Moving interfaces in Control and Inverse problems: Theory and numerical simulations.

<u>Sébastien Court</u>, Université Blaise Pascal - France, Olivier Bodart, Laboratoire de Mathématiques, Valérie Cayol, Laboratoire Magmas et Volcans, Jonas Koko, LIMOS-ISIMA.

 $\label{lowerses} \mbox{ Journ\'ees Contr\^ole/Problèmes Inverses 2014 - Clermont-Ferrand}$

1er octobre 2014

- Introduction
- Theoretical analysis of this class of problems
 - Back to fixed domains
 - First controllability results
 - The deformable case
- 3 Control and Stabilization of a Fluid-Solid system
 - Presentation of the model
 - Existing results
 - A result at intermediate Reynolds number
- 4 Numerics: Fictitious domain approaches
 - Overview of some methods
 - Illustration 1: Fluid-solid simulations
 - Illustration 2: Cracks inside volcanoes
 - Realistic simulations

Plan

- Introduction
- 2 Theoretical analysis of this class of problems
- Control and Stabilization of a Fluid-Solid system
- 4 Numerics: Fictitious domain approaches

Some physical situations

Fluid-Solid model

$$\mathcal{O} = \mathcal{F}(t) \cup \overline{S(t)} \subset \mathbb{R}^2 \text{ or } \mathbb{R}^3.$$
 $\mathcal{F}(t)$

- The deformation of the solid induces an additional velocity in the fluid-solid interface. It translates into a **Dirichlet condition** for the fluid velocity, considered as viscous and incompressible.
- This condition influences the behavior of the environing fluid.
- The response of the fluid is a force σn which acts in the interface fluid/solid.
 It determines the dynamics of the solid, and thus its position.
- The deformation has to satisfy a set of **nonlinear constraints**.

Coupled system: Navier-Stokes and Newton laws

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \Delta u + \nabla p = 0, \qquad x \in \mathcal{F}(t), \quad t \in (0, T),$$

$$\text{div } u = 0, \qquad x \in \mathcal{F}(t), \quad t \in (0, T),$$

$$u = 0, \qquad x \in \partial \mathcal{O}, \quad t \in (0, T),$$

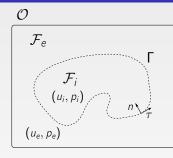
$$u = h'(t) + \omega(t) \wedge (x - h(t)) + w(x, t), \qquad x \in \partial \mathcal{S}(t), \quad t \in (0, T),$$

$$Mh''(t) = -\int_{\partial \mathcal{S}(t)} \sigma(u, p) n d\Gamma, \qquad t \in (0, T),$$

$$(I\omega)'(t) = -\int_{\partial \mathcal{S}(t)} (x - h(t)) \wedge \sigma(u, p) n d\Gamma, \qquad t \in (0, T),$$

+ Initial conditions

The Immersed Boundary model



$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \Delta u + \nabla p = f, \quad \text{in } \mathcal{O},$$

$$\text{div } u = 0, \quad \text{in } \mathcal{O},$$

$$u = 0, \quad \text{on } \partial \mathcal{O},$$

$$u(\cdot, 0) = u_0, \quad \text{in } \mathcal{O},$$

$$\Gamma(t) = X(\Gamma(0), t),$$

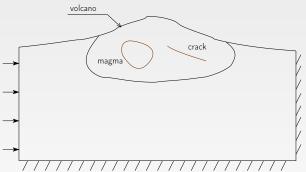
where $X(\cdot,t)$ is the Lagrangian mapping satisfying

$$\frac{\partial X}{\partial t}(y,t) = u(X(y,t),t), \quad X(y,0) = y, \quad y \in \mathcal{O},$$

and where the force f is defined on $\Gamma(t)$ through the expression

$$f(x,t) = \int_{\Gamma(0)} \tilde{f}(y,t) \delta(x-X(y,t)) d\Gamma(y,0).$$

Cracks in materials



- In the whole solid: Elasticity model for the displacement (Lamé, viscoelastic solids, etc...)
- Across the crack: Traction force applied on the both sides
 - → Following the **evolution** of a crack (opening, growth), or **identifying** an unknown crack step by step.

Problematics

- Handling variables/unknowns lying in time-depending domains.
- Handling non standard space-time functional spaces
- Dealing with highly coupled systems;
 In particular coupling related to the geometry.

Several strategies:

- → Trying to uncouple the unknowns
- → Rewriting the systems in **non-depending time** domains
- → Or finding *appropriate* formulations
- Approaches for theoretical analysis are not necessarily convenient for performing numerical simulations...

