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Introduction

€1
Figure: Crack domain Q in R?
ax, (X) = aXy(x)+ B(1 — Xu(x), x=(x,%)€Q (1)
—div(ax,, (X)Vu) =0 Q,
u=u My C 09, (2)
BVu-v=g g C 00

Iftg € H'/2(6Q) and uy € L?(8Q) = u € H'(Q).
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Introduction

("Energy" of the system)

1
E(u, v) = 5/anw|vlj|2dx7/r gudo ®)
g

2AAA. Griffith, The phenomena of rupture and flow in Solids, Phil. Trans. Roy: Soc. London, 1921
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("Energy" of the system)

1
E(u, v) = 5/anw|vlj|2dx7/r gudo ®)
g

v

(Energy release rate)

The energy release rate T is defined as minus the variation of E with respect the variation of F (in the direction ey ).
Formally

E(u",4") — E
T = — lim M (4)
n—0 [y — 5]

where (u", ~") denotes an extension of F.

T - measure of the singularity of u at the point F

A\

2AAA. Griffith, The phenomena of rupture and flow in Solids, Phil. Trans. Roy: Soc. London, 1921
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Introduction

("Energy" of the system)

1
E(u, v) = 5/anw|vlj|2dx7/r gudo @)
g

v

(Energy release rate)

The energy release rate T is defined as minus the variation of E with respect the variation of F (in the direction ey ).
Formally

E(u",4") — E
T = — lim M (4)
n—0 [y — 5]

where (u", ~") denotes an extension of F.

T - measure of the singularity of u at the point F

(Growth criterion of the crack, Griffith-1921)

IfT(u) > 7, then F grows.

A\

7. denotes an experimental value

A

2

2AAA. Griffith, The phenomena of rupture and flow in Solids, Phil. Trans. Roy: Soc. London, 1921
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The (optimal shape design) problem

In order to prevent (or at least reduce) the growth of the crack,
the idea is to act on the system in order to reduce the rate.

In this work, we minimize the rate with respect the distribution
of « and 3 along the structure Q
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The (optimal shape design) problem

In order to prevent (or at least reduce) the growth of the crack,
the idea is to act on the system in order to reduce the rate.

In this work, we minimize the rate with respect the distribution
of « and 3 along the structure Q

(P): leenAffL’D 7T(u, X,)

where, for any L € (0, 1) and a suitable compact set D included
in Q such that F € D,

tp = {X € L¥(@.0.1). |¥e) = L, ¥ =0in D]
and where u is the solution of (2).
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Very few contributions about the active control of crack growth

QP Destuynder, An approach to crack propagation control in structural dynamics, C.R.Acad. Sci. Paris, Série
11 306, 953-956 (1988).
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The energy release rate: the definition

The limit 7, finite and non negative, may be rigorously expressed in terms of u only. We introduce a velocity field

Y= (1, 92) EW={pp € W (QR)? % v=00m00213 =0onTg}, ()

where v designates the unit outward normal to Q. Let n € ]Rfr and the transformation 7" : x — X + n(x), so
that F"(F) = F™ and F"(v) = ~"; we first recall the following definition.

(Mathematical definition of the energy release rate)

Let u be the solution of (2). The derivative of the functional — E(u, ) with respect to a variation of v (more precisely
of F) in the direction «p is defined as the Fréchet derivative in W at 0 of the application n — —E(u, (Id + n)(~)),
ie.

OE(u, v) 2
—E(u, (Id+771/1)("/)):—E(U7’Y)—7IT “ + O(n°). (6)

In the sequel, we denote this derivative by T, (u, X.,). |
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The energy release rate: the expression

The first derivative of — E with respect to ~y in the direction 4 = (1, 12) € W is given by

1 5 .
Ty (u, X)) = /Q ax,, (x)Vu- (Vi - Vu)ax — Z /Q ax,, (x)|Vu|“div(y)dx

- /Q ax,, (X)(Ay (X)Vu, V)

with
Ay (X)

1
Ve = Sdv()e = Ve~ (V)L

3 ( P11 — 22 2441 2 )
2 29 1 Yoo — Y11 )7

and where u is solution of (2).

8 P. Destuynder, M. Djaoua, S. Lescure, Quelques remarques sur la mécanique de la rupture élastique , J.
Meca. Theor. Appli (1983).
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The energy release rate: the expression

The first derivative of — E with respect to ~y in the direction 4 = (1, 12) € W is given by

1 5 .
Ty (u, X)) = /Q ax,, (x)Vu- (Vi - Vu)ax — Z /Q ax,, (x)|Vu|“div(y)dx

- /Q ax,, (X)(Ay (X)Vu, V)

with
Ay (X)

1
Ve = Sdv()e = Ve~ (V)L

1 ( D11 — Y22 294 2 )

2 29 1 P22 — Y11

and where u is solution of (2).

Assuming that ~ is rectilinear near F and moves along eq, we can take 1, = 0 so that

_ Vg 22U
Ap(x) = 2 ( 0 =11 ) &

8 P. Destuynder, M. Djaoua, S. Lescure, Quelques remarques sur la mécanique de la rupture élastique , J.
Meca. Theor. Appli (1983).
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The energy release rate: the invariance

Since 7y, is a shape derivative (with respect to F), 7., should
depend on the function b € W only in a neighborhood of the
crack tip F. This invariance is true for all 1» € W in the
homogeneous case for which o = 3;

Miinch/Pedregal Relaxation in Fracture Mechanic



The energy release rate: the invariance

Since 7y, is a shape derivative (with respect to F), 7., should
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invariance remains true if the material is homogeneous on the
support of the function 4, localized around F.
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Since 7y, is a shape derivative (with respect to F), 7., should
depend on the function b € W only in a neighborhood of the
crack tip F. This invariance is true for all 1» € W in the
homogeneous case for which oo = 3; in our situation, this
invariance remains true if the material is homogeneous on the
support of the function 1, localized around F. We therefore
impose that supp(v) € D, where D is the set appearing in the
definition of the admissible class x| p. We then take

e Wp={yeW, supp(y) C D}.
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The energy release rate: the invariance

Since 7y, is a shape derivative (with respect to F), 7., should
depend on the function b € W only in a neighborhood of the
crack tip F. This invariance is true for all ¢» € W in the
homogeneous case for which oo = 3; in our situation, this
invariance remains true if the material is homogeneous on the
support of the function 1, localized around F. We therefore
impose that supp(v) € D, where D is the set appearing in the
definition of the admissible class x| p. We then take

e Wp={yeW, supp(y) C D}.

