Long time behavior of a two-phase optimal design for the heat equation

Arnaud Diego MÜNCH

Laboratoire de Mathématiques de Clermont-Ferrand, FRANCE arnaud.munch@math.univ-bpclermont.fr
joint work with G. ALLAIRE (X-CMAP, Palaiseau) and F. PERIAGO (UPCT, Carthagena)

Sevilla, September 2009

Motivation of the present work

Related to the work [Relaxation of an optimal design problem for the heat equation, J. Math. Pures Appl. (2008) AM-Pedregal-Periago] where the following optimal design problem is analyzed :

$$
\left(\mathrm{P}_{T}\right) \quad \text { Minimize in } \mathcal{X} \in \mathbf{C D}: \quad J_{T}(\mathcal{X})=\frac{1}{T} \int_{0}^{T} \int_{\Omega} K(x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t
$$

$\Omega \subset \mathbb{R}^{N}$, where the state variable $u=u(t, x)$ is the solution of the system

$$
\left\{\begin{array}{lll}
\beta(x) u^{\prime}(t, x)-\operatorname{div}(K(x) \nabla u(t, x))=f(t, x) & \text { in } & (0, T) \times \Omega \tag{1}\\
u=0 & \text { on } & (0, T) \times \partial \Omega \\
u(0, x)=u_{0}(x) & \text { in } & \Omega,
\end{array}\right.
$$

with

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
\beta(x)=\mathcal{X}(x) \beta_{1}+(1-\mathcal{X}(x)) \beta_{2} \\
K(x)=\mathcal{X}(x) k_{1} I_{N}+(1-\mathcal{X}(x)) k_{2} I_{N} .
\end{array}\right. \\
& k_{i}>0 \text { - thermal conductivity, } \quad \beta_{i}=\rho_{i} c_{i}\left(\rho_{i}>0 \text { mass density }-c_{i}>0 \text { specific heat }\right)
\end{aligned}
$$

The design variable \mathcal{X} indicates the region occupied by the material (β_{1}, k_{1}) and is subjected to belong to the class of classical designs $\mathbf{C D}$ defined as

$$
\begin{equation*}
\mathbf{C D}=\left\{\mathcal{X} \in L^{\infty}(\Omega ;\{0,1\}): \int_{\Omega} \mathcal{X}(x) d x=L|\Omega|\right\} \tag{2}
\end{equation*}
$$

Goal of the work

\Longrightarrow Study the asymptotic behavior as $T \rightarrow \infty$ of the solution $\left(\theta_{T}, K_{T}^{\star}\right)$ of the relaxed problem $\left(R P_{T}\right)$

Figure: Commutation between Homogenization process and limit of the heat system as $T \rightarrow \infty$???
\Longrightarrow We assume that \mathcal{X} is time independent and use tools from Homogenization theory.

Outline

(1) Overview of the relaxed formulation $\left(R P_{T}\right)$ and $\left(R P_{\infty}\right)$
(2) H-convergence of optimal effective tensors K_{T}^{\star} toward K_{∞}^{\star}
(3) Structure of the optimal effective tensor K_{T}^{\star} in term of sequential laminates

- (Formal) Analysis of the micro-structure of K_{T} for T arbitrarily large (and small)
(5) Numerical experiments for $N=2$
- A word about the open case where $\mathcal{\chi}$ is time-dependent.
(1) Overview of the relaxed formulation $\left(R P_{T}\right)$ and $\left(R P_{\infty}\right)$
(2) H -convergence of optimal effective tensors K_{T}^{\star} toward K_{∞}^{\star}
(3) Structure of the optimal effective tensor K_{T}^{\star} in term of sequential laminates

4. (Formal) Analysis of the micro-structure of K_{T}^{\star} for T arbitrarily large (and small)

- Numerical experiments for $N=2$
(6) A word about the open case where \mathcal{X} is time-dependent.
(1) Overview of the relaxed formulation $\left(R P_{T}\right)$ and $\left(R P_{\infty}\right)$
(2) H -convergence of optimal effective tensors K_{T}^{\star} toward K_{∞}^{\star}
(3) Structure of the optimal effective tensor K_{T}^{\star} in term of sequential laminates
(4) (Formal) Analysis of the micro-structure of K_{T}^{\star} for T arbitrarily large (and small)
(5) Numerical experiments for $N=2$
- A word about the open case where χ is time-dependent.
(1) Overview of the relaxed formulation $\left(R P_{T}\right)$ and $\left(R P_{\infty}\right)$
(2) H -convergence of optimal effective tensors K_{T}^{\star} toward K_{∞}^{\star}
(3) Structure of the optimal effective tensor K_{T}^{\star} in term of sequential laminates

4 (Formal) Analysis of the micro-structure of K_{T}^{\star} for T arbitrarily large (and small)
(5) Numerical experiments for $N=2$
(6) A word about the open case where \mathcal{X} is time-dependent.
(1) Overview of the relaxed formulation $\left(R P_{T}\right)$ and $\left(R P_{\infty}\right)$
(2) H-convergence of optimal effective tensors K_{T}^{\star} toward K_{∞}^{\star}
(3) Structure of the optimal effective tensor K_{T}^{\star} in term of sequential laminates
(4) (Formal) Analysis of the micro-structure of K_{T}^{\star} for T arbitrarily large (and small)
(5) Numerical experiments for $N=2$
(8) A word about the open case where \mathcal{X} is time-dependent.

Outline

(1) Overview of the relaxed formulation $\left(R P_{T}\right)$ and $\left(R P_{\infty}\right)$
(2) H -convergence of optimal effective tensors K_{T}^{\star} toward K_{∞}^{\star}
(3) Structure of the optimal effective tensor K_{T}^{\star} in term of sequential laminates

4 (Formal) Analysis of the micro-structure of K_{T}^{\star} for T arbitrarily large (and small)
(5) Numerical experiments for $N=2$
(6) A word about the open case where \mathcal{X} is time-dependent.

The relaxed formulation $\left(R P_{T}\right)$ involves the space of relaxed designs
$\mathbf{R D}=\left\{\left(\theta, K^{\star}\right) \in L^{\infty}\left(\Omega ;[0,1] \times \mathcal{M}_{N}^{s}\left(k_{1}, k_{2}\right)\right): K^{\star}(x) \in G_{\theta(x)}\right.$ a.e. $\left.x \in \Omega,\|\theta\|_{L^{1}(\Omega)}=L|\Omega|\right\}$,
where $\mathcal{M}_{N}^{s}\left(k_{1}, k_{2}\right)$ is the space of real symmetric squared matrices M of order N satisfying, for all $\xi \in \mathbb{R}^{N}, k_{1}|\xi|^{2} \leq M \xi \cdot \xi$ and $k_{2}|\xi|^{2} \leq M^{-1} \xi \cdot \xi$.

For a given $\theta \in L^{\infty}(\Omega ;[0,1])$, the so-called G_{θ}-closure is the set of all symmetric matrices with eigenvalues $\lambda_{1}, \cdots, \lambda_{N}$ satisfying

$$
\left\{\begin{array}{l}
\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+}, \quad 1 \leq j \leq N, \\
\sum_{j=1}^{N} \frac{1}{\lambda_{j}-k_{1}} \leq \frac{1}{\lambda_{\theta}^{-}-k_{1}}+\frac{N-1}{\lambda_{\theta}^{+}-k_{1}}, \\
\sum_{j=1}^{N} \frac{1}{k_{2}-\lambda_{j}} \leq \frac{1}{k_{2}-\lambda_{\theta}^{-}}+\frac{N-1}{k_{2}-\lambda_{\theta}^{+}},
\end{array}\right.
$$

where $\lambda_{\theta}^{-}=\left(\frac{\theta}{k_{1}}+\frac{1-\theta}{k_{2}}\right)^{-1}$ is the harmonic mean and $\lambda_{\theta}^{+}=\theta k_{1}+(1-\theta) k_{2}$ the arithmetic mean of $\left(k_{1}, k_{2}\right)$.

The relaxed formulation $\left(R P_{T}\right)$ (T fixed) - Overview

(PARABOLIC CASE - AM-Pedregal-Periago, JMPA 2008)

The following problem

$$
\left(R P_{T}\right) \text { Minimize in }\left(\theta, K^{\star}\right) \in \mathbf{R D}: \quad J_{T}^{\star}\left(\theta, K^{\star}\right)=\frac{1}{T} \int_{0}^{T} \int_{\Omega} K^{\star}(x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t
$$

where u solves

$$
\left\{\begin{array}{lll}
\beta^{\star}(x) u^{\prime}(t, x)-\operatorname{div}\left(K^{\star}(x) \nabla u(t, x)\right)=f(t, x) & \text { in } & (0, T) \times \Omega \\
u=0 & \text { on } & (0, T) \times \partial \Omega \\
u(0, x)=u_{0}(x) & \text { in } & \Omega
\end{array}\right.
$$

with $\beta^{\star}(x)=\theta(x) \beta_{1}+(1-\theta(x)) \beta_{2}$ is a relaxation of $\left(P_{T}\right)$ in the following sense:
> there exists at least one minimizer for $\left(R_{T}\right)$ in the space RD
> up to a subsequence, every minimizing sequence of classical designs \mathcal{X}_{n} converges, weak-ぇ in $L^{\infty}(\Omega ;[0,1])$, to a relaxed density θ, and its associated sequence of tensors

$K_{n}=\mathcal{X}_{n} k_{1} I_{N}+\left(1-\mathcal{X}_{n}\right) K_{2} I_{N}$
H-converges to an effective tensor K^{\star} such that $\left(\theta, K^{\star}\right)$ is a minimizer for $\left(R P_{T}\right)$, and
converselv. everv relaxed minimizer $\left(\theta, K^{*}\right) \in \operatorname{RD}$ of $\left(R P_{T}\right)$ is attained bv a minimizina sequence \mathcal{X}_{n} of $\left(P_{T}\right)$ in the sense that

The relaxed formulation $\left(R P_{T}\right)$ (T fixed) - Overview

(PARABOLIC CASE - AM-Pedregal-Periago, JMPA 2008)

The following problem

$$
\left(R P_{T}\right) \text { Minimize in }\left(\theta, K^{\star}\right) \in \mathbf{R D}: \quad J_{T}^{\star}\left(\theta, K^{\star}\right)=\frac{1}{T} \int_{0}^{T} \int_{\Omega} K^{\star}(x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t
$$

where u solves

$$
\left\{\begin{array}{lll}
\beta^{\star}(x) u^{\prime}(t, x)-\operatorname{div}\left(K^{\star}(x) \nabla u(t, x)\right)=f(t, x) & \text { in } & (0, T) \times \Omega \\
u=0 & \text { on } & (0, T) \times \partial \Omega \\
u(0, x)=u_{0}(x) & \text { in } & \Omega
\end{array}\right.
$$

with $\beta^{\star}(x)=\theta(x) \beta_{1}+(1-\theta(x)) \beta_{2}$ is a relaxation of $\left(P_{T}\right)$ in the following sense:
(i) there exists at least one minimizer for $\left(R P_{T}\right)$ in the space $\mathbf{R D}$,

ii) up to a subsequence, every minimizing sequence of classical designs Xn converges, weak-* in $L^{\infty}(\Omega ;[0,1])$, to a relaxed density θ, and its associated sequence of tensors

> $K_{n}=\mathcal{X}_{n} k_{1} I_{N}+\left(1-\mathcal{X}_{n}\right) K_{2} I_{N}$
> H-converges to an effective tensor K^{\star} such that $\left(\theta, K^{\star}\right)$ is a minimizer for $\left(R P_{T}\right)$, and
> conversely, every relaxed minimizer $\left(\theta, K^{*}\right) \in \operatorname{RD}$ of $\left(R P_{T}\right)$ is attained by a minimizing sequence \mathcal{X}_{n} of $\left(P_{T}\right)$ in the sense that

(PARABOLIC CASE - AM-Pedregal-Periago, JMPA 2008)

The following problem

$$
\left(R P_{T}\right) \text { Minimize in }\left(\theta, K^{\star}\right) \in \mathbf{R D}: \quad J_{T}^{\star}\left(\theta, K^{\star}\right)=\frac{1}{T} \int_{0}^{T} \int_{\Omega} K^{\star}(x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t
$$

where u solves

$$
\left\{\begin{array}{lll}
\beta^{\star}(x) u^{\prime}(t, x)-\operatorname{div}\left(K^{\star}(x) \nabla u(t, x)\right)=f(t, x) & \text { in } & (0, T) \times \Omega \\
u=0 & \text { on } \quad(0, T) \times \partial \Omega \\
u(0, x)=u_{0}(x) & \text { in } \Omega,
\end{array}\right.
$$

with $\beta^{\star}(x)=\theta(x) \beta_{1}+(1-\theta(x)) \beta_{2}$ is a relaxation of $\left(P_{T}\right)$ in the following sense:
(i) there exists at least one minimizer for $\left(R P_{T}\right)$ in the space $\mathbf{R D}$,
(ii) up to a subsequence, every minimizing sequence of classical designs \mathcal{X}_{n} converges, weak-ᄎ in $L^{\infty}(\Omega ;[0,1])$, to a relaxed density θ, and its associated sequence of tensors

$$
K_{n}=\mathcal{X}_{n} k_{1} I_{N}+\left(1-\mathcal{X}_{n}\right) k_{2} I_{N}
$$