Plan

- 1 Introduction
- 2 Theoretical analysis of this class of problems
 - Back to fixed domains
 - First controllability results
 - The deformable case
- Control and Stabilization of a Fluid-Solid system
- 4 Numerics: Fictitious domain approaches

A fluid-solid system

Let us consider a system involving a viscous incompressible fluid:

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \Delta u + \nabla p = 0, \qquad x \in \mathcal{F}(t), \quad t \in (0, T),$$

$$\operatorname{div} u = 0, \qquad x \in \mathcal{F}(t), \quad t \in (0, T),$$

$$u = 0, \qquad x \in \partial \mathcal{O}, \quad t \in (0, T),$$

$$u = h'(t) + \omega(t) \wedge (x - h(t)), \qquad x \in \partial \mathcal{S}(t), \quad t \in (0, T),$$

$$Mh''(t) = -\int_{\partial \mathcal{S}(t)} \sigma(u, p) n d\Gamma, \qquad t \in (0, T),$$

$$(I\omega)'(t) = -\int_{\partial \mathcal{S}(t)} (x - h(t)) \wedge \sigma(u, p) n d\Gamma, \qquad t \in (0, T),$$

$$u(y,0) = u_0(y), \ y \in \mathcal{F}(0), \quad h'(0) = h_1 \in \mathbb{R}^3, \quad \omega(0) = \omega_0 \in \mathbb{R}^3.$$

$$\mathcal{S}(t) = h(t) + \mathbf{R}_{\omega}(t)\mathcal{S}(0) \text{ and } \mathcal{F}(t) = \mathcal{O} \setminus \overline{\mathcal{S}(t)}.$$

Rewriting in fixed domains

Given a reference geometric configuration, for instance the one at time t = 0: We want to deal with unknowns defined on $\mathcal{F}(0)$ instead of $\mathcal{F}(t)$.

The first step consists in defining in the fluid domain the change of variables which transforms $\mathcal{F}(0)$ into $\mathcal{F}(t)$:

$$X(\cdot,t): \mathcal{F}(0) \longrightarrow \mathcal{F}(t)$$

 $y \longmapsto X(y,t)$

From that we can define **new variables** for the fluid state:

$$\tilde{u}(y,t) = u(X(y,t),t), \qquad \tilde{p}(y,t) = p(X(y,t),t).$$

The mapping $y \mapsto X(y, t)$ must be **invertible** for all time t, and we expect **regularity**, in space and time.

Some properties of the change of variables

Notation: $Y(\cdot, t)$ denotes the inverse of $X(\cdot, t)$.

The mapping $X(\cdot,t)$ shall be a C^1 -diffeomorphism from $\mathcal{F}(0)$ onto $\mathcal{F}(t)$.

For a fluid-solid model, the mapping shall satisfy the conditions:

$$\left\{ \begin{array}{ll} \det \nabla X(\cdot,t) = 1 & \quad \text{in } \mathcal{F}(0), \\ X(\cdot,t) = X_{\mathcal{S}}(\cdot,t) & \quad \text{on } \mathcal{S}(0), \\ X(\cdot,t) = \operatorname{Id} & \quad \text{on } \partial \mathcal{O}. \end{array} \right.$$

The original article: Inoue & Wakimoto (1977)

A. Inoue and M. Wakimoto, *On existence of the Navier-Stokes equation in a time dependent domain,* J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), pp. 303–319.

In this article the change of unknowns is this one:

$$\tilde{u}(y,t) = \nabla Y(X(y,t),t)u(X(y,t),t), \qquad \tilde{p}(y,t) = p(X(y,t),t).$$

With the property det $\nabla X(y,t) = 1$, we keep for the new velocity the **free-divergence** condition:

$$\operatorname{div}\,\tilde{u}(y,t) = 0.$$

Treatment of non-linearities

For example, the term for the pressure becomes

$$p(x,t) = \tilde{p}(Y(x,t),t), \quad x \in \mathcal{F}(t)$$

$$\nabla p(x,t) = \nabla Y(x,t)^T \nabla \tilde{p}(Y(x,t),t), \quad x \in \mathcal{F}(t)$$

$$\nabla p(X(y,t),t) = \nabla Y(X(y,t),t)^T \nabla \tilde{p}(y,t), \quad y \in \mathcal{F}(0)$$

and the linearization process consists in writing

$$\nabla Y(X)^T \nabla \tilde{p} = \nabla \tilde{p} + \left(\nabla Y(X)^T - I_{\mathbb{R}^3}\right) \nabla \tilde{p}.$$

→ Necessity of Lipschitz estimates...

Rq: Much more complicated nonlinearities for \tilde{u} .

Strong solutions

Searching for strong solutions leads to this kind of regularity:

$$u \circ X \in L^{2}(0, T; \mathbf{H}^{2}(\mathcal{F}(0))) \cap H^{1}(0, T; \mathbf{L}^{2}(\mathcal{F}(0))),$$

 $p \circ X \in L^{2}(0, T; \mathbf{H}^{1}(\mathcal{F}(0))),$
 $h' \in H^{1}(0, T; \mathbb{R}^{d}), \quad \omega \in H^{1}(0, T; \mathbb{R}^{1 \text{ or } 3}).$

Global strategy:

- Rewriting system in fixed domains (with chg. of var.)
- Linearization and study with the semi-group theory
- Solving the NL system with a fixed point method, with a **contracting** mapping whose the definition comes from the study of the linearized system.

The team from Nancy (France)

- T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations, 2003.
- T. Takahashi, M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, JMFM 2004.
- P. Cumsille, T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, Cz. Math. Journal, 2008.
- J. San Martín, J.-F. Scheid, T. Takahashi, M. Tucsnak, An Initial and Boundary Value Problem Modeling Fish-like Swimming, ARMA 2008.