This material assumption then permits to link the derivative 7,
which is a mathematical quantity defined on , to the
thermo-dynamic strength 7 (locally defined on F).
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The energy release rate: the invariance

((Local) Energy release rate)

Let C(F, r) be the circle of center F and radius r > 0, v¢ = (v¢ 1, v¢,2) its outward normal and

1
Tr(u, X, :—/ a, X)U ju gy, do’—/ a X)U ju g jdo,
r( w) 2 ) XW( ) JY.jYkVe, k C(F,r) Xw( ) JY kYkVe,j

where u is solution of (2). The thermo-dynamic strength T is linked to T, as follows:

Ty (u, Xoy) = fim Tr(u, Xo) (¥ - v)p = T(U, o) $(F) - vr, Vi € Wp, (10)

where ve = (vF 1, vF 2) = (£1, 0) denotes the orientation of the crack ~y at the point F. |

It follows from (10) that the energy release rate 7, is related to the strength 7" by
T(u, Xo) = Ty (U, Xy), VY € Wp suchthat ¢ (F) - vp = £4p4(F) = 1. (11)
As a summary, if the conductivity is constant equal to 3 in D, and if the function 2/, which permits to define the

virtual crack extension of F, belongs to W and satisfies 11 (F) = £1, then the energy release rate 7 may be

related to the mathematical quantity 7, .
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The optimal design problem

P): inf  Ty(u, X, 12
(P it Ty(u ) (12)

@ Le(0,1);
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The optimal design problem

P): inf  Ty(u, X, 12
(P it Ty(u ) (12)

@ Le(0,1);
@ D a compact set included in Q such that F € D;
® Xy p={Xe€L*(Q{0,1}), [[X](q) = LI, ¥ =0inD}
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The optimal design problem

P) : inf 7, X, 12
(P): inf Ty(u.d) (12)
@ Le(0,1);
@ D a compact set included in Q such that F € D;
® Xp={Xel*(2{0,1}), X (q = LI, ¥=0inD}
@ 1 € Wp such that o(F) - vp = £ (F) = 1.
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The optimal design problem

(P):  int Ty(u.x) (12)
@ Le(0,1);
@ D a compact set included in Q such that F € D;
® Xp={Xel*(2{0,1}), X (q = LI, ¥=0inD}
@ 1 € Wp such that ¢(F) - vr = £¢4(F) = 1.
© Wp={y e W, supp(y) C D}
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The optimal design problem

P) : inf 7, X, 12

(P): inf Ty(u.d) (12)
Le(0,1);
D a compact set included in Q such that F € D;
Xp ={X € L*(2,{0,1}), [ X]l.1(q) = LIQ[, ¥ =0in D}
1 € Wp such that ¢(F) - vp = £1(F) = 1.
Wp = {¢ € W, supp(y) C D}
W={yec(W(QR))>? ¢ v=00n0Q1p =0onlg}
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The optimal design problem

P) : inf 7, X, 12

(P): inf Ty(u.d) (12)
Le(0,1);
D a compact set included in Q such that F € D;
Xp ={X € L*(2,{0,1}), [ X]l.1(q) = LIQ[, ¥ =0in D}
1 € Wp such that ¢(F) - vp = £1(F) = 1.
Wp = {¢ € W, supp(y) C D}
W={yec(W(QR))>? ¢ v=00n0Q1p =0onlg}
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The optimal design problem

(P): i Ty(u.) (12)
Le(0,1);
D a compact set included in Q such that F € D;
Xip ={X € L(Q,{0,1}), X1 = LI, X =0in D}
1 € Wp such that ¢(F) - vp = £901(F) = 1.
Wp = {¢ € W, supp(y) C D}
W= {y € (W °(QR))2 9 -v=00n0Q =0onlg}

(P) is a prototype of ill-posed problem, and very likely, needs of
relaxation.

Miinch/Pedregal Relaxation in Fracture Mechanic



The relaxation (through Young measure)

The following formulation :
(RP) min 7Ty (u, s) = / B(Ay Vu, Vu)dx (13)
’ JD

subject to the constraint

s € L°°(Q,[0,1]),s = 0in DU BQ,/ s(x)dx = L|Q,
Q

te @R, |il=1, (14)
UEH1(Q), u=ugonly, PBVu-v=gonlg,
div(A(s)Vu + C(s)|Vult) = 0 weakly in Q

s(1=s)(B—a)® AT(s) = A~ (s)

208 +s(1—8)(B—a) () +A(s) ote) =
T 2a(l—s)+Bs) 2 ’ T 2(a(1—s)+Bs) 2

(15)
is a full relaxation of (P) in the sense that
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(RP) min 7Ty (u, s) = / B(Ay Vu, Vu)dx (13)
’ JD

subject to the constraint

s € L°°(Q,[0,1]),s = 0in DU BQ,/ s(x)dx = L|Q,
Q

te @R, |il=1, (14)
UEH1(Q), u=ugonly, PBVu-v=gonlg,
div(A(s)Vu + C(s)|Vult) = 0 weakly in Q

s(1=s)(B—a)® AT(s) = A~ (s)