H-converges to an effective tensor K^{\star} such that $\left(\theta, K^{\star}\right)$ is a minimizer for $\left(R P_{T}\right)$, and

(PARABOLIC CASE - AM-Pedregal-Periago, JMPA 2008)

The following problem

$$
\left(R P_{T}\right) \quad \text { Minimize in }\left(\theta, K^{\star}\right) \in \mathbf{R D}: \quad J_{T}^{\star}\left(\theta, K^{\star}\right)=\frac{1}{T} \int_{0}^{T} \int_{\Omega} K^{\star}(x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t
$$

where u solves

$$
\left\{\begin{array}{lll}
\beta^{\star}(x) u^{\prime}(t, x)-\operatorname{div}\left(K^{\star}(x) \nabla u(t, x)\right)=f(t, x) & \text { in } & (0, T) \times \Omega \tag{3}\\
u=0 & \text { on } \quad(0, T) \times \partial \Omega \\
u(0, x)=u_{0}(x) & \text { in } \Omega,
\end{array}\right.
$$

with $\beta^{\star}(x)=\theta(x) \beta_{1}+(1-\theta(x)) \beta_{2}$ is a relaxation of $\left(P_{T}\right)$ in the following sense:
(i) there exists at least one minimizer for $\left(R P_{T}\right)$ in the space $\mathbf{R D}$,
(ii) up to a subsequence, every minimizing sequence of classical designs \mathcal{X}_{n} converges, weak-ぇ in $L^{\infty}(\Omega ;[0,1])$, to a relaxed density θ, and its associated sequence of tensors

$$
K_{n}=\mathcal{X}_{n} k_{1} I_{N}+\left(1-\mathcal{X}_{n}\right) k_{2} I_{N}
$$

H-converges to an effective tensor K^{\star} such that $\left(\theta, K^{\star}\right)$ is a minimizer for $\left(R P_{T}\right)$, and
(iii) conversely, every relaxed minimizer $\left(\theta, K^{\star}\right) \in \mathbf{R D}$ of $\left(R P_{T}\right)$ is attained by a minimizing sequence \mathcal{X}_{n} of $\left(P_{T}\right)$ in the sense that

$$
\left\{\begin{array}{l}
\mathcal{X}_{n} \stackrel{\rightharpoonup}{H} \quad \text { weak } \star \operatorname{in} L^{\infty}(\Omega), \\
K_{n} \xrightarrow{\rightarrow} K^{\star} .
\end{array}\right.
$$

The limit $\left(P_{\infty}\right)$ of $\left(P_{T}\right)$ as $T \rightarrow \infty$ and its relaxation $\left(R P_{\infty}\right)$ - Overview

Assuming that the heat source f depends only on the space variable, the unique solution of (1) converges as $t \rightarrow \infty$ to $\bar{u} \in H_{0}^{1}(\Omega)$, solution of the stationary equation

$$
\left\{\begin{array}{lll}
-\operatorname{div}(K(x) \nabla \bar{u}(x))=f(x) & \text { in } & \Omega \tag{4}\\
u=0 & \text { on } \quad \partial \Omega .
\end{array}\right.
$$

Associated with this PDE we consider the design problem

$$
\left(\mathrm{P}_{\infty}\right) \quad \text { Minimize in } \mathcal{X} \in \mathbf{C D}: \quad J_{\infty}(\mathcal{X})=\int_{\Omega} K(x) \nabla \bar{u}(x) \cdot \nabla \bar{u}(x) d x
$$

The limit $\left(P_{\infty}\right)$ of $\left(P_{T}\right)$ as $T \rightarrow \infty$ and its relaxation $\left(R P_{\infty}\right)$ - Overview

Assuming that the heat source f depends only on the space variable, the unique solution of (1) converges as $t \rightarrow \infty$ to $\bar{u} \in H_{0}^{1}(\Omega)$, solution of the stationary equation

$$
\left\{\begin{array}{lll}
-\operatorname{div}(K(x) \nabla \bar{u}(x))=f(x) & \text { in } & \Omega \tag{4}\\
u=0 & \text { on } & \partial \Omega .
\end{array}\right.
$$

Associated with this PDE we consider the design problem

$$
\left(\mathrm{P}_{\infty}\right) \quad \text { Minimize in } \mathcal{X} \in \mathbf{C D}: \quad J_{\infty}(\mathcal{X})=\int_{\Omega} K(x) \nabla \bar{u}(x) \cdot \nabla \bar{u}(x) d x .
$$

(ELLIPTIC CASE)

Consider the following problem

$$
\left(R P_{\infty}\right) \quad \text { Minimize in }\left(\theta, K^{\star}\right) \in \mathbf{R D}: \quad J_{\infty}^{\star}\left(\theta, K^{\star}\right)=\int_{\Omega} K^{\star}(x) \nabla \bar{u}(x) \cdot \nabla \bar{u}(x) d x
$$

where $\bar{u} \in H_{0}^{1}(\Omega)$ solves

$$
\left\{\begin{array}{lll}
-\operatorname{div}\left(K^{\star} \nabla \bar{u}\right)=f & \text { in } & \Omega \\
\bar{u}=0 & \text { on } & \partial \Omega .
\end{array}\right.
$$

$\left(R P_{\infty}\right)$ is a relaxation of $\left(P_{\infty}\right)$ is the sense of the previous theorem. Moreover, the optimal effective tensor for $\left(R P_{\infty}\right)$ is obtained in the form of a first-order laminate in any direction orthogonal to $\nabla \bar{u}$.

We assume henceforth that $f \in L^{2}(\Omega)$ is time independent and that $u_{0} \in L^{2}(\Omega)$.
Let $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ be an increasing sequence of positive times converging to infinity. For each T_{n}, problem ($\mathrm{RP}_{T_{n}}$) has (at least) a minimizer $\left(\theta_{T_{n}}, K_{T_{n}}^{\star}\right) \in \mathbf{R D}$.

Since $\left(\theta_{T_{n}}, K_{T_{n}}^{\star}\right)$ is bounded in $L^{\infty}\left(\Omega ;[0,1] \times \mathcal{M}_{N}^{s}\left(k_{1}, k_{2}\right)\right)$, up to subsequences still labeled by n, we have

$$
\left\{\begin{array}{lll}
\theta_{T_{n}} & \overrightarrow{ } & \theta_{T_{\infty}} \text { weak-* }^{*} \text { in } L^{\infty}(\Omega ;[0,1]) \\
K_{T_{n}}^{\star} & \xrightarrow{\mathrm{H}} & K_{T_{\infty}}^{\star}
\end{array} \quad \text { as } n \rightarrow \infty\right.
$$

Asymptotics of $\left(\theta_{T}, K_{T}^{\star}\right)$ for $T \rightarrow \infty$

We assume henceforth that $f \in L^{2}(\Omega)$ is time independent and that $u_{0} \in L^{2}(\Omega)$.
Let $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ be an increasing sequence of positive times converging to infinity. For each T_{n}, problem ($\mathrm{RP}_{T_{n}}$) has (at least) a minimizer $\left(\theta_{T_{n}}, K_{T_{n}}^{\star}\right) \in \mathbf{R D}$.

Since $\left(\theta_{T_{n}}, K_{T_{n}}^{\star}\right)$ is bounded in $L^{\infty}\left(\Omega ;[0,1] \times \mathcal{M}_{N}^{s}\left(k_{1}, k_{2}\right)\right)$, up to subsequences still labeled by n, we have

$$
\left\{\begin{array}{lll}
\theta_{T_{n}} & \overrightarrow{ } & \theta_{T_{\infty}} \text { weak-* }^{*} \text { in } L^{\infty}(\Omega ;[0,1]) \\
K_{T_{n}}^{\star} & \xrightarrow{H} & K_{T_{\infty}}^{\star}
\end{array} \quad \text { as } n \rightarrow \infty\right.
$$

(Allaire-AM-Periago)

If $\left(\theta_{T_{n}}, K_{T_{n}}^{\star}\right)$ is an optimal solution of $\left(R P_{T_{n}}\right)$, then any weak limit $\left(\theta_{T_{\infty}}, K_{T_{\infty}}^{\star}\right)$ of a converging subsequence of $\left(\theta_{T_{n}}, K_{T_{n}}^{\star}\right)$ is an optimal solution of $\left(R P_{\infty}\right)$.

Lemma

Let u_{n} be the solution of

$$
\begin{cases}\beta_{n}^{\star}(x) u_{n}^{\prime}(t, x)-\operatorname{div}\left(K_{T_{n}}^{\star}(x) \nabla u_{n}(t, x)\right)=f(x) & \text { in }(0, \infty) \times \Omega \tag{5}\\ u_{n}=0 & \text { on }(0, \infty) \times \partial \Omega \\ u_{n}(0, x)=u_{0}(x) & \text { in } \Omega,\end{cases}
$$

with $\beta_{n}^{\star}(x)=\theta_{T_{n}}(x) \beta_{1}+\left(1-\theta_{T_{n}}(x)\right) \beta_{2}$. Then,
$\lim _{n \rightarrow \infty} \frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} K_{T_{n}}^{\star}(x) \nabla u_{n}(t, x) \cdot \nabla u_{n}(t, x) d x d t=\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x$,
where $\bar{u}_{\infty}(x) \in H_{0}^{1}(\Omega)$ is the solution of

$$
\begin{cases}-\operatorname{div}\left(K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x)\right)=f(x) & \text { in } \quad \Omega \tag{7}\\ \bar{u}_{\infty}=0 & \text { on } \quad \partial \Omega\end{cases}
$$

Convergence of $I_{1}^{n} \rightarrow 0$ as $T_{n} \rightarrow \infty$

We decompose

$$
\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} K_{T_{n}}^{\star}(x) \nabla u_{n}(t, x) \cdot \nabla u_{n}(t, x) d x d t-\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x=l_{1}^{n}+l_{2}^{n}
$$

where

$$
\begin{gathered}
I_{1}^{n}=\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} K_{T_{n}}^{\star} \nabla u_{n}(t, x) \cdot \nabla u_{n}(t, x) d x d t-\int_{\Omega} K_{T_{n}}^{\star} \nabla \bar{u}_{n}(x) \cdot \nabla \bar{u}_{n}(x) d x \\
I_{2}^{n}=\int_{\Omega} K_{T_{n}}^{\star} \nabla \bar{u}_{n}(x) \cdot \nabla \bar{u}_{n}(x) d x-\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x .
\end{gathered}
$$

where \bar{u}_{n} solves

$$
\left\{\begin{array}{lll}
-\operatorname{div}\left(K_{T_{n}}^{\star} \nabla \bar{u}_{n}\right)=f & \text { in } & \Omega \tag{8}\\
\bar{u}_{n}=0 & \text { on } & \partial \Omega
\end{array}\right.
$$

To show that $I_{1}^{n} \rightarrow 0$, we prove that there exist $C_{1}, C_{2}>0$, independent of n, such that

$$
\left\|u_{n}(t)-\bar{u}_{n}\right\|_{L^{2}(\Omega)} \leq C_{1} e^{-C_{2} t}, \quad t>0
$$

The function $v_{n}(t, x)=u_{n}(t, x)-\bar{u}_{n}(x)$ solves

Convergence of $I_{1}^{n} \rightarrow 0$ as $T_{n} \rightarrow \infty$

We decompose

$$
\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} K_{T_{n}}^{\star}(x) \nabla u_{n}(t, x) \cdot \nabla u_{n}(t, x) d x d t-\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x=l_{1}^{n}+l_{2}^{n}
$$

where

$$
\begin{gathered}
l_{1}^{n}=\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} K_{T_{n}}^{\star} \nabla u_{n}(t, x) \cdot \nabla u_{n}(t, x) d x d t-\int_{\Omega} K_{T_{n}}^{\star} \nabla \bar{u}_{n}(x) \cdot \nabla \bar{u}_{n}(x) d x \\
I_{2}^{n}=\int_{\Omega} K_{T_{n}}^{\star} \nabla \bar{u}_{n}(x) \cdot \nabla \bar{u}_{n}(x) d x-\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x .
\end{gathered}
$$

where \bar{u}_{n} solves

$$
\left\{\begin{array}{lll}
-\operatorname{div}\left(K_{T_{n}}^{\star} \nabla \bar{u}_{n}\right)=f & \text { in } & \Omega \tag{8}\\
\bar{u}_{n}=0 & \text { on } & \partial \Omega
\end{array}\right.
$$

To show that $l_{1}^{n} \rightarrow 0$, we prove that there exist $C_{1}, C_{2}>0$, independent of n, such that

$$
\begin{equation*}
\left\|u_{n}(t)-\bar{u}_{n}\right\|_{L^{2}(\Omega)} \leq C_{1} e^{-C_{2} t}, \quad t>0 \tag{9}
\end{equation*}
$$