Controllability results in the rigid case

- \rightarrow O. Imanuvilov, T. Takahashi, *Exact controllability of a fluid-rigid body system*, JMPA, 2007.
- → M. Boulakia, S. Guerrero, Local null controllability of a fluid-solid interaction problem in dimension 3, JEMS, 2011.
 - Use of a distributed control on a sub-domain $\omega \subset\subset \mathcal{F}$ of the fluid.
 - Use of a Carleman estimate for the linearized problem.
 - The nonlinear problem treated by a fixed-point method.
 - Local null controllability for the velocities (fluid+solid), exact controllability for the position of the solid.

Controllability: Towards the deformable case

- J. San Martín, T. Takahashi, M. Tucsnak, A Control Theoretic Approach to the Swimming of Microscopic Organisms, Quart. Appl. Math. 2007.
- O. Glass, L. Rosier, On the control of the motion of a boat, M3AS 2011.

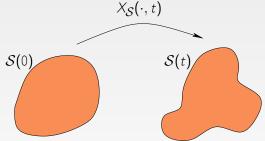
$$S(t) = h(t) + \mathbf{R}_{\omega}(t)S(0)$$

$$u_{S}(x,t) = h'(t) + \omega(t) \wedge (x - h(t)) + w(x,t)$$

- T. Chambrion & A. Munnier:
 - Locomotion and control of a self-propelled shape-changing body in a fluid, J. Nonlinear Sci. 2011.
 - Generic Controllability of 3D Swimmers in a Perfect Fluid, SIAM J. Control Optim. 2012.

The deformable case

Lagrangian description for the solid: $S(t) = X_S(S(0), t)$.



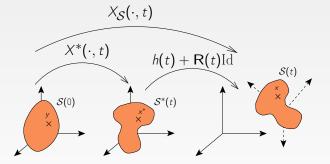
Mass conservation principle gives:

$$\rho_{\mathcal{S}}(X_{\mathcal{S}}(y,t),t) = \frac{\rho_{\mathcal{S}}(y,0)}{\det\left(\nabla X_{\mathcal{S}}(y,t)\right)}, \quad y \in \mathcal{S}(0).$$

The deformable case: Decomposition of movement

The Lagrangian mapping of the solid can be decomposed as follows:

$$X_{\mathcal{S}}(y,t) = h(t) + \mathsf{R}_{\omega}(t)X^*(y,t), \quad y \in \mathcal{S}(0).$$



The mapping $X^*(\cdot, t)$ is the deformation of the solid in its own frame of reference. We can consider it as a control function.

Constraints on the deformation

The mapping X^* has to satisfy a set of - nonlinear - constraints:

Conservation of the whole volume of the solid:

$$\int_{\partial S(0)} \frac{\partial X^*}{\partial t} \cdot (\operatorname{cof} \nabla X^*) \, n \mathrm{d}\Gamma = 0.$$

• Conservation of the linear momentum:

$$\int_{\mathcal{S}(0)} \rho_{\mathcal{S}}(y,0) X^*(y,t) \mathrm{d}y = 0.$$

Conservation of the angular momentum:

$$\int_{\mathcal{S}(0)} \rho_{\mathcal{S}}(y,0) X^*(y,t) \wedge \frac{\partial X^*}{\partial t}(y,t) dy = 0.$$

+ Regularity constraints (in relation with the functional framework).

Plan

- 1 Introduction
- 2 Theoretical analysis of this class of problems
- 3 Control and Stabilization of a Fluid-Solid system
 - Presentation of the model
 - Existing results
 - A result at intermediate Reynolds number
- Mumerics: Fictitious domain approaches

Goals and motivations

- Goal: Describing how a body can deform itself in order to influence the whole/partial behavior of the coupled system.
- The underlying motivation is the swim of a deformable body inside a fluid, without any other help than its interaction with the environing fluid.
- Results: Controllability results of trajectories, position, velocities, etc...
- The methods and difficulties are different according to the model/scale...

Low Reynolds number

• The fluid equations are reduced to the Stokes system:

$$\begin{cases} -\nu \Delta u + \nabla p = 0, & \text{in } \mathcal{F}(t), \\ \text{div } u = 0, & \text{in } \mathcal{F}(t). \end{cases}$$

- → J. Lohéac, J.-F. Scheid, M. Tucsnak, *Controllability and time optimal control for low Reynolds numbers swimmers*, Acta Appl. Math., 123(1):175–200, 2013. Controllability is obtained for deformation described by a set of 4 types of prescribed elementary deformations.
- Many other results exist at low Reynolds number:
 F. Alouges & L. Giraldi, A. DeSimone...
- T. Chambrion & A. Munnier for perfect fluids.

High Reynolds number

ightarrow O. Glass, L. Rosier, *On the control of the motion of a boat*, M3AS 2011.

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u + \nabla p = 0, \qquad x \in \mathcal{F}(t), \quad t \in (0, T),$$

$$\operatorname{div} u = 0, \qquad x \in \mathcal{F}(t), \quad t \in (0, T),$$

$$\lim_{|x| \to \infty} u = 0, \qquad t \in (0, T),$$

$$u \cdot n = (h'(t) + \omega(t) \wedge (x - h(t))) \cdot n + w(x, t), \qquad x \in \partial \mathcal{S}(t), \quad t \in (0, T),$$

$$Mh''(t) = \int_{\partial \mathcal{S}(t)} pnd\Gamma, \qquad t \in (0, T),$$

$$(I\omega)'(t) = \int_{\partial S(t)} (x - h(t)) \wedge pnd\Gamma, \qquad t \in (0, T),$$

+ Initial conditions.