208 +s(1—8)(B—a) () +A(s) ote) =
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(15)
is a full relaxation of (P) in the sense that

@ (RP) is well-posed
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The relaxation (through Young measure)

The following formulation :
(RP) min 7Ty (u, s) = / B(Ay Vu, Vu)dx (13)
’ JD

subject to the constraint

s € L°°(Q,[0,1]),s = 0in DU BQ,/ s(x)dx = L|Q,
Q

te @R, |il=1, (14)
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(15)
is a full relaxation of (P) in the sense that

@ (RP) is well-posed
@ min(RP) = inf(P).
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The relaxation (through Young measure)

The following formulation :
(RP) min 7Ty (u, s) = / B(Ay Vu, Vu)dx (13)
’ JD

subject to the constraint

s € L°°(Q,[0,1]),s = 0in DU BQ,/ s(x)dx = L|Q,
Q

te @R, |il=1, (14)
UEH1(Q), u=ugonly, PBVu-v=gonlg,
div(A(s)Vu + C(s)|Vult) = 0 weakly in Q

s(1=s)(B—a)® AT(s) = A~ (s)

208 +s(1—8)(B—a) () +A(s) ote) =
T 2a(l—s)+Bs) 2 ’ T 2(a(1—s)+Bs) 2

(15)
is a full relaxation of (P) in the sense that

@ (RP) is well-posed
@ min(RP) = inf(P).

Moreover, the underlying Young measure associated with (RP) can be found in the form of a first order laminate
whose direction of lamination are given explicitly in term of the optimal solution.
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Some steps of the proof from the Young measure approach

Suppose that (Xw,,)(n>0) is a minimizing sequence for (P) and let up, be its corresponding sequence of solutions.
Consider the two sequences of vectors

Gn(x) = (aXwp + B(1 = Xup))Vun(x),  Hp(X) = Vun(x). (16)

Since both sequences are uniformly bounded in (L?(2))?, we may associate with the pair (Gp, Hp) a family of
parametrized measures v = {vx } xcq, a div-curl measure, supported in the union the two linear manifolds

Ay ={(\p) ER® xR®: p=A}, v=0a,0 (17

so that supp(vx) C Aa U Ag.
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Some steps of the proof from the Young measure approach

Suppose that (Xw,,)(n>0) is a minimizing sequence for (P) and let up, be its corresponding sequence of solutions.
Consider the two sequences of vectors

Gn(x) = (aXwp + B(1 = Xup))Vun(x),  Hp(X) = Vun(x). (16)

Since both sequences are uniformly bounded in (L?(2))?, we may associate with the pair (Gp, Hp) a family of
parametrized measures v = {vx } xcq, a div-curl measure, supported in the union the two linear manifolds

Ay ={(np) BB xB:p=7A}, v=a,f (17
so that supp(vx) C Ao U Ag. As is usual, the measure vx may be written as
vx = S(X)vx,a + (1 — s(X)vx, g (18)

with supp(vx,~) C A~ and s(x) € [0, 1], the weak—x limit in L°° (Q2) of a subsequence of X, ,.
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Some steps of the proof from the Young measure approach

Suppose that (Xw,,)(n>0) is a minimizing sequence for (P) and let up, be its corresponding sequence of solutions.
Consider the two sequences of vectors

Gn(x) = (aXwp + B(1 = Xup))Vun(x),  Hp(X) = Vun(x). (16)

Since both sequences are uniformly bounded in (L?(2))?, we may associate with the pair (Gp, Hp) a family of
parametrized measures v = {vx } xcq, a div-curl measure, supported in the union the two linear manifolds

Ay ={(np) BB xB:p=7A}, v=a,f (17
so that supp(vx) C Ao U Ag. As is usual, the measure vx may be written as
vx = S(X)vx,a + (1 — s(X)vx, g (18)

with supp(vx,~) C A~ and s(x) € [0, 1], the weak—x limit in L°°(Q2) of a subsequence of X, ,. By the
fundamental property of Young measures, we may represent the limit of the cost associated with X, through the
measure v.

im Ty (un, Xp) = /Q [as(x)Aw(x) : /[RZ AT au{) (0) + B(1 — s(x)Ag (x) /m2 Ao (x| ax

(19)
where V)((12Y v = a, (3, designates the projection of vx ~ onto the first copy of R2.
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Some steps of the proof from the Young measure approach

Suppose that (Xw,,)(n>0) is a minimizing sequence for (P) and let up, be its corresponding sequence of solutions.
Consider the two sequences of vectors

Gn(x) = (aXwp + B(1 = Xup))Vun(x),  Hp(X) = Vun(x). (16)

Since both sequences are uniformly bounded in (L?(2))?, we may associate with the pair (Gp, Hp) a family of
parametrized measures v = {vx } xcq, a div-curl measure, supported in the union the two linear manifolds

Ay ={(np) BB xB:p=7A}, v=a,f (17
so that supp(vx) C Ao U Ag. As is usual, the measure vx may be written as
vx = S(X)vx,a + (1 — s(X)vx, g (18)

with supp(vx,~) C A~ and s(x) € [0, 1], the weak—x limit in L°°(Q2) of a subsequence of X, ,. By the
fundamental property of Young measures, we may represent the limit of the cost associated with X, through the
measure v.

i _ . T4, (1) . T4,
im Ty (un, Xp) = /Q [as(x)Aw(x) : /[RZ ATl () + B(1 — s(x)Ag (x) /M2 AN duw(x)} ax
(19)
where V)((12Y v = a, (3, designates the projection of vx ~ onto the first copy of R2. Therefore, with each minimizing

sequence of (P), we associate an optimal div-curl Young measure. In this sense, optimizing with respect to X, is
equivalent to optimizing with respect to v.
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Relaxation - Step 1: Variational reformulation

We introduce the linear manifolds Ay = {(}, p) € R2 X R?:p= A} and

ahy (x) : ANT it (p,A) € Ay,

WX, 9 A) = BAy(x): AXT it (p,A) € Ag, (20)
+ oo else,
and
1 it (p,A) € Aa,
V(p,A\)=40 it (p,A) € Ag, (21)
+ oo else.

