Asymptotics of (67, K7) for T — oo: proof of the Theorem

Assume that (GTOC , K;OO) is not a solution of (RP;). Then, there exists another
(@, R*) € RD and ¢ > 0 such that

/ K (X) Voo (X) - Voo () dx = / R* (x) VU (x) - VI (x) dx + &,
Q Q

where U (x) is the solution of the elliptic equation with conductivity K*. By (6), there
exists ny € N such that for all n > ng

Tn
l/ /Kf (x)Vun(t,x)-Vun(t,x)dx>/K? (X) Voo (X) - Voo (x)dx—f.
TnJo Ja " a 3
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Asymptotics of (67, K7) for T — oo: proof of the Theorem

Assume that (GTOC , K;OO) is not a solution of (RP;). Then, there exists another

(@, R*) € RD and ¢ > 0 such that
/ K (X) Voo (X) - Voo () dx = / R* (X) VI (x) - VT (x) dx + <,
Q Q

where U (x) is the solution of the elliptic equation with conductivity K*. By (6), there
exists ny € N such that for all n > ng

Tn
%7 /0 /QK;H (X)Vun(t,x) - Vun (t,x)dx > /Q KT, (X) Voo (X) - VU (X) dx — %

Now let u (t, x) solve
Br () (tx) —div (R () Vu(t,x) =f(x) in  (0,T)xQ
u=0 on (0,T)x 90
u(0,x) = up (x) in  Q

with 3* (x) = 0 (x) B + (1 - §(x)> B». Then, multiplying this equation by u(t, x) and
integrating by parts, we get the convergence

Tnpr P ~
l/ K*(x)Vu(t,x)~Vu(t,x)dxdt—>/K* (X) VU (x)-VU(x)dx asn— oo.
Th Jo Ja Q
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Asymptotics of (67, K7) for T — oo: proof of the Theorem

Therefore, there exists ny € N such that for all n > ny

%/OT’X)R*(X)VU(I‘,X)-VU(Z,X)dth</QR*(X)VH(x).Vﬂ(X)dX_;'_%.
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Asymptotics of (67, K7) for T — oo: proof of the Theorem

Therefore, there exists ny € N such that for all n > ny
1 LIPS ~ ~ ~ €
7/ / R* (x) Vu (t,x) - Vu (t, x) dxdt < / R* (x) VI (x) - VT (x) dx + =
Tn Jo Ja Q 3
Hence, for n > max (ng, ny) we have

%/OT"/Q K* (x)Vu(t,x)-Vu(t,x) dxdt</Qf<* (x) VU (x) - VU (x) dx+%

:/ K (x) Voo (X) - Voo (X) dX — & + %
Q
]

Ta
<—/ /K7*— (X) Vun (1, X) - Vun (1, x) dxdt — =
ThJo Ja " 3

which contradicts the fact that (97n, K7*-n> is an optimal solution of (RP7,)). |
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Parabolic problem Elliptic problem
(P'IWX/> (POO:XOC)
T — 400
Homadgenization Homogdnization
Relaxed parabolic problem Relaxed elliptic problem
(RPr, (07, K7)) (RPx, (0, K5.))
T — +o0

Laminate of rank< N Laminate of rank= 1

Figure: Commutation between Homogenization process and limit of the heat system
as T — 00?7?77

What about the structure of the optimal effective tensor K7 and its behavior w.rt. T ?
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Optimality conditions for (RPr)

_ T
T3 (0,K*) = 1// K*Vu-Vudxdt+l/0(x)dx. (10)
T JoJa Q

The objective function J7 (6, K*) is Gateaux differentiable on the space of admissible
relaxed designs RD and

T T

57;(9,/«):/ lfz(ngm)l/ o pdt| 50 dx+1//6K*Vu-(2Vp+Vu) dxdit
Q T Jo T Jo Ja

(11)

where 66 and §K* are admissible increments in RD and p the solution of the adjoint
equation

—p*p’ — div(K*Vp) = div(K*Vu) in (0,T)xQ
p=0 on (0,T)x 0Q (12)
p(T)=0 in Q.