High Reynolds number

ightarrow O. Glass, L. Rosier, *On the control of the motion of a boat*, M3AS 2011.

with:
$$S(t) = h(t) + R_{\omega}(t)S(0)$$
, $F(t) = \mathbb{R}^2 \setminus \overline{S(t)}$, $\partial S(t) = \partial F(t)$.

- Local controllability of the position/orientation and velocity of the boat, by a control acting on a part of the boundary of the boat.
- The return method of Coron is used for controlling the potential part of the flow.
- The vorticity part of the flow can be controlled by its initial value, for a convenient choice of the vorticity on the boundary of the boat.

Intermediate Reynolds number: The Navier-Stokes equations

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \Delta u + \nabla p = 0, \qquad x \in \mathcal{F}(t), \quad t \in (0, T),$$

$$\operatorname{div} u = 0, \qquad x \in \mathcal{F}(t), \quad t \in (0, T),$$

$$u = 0, \qquad x \in \partial \mathcal{O}, \quad t \in (0, T),$$

$$u = h'(t) + \omega(t) \wedge (x - h(t)) + w(x, t), \qquad x \in \partial \mathcal{S}(t), \quad t \in (0, T),$$

$$Mh''(t) = -\int_{\partial \mathcal{S}(t)} \sigma(u, p) n d\Gamma, \qquad t \in (0, T),$$

$$(I\omega)'(t) = -\int_{\partial \mathcal{S}(t)} (x - h(t)) \wedge \sigma(u, p) n d\Gamma, \qquad t \in (0, T),$$

$$u(y,0) = u_0(y), \ y \in \mathcal{F}(0), \quad h'(0) = h_1 \in \mathbb{R}^3, \quad \omega(0) = \omega_0 \in \mathbb{R}^3.$$

 $S(t) = h(t) + \mathbf{R}_{\omega}(t)X^*(S(0), t) \text{ and } \mathcal{F}(t) = \mathcal{O} \setminus \overline{S(t)}.$

The main result

Theorem

If the initial conditions (u_0, h_1, ω_0) are small enough, then the fluid-solid system is stabilizable with an arbitrary exponential decay rate:

That means for all $\lambda>0$ we can choose the deformation X^* , satisfying the nonlinear constraints, so that there exists C>0 -depending only on u_0 , h_1 and ω_0 - such that the solution (u,p,h',ω) satisfies:

$$\|(u(\cdot,t),h'(t),\omega(t))\|_{\mathsf{H}^1(\mathcal{F}(t))\times\mathbb{R}^3\times\mathbb{R}^3} \le C\mathrm{e}^{-\lambda t}.$$

The linearized system

After rewriting in fixed domains and linearizing:

$$\begin{split} \frac{\partial u}{\partial t} - \nu \Delta u + \nabla p &= 0, & \text{in } (0, \infty) \times \mathcal{F}(0), \\ \text{div } u &= 0, & \text{in } (0, \infty) \times \mathcal{F}(0), \\ u &= 0, & \text{sur } \partial \mathcal{O} \times (0, \infty), \\ u &= h'(t) + \omega(t) \wedge y + \zeta(y, t), & y \in \partial \mathcal{S}(0), & t \in (0, \infty), \\ Mh''(t) &= -\int_{\partial \mathcal{S}} \sigma(u, p) n d\Gamma, & t \in (0, \infty), \\ l_0 \omega'(t) &= -\int_{\partial \mathcal{S}} y \wedge \sigma(u, p) n d\Gamma, & t \in (0, \infty), \end{split}$$

where: $\zeta = \frac{\partial X^*}{\partial t}_{|\partial S(0)}$. The control ζ can be chosen under a

feedback form, in order to shift the spectrum of the operator.

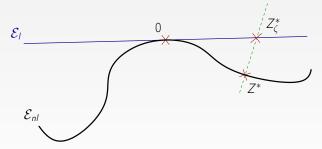
Nonlinear constraints on the control

We define: $Z^* = X^* - \mathrm{Id}_{\mathcal{S}}$,

$$\mathcal{E}_{nl} = \{ \text{displacements } Z^* \text{ such that } \mathfrak{F}(Z^*) = 0 \},$$

$$\mathcal{E}_{l} \ = \ \left\{ ext{displacements} \ Z_{\zeta}^{*} \ ext{such that} \ \mathcal{D}_{0}\mathfrak{F}(Z_{\zeta}^{*}) = 0
ight\}.$$

The displacement $Z_{\zeta}^* = X_{\zeta}^* - \operatorname{Id}_{\mathcal{S}}$ is projected on \mathcal{E}_{nl} , representing displacements satisfying the NL constraints:



Ideas of the proof for stabilizing the full NL system

The stabilization of the NL system is treated by a fixed point method:

small data \Rightarrow $\begin{cases} \text{small unknowns} \\ \text{small change of variables} \end{cases}$

- ⇒ The control input for the NL is close to the one chosen for the linearized system
- ⇒ Stabilization of the full NL system.

For more details:

- → S.C, Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system, Evolution Equations and Control Theory, 2014.
- → S.C., Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system, Evolution Equations and Control Theory, 2014.