The function $v_{n}(t, x)=u_{n}(t, x)-\bar{u}_{n}(x)$ solves

Convergence of $I_{1}^{n} \rightarrow 0$ as $T_{n} \rightarrow \infty$

We decompose

$$
\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} K_{T_{n}}^{\star}(x) \nabla u_{n}(t, x) \cdot \nabla u_{n}(t, x) d x d t-\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x=l_{1}^{n}+l_{2}^{n}
$$

where

$$
\begin{gathered}
I_{1}^{n}=\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} K_{T_{n}}^{\star} \nabla u_{n}(t, x) \cdot \nabla u_{n}(t, x) d x d t-\int_{\Omega} K_{T_{n}}^{\star} \nabla \bar{u}_{n}(x) \cdot \nabla \bar{u}_{n}(x) d x \\
I_{2}^{n}=\int_{\Omega} K_{T_{n}}^{\star} \nabla \bar{u}_{n}(x) \cdot \nabla \bar{u}_{n}(x) d x-\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x .
\end{gathered}
$$

where \bar{u}_{n} solves

$$
\left\{\begin{array}{lll}
-\operatorname{div}\left(K_{T_{n}}^{\star} \nabla \bar{u}_{n}\right)=f & \text { in } & \Omega \tag{8}\\
\bar{u}_{n}=0 & \text { on } & \partial \Omega
\end{array}\right.
$$

To show that $l_{1}^{n} \rightarrow 0$, we prove that there exist $C_{1}, C_{2}>0$, independent of n, such that

$$
\begin{equation*}
\left\|u_{n}(t)-\bar{u}_{n}\right\|_{L^{2}(\Omega)} \leq C_{1} e^{-C_{2} t}, \quad t>0 \tag{9}
\end{equation*}
$$

The function $v_{n}(t, x)=u_{n}(t, x)-\bar{u}_{n}(x)$ solves

$$
\left\{\begin{array}{lll}
\beta_{n}^{\star}(x) v_{n}^{\prime}(t, x)-\operatorname{div}\left(K_{T_{n}}^{\star}(x) \nabla v_{n}(t, x)\right)=0 & \text { in } \quad(0, \infty) \times \Omega \\
v_{n}=0 & \text { on }(0, \infty) \times \partial \Omega \\
v_{n}(0, x)=u_{0}(x)-\bar{u}_{n}(x) & \text { in } & \Omega
\end{array}\right.
$$

Convergence of $I_{1}^{n} \rightarrow 0$ as $T_{n} \rightarrow \infty$

Using the Fourier method,

$$
\begin{gathered}
v_{n}(t, x)=\sum_{k=1}^{\infty} a_{n}^{k} e^{-\lambda_{n}^{k} t \omega_{n}^{k}(x), \quad \omega_{n}^{k} \in H_{0}^{1}(\Omega), \quad\left\|\omega_{n}^{k}\right\|_{L_{\beta_{n}^{\star}}^{2}(\Omega)}^{2}=\int_{\Omega} \beta_{n}^{\star}\left|\omega_{n}^{k}\right|^{2} d x=1} \\
\begin{cases}-\operatorname{div}\left(K_{T_{n}}^{\star} \nabla \omega_{n}^{k}\right)=\lambda_{n}^{k} \beta_{n}^{\star} \omega_{n}^{k} & \text { in } \quad \Omega \\
\omega_{n}^{k}=0 & \text { on } \quad \partial \Omega\end{cases}
\end{gathered}
$$

with $0<\lambda_{n}^{1}<\lambda_{n}^{2} \leq \lambda_{n}^{3} \leq \cdots$, its associated eigenvalues, and

$$
a_{n}^{k}=\int_{\Omega} \beta_{n}^{\star}(x)\left(u_{0}(x)-\bar{u}_{n}(x)\right) \omega_{n}^{k}(x) d x, \quad k, n \in \mathbb{N} .
$$

Using that $\beta_{1} \leq \beta_{n}^{\star}(x)$ a.e. $x \in \Omega$ and Parseval's identity, we have

Since $K_{T_{n}}^{\star} \xrightarrow{H} K_{T_{\infty}}^{\star}$ and $0<\beta_{1} \leq \beta_{n}^{\star}(x) \leq \beta_{2}$ a.e. $x \in \Omega$, the term $\left\|u_{0}-\bar{u}_{n}\right\|_{L_{\beta^{\star}}^{2}(\Omega)}^{2}$ is
uniformly bounded. Moreover, the uniform ellipticity of the sequence of tensors $K_{T_{n}}^{\star}$ lead to

Convergence of $I_{1}^{n} \rightarrow 0$ as $T_{n} \rightarrow \infty$

Using the Fourier method,

$$
\begin{gathered}
v_{n}(t, x)=\sum_{k=1}^{\infty} a_{n}^{k} e^{-\lambda_{n}^{k} t} \omega_{n}^{k}(x), \quad \omega_{n}^{k} \in H_{0}^{1}(\Omega), \quad\left\|\omega_{n}^{k}\right\|_{L_{\beta_{n}^{\star}}^{2}(\Omega)}^{2}=\int_{\Omega} \beta_{n}^{\star}\left|\omega_{n}^{k}\right|^{2} d x=1 \\
\begin{cases}-\operatorname{div}\left(K_{T_{n}}^{\star} \nabla \omega_{n}^{k}\right)=\lambda_{n}^{k} \beta_{n}^{\star} \omega_{n}^{k} & \text { in } \Omega \\
\omega_{n}^{k}=0 & \text { on } \quad \partial \Omega,\end{cases}
\end{gathered}
$$

with $0<\lambda_{n}^{1}<\lambda_{n}^{2} \leq \lambda_{n}^{3} \leq \cdots$, its associated eigenvalues, and

$$
a_{n}^{k}=\int_{\Omega} \beta_{n}^{\star}(x)\left(u_{0}(x)-\bar{u}_{n}(x)\right) \omega_{n}^{k}(x) d x, \quad k, n \in \mathbb{N} .
$$

Using that $\beta_{1} \leq \beta_{n}^{\star}(x)$ a.e. $x \in \Omega$ and Parseval's identity, we have

$$
\beta_{1}\left\|v_{n}(t)\right\|_{L^{2}(\Omega)}^{2} \leq\left\|v_{n}(t)\right\|_{L_{\beta_{n}^{\star}}^{2}(\Omega)}^{2}=\sum_{k=1}^{\infty} e^{-2 \lambda_{n}^{k} t}\left|a_{n}^{k}\right|^{2} \leq e^{-2 \lambda_{n}^{1} t}\left\|u_{0}-\bar{u}_{n}\right\|_{L_{\beta_{n}^{\star}}^{2}(\Omega)}^{2} .
$$

Since $K_{T_{n}} \xrightarrow{H} K_{T_{\infty}}^{\star}$ and $0<\beta_{1} \leq \beta_{n}^{\star}(x) \leq \beta_{2}$ a.e. $x \in \Omega$, the term $\left\|u_{0}-\bar{u}_{n}\right\|_{L_{\beta_{n}^{\star}}^{2}(\Omega)}^{2}$ is uniformly bounded. Moreover, the uniform ellipticity of the sequence of tensors $K_{T_{n}}^{\star}$ lead to

$$
\lambda_{n}^{1}=\min _{\varphi \neq 0, \varphi \in H_{0}^{1}} \frac{\int_{\Omega} K_{T_{n}}^{\star} \nabla \varphi \cdot \nabla \varphi}{\|\varphi\|_{L_{\beta_{n}^{\star}}^{2}(\Omega)}^{2}} \geq \frac{k_{1}}{\beta_{2}} \min _{\varphi \neq 0, \varphi \in H_{0}^{1}} \frac{\int_{\Omega} \nabla \varphi \cdot \nabla \varphi}{\|\varphi\|_{L^{2}(\Omega)}^{2}}=\frac{k_{1}}{\beta_{2}} \lambda_{1}
$$

Asymptotics of $\left(\theta_{T}, K_{T}^{\star}\right)$ for $T \rightarrow \infty$: a lemma

Using the weak form of (8), and multiplying the heat equation in system (5) by $u_{n}(t, x)$ and integrating by parts,

$$
l_{1}^{n}=\frac{1}{2} \frac{1}{T_{n}} \int_{\Omega} \beta_{n}^{\star}\left(u_{0}^{2}(x)-u_{n}^{2}\left(T_{n}, x\right)\right) d x+\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} f(x)\left(u_{n}(t, x)-\bar{u}_{n}(x)\right) d x d t .
$$

By (9) and the boundedness of $\left\|\bar{u}_{n}\right\|_{L^{2}(\Omega)}$, the first term in the right-hand side of this expression converges to zero as $T_{n} \rightarrow \infty$. Using once again (9) and the Cauchy-Schwartz inequality,

$$
\begin{aligned}
\left|\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} f(x)\left(u_{n}(t, x)-\bar{u}_{n}(x)\right) d x d t\right| & \leq\|f\|_{L^{2}(\Omega)} \frac{1}{T_{n}} \int_{0}^{T_{n}}\left\|u_{n}(t)-\bar{u}_{n}\right\|_{L^{2}(\Omega)} d t \\
& \leq\|f\|_{L^{2}(\Omega)} \frac{1}{T_{n}} \int_{0}^{T_{n}} C_{1} e^{-C_{2} t} d t \\
& \rightarrow 0 \text { as } T_{n} \rightarrow \infty .
\end{aligned}
$$

Asymptotics of $\left(\theta_{T}, K_{T}^{\star}\right)$ for $T \rightarrow \infty$: proof of the Theorem

Assume that $\left(\theta_{T_{\infty}}, K_{T_{\infty}}^{\star}\right)$ is not a solution of $\left(\mathrm{RP}_{\infty}\right)$. Then, there exists another $\left(\widehat{\theta}, \widehat{K}^{\star}\right) \in \mathbf{R D}$ and $\varepsilon>0$ such that

$$
\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x=\int_{\Omega} \widehat{K}^{\star}(x) \nabla \widehat{u}(x) \cdot \nabla \widehat{u}(x) d x+\varepsilon
$$

where $\widehat{u}(x)$ is the solution of the elliptic equation with conductivity \widehat{K}^{\star}. By (6), there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$

$$
\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} K_{T_{n}}^{\star}(x) \nabla u_{n}(t, x) \cdot \nabla u_{n}(t, x) d x>\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x-\frac{\varepsilon}{3} .
$$

Now let $u(t, x)$ solve

Asymptotics of $\left(\theta_{T}, K_{T}^{\star}\right)$ for $T \rightarrow \infty$: proof of the Theorem

Assume that $\left(\theta_{T_{\infty}}, K_{T_{\infty}}^{\star}\right)$ is not a solution of $\left(\mathrm{RP}_{\infty}\right)$. Then, there exists another $\left(\widehat{\theta}, \widehat{K}^{\star}\right) \in \mathbf{R D}$ and $\varepsilon>0$ such that

$$
\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x=\int_{\Omega} \widehat{K}^{\star}(x) \nabla \widehat{u}(x) \cdot \nabla \widehat{u}(x) d x+\varepsilon
$$

where $\widehat{u}(x)$ is the solution of the elliptic equation with conductivity \widehat{K}^{\star}. By (6), there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$

$$
\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} K_{T_{n}}^{\star}(x) \nabla u_{n}(t, x) \cdot \nabla u_{n}(t, x) d x>\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x-\frac{\varepsilon}{3}
$$

Now let $u(t, x)$ solve

$$
\begin{cases}\widehat{\beta}^{\star}(x) u^{\prime}(t, x)-\operatorname{div}\left(\widehat{K}^{\star}(x) \nabla u(t, x)\right)=f(x) & \text { in } \quad(0, T) \times \Omega \\ u=0 & \text { on }(0, T) \times \partial \Omega \\ u(0, x)=u_{0}(x) & \text { in } \Omega,\end{cases}
$$

with $\widehat{\beta}^{\star}(x)=\widehat{\theta}(x) \beta_{1}+(1-\widehat{\theta}(x)) \beta_{2}$. Then, multiplying this equation by $u(t, x)$ and integrating by parts, we get the convergence

$$
\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} \widehat{K}^{\star}(x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t \rightarrow \int_{\Omega} \widehat{K}^{\star}(x) \nabla \widehat{u}(x) \cdot \nabla \widehat{u}(x) d x \quad \text { as } n \rightarrow \infty .
$$

Asymptotics of $\left(\theta_{T}, K_{T}^{\star}\right)$ for $T \rightarrow \infty$: proof of the Theorem

Therefore, there exists $n_{1} \in \mathbb{N}$ such that for all $n \geq n_{1}$

$$
\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} \widehat{K}^{\star}(x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t<\int_{\Omega} \widehat{K}^{\star}(x) \nabla \widehat{u}(x) \cdot \nabla \widehat{u}(x) d x+\frac{\varepsilon}{3} .
$$

Hence, for $n \geq \max \left(n_{0}, n_{1}\right)$ we have

which contradicts the fact that $\left(\theta_{T_{n}}, K_{T_{n}}^{\star}\right)$ is an optimal solution of $\left(\mathrm{RP}_{T_{n}}\right)$.