Then we check that (P) is equivalent to the following new problem
(VPY: int / W(x, G(x), Vu(x))ox @2)
G,uJq

subject to
Ge B(QRr?), ueH (2R),

dvG=0 in H'(Q), G(x)=pVux) in D
u=uy on g, BVu-v=g on g C IN\(yUTy),

/Q V(G(xX), Vu(x))dx = LI
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Relaxation - Constrained Quasi-Convexification

(RP) : min / CQW(x, s(x), G(x), Vu(x))dx (24)
s,G,uJq

for u and G satisfying the previous constraints and

seS p= {s € L(@, [0, 1)), lIsll 1 gy = LIl s = 0in DU an}. (25)
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Relaxation - Constrained Quasi-Convexification

(RP) : min / CQW(x, s(x), G(x), Vu(x))dx (24)
s,G,uJq

for u and G satisfying the previous constraints and
SES.,p= {s c L°°(Q, [0, 1]), IIsll1 @ = L|Q|,s=0inDU 89}. (25)

The constrained quasi-convex density CQW is computed by solving the problem in measure :

CQW(x, s(x), G(x), Vu(x))

=inf as(x)Ay () : [ ATde{ () + 801 — sx)A(x) : [ axTawD () @9)
= n « .,J, N RZ VX.,(:( ,¢, N ]RZ VX‘ﬁ
for any measure v subject to
v = {VX}XGSL vx = $(X)vx,a + (1 — S(x))VX,Bv SUPP(VX,'*/) C Ay,
v is div-curl Young measure satisfying the commutation property, ©@7)

G(x) = /2 pdux(X, p), div G=0weaklyin Q, Vu(x)= /2 Advx(X, p).
J RS JR
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Computation of CQW

@ Step 2: Computation of CPW, a lower bound of CQW
CPW(x, s(x), G(x), Vu(x))
. T () T (1) (@8)
= int{ as(x)Ay (x) /]RZ AT a{ (0) + B(1 — s(x)Ay (x) /RZ ATa (y)
for any measure v subject to

v =A{vx}xeq, vx=8(X)vx,a +(1— S(X))’/x,[h SUPP(”X,'Y) C Ay,

v is measure satisfying the commutation property, (29)

G(x) = /2 pdux(X, p), div G=0weaklyin Q, Vu(x)= /2 Advy (A, p).
R R

= Mathematical programming problem for the moments _[RZ )\)\Tdu,(;)
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Computation of CQW

@ Step 2: Computation of CPW, a lower bound of CQW
CPW(x, s(x), G(x), Vu(x))
. Ty (D ST () (@8)
= int{ as(x)Ay (x) /]RZ AT a{ (0) + B(1 — s(x)Ay (x) /RZ ATa (y)
for any measure v subject to

v =A{vx}xeq, vx=8(X)vx,a +(1— S(X))’/x,[h SUPP(”X,'Y) C Ay,

v is measure satisfying the commutation property, (29)

G(x) = /2 pdux(X, p), div G=0weaklyin Q, Vu(x)= /2 Advy (A, p).
R R

= Mathematical programming problem for the moments _[RZ )\)\Tdu,(;)

@ Step 3: See if the optimal measure for CPW is a div-curl measure
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Computation of CQW

@ Step 2: Computation of CPW, a lower bound of CQW
CPW(x, s(x), G(x), Vu(x))
. Ty (D ST () (@8)
= int{ as(x)Ay (x) /]RZ AT a{ (0) + B(1 — s(x)Ay (x) /RZ ATa (y)
for any measure v subject to

v =A{vx}xeq, vx=8(X)vx,a +(1— S(X))’/x,[h SUPP(”X,'Y) C Ay,

v is measure satisfying the commutation property, (29)

Gix) = /2 pdux(, p), div G =0 weakly in @, Vu(x) = /2 Adux(A, p).
R R
= Mathematical programming problem for the moments _[RZ )\)\Tdu,(;)

@ Step 3: See if the optimal measure for CPW is a div-curl measure

(Sufficient condition)

Suppose that pj, \j, i = 1, 2 are four vectors in R? such that
(P2 = p1) - (A2 = Aq) = 0. (30)
Then the probability measure
H= 8505 x) T (1 =8)5(55.x) ©1)
is a div-curl Young measure for all s € [0, 1]. ]

Miinch/Pedregal Relaxation in Fracture Mechanic



Step 2 : Constrained Quasi-Convexification- Lower bound

Concerning the first moment of v, we may write

o) = [onavioy) =s [ andD00+ 1 =9 [ aar @)

R
where ug) is the projection of v, onto the first copy of R? of the product R? x R2. By introducing
1
Ay = /RZ xev (), (33)

we have A = sAq + (1 — S)Ag, p = sadq + (1 — 8)BAg, and then
1 1

Aa=————(Br=p), Ag=—"(p—al). (34)
* T sB-a) R )
Moreover, the commutation with the inner product yields the relation
/\Tp = / xTydu(x,y) = as/ XTXdV(1)(X) + B(1—5s) / XTXdV(1)(X). (35)
A R2 “ R2 8

To find a lower bound of CQW, we retain just the relevant property expressed in the commutation (35), so that we
regard feasible measures v as Young measures which satisfy this commutation property, but are not necessarily a
div-curl Young measure. We introduce

X, =/ xTdvD(x), ~v=a,s (36)
R2 B
a convex combination of symmetric rank-one matrices. It is well-known that
T
Xy 2 AL vy =a,8 87)

in the usual sense of symmetric matrices, i.e. that X, — /\«,AE is semi-definite positive. The relation (35) becomes