Plan

- 1 Introduction
- 2 Theoretical analysis of this class of problems
- Control and Stabilization of a Fluid-Solid system
- 4 Numerics: Fictitious domain approaches
 - Overview of some methods
 - Illustration 1: Fluid-solid simulations
 - Illustration 2: Cracks inside volcanoes
 - Realistic simulations

Principles and interests

Fictitious domain methods:

- Principle: Considering boundaries independent of the mesh,
 which do not match to the mesh.
- <u>Interest</u>: No re-meshing is required.
- Objectives: When the boundaries are lead to move or to be changed, updating the less things we need.
- Price to pay: Working locally, special treatments, while guaranteeing convergence, etc...

Some examples: 1/ ALE formulations

- → San Martín, Smaranda, Takahashi, *Convergence of a finite* element/ALE method for the Stokes equations in a domain depending on time, JCAM 2009.
 - The Eulerian formulation of the system is conserved, but the mesh is deformed in order to follow the motion of the boundary.
 - Necessity of a "good" mesh moving algorithm.
 - Appropriate when deformations are small: Need of re-meshing in any case, when distortions of the mesh become too large.
 - The implementation is quite technical...

Some examples: 2/ The eXtended Finite Element Method

→ Moës, Dolbow, Belytschko 1999:

A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg.

- Main ideas:
 - a crack independent of a global mesh
 - a Finite Element Method for which the basis functions are enriched near the boundary of the crack, by singular functions:

$$\alpha_i \frac{\varphi_i(x)}{\sqrt{\operatorname{d}(x,\Gamma)}} \times \mathsf{Heaviside}_{\Gamma}(x)$$

 Robustness with respect to the geometry: We expect the same behavior whatever the way the edges of the mesh are cut by the crack.

The Fictitious Domain approach we use - Main ideas

 Inspired by XFEM, the main difference is that we do not consider singular functions, only Heaviside functions:

$$H(x) = \left\{ egin{array}{l} 1 \ \ \mbox{if} \ x \in \Omega \ \mbox{(computational domain)} \ 0 \ \ \mbox{if} \ x
otin \Omega \end{array}
ight.$$

- \rightarrow It is more an impoverishment, not an enrichment of the standard basis functions.
- This impoverishment is a simplification of the way we consider boundaries.
- The price to pay is a lack of robustness w.r.t the geometry, and lack of convergence for dual variables...
 - \rightarrow Use of stabilization techniques.
- Advantage: Easiness of the implementation.

Illustration 1: A Stokes problem with boundary conditions

We consider the following Stokes problem:

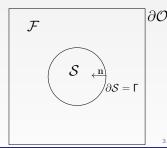
$$\left\{ \begin{array}{rcl} -\nu\Delta\mathbf{u} + \nabla p & = & \mathbf{f} & \text{in } \mathcal{F}, \\ \operatorname{div} \, \mathbf{u} & = & \mathbf{0} & \text{in } \mathcal{F}, \\ \mathbf{u} & = & \mathbf{0} & \text{on } \partial \mathcal{O}, \\ \mathbf{u} & = & \mathbf{g} & \text{on } \Gamma, \end{array} \right.$$

where $\mathbf{f} \in \mathbf{L}^2(\mathcal{F})$, $\mathbf{g} \in \mathbf{H}^{1/2}(\Gamma)$.

 λ : multiplier associated with the Dirichlet condition on E.

Goal: Obtaining an optimal approximation of $\sigma(\mathbf{u}, p)\mathbf{n}$, for boundaries independent of the mesh.

$$\sigma(\mathbf{u}, \boldsymbol{p}) = \nu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) - \boldsymbol{p} \mathrm{Id}.$$

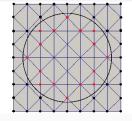


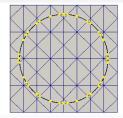
Principles

- The fluid-solid interface is represented by a level-set function.
- The basis functions are **cut** near the level-set:

$$\begin{split} \mathbf{V} &= \left\{ \mathbf{v} \in \mathbf{H}^1(\mathcal{F}) \mid \mathbf{v} = \mathbf{0} \text{ on } \partial \mathcal{O} \right\}, \qquad Q = \mathrm{L}^2_0(\mathcal{F}), \qquad \mathbf{W} = \left(\mathbf{H}^{1/2}(\Gamma)\right)', \\ \tilde{\mathbf{V}}^h &\subset \mathbf{H}^1(\mathcal{O}), \qquad \qquad \tilde{Q}^h \subset \mathrm{L}^2_0(\mathcal{O}), \qquad \tilde{\mathbf{W}}^h \subset \mathbf{L}^2(\mathcal{O}), \\ \mathbf{V}^h &= \tilde{\mathbf{V}}^h_{|\mathcal{F}}, \qquad \qquad Q^h = \tilde{Q}^h_{|\mathcal{F}}, \qquad \mathbf{W}^h = \tilde{\mathbf{W}}^h_{|\Gamma}. \end{split}$$

Selection of degrees of freedom:





ightarrow See XFEM, by Moës, Dolbow and Belytschko for cracked domains in 1999.