Therefore, there exists $n_{1} \in \mathbb{N}$ such that for all $n \geq n_{1}$

$$
\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} \widehat{K}^{\star}(x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t<\int_{\Omega} \widehat{K}^{\star}(x) \nabla \widehat{u}(x) \cdot \nabla \widehat{u}(x) d x+\frac{\varepsilon}{3}
$$

Hence, for $n \geq \max \left(n_{0}, n_{1}\right)$ we have

$$
\begin{aligned}
\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} \widehat{K}^{\star}(x) \nabla u(t, x) \cdot \nabla u(t, x) d x d t & <\int_{\Omega} \widehat{K}^{\star}(x) \nabla \widehat{u}(x) \cdot \nabla \widehat{u}(x) d x+\frac{\varepsilon}{3} \\
& =\int_{\Omega} K_{T_{\infty}}^{\star}(x) \nabla \bar{u}_{\infty}(x) \cdot \nabla \bar{u}_{\infty}(x) d x-\varepsilon+\frac{\varepsilon}{3} \\
& <\frac{1}{T_{n}} \int_{0}^{T_{n}} \int_{\Omega} K_{T_{n}}(x) \nabla u_{n}(t, x) \cdot \nabla u_{n}(t, x) d x d t-\frac{\varepsilon}{3}
\end{aligned}
$$

which contradicts the fact that $\left(\theta_{T_{n}}, K_{T_{n}}^{\star}\right)$ is an optimal solution of $\left(\mathrm{RP}_{T_{n}}\right)$.

Figure: Commutation between Homogenization process and limit of the heat system as $T \rightarrow \infty$???

What about the structure of the optimal effective tensor K_{T}^{\star} and its behavior w.r.t. T ?

Optimality conditions for $\left(R P_{T}\right)$

$$
\begin{equation*}
\bar{J}_{T}^{\star}\left(\theta, K^{\star}\right)=\frac{1}{T} \int_{0}^{T} \int_{\Omega} K^{\star} \nabla u \cdot \nabla u d x d t+1 \int_{\Omega} \theta(x) d x \tag{10}
\end{equation*}
$$

The objective function $\bar{J}_{T}^{\star}\left(\theta, K^{\star}\right)$ is Gâteaux differentiable on the space of admissible relaxed designs RD and

$$
\begin{equation*}
\delta \bar{J}_{T}^{\star}\left(\theta, K^{\star}\right)=\int_{\Omega}\left[I-2\left(\beta_{2}-\beta_{1}\right) \frac{1}{T} \int_{0}^{T} u^{\prime} p d t\right] \delta \theta d x+\frac{1}{T} \int_{0}^{T} \int_{\Omega} \delta K^{\star} \nabla u \cdot(2 \nabla p+\nabla u) d x d t \tag{11}
\end{equation*}
$$

where $\delta \theta$ and δK^{\star} are admissible increments in $\boldsymbol{R D}$ and p the solution of the adjoint equation

$$
\begin{cases}-\beta^{\star} p^{\prime}-\operatorname{div}\left(K^{\star} \nabla p\right)=\operatorname{div}\left(K^{\star} \nabla u\right) & \text { in }(0, T) \times \Omega \tag{12}\\ p=0 & \text { on }(0, T) \times \partial \Omega \\ p(T)=0 & \text { in } \Omega .\end{cases}
$$

Consequently, if $\left(\theta, K^{\star}\right)$ is a minimizer of the function \bar{J}_{T}^{\star}, it must satisfy $\delta \bar{J}_{T}^{\star}\left(\theta, K^{\star}\right) \geq 0$ for any admissible increments $\delta \theta, \delta K^{\star}$.

Let $\left(\theta, K^{\star}\right) \in \boldsymbol{R} \boldsymbol{D}$ satisfy the optimality condition $\delta \bar{J}_{T}^{\star}\left(\theta, K^{\star}\right) \geq 0$. For any fixed $T>0$, we introduce the symmetric matrix of order N

$$
\begin{equation*}
M_{T}=-\frac{1}{T} \int_{0}^{T} \nabla u \odot(2 \nabla p+\nabla u) d t \tag{13}
\end{equation*}
$$

where \odot denotes the symmetrized tensor product of two vectors, with entries

$$
\left(M_{T}\right)_{i j}=-\frac{1}{2 T} \int_{0}^{T}\left[(\nabla u)_{i}(2 \nabla p+\nabla u)_{j}+(\nabla u)_{j}(2 \nabla p+\nabla u)_{i}\right] d t, \quad 1 \leq i, j \leq N
$$

where u and p are its associated state and adjoint state, respectively.

If $\left(f, u_{0}\right) \in\left(L^{2}(\Omega)\right)^{2}$, then $u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C^{0}\left(0, T ; L^{2}(\Omega)\right)$ and then $p \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. This implies that $M_{T} \in L^{1}(\Omega)$.

Let $\left(\theta, K^{\star}\right) \in \boldsymbol{R} \boldsymbol{D}$ satisfy the optimality condition $\delta \bar{J}_{T}^{\star}\left(\theta, K^{\star}\right) \geq 0$. For any fixed $T>0$, we introduce the symmetric matrix of order N

$$
\begin{equation*}
M_{T}=-\frac{1}{T} \int_{0}^{T} \nabla u \odot(2 \nabla p+\nabla u) d t \tag{13}
\end{equation*}
$$

where \odot denotes the symmetrized tensor product of two vectors, with entries

$$
\left(M_{T}\right)_{i j}=-\frac{1}{2 T} \int_{0}^{T}\left[(\nabla u)_{i}(2 \nabla p+\nabla u)_{j}+(\nabla u)_{j}(2 \nabla p+\nabla u)_{i}\right] d t, \quad 1 \leq i, j \leq N
$$

where u and p are its associated state and adjoint state, respectively.

Remark

If $\left(f, u_{0}\right) \in\left(L^{2}(\Omega)\right)^{2}$, then $u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C^{0}\left(0, T ; L^{2}(\Omega)\right)$ and then $p \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. This implies that $M_{T} \in L^{1}(\Omega)$.

Characterization of the effective optimal tensor K_{T}^{\star} in term of sequential

laminates

is $C^{1}([0,1])$ and the optimal density θ_{T} satisfies

and $Q_{T}(x)=0$ if $0<\theta_{T}(x)<1$, where Q_{T} is given by

Characterization of the effective optimal tensor K_{T}^{\star} in term of sequential

laminates

Theorem (ORDER OF LAMINATION)

Let $\left(\theta_{T}, K_{T}^{\star}\right)$ be a minimizer of \bar{J}_{T}^{\star} and let u and p be its associated state and adjoint state, respectively.
(9) $\left(\theta_{T}, K_{T}^{\star}\right)$ satisfies the following characterization

$$
K_{T}^{\star}: M_{T}=\max _{K^{0} \in G_{\theta_{T}}} K^{0}: M_{T} \quad \text { a.e. } \quad x \in \Omega
$$

where $M_{T} \in L^{1}\left(\Omega ; R^{N \times N}\right)$ is given by (13) and : the full contraction of two matrices.
K_{T}^{\star} is a tensor corresponding to a sequential laminate of rank at most N with lamination directions given by
the eigenvectors of M_{T}.The function
is $C^{1}([0,1])$ and the optimal density θ_{T} satisfies

and $Q_{T}(x)=0$ if $0<\theta_{T}(x)<1$, where Q_{T} is given by

Characterization of the effective optimal tensor K_{T}^{\star} in term of sequential

laminates

Theorem (ORDER OF LAMINATION)

Let $\left(\theta_{T}, K_{T}^{\star}\right)$ be a minimizer of \bar{J}_{T}^{\star} and let u and p be its associated state and adjoint state, respectively.
(1) $\left(\theta_{T}, K_{T}^{\star}\right)$ satisfies the following characterization

$$
K_{T}^{\star}: M_{T}=\max _{K^{0} \in G_{\theta_{T}}} K^{0}: M_{T} \quad \text { a.e. } \quad x \in \Omega
$$

where $M_{T} \in L^{1}\left(\Omega ; R^{N \times N}\right)$ is given by (13) and : the full contraction of two matrices.
(2) K_{T}^{\star} is a tensor corresponding to a sequential laminate of rank at most N with lamination directions given by the eigenvectors of M_{T}.The function
is $C^{1}([0,1])$ and the optimal density θ_{T} satisfies

and $Q_{T}(x)=0$ if $0<\theta_{T}(x)<1$, where Q_{T} is given by

Characterization of the effective optimal tensor K_{T}^{\star} in term of sequential

laminates

(ORDER OF LAMINATION)

Let $\left(\theta_{T}, K_{T}^{\star}\right)$ be a minimizer of \bar{J}_{T}^{\star} and let u and p be its associated state and adjoint state, respectively.
(1) $\left(\theta_{T}, K_{T}^{\star}\right)$ satisfies the following characterization

$$
K_{T}^{\star}: M_{T}=\max _{K^{0} \in G_{\theta_{T}}} K^{0}: M_{T} \quad \text { a.e. } \quad x \in \Omega
$$

where $M_{T} \in L^{1}\left(\Omega ; R^{N \times N}\right)$ is given by (13) and : the full contraction of two matrices.
(2) K_{T}^{\star} is a tensor corresponding to a sequential laminate of rank at most N with lamination directions given by the eigenvectors of M_{T}.
(3) The function

$$
\theta_{T} \longmapsto f\left(\theta_{T}, M_{T}\right) \equiv \max _{K^{0} \in G_{\theta_{T}}} K^{0}: M_{T}
$$

is $C^{1}([0,1])$ and the optimal density θ_{T} satisfies

$$
\left\{\begin{array}{lll}
\theta_{T}(x)=0 & \text { if and only if } & Q_{T}(x)>0 \tag{14}\\
\theta_{T}(x)=1 & \text { if and only if } & Q_{T}(x)<0 \\
0 \leq \theta_{T}(x) \leq 1 & \text { if } & Q_{T}(x)=0
\end{array}\right.
$$

and $Q_{T}(x)=0$ if $0<\theta_{T}(x)<1$, where Q_{T} is given by

The case where $x \in \Omega$ is such that $M_{T}(x) \neq 0$
We fix θ and consider the path $K_{T}^{\star}(s)=s K^{0}+(1-s) K_{T}^{\star}$ for any $K^{0} \in G_{\theta}, 0 \leq s \leq 1$ and for K_{T}^{\star} an optimal tensor for $\left(\mathrm{RP}_{T}\right)$. Consequently, $\delta \theta=0$ and $\delta K_{T}^{\star}=K^{0}-K_{T}^{\star}$. The optimality condition $\delta \bar{J}_{T}^{\star}\left(\theta, K_{T}^{\star}\right) \geq 0$ implies that

$$
\begin{equation*}
\int_{\Omega} K_{T}^{\star}: M_{T} d x \geq \int_{\Omega} K^{0}: M_{T} d x \quad \forall K^{0} \in G_{\theta} \tag{16}
\end{equation*}
$$

Since M_{T} is well-defined and it belongs to $L^{1}(\Omega)$, we may therefore apply the Localization principle to conclude that (16) is equivalent a.e. $x \in \Omega$ to the following characterization of the optimal tensor K_{T}^{\star}

It is known that the optimal tensor K_{T}^{\star} of (17) must be simultaneously diagonalizable with M_{T}. Consequently, if $\left(e_{j}\right)_{1<i<N}$ is a basis of eigenvectors of M_{T} with associated eigenvalues $\left(\mu_{j}\right)_{1<j<N}$, then (17) transforms into

The case where $x \in \Omega$ is such that $M_{T}(x) \neq 0$

We fix θ and consider the path $K_{T}^{\star}(s)=s K^{0}+(1-s) K_{T}^{\star}$ for any $K^{0} \in G_{\theta}, 0 \leq s \leq 1$ and for K_{T}^{\star} an optimal tensor for $\left(\mathrm{RP}_{T}\right)$. Consequently, $\delta \theta=0$ and $\delta K_{T}^{\star}=K^{0}-K_{T}^{\star}$.
The optimality condition $\delta \bar{J}_{T}^{\star}\left(\theta, K_{T}^{\star}\right) \geq 0$ implies that

$$
\begin{equation*}
\int_{\Omega} K_{T}^{\star}: M_{T} d x \geq \int_{\Omega} K^{0}: M_{T} d x \quad \forall K^{0} \in G_{\theta} \tag{16}
\end{equation*}
$$

Since M_{T} is well-defined and it belongs to $L^{1}(\Omega)$, we may therefore apply the Localization principle to conclude that (16) is equivalent a.e. $x \in \Omega$ to the following characterization of the optimal tensor K_{T}^{\star}

$$
\begin{equation*}
K_{T}^{\star}: M_{T}=\max _{K^{0} \in G_{\theta}} K^{0}: M_{T}, \quad \text { a.e. } \quad x \in \Omega \tag{17}
\end{equation*}
$$

It is known that the optimal tensor K_{T}^{\star} of (17) must be simultaneously diagonalizable with M_{T}. Consequently, if $\left(e_{i}\right)_{1<:<N}$ is a basis of eigenvectors of M_{T} with associated eigenvalues $\left(\mu_{j}\right)_{1<j<N}$, then (17) transforms into