Consequently, if (0, K*) is a minimizer of the function TT, it must satisfy

5J7(6, K*) > 0 for any admissible increments 66, SK*.
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Let (0, K*) € RD satisfy the optimality condition 67’}(9, K*) > 0. For any fixed T > 0,
we introduce the symmetric matrix of order N

1 T
MT:—?/ Vu® (2Vp+ Vu) dt (13)
0
where ® denotes the symmetrized tensor product of two vectors, with entries

1T -
(Mr); = 75/0 (Vo) @Vp+ Vi), + (Vu), (2Vp + V)| o, 1<ij<N

where u and p are its associated state and adjoint state, respectively.
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Let (0, K*) € RD satisfy the optimality condition 6JT(9 K*) > 0. For any fixed T > 0,
we introduce the symmetric matrix of order N

1 T
MT:—?/ YU (2Vp + Vu) dt (13)
0
where ® denotes the symmetrized tensor product of two vectors, with entries
1 v .
(Mr); = 75/0 (Vo) @Vp+ Vi), + (Vu), (2Vp + V)| o, 1<ij<N

where u and p are its associated state and adjoint state, respectively.

If (f, up) € (L3(2))?, then u € L2(0, T; H1(£2)) N C°(0, T; L3(Q)) and then
p € L2(0, T; H}(Q)). This implies that My & L1(Q).
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Characterization of the effective optimal tensor K7 in term of sequential

laminates

(ORDER OF LAMINATION)

Let (07, K7*—) be a minimizer of .7’} and let u and p be its associated state and adjoint state, respectively.
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Characterization of the effective optimal tensor K7 in term of sequential

laminates

(ORDER OF LAMINATION)

Let (07, K7*—) be a minimizer of .7’} and let u and p be its associated state and adjoint state, respectively.

o (07, K7 ) satisfies the following characterization

Kf:Mr= max K°:M; ae xecQ
K0eGy,

where Mt € (! (2 RNXN ) is given by (13) and : the full contraction of two matrices.
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Characterization of the effective optimal tensor K7 in term of sequential

laminates

(ORDER OF LAMINATION)

Let (07, K7*—) be a minimizer of .7’} and let u and p be its associated state and adjoint state, respectively.

o (07, K7 ) satisfies the following characterization

Kf:Mr= max K°:M; ae xecQ
K0eGy,

where Mt € (! (2 RNXN ) is given by (13) and : the full contraction of two matrices.

e K7 is a tensor corresponding to a sequential laminate of rank at most N with lamination directions given by
the eigenvectors of M.
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Characterization of the effective optimal tensor K7 in term of sequential

laminates

(ORDER OF LAMINATION)

Let (67, K%) be a minimizer of J7 and let u and p be its associated state and adjoint state, respectively.
LERAYE T

o (07, K7 ) satisfies the following characterization

Kf:Mr= max K°:M; ae xecQ
K0eGy,

where Mt € (! (2 RNXN ) is given by (13) and : the full contraction of two matrices.
K7 is a tensor corresponding to a sequential laminate of rank at most N with lamination directions given by
the eigenvectors of M.

e The function
o — (67, Mr) =  max KO : My

KOGy
is C' ([0, 1]) and the optimal density 61 satisfies
01 (x) =0 ifandonlyif ~ Qr (x) > 0
0r (x) =1 ifandonlyif  Qr (x) < 0 (14)
0<6r(x) <1 if Qr(x)=0

and Q7 (x) = 0if0 < 07 (x) < 1, where Q7 is given by
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The case where x € Q is such that My (x) #0

We fix 6 and consider the path K3 (s) = sK° + (1 — s) K¥ forany K € G, 0 < s < 1
and for K3 an optimal tensor for (RP 7). Consequently, 56 = 0 and 6K = KO — K7.
The optimality condition §J7 (8, Kx) > 0 implies that

/K;:MrdxszO:Mde VKO € Gy. (16)
Q Q
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The case where x € Q is such that My (x) #0

We fix 6 and consider the path K3 (s) = sK° + (1 — s) K¥ forany K € G, 0 < s < 1
and for K3 an optimal tensor for (RP 7). Consequently, 56 = 0 and 6K = KO — K7.
The optimality condition §J7 (8, Kx) > 0 implies that

/K;:MrdxszO:Mde VKO € Gy. (16)
Q Q

Since Mr is well-defined and it belongs to L' (Q), we may therefore apply the
Localization principle to conclude that (16) is equivalent a.e. x € Q to the following
characterization of the optimal tensor K7

K% :Mr= max K°: My, ae xeQ. (17)
KOGy
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The case where x € Q is such that My (x) #0