A mixed formulation

An augmented Lagrangian technique, à la Barbosa-Hughes (1991-1992), is carried out in order to stabilize the convergence for the multiplier λ :

$$L(\mathbf{u}, p, \lambda) = L_0(\mathbf{u}, p, \lambda) - \frac{\gamma}{2} \int_{\Gamma} |\lambda - \sigma(\mathbf{u}, p)\mathbf{n}|^2 d\Gamma,$$

where:

$$L_{0}(\mathbf{u}, \rho, \lambda) = \nu \int_{\mathcal{F}} |D(\mathbf{u})|^{2} d\mathcal{F} - \int_{\mathcal{F}} \rho \mathrm{div} \ \mathbf{u} d\mathcal{F}$$
$$- \int_{\mathcal{F}} \mathbf{f} \cdot \mathbf{u} d\Gamma - \int_{\Gamma} \lambda \cdot (\mathbf{u} - \mathbf{g}) d\Gamma.$$

We choose $\gamma = \gamma_0 * h$ and $\gamma_0 > 0$ has to be chosen judiciously.

A mixed formulation

The extended mixed formulation is then:

Find
$$(\mathbf{u}, p, \lambda) \in \mathbf{V} \times Q \times \mathbf{W}$$
 such that
$$\begin{cases} \mathcal{A}((\mathbf{u}, p, \lambda); \mathbf{v}) = \mathcal{L}(\mathbf{v}) & \forall \mathbf{v} \in \mathbf{V}, \\ \mathcal{B}((\mathbf{u}, p, \lambda); q) = 0 & \forall q \in Q, \\ \mathcal{C}((\mathbf{u}, p, \lambda); \mu) = \mathcal{G}(\mu), & \forall \mu \in \mathbf{W}, \end{cases}$$

where:

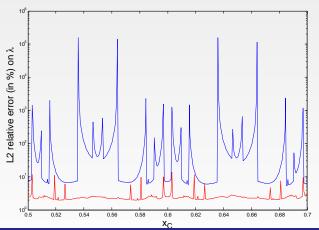
$$\begin{split} \mathcal{A}((\mathbf{u}, p, \boldsymbol{\lambda}); \mathbf{v}) &= 2\nu \int_{\mathcal{F}} D(\mathbf{u}) : D(\mathbf{v}) \mathrm{d}\mathcal{F} - \int_{\mathcal{F}} p \mathrm{div} \ \mathbf{v} \mathrm{d}\mathcal{F} - \int_{\Gamma} \boldsymbol{\lambda} \cdot \mathbf{v} \mathrm{d}\Gamma \\ -4\nu^{2} \gamma \int_{\Gamma} (D(\mathbf{u})\mathbf{n}) \cdot (D(\mathbf{v})\mathbf{n}) \, \mathrm{d}\Gamma + 2\nu \gamma \int_{\Gamma} p \left(D(\mathbf{v})\mathbf{n} \cdot \mathbf{n}\right) \mathrm{d}\Gamma + 2\nu \gamma \int_{\Gamma} \boldsymbol{\lambda} \cdot (D(\mathbf{v})\mathbf{n}) \, \mathrm{d}\Gamma, \\ \mathcal{B}((\mathbf{u}, p, \boldsymbol{\lambda}); q) &= -\int_{\mathcal{F}} q \mathrm{div} \ \mathbf{u} \mathrm{d}\mathcal{F} + 2\nu \gamma \int_{\Gamma} q \left(D(\mathbf{u})\mathbf{n} \cdot \mathbf{n}\right) \mathrm{d}\Gamma - \gamma \int_{\Gamma} p q \mathrm{d}\Gamma - \gamma \int_{\Gamma} q \boldsymbol{\lambda} \cdot \mathbf{n} \mathrm{d}\Gamma, \\ \mathcal{C}((\mathbf{u}, p, \boldsymbol{\lambda}); \boldsymbol{\mu}) &= -\int_{\Gamma} \boldsymbol{\mu} \cdot \mathbf{u} \mathrm{d}\Gamma + 2\nu \gamma \int_{\Gamma} \boldsymbol{\mu} \cdot (D(\mathbf{u})\mathbf{n}) \mathrm{d}\Gamma - \gamma \int_{\Gamma} p(\boldsymbol{\mu} \cdot \mathbf{n}) \mathrm{d}\Gamma - \gamma \int_{\Gamma} \boldsymbol{\lambda} \cdot \boldsymbol{\mu} \mathrm{d}\Gamma. \end{split}$$

- ightarrow See also J. Haslinger and Y. Renard, for the Poisson problem, 2009.
 - Theoretical convergence: For $\gamma_0 > 0$ tiny enough, an *inf-sup* condition is automatically satisfied for the triplet (\mathbf{u}, p, λ) .
 - ightarrow optimal rate of convergence for $\lambda = \sigma(\mathbf{u}, p)\mathbf{n}$.
 - Rates of convergence verified numerically.
 - Good behavior with respect to the geometry:

Let us analyze the errors on the approximation of λ for different geometric configurations, by considering different manners of cutting the fluid domain by the level-set.

Robustness with respect to the geometry

Domain:
$$[0,1] \times [0,1]$$
; $h = 0.025$; $(\mathbf{u}, p, \lambda) \rightarrow P2/P1/P0$.



Solid: Disk of radius R = 0.21.

 x_C = abscissa of the center of the solid.

blue: without stabilization red:

with stabilization, $\gamma_0 = 0.05$.