The case where $x \in \Omega$ is such that $M_{T}(x) \neq 0$

We fix θ and consider the path $K_{T}^{\star}(s)=s K^{0}+(1-s) K_{T}^{\star}$ for any $K^{0} \in G_{\theta}, 0 \leq s \leq 1$ and for K_{T}^{\star} an optimal tensor for $\left(\mathrm{RP}_{T}\right)$. Consequently, $\delta \theta=0$ and $\delta K_{T}^{\star}=K^{0}-K_{T}^{\star}$.
The optimality condition $\delta \bar{J}_{T}^{\star}\left(\theta, K_{T}^{\star}\right) \geq 0$ implies that

$$
\begin{equation*}
\int_{\Omega} K_{T}^{\star}: M_{T} d x \geq \int_{\Omega} K^{0}: M_{T} d x \quad \forall K^{0} \in G_{\theta} \tag{16}
\end{equation*}
$$

Since M_{T} is well-defined and it belongs to $L^{1}(\Omega)$, we may therefore apply the Localization principle to conclude that (16) is equivalent a.e. $x \in \Omega$ to the following characterization of the optimal tensor K_{T}^{\star}

$$
\begin{equation*}
K_{T}^{\star}: M_{T}=\max _{K^{0} \in G_{\theta}} K^{0}: M_{T}, \quad \text { a.e. } \quad x \in \Omega \tag{17}
\end{equation*}
$$

It is known that the optimal tensor K_{T}^{\star} of (17) must be simultaneously diagonalizable with M_{T}. Consequently, if $\left(e_{j}\right)_{1 \leq j \leq N}$ is a basis of eigenvectors of M_{T} with associated eigenvalues $\left(\mu_{j}\right)_{1 \leq j \leq N}$, then (17) transforms into

$$
K_{T}^{\star}: M_{T}=\max _{\left(\lambda_{j}\right) \in G_{\theta}} \sum_{j=1}^{N} \lambda_{j} \mu_{j}, \quad\left(\lambda_{j}\right)_{1 \leq j \leq N} \in \sigma\left(K^{0}\right), K^{0} \in G_{\theta}
$$

The case where $x \in \Omega$ is such that $M_{T}(x) \neq 0$

$$
\begin{equation*}
K_{T}^{\star}: M_{T}=\max _{\left(\lambda_{j}\right) \in G_{\theta}} \sum_{j=1}^{N} \lambda_{j} \mu_{j}, \quad\left(\lambda_{j}\right)_{1 \leq j \leq N} \in \sigma\left(K^{0}\right), K^{0} \in G_{\theta} \tag{18}
\end{equation*}
$$

Assume that $x \in \Omega$ is such that $M_{T}(x) \neq 0$. Since the cost function in (18) is linear and the set G_{θ} convex, the solution belongs to the boundary of G_{θ}. This implies that K_{T}^{\star} corresponds to a sequential laminate of rank at most N with lamination directions given by the eigenvectors of M_{T}.
Assume that $x \in \Omega$ is such that $M_{T}(x)=0$. one can not conclude directly from the relation (18) which degenerates. However, in that case and in dimension $N=2$, the optimal tensor $K_{T}^{\star} \in G_{\theta}$ may be replaced by a tensor which belongs to the boundary of G_{0} without changing the value of the objective function. Indeed, assume that K_{T} belongs to the interior of G_{θ}

and that

Since the continuous function g^{-}is strictly increasing and satisfies
$g^{-}(0)=2 /\left(k_{2}-k_{1}\right) \leq\left(\lambda_{1}-k_{1}\right)^{-1}+\left(\lambda_{2}-k_{1}\right)^{-1}$, there exists $\theta^{-} \in(0, \theta)$ such that

The case where $x \in \Omega$ is such that $M_{T}(x) \neq 0$

$$
\begin{equation*}
K_{T}^{\star}: M_{T}=\max _{\left(\lambda_{j}\right) \in G_{\theta}} \sum_{j=1}^{N} \lambda_{j} \mu_{j}, \quad\left(\lambda_{j}\right)_{1 \leq j \leq N} \in \sigma\left(K^{0}\right), K^{0} \in G_{\theta} \tag{18}
\end{equation*}
$$

Assume that $x \in \Omega$ is such that $M_{T}(x) \neq 0$. Since the cost function in (18) is linear and the set G_{θ} convex, the solution belongs to the boundary of G_{θ}. This implies that K_{T}^{\star} corresponds to a sequential laminate of rank at most N with lamination directions given by the eigenvectors of M_{T}.

> Assume that $x \in \Omega$ is such that $M_{T}(x)=0$. one can not conclude directly from the relation (18) which degenerates. However, in that case and in dimension $N=2$, the optimal tensor $K_{T}^{\star} \in G_{\theta}$ may be replaced by a tensor which belongs to the boundary of G_{θ} without changing the value of the objective function. Indeed, assume that K_{T}^{\star} belongs to the interior of G_{0}

and that

Since the continuous function g^{-}is strictly increasing and satisfies $g^{-}(0)=2 /\left(k_{2}-k_{1}\right) \leq\left(\lambda_{1}-k_{1}\right)^{-1}+\left(\lambda_{2}-k_{1}\right)^{-1}$, there exists $\theta^{-} \in(0, \theta)$ such that

The case where $x \in \Omega$ is such that $M_{T}(x) \neq 0$

$$
\begin{equation*}
K_{T}^{\star}: M_{T}=\max _{\left(\lambda_{j}\right) \in G_{\theta}} \sum_{j=1}^{N} \lambda_{j} \mu_{j}, \quad\left(\lambda_{j}\right)_{1 \leq j \leq N} \in \sigma\left(K^{0}\right), K^{0} \in G_{\theta} \tag{18}
\end{equation*}
$$

Assume that $x \in \Omega$ is such that $M_{T}(x) \neq 0$. Since the cost function in (18) is linear and the set G_{θ} convex, the solution belongs to the boundary of G_{θ}. This implies that K_{T}^{\star} corresponds to a sequential laminate of rank at most N with lamination directions given by the eigenvectors of M_{T}.
Assume that $x \in \Omega$ is such that $M_{T}(x)=0$. one can not conclude directly from the relation (18) which degenerates. However, in that case and in dimension $N=2$, the optimal tensor $K_{T}^{\star} \in G_{\theta}$ may be replaced by a tensor which belongs to the boundary of G_{θ} without changing the value of the objective function. Indeed, assume that K_{T}^{\star} belongs to the interior of G_{θ}

$$
\frac{1}{\lambda_{1}-k_{1}}+\frac{1}{\lambda_{2}-k_{1}}<g^{-}(\theta) \equiv \frac{1}{\lambda^{-}(\theta)-k_{1}}+\frac{1}{\lambda^{+}(\theta)-k_{1}}
$$

and that

$$
\frac{1}{k_{2}-\lambda_{1}}+\frac{1}{k_{2}-\lambda_{2}}<g^{+}(\theta) \equiv \frac{1}{k_{2}-\lambda^{-}(\theta)}+\frac{1}{k_{2}-\lambda^{+}(\theta)} .
$$

Since the continuous function g^{-}is strictly increasing and satisfies $g^{-}(0)=2 /\left(k_{2}-k_{1}\right) \leq\left(\lambda_{1}-k_{1}\right)^{-1}+\left(\lambda_{2}-k_{1}\right)^{-1}$, there exists $\theta^{-} \in(0, \theta)$ such that

$$
\frac{1}{\lambda_{1}-k_{1}}+\frac{1}{\lambda_{2}-k_{1}}=g^{-}\left(\theta^{-}\right)
$$

Similarly, since the continuous function g^{+}is strictly decreasing and satisfies $g^{+}(1)=2 /\left(k_{2}-k_{1}\right) \leq\left(k_{2}-\lambda_{1}\right)^{-1}+\left(k_{2}-\lambda_{2}\right)^{-1}$, there exists $\theta^{+} \in(\theta, 1)$ such that

$$
\frac{1}{k_{2}-\lambda_{1}}+\frac{1}{k_{2}-\lambda_{2}}=g^{+}\left(\theta^{+}\right)
$$

Consequently, at the point x where $M_{T}(x)=0$, we may consider the composite with materials k_{1} and k_{2} in proportions θ^{-}and ($1-\theta^{-}$), respectively, or the composite with materials k_{1} and k_{2} in proportions $1-\theta^{+}$and θ^{+}. Notice that this choice allows us to ensure that the volume constraint $\|\theta\|_{L^{1}(\Omega)}=L|\Omega|$ holds. In both cases, the eigenvalues λ_{1}, λ_{2} of K_{T}^{\star} remain unchanged and so the value of the $\operatorname{cost} \bar{J}_{T}^{\star}$.

Structure of the matrix M_{T} as $T \rightarrow \infty$ for $N=2$ (Formal analysis)

Lemma

For any T, we note by $\mu_{1}^{T}, \mu_{2}^{T}, \mu_{1}^{T} \leq \mu_{2}^{T}$ the eigenvalues of the matrix M_{T} of order $N=2$ defined by (13). The solution of the linear problem

$$
\begin{gather*}
\max _{K^{0} \in G_{\theta_{T}}} K^{0}: M_{T}=\max _{\left(v_{1}^{T}, v_{2}^{T}\right) \in G_{\theta_{T}}} v_{1}^{T} \mu_{1}^{T}+v_{2}^{T} \mu_{2}^{T} \quad \text { is given by } \\
\left(v_{1}^{T}, v_{2}^{T}\right)=\left(k_{2}, k_{2}\right)+\frac{\sqrt{\mu_{1}^{T}}+\sqrt{\mu_{2}^{T}}}{\left(\lambda_{\theta_{T}}^{+}-k_{2}\right)^{-1}+\left(\lambda_{\theta_{T}}^{-}-k_{2}\right)^{-1}}\left(\frac{1}{\sqrt{\mu_{1}^{T}}}, \frac{1}{\sqrt{\mu_{2}^{T}}}\right) \\
\text { if } \mu_{1}^{T} \geq 0 \quad \text { and } \sqrt{\mu_{1}^{T}}\left(k_{2}-\lambda_{\theta_{T}}^{-}\right)>\sqrt{\mu_{2}^{T}}\left(k_{2}-\lambda_{\theta_{T}}^{+}\right)[\text {Second order laminate }] \\
\left(v_{1}^{T}, v_{2}^{T}\right)=\left(k_{1}, k_{1}\right)+\frac{\sqrt{-\mu_{1}^{T}}+\sqrt{-\mu_{2}^{T}}}{\left(\lambda_{\theta_{T}}^{+}-k_{1}\right)^{-1}+\left(\lambda_{\theta_{T}}^{-}-k_{1}\right)^{-1}}\left(\frac{1}{\sqrt{-\mu_{1}^{T}}}, \frac{1}{\sqrt{-\mu_{2}^{T}}}\right) \\
\left.\left(v_{1}^{T}, v_{2}^{T}\right)=\left(\lambda_{\theta_{T}}^{-}, \lambda_{\theta_{T}}^{+}\right) \quad \text { else.[First order laminate }\right]
\end{gather*}
$$

Structure of the matrix M_{T} as $T \rightarrow \infty$ for $N=2$ (Formal analysis)

For any T fixed, we consider the normalized eigenfunctions $\left(w_{m}^{T}\right)_{m>0}$ and corresponding eigenvalues $\left(\lambda_{m}^{T}\right)_{m>0}$ of

$$
\left\{\begin{array}{lr}
-\operatorname{div}\left(K_{T}^{\star} \nabla w_{m}^{T}\right)=\lambda_{m}^{T} \beta_{T}^{\star} w_{m}^{T} & \text { in } \Omega, \\
w_{m}^{T}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where K_{T}^{\star} is the optimal tensor for $\left(R P_{T}\right)$. Since $K_{T}^{\star} \in \partial G_{\theta_{T}}, v_{1}^{T}, v_{2}^{T}$ are uniformly bounded with respect to T as well as $\left\{\lambda_{m}^{T}\right\}_{m}$ and $\left(w_{m}^{T}\right)_{m>0}$ in $H_{0}^{1}(\Omega)$.
Assume that the source f and the initial datum u_{0} are expanded as follows:

$$
\begin{align*}
& f(x)=\sum_{m>0} f_{m}^{T} w_{m}^{T}(x), \quad u_{0}(x)=\sum_{m>0} a_{m}^{T} w_{m}^{T}(x), \quad\left\{a_{m}^{T}\right\}_{m>0},\left\{f_{m}^{T}\right\}_{m>0} \in I^{2}(\mathbb{N}), \tag{20}\\
& u(t, x)=\sum_{m>0} a_{m}^{T}(t) w_{m}^{T}(x), \quad p(t, x)=\sum_{m>0} b_{m}^{T}(t) w_{m}^{T}(x)
\end{align*}
$$

We rewrite the symmetric matrix M_{T} as follows:

Structure of the matrix M_{T} as $T \rightarrow \infty$ for $N=2$ (Formal analysis)