ATp =X p=asT(Xa) + B(1 — 8)Tr(Xga). (38)
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Step 2 : A lower bound of the Constrained Quasi-Convexification

Similarly, the cost may be written in term of the variable X, as follows :
sahy : Xa + (1 = 8)BAy : Xg = saTr(AyXa) + (1 — 8)BTr(AyX3) (39)

from the relation A, : Xy = Tr(Ay Xy), v = «, 8. Consequently, in seeking a lower bound of the constrained
quasiconvexification, we are led to consider the mathematical programming problem

Xmi;} C(Xa; Xg) = asTr(AyXa) + B(1 — 8)Tr(Ay Xg) (40)
a3

subject to the constraints

ATp =2 p=asTr(Xa) +B(1 — §)Tr(Xg), Xy > Ayl (1)

We first realize that the set of vectors for which the constraints yield a non-empty set takes place if
asTr(AaAl) + B(1 — )T(AgAL) < X+ p (42)
i.e. if ) )
B(p,\) =X - p — as|xal? — B(1 — s)|A2 >0
=g — Aa) - (BAg — aXa)

using that Tr(/\pT) =X-p.
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Step 2 : Constrained Quasi-Convexification- Lower bound

(Non diagonal case)

Foranys € L°°(Q) and (X, p) = (Vu, G) satisfying all the constraints,

1
S|V R e A - aslaal? = 501 = 9)nal?)

by g(esXe (1= 8)BNG 1) — iy 1(asAE 5 + (1 — 5)BAF )

m(s, A, p) =
+ 291 p(asAq 1 A2 + (1 — 9)BAg,123,2) if B(p, \) > 0

+ oo else
(44)
is a lower bound for the constrained quasi-convexified CQW of W :

m(s, X, p) < CAW(S, A, p). (45)

Ay = A5 (S, A, p), v = a, B are defined by (34). |
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Step 2 : Constrained Quasi-Convexification- Lower bound - Proof

We note

_ b1, 2912 _(a 2b
Ay = ( 2)1 =11 ):(0 7a> (46)

and made the change of variables Yo = X, — A.Y/\,"; so that the cost and the constraints are transformed into

N =

v oymin o as(@(Ya,11 = Ya,22) +26Y0 12) + (1 = 8)(a(Yp,11 — Yp,22) +2bYp,42)) + A (47)
115 Yy ,225 Y 12

and
sa(Yy 11+ Yo 22) (1 = 8)B(Yg 11 + Yg,22) = B, 8)
2
Yomu+ Yy 2020, Yo Yy 002V 45 v=0a,8
where the constant A is defined by
A=as(@Xl | — X2 )+ 26X, 120 ,2) + B(1 — )((@(A\5 1 — A5 5) + 2625 125 2))- (49)
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Step 2 : Constrained Quasi-Convexification- Lower bound - Proof

We note 5
Y14 P12 _(a 2b
( 0 =11 ) - ( 0 -a ) “6)

and made the change of variables Yo = X, — A.Y/\,"; so that the cost and the constraints are transformed into

N =

Ay =

v oymin o as(@(Ya,11 = Ya,22) +26Y0 12) + (1 = 8)(a(Yp,11 — Yp,22) +2bYp,42)) + A (47)
115 Yy ,225 Y 12

and
sa(Yy 11+ Yo 22) (1 = 8)B(Yg 11 + Yg,22) = B, 8)
2
Yomu+ Yy 2020, Yo Yy 002V 45 v=0a,8
where the constant A is defined by
A=as(@Xl | — X2 )+ 26X, 120 ,2) + B(1 — )((@(A\5 1 — A5 5) + 2625 125 2))- (49)

The minimum of the linear cost is reached on the boundary of the convex sets
3 2
My = {(Y’y,ﬂv Yy220 Yy 12) €ERY, Y, 44 20,V 20 >0, Y, 1Yy 22 > Ymm}y y=a,8 (50

which implies Y., 11 Y. 22 = Y2 (5.
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Step 2 : Constrained Quasi-Convexification- Lower bound - Proof

We note

N =

_ b1, 2912 _(a 2b
Ay = ( 2)1 =11 ):(0 7a> (46)

Xy — A.Y/\,"; so that the cost and the constraints are transformed into

and made the change of variables Y~

v oymin o as(@(Ya,11 = Ya,22) +26Y0 12) + (1 = 8)(a(Yp,11 — Yp,22) +2bYp,42)) + A (47)
115 Yy ,225 Y 12

and
sa(Yy 11+ Yo 22) (1 = 8)B(Yg 11 + Yg,22) = B, 8)
2
Yomu+ Yy 2020, Yo Yy 002V 45 v=0a,8
where the constant A is defined by
A=as(@Xl | — X2 )+ 26X, 120 ,2) + B(1 — )((@(A\5 1 — A5 5) + 2625 125 2))- (49)

The minimum of the linear cost is reached on the boundary of the convex sets

3 2
My = {(Y’y,ﬂv Yy220 Yy 12) €ERY, Y, 44 20,V 20 >0, Y, 1Yy 22 > Ymm}y y=a,8 (50

which implies Y., 1Yy 22 = Ys,12- Therefore, we can introduce the new variables Zy = (Z 11, Z»y,zz)T so that
Y1 = Z?M" Y, 00 = 25122 and e, = 1 andthen Z,, 112, 20 = e~ Y, 12 reducing the problem to
min  C(Zy.ey) = as(a(Za 11 — Za po) + 2beaZa 1120 22)
Zy, 11245 ,22:6 ' ' 51)