We fix 6 and consider the path K3 (s) = sK° + (1 — s) K¥ forany K € G, 0 < s < 1
and for K3 an optimal tensor for (RP 7). Consequently, 56 = 0 and 6K = KO — K7.
The optimality condition §J7 (8, Kx) > 0 implies that

/K;:MrdxszO:Mde VKO € Gy. (16)
Q Q

Since Mr is well-defined and it belongs to L' (Q), we may therefore apply the
Localization principle to conclude that (16) is equivalent a.e. x € Q to the following
characterization of the optimal tensor K7

K% :Mr= max K°: My, ae xeQ. (17)
KOGy

It is known that the optimal tensor K7 of (17) must be simultaneously diagonalizable
with Mr. Consequently, if (e,»)1<j<N is a basis of eigenvectors of My with associated

eigenvalues (M)1</<N , then (17) transforms into

N

Kt :Mr = (Amix > Nwi, (Aigjen € o(K°),K° € Gy
j)€Go =4
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The case where x € Q is such that My (x) #0

N
Ki:Mr= max > Npj, (A)i<jen € o(K®),K® € Gy (18)
(A)eto 15
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The case where x € Q is such that My (x) #0

N
Ki:Mr= max > Npj, (A)i<jen € o(K®),K® € Gy (18)
(Aj)eGo =
Assume that x € Q is such that M7 (x) # 0. Since the cost function in (18) is linear and
the set Gy convex, the solution belongs to the boundary of Gy. This implies that K7
corresponds to a sequential laminate of rank at most N with lamination directions given
by the eigenvectors of Mr.
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The case where x € Q is such that My (x) #0

N
Ki:Mr= max > Npj, (A)i<jen € o(K®),K® € Gy (18)
(Aj)eGo =
Assume that x € Q is such that M7 (x) # 0. Since the cost function in (18) is linear and
the set Gy convex, the solution belongs to the boundary of Gy. This implies that K7
corresponds to a sequential laminate of rank at most N with lamination directions given
by the eigenvectors of Mr.
Assume that x € Q is such that Mr(x) = 0. one can not conclude directly from the
relation (18) which degenerates. However, in that case and in dimension N = 2, the
optimal tensor K € Gy may be replaced by a tensor which belongs to the boundary of
G without changing the value of the objective function. Indeed, assume that K7
belongs to the interior of Gy
1 1 1 1

—(0) =
)\17k1+)\27k1<g() )\7(9)7K1+)\+(0)7k1

and that | | | |
() = .
k2—>\1 * kg—)\z <9 ( )_ kg—)\f(e) + kg—)d’(@)
Since the continuous function g~ is strictly increasing and satisfies
g (0) =2/(ko — k1) < (M — k1)~ 4+ (A2 — k1)1, there exists 6~ € (0, §) such that
1 1
=g (67).
o v A )
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The case where x € Q is such that My (x) =0

Similarly, since the continuous function g is strictly decreasing and satisfies
gt(1) =2/(ke — ki) < (ko — M)~ + (ko — X2) 1, there exists 6+ € (6, 1) such that

1 1
)
Py il v M G

Consequently, at the point x where Mr(x) = 0, we may consider the composite with
materials ky and k in proportions 6~ and (1 — 67), respectively, or the composite with
materials ky and k in proportions 1 — 6% and 6. Notice that this choice allows us to
ensure that the volume constraint |0]| 1oy = L|€| holds. In both cases, the

eigenvalues \q, A2 of K7 remain unchanged and so the value of the cost 7’}.
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Structure of the matrix Mr as T — oo for N = 2 (Formal analysis)

Lemma

For any T, we note by ], uJ, u] < uJ the eigenvalues of the matrix My of order
N = 2 defined by (13). The solution of the linear problem

max K°: My = max V1T,u1T + V2T,uér is given by
KOGy, (] v])€Go,

(=)
(A;r — k)T + (Ap, — k2) \/7\/7

if ,u,;r >0 and ,u,1T(k2 — )\9_7_) > ;L;(kg - Agr)[Sec()nd order laminate)

(v, v]) = (ke, ka) +

D) = Gl + VT ( )
V k) V 2
1572 1, "1 ()\+ — k)~ 1+(>\ —k1) 1 [ /_M2
if ul <0 and = ()\(;T — K1) </t ()\;T — Kq)[Second order laminafe]

(v1 ,V2) ()\_ A T) else.[First order laminate]