Free fall of a ball for a low Reynolds number

h: position of the center of mass.

$$M\mathbf{h}_{2}''(t) = -\alpha[\mathbf{h}(t)]_{2}\mathbf{h}_{2}'(t) - M\mathbf{g},$$

$$\alpha[\mathbf{h}(t)] = \int_{\mathcal{S}(\mathbf{h}(t))} \sigma(\hat{\mathbf{u}}, \hat{\mathbf{p}})\mathbf{n}d\Gamma,$$

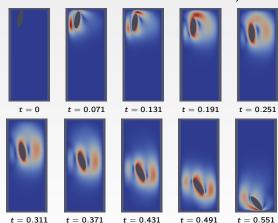
$$\begin{cases} -\nu\Delta\hat{\mathbf{u}} + \nabla\hat{\mathbf{p}} = 0 & \text{in } \mathcal{F}, \\ \text{div } \hat{\mathbf{u}} = 0 & \text{in } \mathcal{F}, \\ \hat{\mathbf{u}} = 0 & \text{on } \partial\mathcal{O}, \\ \hat{\mathbf{u}} = (0, 1)^{T} & \text{on } \Gamma. \end{cases}$$

where

Intensity of the velocity represented at t = 0, t = 21, t = 31, t = 41, t = 51, t = 54.

Extension to the incompressible Navier-Stokes equations

 \rightarrow Simulation of the **free fall** of an ellipse in 2D (implicit Euler scheme in time + Newton method):



Next steps...

- \rightarrow **Next step**: making the solid deform itself, in order to simulate the swim for an intermediate Reynolds number (work in progress).
- \rightarrow Final step: Choosing the deformation of the solid as a control function, in order to stabilize a flow, or to control a trajectory.

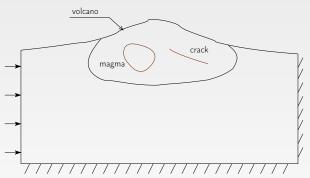
References:

- J. Baiges, R. Codina, F. Henke, S. Shahmiri and W. Wall, *A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes*, Int. J. Numer. Meth. Engng, 2012.
- S.C, M. Fournié and A. Lozinski, *A fictitious domain approach for the Stokes problem based on the extended finite element method*, Int. J. Numer. Meth. Fluids., 2013.
- A. Massing, M. Larson, A. Logg, M. E. Rognes, *A stabilized Nitsche fictitious domain method for the Stokes problem*, J. Sci. Comput., 2014.

Illustration 2: Cracks inside volcanoes

Labex ClerVolc: The context of Clermont-Ferrand.

Numerical simulations of displacements inside volcanos

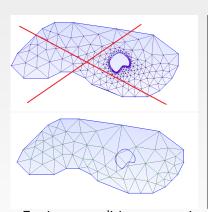


- **Direct problem**: Computing **discontinuous** displacements for non-homogeneous and anisotropic media, for various topographies.
- **Inverse problem**: Recovering information on inside cracks, from surface measurements: geometries, localization...
 - \rightarrow Better comprehension of volcanic activities.

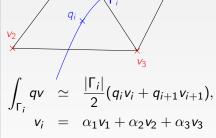
Cracks inside volcanoes

From Dirichlet conditions to jump conditions

To take the crack into account, we consider a **non-matching** mesh:



For Dirichlet conditions (weakly):



 \rightarrow For jump conditions, necessity of $\mbox{\bf duplicating}$ the degrees of freedom around the crack.

An elliptic boundary-value problem: The Lamé system

The displacement inside the volcano is assumed to satisfy:

$$[u] = u^+ - u^-$$
 (the jump across Γ_0).

Variational formulation

Weak solution = Saddle-point of the Lagrangian:

$$\mathcal{L}(u^{+}, u^{-}, \lambda) = \frac{1}{2} \int_{\Omega^{+}} \varepsilon(u^{+}) : \sigma_{\mathcal{S}}(u^{+}) + \frac{1}{2} \int_{\Omega^{-}} \varepsilon(u^{-}) : \sigma_{\mathcal{S}}(u^{-})$$
$$- \int_{\Omega^{+}} u^{+} \cdot f^{+} - \int_{\Omega^{-}} u^{-} \cdot f^{-} - \int_{\Gamma_{\tau}} u^{+} \cdot pn^{+} - \int_{\Gamma_{\tau}} u^{-} \cdot pn^{-} + \int_{\Gamma_{0}} [u] \cdot \lambda$$

We are looking for (u^+, u^-, λ) such that for all $v^+, v^- \in \mathbf{H}^1_0(\Omega)$ and $\mu \in \mathbf{H}^{-1/2}(\Gamma_0)$:

$$\left\{ \begin{array}{rcl} \displaystyle \int_{\Omega^+} \varepsilon(u^+) : \sigma_{\mathcal{S}}(v^+) + \int_{\Gamma_{\mathbf{0}}} v^+ \cdot \lambda & = & \displaystyle \int_{\Omega^+} f^+ \cdot v^+ + \int_{\Gamma_{\mathbf{T}}} v^+ \cdot p n^+, \\ \displaystyle \int_{\Omega^-} \varepsilon(u^-) : \sigma_{\mathcal{S}}(v^-) - \int_{\Gamma_{\mathbf{0}}} v^- \cdot \lambda & = & \displaystyle \int_{\Omega^-} f^- \cdot v^- + \int_{\Gamma_{\mathbf{T}}} v^- \cdot p n^-, \\ \displaystyle \int_{\Gamma_{\mathbf{0}}} u^+ \cdot \mu - \int_{\Gamma_{\mathbf{0}}} u^- \cdot \mu & = & 0. \end{array} \right.$$