2 2
+B(1 —s)(a(Z3,11 — Z3,22) +2begZp 1125,22)) + A

under the constraint 5 5 5 5
sa(Zy, 11+ Z5 20) + (1 = 8)B(Z5 11 + Z5 20) = B (52)

a4

Gnch/Pedregal axation in Fracture Mechanic



Step 2 : Constrained Quasi-Convexification- Lower bound - Proof

Introducing the Lagrangian L and the multiplier p
2 2 2 2
L(Zy,p) = C(Zy, ey) — p(SQ(Za’H + 25 20) + (1 = 8)B(Z3 11 + Z5,22) — B), (53)
we arrive at the optimality conditions :

a be
ApeyZy =PZy, Ay = ( b, —a ) . (54)
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Step 2 : Constrained Quasi-Convexification- Lower bound - Proof

Introducing the Lagrangian L and the multiplier p

2 2
UZy,p) = C(Zy, e5) — p(sa(za,n + 25 20) + (1 = 98(Z5 11+ 25 20) — B) ; (53)
we arrive at the optimality conditions :
a be
Ay enZy =02y, Ay, = ( be, -4 ) . (54)
The resolution of a spectral problem leads to
-
p=—Va+b2, Z =a, (bc.\,,f(aJr \/az+b2)) (55)
and T
p= Va2 + b2, szaw<bew,—(a—\/a2+b2)) (56)

forany ay € R*.

Gnch/Pedregal elaxation in Fracture Mechanic



Step 2 : Constrained Quasi-Convexification- Lower bound - Proof

Introducing the Lagrangian L and the multiplier p

2 2 2 2
UZy,p) = C(Zy, e5) — p(sa(za,n +25,20) + (1 = 8)B(Z5 11 + Z5,20) — B) ; (53)
we arrive at the optimality conditions :
Ay e Zy = pZ A = a  bey 54
ey Sy = PEys ey T be~ —a : 4
The resolution of a spectral problem leads to
-
p=—Va&+b, Z,=ay (be,y,—(eur \/az+b2)) (55)
and T
p=Va&+b, Z,=a, (bew,—(a— \/a2+b2)) (56)
for any a,, € R*. Now, writing that a(Zf/ 11— Zf/ 22) +2benZy 112y 20 = Ay eny Ly - Z» We may write from
(54) that
C(Zy, ex) =asAy e Za - Za + B(1 = $)Ay o Z3 - Zg + A
=p(as|Za|? + B(1 — 9)|Z5 %) + A 7)
=pB+ A
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Step 2 : Constrained Quasi-Convexification- Lower bound - Proof

Introducing the Lagrangian L and the multiplier p

2 2 2 2
L(Zy,p) = C(Zy, ey) — p(sa(za’11 + Za,22) +( = S)B(Zﬂ,11 + Zg’zz) - B): (58)
we arrive at the optimality conditions :
a be
Ay enZy =02y, Ay, = ( be, iy ) . (54)
The resolution of a spectral problem leads to
-
p=—Va&+b, Z,=ay (bew,f(a+ \/az+b2)) (55)
and T
p=Va+ b2, szaw<bew,—(a—\/a2+b2)) (56)
for any a,, € R*. Now, writing that a(Zf/ 11— Zf/ 22) +2benZy 112y 20 = Ay eny Ly - Z» We may write from
(54) that
C(Zy, ey) =asAy o Za - Za + B(1 = 8)Ay . Z5 - Zg + A
=p(as|Za|? + B(1 — 9)|Z5 %) + A 7)
=pB+ A
Therefore, the cost, independent of ., is obtained for the lowest eigenvalue (independent here of the sign of a) :
min C(Zy, ey) = —Va? + 2B+ A (58)

for Z, = ay (bey, —(a+ /@ + b2))7. The constraint (52) then gives the relation

(@50 +a5(1 — 5)B)(B° + (a+ Va@ + b2)°) = B. (59)
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Step 3 : Upper bound: search of first order laminate

According to the previous computation, the optimal second moment are of the form
¥ —w12(w1,1 + /92 + 92
Xy :AWA;+5?Y " 2 2 el 2 L 2 ;72) (60)
—¥12(1,1 /¥ 1 + YT ) (1,14 /P71 + 95 5)

leading to the cost — , /1/)12 g+ 1!112 »B + A. But, on Q/D, the radial function 1 is zero so that,

Xy =221, xe /D (61)
i.e. in particular
Xy = [ fat 00 = ([ x,-duL"'(x»)z (R =12 (62)
where ug ) denotes the projection of v onto the i-th copy of R2. From the strict convexity of the square function,
this implies that 1) = 65, ie.
v = 8 8x—p; - ”g’i) =3 pi—ax; - (63)

s(B—a) T=9)(B—a)

Remark that this is compatible with the third equality X, 12 = A 4 )\,7; »- This also implies (see for instance (59))
the equality in (42), i.e. that
B=2X p—ashal?=B(1—-39)rg>=0. (64)

Consequently, the optimal value m(s, X, p) may be recovered by the following measure
V= S0arana) T 1= 9)d(exg,00) (85)
which is a first order (div-curl) laminate, the div-curl condition (BAg — aXq) - (Ag — Ao ) = 0 (analogous to a

rank one condition for H' —gradient Young measure) being equivalent precisely to-B. = 0:
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Conclusion

The variational problem

(RP):  min /m(s, Vu, G)dx (66)
Q

s,u,G.

subject to
s € L(Q,[0,1]),s = 0in DU an,/ s(x)dx = L|Q],
Q

ue H1(S'Z)7 u=ugonly, PBVu-v=gonlg,
G € (12(R))%, div G=0weaklyin Q, G = BV weaklyin D

where m is defined by (44) is a relaxation of (VP) in the sense that the minimum of (RP) exists and equals the
minimum of (VP). Moreover, the underlying Young measure associated with (RP) can be found in the form of a first
order laminate whose direction of lamination are given explicitly in terms of the optimal solution (u, G): precisely, the
normal are orthogonal to A\ g — Aq .
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Simplified conclusion
The above formulation may be simplified by taking into account that B = 0. Precisely, we use (34) to express

B = (BAg — alqa) - (Ag — Aa) = 0 as follows

(P= A"\ (p— AT ()N) =0 (68)

in terms of the harmonic and arithmetic mean of «, 3 with weight s.