(19)
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Structure of the matrix Mr as T — oo for N = 2 (Formal analysis)

For any T fixed, we consider the normalized eigenfunctions (w,})n=0 and
corresponding eigenvalues (A]) o of

—div (Kfvw]l) = Algsw]  inQ,
wl =0 on 02

where K7 is the optimal tensor for (RPr). Since K7 € 0Gy,, V1T, V2T are uniformly

bounded with respect to T as well as {\[,}m and ( wh)mso in HI(S).
Assume that the source f and the initial datum vy are expanded as follows:

= Z fnCWI;(X)v Z ame X ’ {aL}m>O» {fn-l';}m>0 € IZ(N)z
m>0 m>0 (20)
X) = ap(wh(x), p(tx) = > bh(t)wh(x)
m>0 m>0
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Structure of the matrix Mr as T — oo for N = 2 (Formal analysis)

For any T fixed, we consider the normalized eigenfunctions (w,})n=0 and
corresponding eigenvalues (A]) o of

—div (Kfvw]l) = Algsw]  inQ,
wl =0 on 02

where K7 is the optimal tensor for (RPr). Since K7 € 0Gy,, V1T, V2T are uniformly
bounded with respect to T as well as {\[,}m and ( wh)mso in HI(S).
Assume that the source f and the initial datum vy are expanded as follows:

= Z fnCWI;(X)v Z ame X ’ {aL}m>O» {fn-l';}m>0 € IZ(N)z
m>0 m>0 (20)
X) = ap(wh(x), p(tx) = > bh(t)wh(x)
m>0 m>0

We rewrite the symmetric matrix My as follows:

Z CLn(WIE)n(WnT)n 5 Z Cmn((w )X1(W )X2+(W )Xz(w )Xw)

_MT( ) _ m,n>0 m n>0 ) ) )
sym. Z Cmn(Wm)Xz(Wn )Xz

m,n>0
with ¢T, = 1 [ al(t)(a] () + 2b] (t))at, m,n>0
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Structure of the matrix My - T large

cT :_ii_le()\TfT TalAl) + O(e=>nT e—/\nTT)
™= T T T e M  Anen
where the coefficients c;n; are bounded with respect to T. Notice that only the
coefficients of the heat source f are involved in the first order terms c?,,’,,r. We put

M}(x)
£

Mr(x) = M2(x) + +M*¥(T,x), xeQ.
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Structure of the matrix My - T large

cT :_ii_le()\TfT TalAl) + O(e=>nT e—/\nTT)
™= T T T e M  Anen
where the coefficients c;n; are bounded with respect to T. Notice that only the
coefficients of the heat source f are involved in the first order terms c?,,’,,r. We put

M}(x)
£

Mr(x) = M2(x) + +M*¥(T,x), xeQ.

Now, we observe that the symmetric matrix M‘}(x), which is given by

(S om) (3 o) (5 fon-)

0 _ m>0 m>0 m>0
M7 (x) = . 2
SYM (T i)
m>0 ~m

is singular: det(M%(x)) = 0 so that arg(maxKoeGOT KO : M9) = CYIPYS)
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Structure of the matrix My - T large

cT :_ii_le()\TfT TalAl) + O(e=>nT e—/\nTT)
™= T T T e M  Anen
where the coefficients c;n; are bounded with respect to T. Notice that only the
coefficients of the heat source f are involved in the first order terms c?,,’,,r. We put

M}(x)
£

Mr(x) = M2(x) + +M*¥(T,x), xeQ.

Now, we observe that the symmetric matrix M‘}(x), which is given by

(S om) (3 o) (5 fon-)

0 _ m>0 m>0 m>0
M7 (x) = . 2
SYM (T i)
m>0 ~m

is singular: det(M%(x)) = 0 so that arg(maxKoeGOT KO : M9) = CYIPYS)

Forany T > supycq TT(x), the solution of the problem max o Gy KO : My is
T

(Mg, Ad_) so that the optimal tensor K is a first order laminate.
T T
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Structure of the matrix Mt : T small

The analysis for T arbitrarily small is similar. Precisely, we obtain

1 1
Chn = ahal — Lahat (N, + AT + L(@hiT + &l )T+ O(T), mn>0 (21
so that we decompose the matrix My as Mr(x) = M3(x) + TM1(x) + ME2(T, x) in Q,
where the symmetric matrix M? depends only on the coefficients a7, of the initial
condition wp, assumed different from zero. By arguing as before, we obtain that M%(x)

is singular so that for T small enough, says T < T~ (x), the determinant of Mr(x) is
negatif.