For any T fixed, we consider the normalized eigenfunctions $\left(w_{m}^{T}\right)_{m>0}$ and corresponding eigenvalues $\left(\lambda_{m}^{T}\right)_{m>0}$ of

$$
\left\{\begin{array}{lr}
-\operatorname{div}\left(K_{T}^{\star} \nabla w_{m}^{T}\right)=\lambda_{m}^{T} \beta_{T}^{\star} w_{m}^{T} & \text { in } \Omega, \\
w_{m}^{T}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where K_{T}^{\star} is the optimal tensor for $\left(R P_{T}\right)$. Since $K_{T}^{\star} \in \partial G_{\theta_{T}}, v_{1}^{T}, v_{2}^{T}$ are uniformly bounded with respect to T as well as $\left\{\lambda_{m}^{T}\right\}_{m}$ and $\left(w_{m}^{T}\right)_{m>0}$ in $H_{0}^{1}(\Omega)$.
Assume that the source f and the initial datum u_{0} are expanded as follows:

$$
\begin{align*}
& f(x)=\sum_{m>0} f_{m}^{T} w_{m}^{T}(x), \quad u_{0}(x)=\sum_{m>0} a_{m}^{T} w_{m}^{T}(x), \quad\left\{a_{m}^{T}\right\}_{m>0},\left\{f_{m}^{T}\right\}_{m>0} \in I^{2}(\mathbb{N}) \tag{20}\\
& u(t, x)=\sum_{m>0} a_{m}^{T}(t) w_{m}^{T}(x), \quad p(t, x)=\sum_{m>0} b_{m}^{T}(t) w_{m}^{T}(x)
\end{align*}
$$

We rewrite the symmetric matrix M_{T} as follows:
$-M_{T}(x)=\left(\begin{array}{lr}\sum_{m, n>0} c_{m n}^{T}\left(w_{m}^{T}\right)_{x_{1}}\left(w_{n}^{T}\right)_{x_{1}} & \frac{1}{2} \sum_{m, n>0} c_{m n}^{T}\left(\left(w_{m}^{T}\right)_{x_{1}}\left(w_{n}^{T}\right)_{x_{2}}+\left(w_{m}^{T}\right)_{x_{2}}\left(w_{n}^{T}\right)_{x_{1}}\right) \\ \text { sym. } & \sum_{m, n>0} c_{m n}^{T}\left(w_{m}^{T}\right)_{x_{2}}\left(w_{n}^{T}\right)_{x_{2}}\end{array}\right)$.
with $c_{m n}^{T}=\frac{1}{T} \int_{0}^{T} a_{m}^{T}(t)\left(a_{n}^{T}(t)+2 b_{n}^{T}(t)\right) d t, \quad m, n>0$

Structure of the matrix $M_{T}-T$ large

$$
c_{m n}^{T}=-\frac{f_{m}^{T}}{\lambda_{m}^{T}} \frac{f_{n}^{T}}{\lambda_{n}^{T}}+\frac{1}{T} \frac{f_{n}^{T}}{\left(\lambda_{m}^{T}\right)^{2}\left(\lambda_{n}^{T}\right)^{2}}\left(\lambda_{n}^{T} f_{m}^{T}-\lambda_{m}^{T} a_{m}^{T} \lambda_{n}^{T}\right)+O\left(e^{-\lambda_{m} T}, e^{-\lambda_{n}^{T} T}\right)
$$

where the coefficients $c_{m n}^{i, T}$ are bounded with respect to T. Notice that only the coefficients of the heat source f are involved in the first order terms $c_{m n}^{0, T}$. We put

$$
M_{T}(x)=M_{T}^{0}(x)+\frac{M_{T}^{1}(x)}{T}+M^{2}(T, x), \quad x \in \Omega .
$$

Now, we observe that the symmetric matrix $M_{T}^{0}(x)$, which is given by

is singular: $\operatorname{det}\left(M_{T}^{0}(x)\right)=0$ so that $\arg \left(\max _{K^{0} \in G_{\theta_{T}}} K^{0}: M_{T}^{0}\right)=\left(\lambda_{\theta_{T}}^{-}, \lambda_{\theta_{T}}^{+}\right)$

Structure of the matrix $M_{T}-T$ large

$$
c_{m n}^{T}=-\frac{f_{m}^{T}}{\lambda_{m}^{T}} \frac{f_{n}^{T}}{\lambda_{n}^{T}}+\frac{1}{T} \frac{f_{n}^{T}}{\left(\lambda_{m}^{T}\right)^{2}\left(\lambda_{n}^{T}\right)^{2}}\left(\lambda_{n}^{T} f_{m}^{T}-\lambda_{m}^{T} a_{m}^{T} \lambda_{n}^{T}\right)+O\left(e^{-\lambda_{m} T}, e^{-\lambda_{n}^{T} T}\right)
$$

where the coefficients $c_{m n}^{i, T}$ are bounded with respect to T. Notice that only the coefficients of the heat source f are involved in the first order terms $c_{m n}^{0, T}$. We put

$$
M_{T}(x)=M_{T}^{0}(x)+\frac{M_{T}^{1}(x)}{T}+M^{2}(T, x), \quad x \in \Omega
$$

Now, we observe that the symmetric matrix $M_{T}^{0}(x)$, which is given by

$$
M_{T}^{0}(x)=-\left(\begin{array}{lr}
\left(\sum_{m>0} \frac{f_{m}^{T}}{\lambda_{m}^{T}}\left(w_{m}^{T}\right)_{x_{1}}\right)^{2} & \left(\sum_{m>0} \frac{f_{m}^{T}}{\lambda_{m}^{T}}\left(w_{m}^{T}\right)_{x_{1}}\right)\left(\sum_{m>0} \frac{f_{m}^{T}}{\lambda_{m}^{T}}\left(w_{m}^{T}\right)_{x_{2}}\right) \\
S Y M & \left(\sum_{m>0} \frac{f_{m}^{T}}{\lambda_{m}^{T}}\left(w_{m}^{T}\right)_{x_{2}}\right)^{2}
\end{array}\right)
$$

is singular: $\operatorname{det}\left(M_{T}^{0}(x)\right)=0$ so that $\arg \left(\max _{K^{0} \in G_{\theta_{T}}} K^{0}: M_{T}^{0}\right)=\left(\lambda_{\theta_{T}}^{-}, \lambda_{\theta_{T}}^{+}\right)$

Structure of the matrix $M_{T}-T$ large

$$
c_{m n}^{T}=-\frac{f_{m}^{T}}{\lambda_{m}^{T}} \frac{f_{n}^{T}}{\lambda_{n}^{T}}+\frac{1}{T} \frac{f_{n}^{T}}{\left(\lambda_{m}^{T}\right)^{2}\left(\lambda_{n}^{T}\right)^{2}}\left(\lambda_{n}^{T} f_{m}^{T}-\lambda_{m}^{T} a_{m}^{T} \lambda_{n}^{T}\right)+O\left(e^{-\lambda_{m} T}, e^{-\lambda_{n}^{T} T}\right)
$$

where the coefficients $c_{m n}^{i, T}$ are bounded with respect to T. Notice that only the coefficients of the heat source f are involved in the first order terms $c_{m n}^{0, T}$. We put

$$
M_{T}(x)=M_{T}^{0}(x)+\frac{M_{T}^{1}(x)}{T}+M^{2}(T, x), \quad x \in \Omega .
$$

Now, we observe that the symmetric matrix $M_{T}^{0}(x)$, which is given by

$$
M_{T}^{0}(x)=-\left(\begin{array}{lr}
\left(\sum_{m>0} \frac{f_{m}^{T}}{\lambda_{m}^{T}}\left(w_{m}^{T}\right)_{x_{1}}\right)^{2} & \left(\sum_{m>0} \frac{f_{m}^{T}}{\lambda_{m}^{T}}\left(w_{m}^{T}\right)_{x_{1}}\right)\left(\sum_{m>0} \frac{f_{m}^{T}}{\lambda_{m}^{T}}\left(w_{m}^{T}\right)_{x_{2}}\right) \\
\text { SYM } & \left(\sum_{m>0} \frac{f_{m}^{T}}{\lambda_{m}^{T}}\left(w_{m}^{T}\right)_{x_{2}}\right)^{2}
\end{array}\right)
$$

is singular: $\operatorname{det}\left(M_{T}^{0}(x)\right)=0$ so that $\arg \left(\max _{K^{0} \in G_{\theta_{T}}} K^{0}: M_{T}^{0}\right)=\left(\lambda_{\theta_{T}}^{-}, \lambda_{\theta_{T}}^{+}\right)$

(T large)

For any $T \geq \sup _{x \in \Omega} T^{+}(x)$, the solution of the problem $\max _{K^{0} \in G_{\theta_{T}}} K^{0}: M_{T}$ is $\left(\lambda_{\theta_{T}}^{-}, \lambda_{\theta_{T}}^{+}\right)$so that the optimal tensor K_{T}^{\star} is a first order laminate.

Structure of the matrix $M_{T}: T$ small

The analysis for T arbitrarily small is similar. Precisely, we obtain

$$
\begin{equation*}
c_{m n}^{T}=a_{m}^{T} a_{n}^{T}-\frac{1}{2} a_{m}^{T} a_{n}^{T}\left(\lambda_{m}^{T}+3 \lambda_{n}^{T}\right) T+\frac{1}{2}\left(a_{m}^{T} f_{n}^{T}+a_{n}^{T} f_{m}^{T}\right) T+O\left(T^{2}\right), \quad m, n>0 \tag{21}
\end{equation*}
$$

so that we decompose the matrix M_{T} as $M_{T}(x)=M_{T}^{0}(x)+T M_{T}^{1}(x)+M_{T}^{2}(T, x)$ in Ω, where the symmetric matrix M_{T}^{0} depends only on the coefficients a_{m}^{T} of the initial condition u_{0}, assumed different from zero. By arguing as before, we obtain that $M_{T}^{0}(x)$ is singular so that for T small enough, says $T \leq T^{-}(x)$, the determinant of $M_{T}(x)$ is negatif.

(T small)

For any $T \leq \inf _{x \in \Omega} T^{-}(x)$, the solution of the problem $\max _{K^{0} \in G_{\theta_{T}}} K^{0}: M_{T}$ is $\left(\lambda_{\theta_{T}}^{-}, \lambda_{\theta_{T}}^{+}\right)$so that the micro-structure is recovered by first order laminates.

If $u_{0}=0, M_{T}^{0}=M_{T}^{1}=0$ and $M_{T}(x)=T^{2} M_{T}^{2}+\ldots$ with $\operatorname{det}\left(M_{T}^{2}(x)\right) \leq 0$ for all $x \in \Omega$ $T>0$.

Algorithm of minimization of $\bar{J}_{T}^{\star}\left(\theta_{T}, K_{T}^{\star}\right)$

\Longrightarrow Gradient method for the variable θ_{T} and optimality condition for the variable K_{T}^{\star} :

Algorithm of minimization of $\bar{J}_{T}^{\star}\left(\theta_{T}, K_{T}^{\star}\right)$

\Longrightarrow Gradient method for the variable θ_{T} and optimality condition for the variable K_{T}^{\star} :
Given $T>0, L \in(0,1), \Omega \subset \mathbb{R}^{2}, u_{0}, f \in L^{2}(\Omega)$ and $0<\varepsilon \ll 1$,

- Initialization: $\theta_{T}^{0}=L,\left(v_{1}^{0}, v_{2}^{0}, \cdots, v_{N}^{0}\right) \in \partial G_{\theta}, P^{0}=I d_{N}, \Lambda_{T}^{0}$ the diagonal matrix such that $\left(\Lambda_{T}^{0}\right)_{i i}=v_{i}^{0}$ and finally put $K_{T}^{\star, 0}=P^{0} \Lambda_{T}^{0}\left(P^{0}\right)^{t}$.