The variational problem

(RP) : /Q F(s, Vu, G)ax (69)

min
s,u,G
subject to

s € L°°(Q,[0,1]),s=0in DU an,/ s(x)dx = L|Q,

Q

U€H1(Q), u=ugonly, PBVu-v=gonlg, (70)

Ge (L2(Q))2, div G = 0 weakly in Q, G = BV U weakly in D

(G- A" ()Vu) - (G — AT(s)Vu) = 0 in L2(Q),

where F, deduced from m, is defined

1
Fls. X p) =3 [r,1(asa2  + (1 = 9835 1) = b (A, o + (1 = 9925 )
)

+ 291 2(ashg 1 Aa,2 + (1 = $)BAg 1 *5,2)]

is a relaxation of (VP) in the sense that the minimum of (RP) exists and equals the minimum of (VP). |
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A transformation

Following # we remark that B = 0 is equivalent to

‘pf A*(S)Jr/\_(S))\‘z: (A*(s)fr(s))zmg‘ 72)

2 2

Therefore, by introducing the additional variable t(x) € R? such that [t] = 1, we may write p = G(x) forall x € Q
under the form (we use that A~ (s) < A*(s) forall s € (0, 1))

+ - T(s) — A~
po MOFATD) | MO AT 3)
2 2
=A(s) =C(s)

4 P. Pedregal, Div-Curl Young measures and optimal design in any dimension, Rev. Mat. Complut., (2007).
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A transformation

Following # we remark that B = 0 is equivalent to

(72)

‘p7 v(s)z/\—(s))\‘z: (>\+(s);>\_(s))2|>\‘2‘

Therefore, by introducing the additional variable t(x) € R? such that [t] = 1, we may write p = G(x) forall x € Q
under the form (we use that A~ (s) < A*(s) forall s € (0, 1))

+ - T(s) — A~
po MOFATD) | MO AT 3)
2 2
=A(s) =C(s)

We have

A(s) = 2084801 =98 - a)? o) = 1= 98 = a)? 74
T 2a(l—s)+8s) T 2(a(1 —s)+Bs)

The relation div G = 0 then permits to recover u as the solution of a nonlinear equation under a divergence form
(having in mind that A\ = Vu):

div(A(s)Vu+ C(s)|Vult) =0, in Q,
u=up, on g, (75)

BVu-v =g, onlg.

We assume that this problem is well-posed in H' ().

4 P. Pedregal, Div-Curl Young measures and optimal design in any dimension, Rev. Mat. Complut., (2007).
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A transformation

div(A(s)Vu + C(s)|Vu|t) =0, in Q,
u=up, on Iy, (76)
BVu-v =g, onlg.

Let F and ¢ be defined respectively by (71) and (73). The following formulation

@) minkis, )= [ F(s,Vu,6(s,t, Vi) )
) Ja
subject to the constraints

s € L%(Q,[0,1]),s=0in DU an,/ s(x)dx = L|Q],
Q

teL®@QR), |il=1, (78)
UEH1(Q), u=ugonly, BVuU-v=gonlg,
div ¢(s, t, Vu) = 0 weakly in Q

is equivalent to the relaxation (RP). In particular, (RP) is a full well-posed relaxation of (VP). ]
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A transformation

div(A(s)Vu + C(s)|Vu|t) =0, in Q,
u=up, on Iy, (76)
BVu-v =g, onlg.

Let F and ¢ be defined respectively by (71) and (73). The following formulation

@) minkis, )= [ F(s,Vu,6(s,t, Vi) )
) Ja
subject to the constraints

s € L%(Q,[0,1]),s=0in DU an,/ s(x)dx = L|Q],
Q

te L=QF%), |t =1, 78)
UEH1(Q), u=ugonly, BVuU-v=gonlg,
div ¢(s, t, Vu) = 0 weakly in Q

is equivalent to the relaxation (RP). In particular, (RP) is a full well-posed relaxation of (VP). ]

Since s = 0in D, [, F(s, Vu, ¢(s, t, Vu))dx = [ B(Ay Vu, Vu)dx.

linch/Pedregal axation in Fracture Me



The relaxation (t gh H-measure)

The following formulation :
minimize in (6, K*) € RD : Ty, (u, 6) = / B(Ay, Vu, Vu)dx (79)
D
subject to the constraint

0 € L°(,[0,1]),0 :omvuan,/ o(x)dx = L|Q],
Q

UEH1(Q), u=ugonly, PBVuUu-v=gonlg, (80)
— div(K* Vu) = 0 weakly in Q
with
RD = {(6,K*) € L™(Q: [0, 1] X My(a, B)) : K* € Gy(x) a-6. x € Q} (81)
is a full relaxation of (P). |
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Descent algorithm for the functional /

The first variation of | with respect to s and t in the direction s and &t exist and are given respectively by
di(s, t, u,
st u, p) - P ss = |, Fss.vu o(s,t, Tu)) - 55 dx
s Q . ©82)
+/ (A,s(s)Vu - Vp+ Bs(s)|Vult - Vp) - 8s dx
Q
and
di(s, t, u, p)
= 5t = / F t(s, Vu, é(s, t, Vu)) - 6t dx+/ B(s)|Vu|ét- Vp dx (83)
Q Q
where p € H|10 (Q) = {v € H'(Q), v = 0 on Iy} solves the adjoint problem
Vu-Vv
/ Fous, Vu, é(s, t, V) - v dx + / (A(S)Vv . Vp+ Bs) LYYy Vp> dx =0, (84)
Q Q [Vul
forall v in H,10 (Q). A s and B, s denote the partial derivative of A and B with respect to s and F ; the partial
derivative of F with respect to t. ]
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.... and a Newton method for u