Forany T <infxcq T~ (x), the solution of the problem MaXyocg, KO : M7 is
T

(Ao A;T) so that the micro-structure is recovered by first order laminates.

If up = 0, M$ = ML = 0 and Mr(x) = T2M2 + ... with det(M2(x)) < Oforall x € Q
T>0.
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Algorithm of minimization of TT(QT, K%)

= Gradient method for the variable 6 and optimality condition for the variable K7 :
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Algorithm of minimization of TT(QT, K%)

= Gradient method for the variable 6 and optimality condition for the variable K7 :
Given T >0, L € (0,1), QcR2 uo,fELZ(Q)and0<5<<1,
@ Initialization: 0% = L, (v?,v2,--- ,v}) € 8Gy, P® = Idy, A% the diagonal matrix
such that (A%); = v0 and finally put K3° = POA(PO).
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Algorithm of minimization of TT(QT, K%)

= Gradient method for the variable 6 and optimality condition for the variable K7 :
Given T >0, L € (0,1), QcR2 uo,feLZ(Q)and0<s<<1,
@ Initialization: 0% = L, (v?,v2,--- ,v}) € 8Gy, P® = Idy, A% the diagonal matrix
such that (A%); = v0 and finally put K3° = POA(PO).
@ For n > 1, iteration until convergence
(197 (67, K*n=1) = J7 (07, K*") | < e|JT (6%, K*0) |)

Allaire/Miinch/Periago Relaxation for the heat equation



Algorithm of minimization of TT(QT, K%)

= Gradient method for the variable 6 and optimality condition for the variable K7 :
Given T >0, L € (0,1), QcR2 uo,fELZ(Q)and0<5<<1,
@ Initialization: 0% = L, (v?,v2,--- ,v}) € 8Gy, P® = Idy, A% the diagonal matrix
such that (A%); = v0 and finally put K3° = POA(PO).
@ For n > 1, iteration until convergence
(197 (03, Kk*n=1) — J7 (07, K*") | < elJ7 (63, K*0) |) :
1. Compute the state u” and the adjoint state p".
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Algorithm of minimization of TT(QT, K%)

= Gradient method for the variable 6 and optimality condition for the variable K7 :
Given T >0, L € (0,1), QcR2 uo,fELZ(Q)and0<5<<1,
@ Initialization: 0% = L, (v?,v2,--- ,v}) € 8Gy, P® = Idy, A% the diagonal matrix
such that (A%); = v0 and finally put K3° = POA(PO).
@ For n > 1, iteration until convergence
(197 (03, Kk*n=1) — J7 (07, K*") | < elJ7 (63, K*0) |) :
1. Compute the state u” and the adjoint state p".

2. Compute the descent direction §6(u", p") given by
1 T 1 T
=7/ K;YQVU-(VquZVp)dth(,Bgfﬁ1)?/ Updt+l in Q,
0 0

and then update the density 07 := 07~ T 4+ né6o(un, p"), where
n € L>(Q,R} ) denotes a funcnon wh|ch depends on the multiplier / and
chosen so that 0" satisfies the volume constraint.
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Algorithm of minimization of TT(QT, K%)

= Gradient method for the variable 6 and optimality condition for the variable K7 :
Given T >0, L € (0,1), QcR2 uo,fELZ(Q)and0<5<<1,
@ Initialization: 0% = L, (v?,v2,--- ,v}) € 8Gy, P® = Idy, A% the diagonal matrix
such that (A%); = v0 and finally put K3° = POA(PO).
@ For n > 1, iteration until convergence
(197 (03, Kk*n=1) — J7 (07, K*") | < elJ7 (63, K*0) |) :
1. Compute the state u” and the adjoint state p".

2. Compute the descent direction §6(u", p") given by
1 T 1 T
- 7/ K o VU (Vu+2Vp)dt—2(8 — 1) 7 / Updt+l in Q,
0 0
and then update the density 07 := 07~ T 4+ né6o(un, p"), where

n € L>(Q,R} ) denotes a funcnon wh|ch depends on the multiplier / and
chosen so that 0" satisfies the volume constraint.