Algorithm of minimization of $\bar{J}_{T}^{\star}\left(\theta_{T}, K_{T}^{\star}\right)$

\Longrightarrow Gradient method for the variable θ_{T} and optimality condition for the variable K_{T}^{\star} : Given $T>0, L \in(0,1), \Omega \subset \mathbb{R}^{2}, u_{0}, f \in L^{2}(\Omega)$ and $0<\varepsilon \ll 1$,

- Initialization: $\theta_{T}^{0}=L,\left(v_{1}^{0}, v_{2}^{0}, \cdots, v_{N}^{0}\right) \in \partial G_{\theta}, P^{0}=I d_{N}, \Lambda_{T}^{0}$ the diagonal matrix such that $\left(\Lambda_{T}^{0}\right)_{i i}=v_{i}^{0}$ and finally put $K_{T}^{\star, 0}=P^{0} \Lambda_{T}^{0}\left(P^{0}\right)^{t}$.
- For $n \geq 1$, iteration until convergence
$\left(\left|\bar{J}_{T}^{\star}\left(\theta_{T}^{n}, K^{\star, n-1}\right)-\bar{J}_{T}^{\star}\left(\theta_{T}^{n}, K^{\star, n}\right)\right| \leq \varepsilon\left|\bar{J}_{T}^{\star}\left(\theta_{T}^{0}, K^{\star, 0}\right)\right|\right):$
Compute the state u^{n} and the adjoint state p^{n}

2. Compute the descent direction $\delta \theta\left(u^{n}, p^{n}\right)$ given by

> and then update the density $\theta_{T}^{n}:=\theta_{T}^{n-1}+\eta \delta \theta\left(u^{n}, p^{n}\right)$, where
> $\eta \in L^{\infty}\left(\Omega, \mathbb{R}_{+}^{*}\right)$ denotes a function, which depends on the multiplier / and chosen so that θ^{n} satisfies the volume constraint.
3. Compute the matrix $M_{T}^{n}=M_{T}^{n}\left(u^{n}, p^{n}\right)$ in Ω, its eigenvalues $\mu_{1}^{n}, \mu_{2}^{n}, \cdots, \mu_{N}^{n}$ and corresponding eigenvectors $e_{1}^{n}, e_{2}^{n}, \cdots, e_{N}^{n}$, and set
\square
4. Solve the linear problem $\max _{K 0 \in G} K^{0}: M_{T}^{\eta}$ leading to

then put $K_{T}^{\star, n}=P^{n} \wedge_{T}^{n}\left(P^{n}\right)^{t}$

Algorithm of minimization of $\bar{J}_{T}^{\star}\left(\theta_{T}, K_{T}^{\star}\right)$

\Longrightarrow Gradient method for the variable θ_{T} and optimality condition for the variable K_{T}^{\star} : Given $T>0, L \in(0,1), \Omega \subset \mathbb{R}^{2}, u_{0}, f \in L^{2}(\Omega)$ and $0<\varepsilon \ll 1$,

- Initialization: $\theta_{T}^{0}=L,\left(v_{1}^{0}, v_{2}^{0}, \cdots, v_{N}^{0}\right) \in \partial G_{\theta}, P^{0}=I d_{N}, \Lambda_{T}^{0}$ the diagonal matrix such that $\left(\Lambda_{T}^{0}\right)_{i i}=v_{i}^{0}$ and finally put $K_{T}^{\star, 0}=P^{0} \Lambda_{T}^{0}\left(P^{0}\right)^{t}$.
- For $n \geq 1$, iteration until convergence
$\left(\left|\bar{J}_{T}^{\star}\left(\theta_{T}^{n}, K^{\star, n-1}\right)-\bar{J}_{T}^{\star}\left(\theta_{T}^{n}, K^{\star, n}\right)\right| \leq \varepsilon\left|\bar{J}_{T}^{\star}\left(\theta_{T}^{0}, K^{\star, 0}\right)\right|\right):$

1. Compute the state u^{n} and the adjoint state p^{n}.
2. Compute the descent direction $\delta \theta\left(u^{n}, p^{n}\right)$ given by

and then update the density $\theta_{T}^{n}:=\theta_{T}^{n-1}+\eta \delta \theta\left(u^{n}, p^{n}\right)$, where
$\eta \in L^{\infty}\left(\Omega, \mathbb{R}_{+}^{*}\right)$ denotes a function, which depends on the multiplier / and chosen so that θ^{n} satisfies the volume constraint.
3. Compute the matrix $M_{T}^{n}=M_{T}^{n}\left(u^{n}, p^{n}\right)$ in Ω, its eigenvalues $\mu_{1}^{n}, \mu_{2}^{n}, \cdots, \mu_{N}^{n}$ and corresponding eigenvectors $e_{1}^{n}, e_{2}^{n}, \cdots, e_{N}^{n}$, and set
\square
4. Solve the linear problem $\max _{K^{0} \in G_{\theta}} K^{0}: M_{T}^{n}$ leading to

then put $K_{T}^{\star, n}=P^{n} \wedge_{T}^{n}\left(P^{n}\right)^{t}$

Algorithm of minimization of $\bar{J}_{T}^{\star}\left(\theta_{T}, K_{T}^{\star}\right)$

\Longrightarrow Gradient method for the variable θ_{T} and optimality condition for the variable K_{T}^{\star} :
Given $T>0, L \in(0,1), \Omega \subset \mathbb{R}^{2}, u_{0}, f \in L^{2}(\Omega)$ and $0<\varepsilon \ll 1$,

- Initialization: $\theta_{T}^{0}=L,\left(v_{1}^{0}, v_{2}^{0}, \cdots, v_{N}^{0}\right) \in \partial G_{\theta}, P^{0}=I d_{N}, \Lambda_{T}^{0}$ the diagonal matrix such that $\left(\Lambda_{T}^{0}\right)_{i i}=v_{i}^{0}$ and finally put $K_{T}^{\star, 0}=P^{0} \Lambda_{T}^{0}\left(P^{0}\right)^{t}$.
- For $n \geq 1$, iteration until convergence
$\left(\left|\bar{J}_{T}^{\star}\left(\theta_{T}^{n}, K^{\star, n-1}\right)-\bar{J}_{T}^{\star}\left(\theta_{T}^{n}, K^{\star, n}\right)\right| \leq \varepsilon\left|\bar{J}_{T}^{\star}\left(\theta_{T}^{0}, K^{\star, 0}\right)\right|\right):$

1. Compute the state u^{n} and the adjoint state p^{n}.
2. Compute the descent direction $\delta \theta\left(u^{n}, p^{n}\right)$ given by
$\delta \theta=\frac{1}{T} \int_{0}^{T} K_{T, \theta}^{\star} \nabla u \cdot(\nabla u+2 \nabla p) d t-2\left(\beta_{2}-\beta_{1}\right) \frac{1}{T} \int_{0}^{T} u^{\prime} p d t+I$ in Ω,
and then update the density $\theta_{T}^{n}:=\theta_{T}^{n-1}+\eta \delta \theta\left(u^{n}, p^{n}\right)$, where $\eta \in L^{\infty}\left(\Omega, \mathbb{R}_{+}^{\star}\right)$ denotes a function, which depends on the multiplier / and chosen so that θ^{n} satisfies the volume constraint.

then put $K_{T}^{\star, n}=P^{n} \Lambda_{T}^{n}\left(P^{n}\right)^{t}$

Algorithm of minimization of $\bar{J}_{T}^{\star}\left(\theta_{T}, K_{T}^{\star}\right)$

\Longrightarrow Gradient method for the variable θ_{T} and optimality condition for the variable K_{T}^{\star} :
Given $T>0, L \in(0,1), \Omega \subset \mathbb{R}^{2}, u_{0}, f \in L^{2}(\Omega)$ and $0<\varepsilon \ll 1$,

- Initialization: $\theta_{T}^{0}=L,\left(v_{1}^{0}, v_{2}^{0}, \cdots, v_{N}^{0}\right) \in \partial G_{\theta}, P^{0}=I d_{N}, \Lambda_{T}^{0}$ the diagonal matrix such that $\left(\Lambda_{T}^{0}\right)_{i i}=v_{i}^{0}$ and finally put $K_{T}^{\star, 0}=P^{0} \Lambda_{T}^{0}\left(P^{0}\right)^{t}$.
- For $n \geq 1$, iteration until convergence
$\left(\left|\bar{J}_{T}^{\star}\left(\theta_{T}^{n}, K^{\star, n-1}\right)-\bar{J}_{T}^{\star}\left(\theta_{T}^{n}, K^{\star, n}\right)\right| \leq \varepsilon\left|\bar{J}_{T}^{\star}\left(\theta_{T}^{0}, K^{\star, 0}\right)\right|\right):$

1. Compute the state u^{n} and the adjoint state p^{n}.
2. Compute the descent direction $\delta \theta\left(u^{n}, p^{n}\right)$ given by
$\delta \theta=\frac{1}{T} \int_{0}^{T} K_{T, \theta}^{\star} \nabla u \cdot(\nabla u+2 \nabla p) d t-2\left(\beta_{2}-\beta_{1}\right) \frac{1}{T} \int_{0}^{T} u^{\prime} p d t+I$ in Ω,
and then update the density $\theta_{T}^{n}:=\theta_{T}^{n-1}+\eta \delta \theta\left(u^{n}, p^{n}\right)$, where $\eta \in L^{\infty}\left(\Omega, \mathbb{R}_{+}^{\star}\right)$ denotes a function, which depends on the multiplier / and chosen so that θ^{n} satisfies the volume constraint.
3. Compute the matrix $M_{T}^{n}=M_{T}^{n}\left(u^{n}, p^{n}\right)$ in Ω, its eigenvalues $\mu_{1}^{n}, \mu_{2}^{n}, \cdots, \mu_{N}^{n}$ and corresponding eigenvectors $e_{1}^{n}, e_{2}^{n}, \cdots, e_{N}^{n}$, and set $P^{n}=\left(e_{1}^{n}, e_{2}^{n}, \cdots, e_{N}^{n}\right)$.

Algorithm of minimization of $\bar{J}_{T}^{\star}\left(\theta_{T}, K_{T}^{\star}\right)$

\Longrightarrow Gradient method for the variable θ_{T} and optimality condition for the variable K_{T}^{\star} :
Given $T>0, L \in(0,1), \Omega \subset \mathbb{R}^{2}, u_{0}, f \in L^{2}(\Omega)$ and $0<\varepsilon \ll 1$,

- Initialization: $\theta_{T}^{0}=L,\left(v_{1}^{0}, v_{2}^{0}, \cdots, v_{N}^{0}\right) \in \partial G_{\theta}, P^{0}=I d_{N}, \Lambda_{T}^{0}$ the diagonal matrix such that $\left(\Lambda_{T}^{0}\right)_{i i}=v_{i}^{0}$ and finally put $K_{T}^{\star, 0}=P^{0} \Lambda_{T}^{0}\left(P^{0}\right)^{t}$.
- For $n \geq 1$, iteration until convergence
$\left(\left|\bar{J}_{T}^{\star}\left(\theta_{T}^{n}, K^{\star, n-1}\right)-\bar{J}_{T}^{\star}\left(\theta_{T}^{n}, K^{\star, n}\right)\right| \leq \varepsilon\left|\bar{J}_{T}^{\star}\left(\theta_{T}^{0}, K^{\star, 0}\right)\right|\right):$

1. Compute the state u^{n} and the adjoint state p^{n}.
2. Compute the descent direction $\delta \theta\left(u^{n}, p^{n}\right)$ given by
$\delta \theta=\frac{1}{T} \int_{0}^{T} K_{T, \theta}^{\star} \nabla u \cdot(\nabla u+2 \nabla p) d t-2\left(\beta_{2}-\beta_{1}\right) \frac{1}{T} \int_{0}^{T} u^{\prime} p d t+I$ in Ω,
and then update the density $\theta_{T}^{n}:=\theta_{T}^{n-1}+\eta \delta \theta\left(u^{n}, p^{n}\right)$, where $\eta \in L^{\infty}\left(\Omega, \mathbb{R}_{+}^{\star}\right)$ denotes a function, which depends on the multiplier I and chosen so that θ^{n} satisfies the volume constraint.
3. Compute the matrix $M_{T}^{n}=M_{T}^{n}\left(u^{n}, p^{n}\right)$ in Ω, its eigenvalues $\mu_{1}^{n}, \mu_{2}^{n}, \cdots, \mu_{N}^{n}$ and corresponding eigenvectors $e_{1}^{n}, e_{2}^{n}, \cdots, e_{N}^{n}$, and set $P^{n}=\left(e_{1}^{n}, e_{2}^{n}, \cdots, e_{N}^{n}\right)$.
4. Solve the linear problem $\max _{K 0 \in G_{\theta_{T}}} K^{0}: M_{T}^{n}$ leading to $\left(v_{1}^{n}, v_{2}^{n}, \cdots, v_{N}^{n}\right) \in \partial G_{\theta \frac{n}{n}}$. Consider the matrix $\Lambda_{T}^{n}=\left(v_{1}^{n}, v_{2}^{n}, \cdots, v_{N}^{n}\right)$ and then put $K_{T}^{\star, n}=P^{n} \Lambda_{T}^{n}\left(P^{n}\right)^{t}$.

Exemple 1: Uniform heat source $f=1$ and $u_{0}=0$

$$
N=2, \quad \Omega=(0,1)^{2}, \quad\left(\beta_{1}, k_{1}\right)=(1,0.07), \quad\left(\beta_{2}, k_{2}\right)=(1,0.14), \quad L=0.5, \quad f=1, u_{0}=0
$$

${ }^{0.5}$

05
$\times 1$

Figure: Isovalues of θ_{T} in Ω for $T=0.5$ (Top left), $T=1, T=1.5, T=2, T=4$ and the limit elliptic case " $T=\infty$ " (Bottom right). The white zones correspond to the weaker conductor phase (β_{1}, k_{1}).

Exemple 1: Uniform heat source $f=1$ and $u_{0}=0$

Figure: Direction of lamination for $T=2$ (Left) and $T=\infty$ (Right).
\Longrightarrow We observe first order laminates for all $x \in \Omega$ and all $T>0$.