At each iteration k, the solution u of the variational formulation

/ (A(s(k))Vu- v + BsW)|wu| k) »Vv) o :/ gvdo, v eH (@) 5)
Q rg

(we use that s = 0 on 99 and that A(0) = 3, B(0) = 0)

is soved using the full Newton algorithm:

W e H'(Q),u® = ug on Iy,

v n+1 gy
/ (A(s(k))Vu"Jr1 SVv A+ B(s(k))u £ . Vv) dx = / gv do,¥n > 0,Vv € H! (Q).
a [vun| ry 0

(86)
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About the choice of ¥1: Non diagonal case: ¢4 =

¥1(x) = C(dist(x, F))ve 1, VX €Q 87)

defining the function ¢ € C' (R*; [0, 1]) as follows:

1 r<n
2
— 2@ —r—2
cy =] LB -2 h<r<n (88)
(n —r2)
0 r>rn
with 0 < ry < rp < dist(0Q/, F) = infyc g/~ dist(X, F).
T/ v 29
A = - 4 » . 89
v =5 (5 BRe ) e

FIgU '€ Choice of a radial function 1 (x)
leading to a non diagonal matrix A
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About the choice of 1: Diagonal case: ¥ =«

0 X1 <n
(x —rp)?(@xg+ry —3rp)
=1 rn<x <,
¢lxy) = 1 < x4 <, (90)
(X1 —1)?(2x1+14 —3r3)
T - 3 <xy <1,
0
with
(91)
(92)

Tp —€ Tp+E€

FIgU '€ Choice of a function
P1(X) X1)Xq, leading to a di al matrix
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Numerical experiments

Q=(0,1)2, ~=[1/2,1x {a}(a€e (0,1), F=(1/2,a),

lo=Tg1Ulg2, uUg=0o0nTgq={0}x[0,1], u=1/20nTg2= {1} x[0.5,0.8],
Tg=0, (93)
D={xeQl|x—F| <r}, r3=0.05

r =0.015, r, = 0.045 < 0.3, vp 4 = —1

1 A
I
I
0. I
- I
I
0.8
0.7
T
i BEElee
06 I

04

03

0.2

0.1
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Numerical experiments

Q=(0,1)2, ~=[1/2,1x {a}(a€e (0,1), F=(1/2,a),

lo=Tg1Ulg2, uUg=0o0nTgq={0}x[0,1], u=1/20nTg2= {1} x[0.5,0.8],
Tg=0, (93)
D={xeQl|x—F| <r}, r3=0.05

r =0.015, r, = 0.045 < 0.3, vp 4 = —1

1 A
I
I
0. I
- I
I
0.8
0.7
T
i BEElee
06 I

°

Figure: Example of quadrangulation of the unit square with a refinement on the support of the radial function
11 (52 x 52 finite elements - 2916 degrees of freedom) around the point F = (1/2,1/2),
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Figure: (a,8) = (1,2)- L = 2/5; F = (1/2,1/2) - Iso-value of the density s°! on the crack domain 2 with
s%! = 0on 0.

- t t -6
IBON Pl 120y = lI(e = A7 (8PIA) - (p = AT (sPIN) 2y ~ 1:82 x 107°. (04)
Moreover, we obtain
o = AT (SPYAN, 2,0y 313 X 1074, Jlp — A7 (8PNl p/gy & 4:21 x 1072, (95)
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Numerical experiments (o, 8) = (1,2)

0 20 a0
Iteration

Figure: (a,8) = (1,2)- L = 2/5; F = (1/2,1/2) - Evolution of the relaxed cost /(s), 1)) w.rt the
iteration (Left) and final solution u on Q (Right).
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Figure: (o, 8) = (1,2)- L =2/5; F = (1/2,1/2) - Iso-value of the density s on the crack domain with s free
on 9Q.
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Numerical experi
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Figure: (o, B) = (1,10)- L = 2/5; F = (1/2,1/2) - Iso-values of the density s on the crack domain.

B Pl 2q) = (e = A7 (sPHN) - (p = AT (PNl 2 gy & 1.2 x 107° (96)

but
e — A*(s""’)AHLZ(Q) ~821x 107", |p— A*(s"f")xnﬂ(m ~4.09 x 107", (97)
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Numerical experiments («, 3) = (1,10)
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Figure: (a, 8) = (1,10)- L = 2/5; F = (1/2,1/2) - Iso-values of the components of the vector A — Aq.
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Numerical experiments (o, 8) = (1,

05
x1 x1

1

Figure: (o, B) = (1,2)- F = (1/2,1/3) - Iso-values of the density s for L = 2/5 (Left) and L = 1/5 (Right).
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Numerical experiments - ( 2) - No volume constraint
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Figure: (a, B) = (1,2)- F = (1/2,1/2) - Iso-value of the density s on the crack domain with s free on 9Q

The optimal distribution corresponds to L ~ 0.65.
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As a conclusion: minimization of the rate with respect to an extra boundary

load

inf gy (u, G), G:ngg+thh,rhcaQ/(«/urg)

hel?(a9)

//\if

1.91E+04
1.34E405
2.49E+05
3.64E+05
4.79E+05
5.94E+05
7.09E+05
8.24E+05
9.398+05
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2.208+06
2.32E+06
2.438+06

(98)
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Figure: Iso-values of the Von Mises constraint in Q - without extra-force : g, (u, h, 0) ~ 0.232N/m; with extra
force : gy (u, h%', X, ) ~ 0.0556N/m.
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THANK YOU - MUCHAS GRACIAS - MERCI BEAUCOUP
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