3. Compute the mgtrix M? = MZ(u",p") in Q, its eigenvalues uf, uJ, - - -, uf,
and corresponding eigenvectors ef, ej, - - - , ey, and set
P" = (ef,e],--- ,ep).
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Algorithm of minimization of TT(QT, K%)

= Gradient method for the variable 6 and optimality condition for the variable K7 :
Given T >0, L € (0,1), QcR2 uo,fELZ(Q)and0<5<<1,
@ Initialization: 0% = L, (v?,v2,--- ,v}) € 8Gy, P® = Idy, A% the diagonal matrix
such that (A%); = v0 and finally put K3° = POA(PO).
@ For n > 1, iteration until convergence
(197 (03, Kk*n=1) — J7 (07, K*") | < elJ7 (63, K*0) |) :
1. Compute the state u” and the adjoint state p".

2. Compute the descent direction §6(u", p") given by
1 T 1 T
=7/ K;YQVU-(VquZVp)dth(,Bgfﬁ1)?/ Updt+l in Q,
0 0

and then update the density 07 := 07~ T 4+ né6o(un, p"), where
n € L>(Q,R} ) denotes a funcnon wh|ch depends on the multiplier / and
chosen so that 0" satisfies the volume constraint.

3. Compute the mgtrix M? = MZ(u",p") in Q, its eigenvalues uf, uJ, - - -, uf,
and corresponding eigenvectors ef, ej, - - - , ey, and set
P" = (ef,e],--- ,ep).

4. Solve the linear problem maXyoc g, KO : M7 leading to
(v, v, vl e 8ng Consider the matrix A7 = (v, vf,---
then put K7™ = PA7 (P”)

, V) and
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Exemple 1: Uniform heat source f =1 and vy = 0

N

Il
n

Q=(0,1)2, (B1,k)=(1,0.07), (B2,k)=(1,0.14), L=05 f=1,u=0

i o - Xt

Figure: Isovalues of 67 in Qfor T=0.5(Top left), T=1,T=15T=2,T=4
and the limit elliptic case "T = oo" (Bottom right). The white zones correspond to the
weaker conductor phase (34, k1).
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Exemple 2: Non uniform heat source and uy

f(X) = X{(0.05,0.15) x (0.1,0.9) (X) — X(0.85,0.95)x(0.1,0.9)(X)

Figure: Isovalues of 6§ and direction of lamination in Q for T = 0.25 (Top left),
T=05T=1,T =2, T =4 and the limit elliptic case "T = co" (Bottom right).
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Exemple 3: Interplay between f and ug

1 1
Up(x) = ZX(O.Z,O.S)X(OJ,O.Z)(X) - ZX(O.Z,O.B)X(O.S,O.Q)(X)




Exemple 3: Interplay between f and ug

1 1
Up(x) = ZX(O.Z,O.S)X(OJ,O.Z)(X) - ZX(0.2,0.8)><(0.8,0.9)(X)

- ’
- l
'-' '.\
R |
|
\ s :

5 o5 o7 58 09 ooz 07 or 05
Xt Xt

Figure: Second order laminate zone in Q for T = 0.125,0.25,0.5and T = 1.
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Figure: First eigenvector of the matrix My for T = 0.125,0.25,0.5and 7 = 1.
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Conclusions

@ The minimizers K3 H-converge toward the minimizers of K3,
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Conclusions

@ The minimizers K3 H-converge toward the minimizers of K3,
@ Minimizers K7 are represented with at MOST N order (sequential) laminates
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Conclusions

@ The minimizers K3 H-converge toward the minimizers of K3,
@ Minimizers K7 are represented with at MOST N order (sequential) laminates

@ We strongly suspect that minimizers K7 are represented with first order
laminates is T is large enough
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Conclusions

@ The minimizers K3 H-converge toward the minimizers of K3,
@ Minimizers K7 are represented with at MOST N order (sequential) laminates

@ We strongly suspect that minimizers K7 are represented with first order
laminates is T is large enough

@ | suspect, that if f or up = 0, then minimizers K7 are represented by first order
laminates for all T > 0.
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Conclusions

@ The minimizers K3 H-converge toward the minimizers of K3,
@ Minimizers K7 are represented with at MOST N order (sequential) laminates

@ We strongly suspect that minimizers K7 are represented with first order
laminates is T is large enough

@ | suspect, that if f or up = 0, then minimizers K7 are represented by first order
laminates for all T > 0.