Exemple 2: Non uniform heat source and $u_{0}=0$

$$
f(x)=\mathcal{X}_{(0.05,0.15) \times(0.1,0.9)}(x)-\mathcal{X}_{(0.85,0.95) \times(0.1,0.9)}(x)
$$

Figure: Isovalues of θ_{T} and direction of lamination in Ω for $T=0.25$ (Top left), $T=0.5, T=1, T=2, T=4$ and the limit elliptic case " $T=\infty$ " (Bottom right).

$$
u_{0}(x)=\frac{1}{4} \mathcal{X}_{(0.2,0.8) \times(0.1,0.2)}(x)-\frac{1}{4} \mathcal{X}_{(0.2,0.8) \times(0.8,0.9)}(x)
$$

Figure: Isovalues of θ_{T} in Ω for $T=0.125,0.25,0.5, T=1, T=4$ and " $T=\infty$ ".

Exemple 3: Interplay between f and u_{0}

$$
u_{0}(x)=\frac{1}{4} \mathcal{X}_{(0.2,0.8) \times(0.1,0.2)}(x)-\frac{1}{4} \mathcal{X}_{(0.2,0.8) \times(0.8,0.9)}(x)
$$

Figure: Second order laminate zone in Ω for $T=0.125,0.25,0.5$ and $T=1$.

Exemple 3: Interplay between f and u_{0}

$$
u_{0}(x)=\frac{1}{4} \mathcal{X}_{(0.2,0.8) \times(0.1,0.2)}(x)-\frac{1}{4} \mathcal{X}_{(0.2,0.8) \times(0.8,0.9)}(x)
$$

Figure: First eigenvector of the matrix M_{T} for $T=0.125,0.25,0.5$ and $T=1$.

Conclusions

- The minimizers $K_{T}^{\star} \mathrm{H}$-converge toward the minimizers of K_{∞}^{\star}
- Minimizers K_{T}^{*} are represented with at MOST N order (sequential) laminates
- We strongly suspect that minimizers K_{T}^{\star} are represented with first order laminates is T is large enough
- I suspect, that if f or $U_{0}=0$, then minimizers K_{T}^{*} are represented by first order laminates for all $T>0$.
- A possible way to determine the order of lamination is to use Variational approach and Young measures.

Conclusions

- The minimizers $K_{T}^{\star} \mathrm{H}$-converge toward the minimizers of K_{∞}^{\star}
- Minimizers K_{T}^{\star} are represented with at MOST N order (sequential) laminates
- We strongly suspect that minimizers K太 are represented with first order laminates is T is large enough
- I suspect, that if f or $u_{0}=0$, then minimizers K_{T}^{\star} are represented by first order laminates for all $T>0$.
- A possible way to determine the order of lamination is to use Variational approach and Young measures.

Conclusions

- The minimizers $K_{T}^{\star} \mathrm{H}$-converge toward the minimizers of K_{∞}^{\star}
- Minimizers K_{T}^{\star} are represented with at MOST N order (sequential) laminates
- We strongly suspect that minimizers K_{T}^{\star} are represented with first order laminates is T is large enough
- I suspect, that if f or $U_{0}=0$, then minimizers K_{T}^{*} are represented by first order laminates for all $T>0$.
- A nossible way to determine the order of lamination is to use Variational approach and Young measures.

Conclusions

- The minimizers $K_{T}^{\star} \mathrm{H}$-converge toward the minimizers of K_{∞}^{\star}
- Minimizers K_{T}^{\star} are represented with at MOST N order (sequential) laminates
- We strongly suspect that minimizers K_{T}^{\star} are represented with first order laminates is T is large enough
- I suspect, that if f or $u_{0}=0$, then minimizers K_{T}^{\star} are represented by first order laminates for all $T>0$.
- A possible way to determine the order of lamination is to use Variational approach and Young measures.

Conclusions

- The minimizers $K_{T}^{\star} \mathrm{H}$-converge toward the minimizers of K_{∞}^{\star}
- Minimizers K_{T}^{\star} are represented with at MOST N order (sequential) laminates
- We strongly suspect that minimizers K_{T}^{\star} are represented with first order laminates is T is large enough
- I suspect, that if f or $u_{0}=0$, then minimizers K_{T}^{\star} are represented by first order laminates for all $T>0$.
- A possible way to determine the order of lamination is to use Variational approach and Young measures.

The time dependent case $\mathcal{X}=\mathcal{X}(t, x)$ - Variational approach and Young

measure

(AM-Pedregal-Periago, JMPA 2008)
Assume that the solution of of the heat system has the regularity $u \in L^{2}\left(0, T ; H^{2}(\Omega)\right)$ and depends continuously on the initial datum in the corresponding norms. Then the variational problem

$$
\text { (RP }{ }_{t} \text {) Minimize in }(\theta, \bar{G}, u): \quad \bar{J}_{t}(\theta, \bar{G}, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[k_{1} \frac{\left|\bar{G}-k_{2} \nabla u\right|^{2}}{\theta\left(k_{1}-k_{2}\right)^{2}}+k_{2} \frac{\left|\bar{G}-k_{1} \nabla u\right|^{2}}{(1-\theta)\left(k_{2}-k_{1}\right)^{2}}\right] d x d t
$$

subject to

$$
\left\{\begin{array}{lr}
G \in L^{2}\left((0, T) \times \Omega ; \mathbb{R}^{N+1}\right), u \in H^{1}((0, T) \times \Omega ; \mathbb{R}), & \\
\left(\left(\theta \beta_{1}+(1-\theta) \beta_{2}\right) u\right)^{\prime}-\operatorname{div} \bar{G}=0 & \text { in } H^{-1}((0, T) \times \Omega), \\
\left.u\right|_{\partial \Omega}=0 \quad \text { a. } e . t \in[0, T], & u(0)=u_{0} \text { in } \Omega, \tag{22}\\
\theta \in L^{\infty}((0, T) \times \Omega ;[0,1]), \quad \int_{\Omega} \theta(t, x) d x=L|\Omega| & \text { a.e. } t \in(0, T) .
\end{array}\right.
$$

is a relaxation of $\left(V P_{t}\right)$ in the sense that

[^0]
The time dependent case $\mathcal{X}=\mathcal{X}(t, x)$ - Variational approach and Young

measure

(AM-Pedregal-Periago, JMPA 2008)

Assume that the solution of of the heat system has the regularity $u \in L^{2}\left(0, T ; H^{2}(\Omega)\right)$ and depends continuously on the initial datum in the corresponding norms. Then the variational problem
$\left(R P_{t}\right)$ Minimize in (θ, \bar{G}, u) : $\quad J_{t}(\theta, \bar{G}, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[k_{1} \frac{\left|\bar{G}-k_{2} \nabla u\right|^{2}}{\theta\left(k_{1}-k_{2}\right)^{2}}+k_{2} \frac{\left|\bar{G}-k_{1} \nabla u\right|^{2}}{(1-\theta)\left(k_{2}-k_{1}\right)^{2}}\right] d x d t$
subject to

$$
\left\{\begin{array}{lr}
G \in L^{2}\left((0, T) \times \Omega ; \mathbb{R}^{N+1}\right), u \in H^{1}((0, T) \times \Omega ; \mathbb{R}), & \\
\left(\left(\theta \beta_{1}+(1-\theta) \beta_{2}\right) u\right)^{\prime}-\operatorname{div} \bar{G}=0 & \text { in } H^{-1}((0, T) \times \Omega), \\
\left.u\right|_{\partial \Omega}=0 \quad \text { a. } e . t \in[0, T], & u(0)=u_{0} \text { in } \Omega, \tag{22}\\
\theta \in L^{\infty}((0, T) \times \Omega ;[0,1]), \quad \int_{\Omega} \theta(t, x) d x=L|\Omega| & \text { a.e. } t \in(0, T) .
\end{array}\right.
$$

is a relaxation of $\left(V P_{t}\right)$ in the sense that
(i) there exists at least one minimizer for $\left(R P_{t}\right)$,
(ii) the infimum of $\left(V P_{t}\right)$ equals the minimum of $\left(R P_{t}\right)$, and
the underlying Young measure associated with $\left(R P_{t}\right)$ (and therefore the optimal microstructure of $\left(V P_{t}\right)$) can be found in the form of a first-order laminate whose direction of lamination can be given explicitly in terms of optimal solutions for $\left(R P_{t}\right)$.

The time dependent case $\mathcal{X}=\mathcal{X}(t, x)$ - Variational approach and Young

measure

(AM-Pedregal-Periago, JMPA 2008)

Assume that the solution of of the heat system has the regularity $u \in L^{2}\left(0, T ; H^{2}(\Omega)\right)$ and depends continuously on the initial datum in the corresponding norms. Then the variational problem
$\left(R P_{t}\right)$ Minimize in $(\theta, \bar{G}, u): \quad \bar{J}_{t}(\theta, \bar{G}, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[k_{1} \frac{\left|\bar{G}-k_{2} \nabla u\right|^{2}}{\theta\left(k_{1}-k_{2}\right)^{2}}+k_{2} \frac{\left|\bar{G}-k_{1} \nabla u\right|^{2}}{(1-\theta)\left(k_{2}-k_{1}\right)^{2}}\right] d x d t$
subject to

$$
\left\{\begin{array}{lr}
G \in L^{2}\left((0, T) \times \Omega ; \mathbb{R}^{N+1}\right), u \in H^{1}((0, T) \times \Omega ; \mathbb{R}), & \\
\left(\left(\theta \beta_{1}+(1-\theta) \beta_{2}\right) u\right)^{\prime}-\operatorname{div} \bar{G}=0 & \text { in } H^{-1}((0, T) \times \Omega), \\
\left.u\right|_{\partial \Omega}=0 \quad \text { a. e. } t \in[0, T], & u(0)=u_{0} \text { in } \Omega, \tag{22}\\
\theta \in L^{\infty}((0, T) \times \Omega ;[0,1]), \quad \int_{\Omega} \theta(t, x) d x=L|\Omega| & \text { a.e. } t \in(0, T) .
\end{array}\right.
$$

is a relaxation of $\left(V P_{t}\right)$ in the sense that
(i) there exists at least one minimizer for $\left(R P_{t}\right)$,
(ii) the infimum of $\left(V P_{t}\right)$ equals the minimum of $\left(R P_{t}\right)$, and

[^1]
The time dependent case $\mathcal{X}=\mathcal{X}(t, x)$ - Variational approach and Young

measure

(AM-Pedregal-Periago, JMPA 2008)

Assume that the solution of of the heat system has the regularity $u \in L^{2}\left(0, T ; H^{2}(\Omega)\right)$ and depends continuously on the initial datum in the corresponding norms. Then the variational problem
$\left(R P_{t}\right) \quad$ Minimize in $(\theta, \bar{G}, u): \quad \overline{J_{t}}(\theta, \bar{G}, u)=\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left[k_{1} \frac{\left|\bar{G}-k_{2} \nabla u\right|^{2}}{\theta\left(k_{1}-k_{2}\right)^{2}}+k_{2} \frac{\left|\bar{G}-k_{1} \nabla u\right|^{2}}{(1-\theta)\left(k_{2}-k_{1}\right)^{2}}\right] d x d t$
subject to

$$
\left\{\begin{array}{lr}
G \in L^{2}\left((0, T) \times \Omega ; \mathbb{R}^{N+1}\right), u \in H^{1}((0, T) \times \Omega ; \mathbb{R}), & \\
\left(\left(\theta \beta_{1}+(1-\theta) \beta_{2}\right) u\right)^{\prime}-\operatorname{div} \bar{G}=0 & \text { in } H^{-1}((0, T) \times \Omega), \\
\left.u\right|_{\partial \Omega}=0 \quad \text { a. } e . t \in[0, T], & u(0)=u_{0} \text { in } \Omega, \tag{22}\\
\theta \in L^{\infty}((0, T) \times \Omega ;[0,1]), \quad \int_{\Omega} \theta(t, x) d x=L|\Omega| & \text { a.e. } t \in(0, T) .
\end{array}\right.
$$

is a relaxation of $\left(V P_{t}\right)$ in the sense that
(i) there exists at least one minimizer for $\left(R P_{t}\right)$,
(ii) the infimum of $\left(V P_{t}\right)$ equals the minimum of $\left(R P_{t}\right)$, and
(iii) the underlying Young measure associated with $\left(R P_{t}\right)$ (and therefore the optimal microstructure of $\left(V P_{t}\right)$) can be found in the form of a first-order laminate whose direction of lamination can be given explicitly in terms of optimal solutions for $\left(R P_{t}\right)$.

More details on www.math.univ-bpclermont.fr/ -munch/

THANK YOU FOR YOUR ATTENTION

[^0]: there exists at least one minimizer for $\left(R P_{t}\right)$
 the infimum of $\left(V P_{t}\right)$ equals the minimum of $\left(R P_{t}\right)$, and
 the underlving Youna measure associated with $\left(R P_{t}\right)$ (and therefore the optimal microstructure of (VP)) can be found in the form of a first-order laminate whose direction of lamination can be given explicitly in terms of optimal solutions for ($R P_{t}$).

[^1]: the underlying Young measure associated with $\left(R P_{t}\right)$ (and therefore the optimal microstructure of $\left(V P_{t}\right)$) can be found in the form of a first-order laminate whose direction of lamination can be given explicitly in terms of optimal solutions for $\left(R P_{t}\right)$.