@ A possible way to determine the order of lamination is to use Variational
approach and Young measures.
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The time dependent case X = X(t, x) - Variational approach and Young

measure

(AM-Pedregal-Periago, JMPA 2008)

Assume that the solution of of the heat system has the regularity u € L? (0, T; H? (Q)) and depends continuously
on the initial datum in the corresponding norms. Then the variational problem

= 2 = 2
(05.4): 6. 1T |G—k2Vu‘ )G—/un(
(RP;) Minimizein (6, G, u) : Ji(6,G,u) = — // 1] + ko dxdt
0 (ki — kp)? (1= 6) (ko — ky)?
subject to
@2 ((o, T) x Q;R’V*‘) ,u€e H' ((0,T) x %R),

(681 + (1 —0)Ba)u) —divG =0 inH™! (0, 7) x Q),

Upg =0 aeteT], HO)= g e 22

0 €L ((0,T) x [0,1]), /Otxdfo|Q| ae te (0, 7).

is a relaxation of (VP;) in the sense that
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The time dependent case X = X(t, x) - Variational approach and Young

measure

(AM-Pedregal-Periago, JMPA 2008)

Assume that the solution of of the heat system has the regularity u € L? (0, T; H? (Q)) and depends continuously
on the initial datum in the corresponding norms. Then the variational problem

= 2 = 2
(05.4): 6. 1T |G—k2Vu‘ )G—/un(
(RP;) Minimizein (6, G, u) : Ji(6,G,u) = — // 1] + ko dxdt
0 (ki — kp)? (1= 6) (ko — ky)?
subject to
@2 ((o, T) x Q;R’V*‘) ,u€e H' ((0,T) x %R),

(681 + (1 —0)Ba)u) —divG =0 inH™! (0, 7) x Q),

Upg =0 aeteT], HO)= g e 22

0 €L ((0,T) x [0,1]), /Otxdfo|Q| ae.te (0, 7).

is a relaxation of (VP;) in the sense that

(i) there exists at least one minimizer for (RP;),
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The time dependent case X = X(t, x) - Variational approach and Young

measure

(AM-Pedregal-Periago, JMPA 2008)

Assume that the solution of of the heat system has the regularity u € L? (0, T; H? (Q)) and depends continuously
on the initial datum in the corresponding norms. Then the variational problem

= 2 = 2
(05.4): 6. 1T |G—k2Vu‘ )G—/un(
(RP;) Minimizein (6, G, u) : Ji(6,G,u) = — // 1] + ko dxdt
0 (ki — kp)? (1= 6) (ko — ky)?
subject to
@2 ((o, T) x Q;R’V*‘) ,u€e H' ((0,T) x %R),

(681 + (1 —0)Ba)u) —divG =0 inH™! (0, 7) x Q),

Upg =0 aeteT], HO)= g e 22
0 €L ((0,T) x [0,1]), /Otxdfo|Q| ae te (0, 7).

is a relaxation of (VP;) in the sense that

(i) there exists at least one minimizer for (RP;),
(i) the infimum of (VP;) equals the minimum of (RP;), and
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The time dependent case X = X(t, x) - Variational approach and Young

measure

(A MPA 2008)

Assume that the solution of of the heat system has the regularity u € L? (0, T; H? (Q)) and depends continuously
on the initial datum in the corresponding norms. Then the variational problem

_ . 1 /T |§—k2Vu‘2 )5—k1Vu‘2
RP;) Minimizein (6, G,u) : Ji(6, G,u) = — // k + axdt
(AR (0.30) s FOB =3 [ | e T T e = kP
subject to
@2 ((o, T) x Q;R’V*‘) ,u€e H' ((0,T) x %R),
(681 + (1 — 0)Bo)u) —divG =0 inH= (0, T) x Q),
Upg =0 aeteT], HO)= g e 22

0 € L ((0,T) x 2[0,1]), /Qe(t,x) dx =L|Q| aete (0,T).

is a relaxation of (VP;) in the sense that

(i) there exists at least one minimizer for (RP;),
(i) the infimum of (VP;) equals the minimum of (RP;), and

(iii) the underlying Young measure associated with (RP;) (and therefore the optimal microstructure of (VP;)) can
be found in the form of a first-order laminate whose direction of lamination can be given explicitly in terms of
optimal solutions for (RP;).
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More details on www.math.univ-bpclermont.fr/-munch/

THANK YOU FOR YOUR ATTENTION
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