Abstract formulation

The mixed formulation is then:

Find
$$(u^+,u^-,\lambda)\in \mathbf{V}^+\times \mathbf{V}^-\times \mathbf{W}$$
 such that
$$\begin{cases} a^+(u^+,v^+)+b^+(\lambda,v^+)=\mathcal{L}^+(v^+) & \forall v^+\in \mathbf{V}^+,\\ a^-(u^-,v^-)-b^-(\lambda,v^-)=\mathcal{L}^-(v^-) & \forall v^-\in \mathbf{V}^-,\\ b^+(\mu,u^+)-b^-(\mu,u^+)=0, & \forall \mu\in \mathbf{W}, \end{cases}$$
 with
$$\mathbf{W}=\mathbf{L}^2(\Gamma_0),\ \mathbf{V}^+=\left\{v\in \mathbf{H}^1(\Omega^+)\mid v=0\ \text{on}\ \partial\Omega\right\},\\ \mathbf{V}^-=\left\{v\in \mathbf{H}^1(\Omega^-)\mid v=0\ \text{on}\ \partial\Omega\right\},\\ a^\pm(u^\pm,v^\pm)=\int_{\Omega^\pm}\varepsilon(u^\pm):\sigma_{\mathcal{S}}(v^\pm),\\ b^\pm(\lambda,v^\pm)=\int_{\Gamma_0}v^\pm\cdot\lambda,\\ \mathcal{L}^\pm(v^\pm)=\int_{\Omega^\pm}f^\pm\cdot v^\pm+\int_{\Gamma_T}v^\pm\cdot pn^\pm. \end{cases}$$

Discrete formulation: Matrix formulation

If $\{\phi_i^{\pm}\}$ and $\{\psi_i\}$ are the selected basis functions of the spaces $\tilde{\mathbf{V}}_h^{\pm}$ and $\tilde{\mathbf{W}}_h$ respectively, and

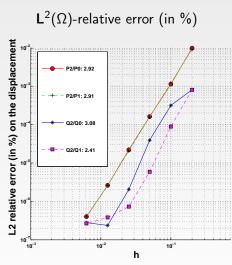
$$A^{\pm} = \left[\int_{\Omega^{\pm}} \sigma_{\mathcal{S}}(\varphi_i^{\pm}) : \varepsilon(\varphi_j^{\pm}) \right]_{ij}, \qquad B^{\pm} = \left[\int_{\Gamma_0} \varphi_i^{\pm} \cdot \psi_j \right]_{ij},$$

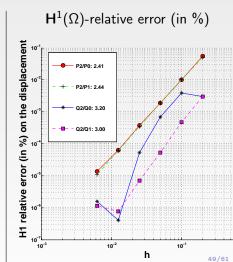
we solve:

$$\begin{pmatrix}
A^{+} & 0 & | (B^{+})^{T} \\
\hline
0 & A^{-} & | -(B^{-})^{T} \\
\hline
B^{+} & | -B^{-} & 0
\end{pmatrix}
\begin{pmatrix}
\underline{u^{+}} \\
\underline{u^{-}} \\
\hline
\lambda
\end{pmatrix} = \begin{pmatrix}
\underline{F^{+}} \\
\hline
F^{-} \\
\hline
0
\end{pmatrix}.$$

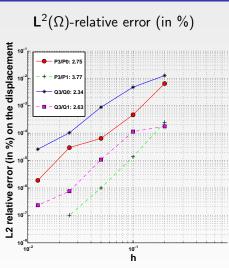
Remark: The integrations on the fictitious domains Ω^{\pm} and Γ_0 are made by the use of **Heaviside functions**.

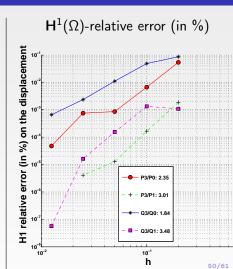
Convergence with rates: Finite elements P2 and Q2





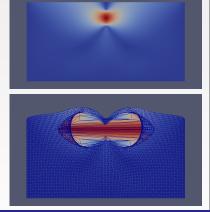
Convergence with rates: Finite elements P3 and Q3

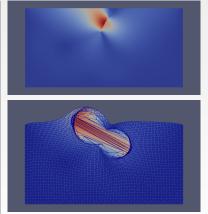




Physical tests: a crack inside the ground

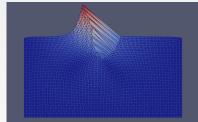
→ D. Pollard, P. Delaney, W. Duffield, E. Endo and A. Okamura, *Surface deformation in volcanic rift zones*, Tectonophysics, 1983.





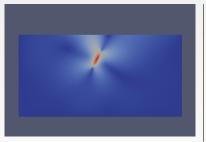
Physical tests: a crack touching the surface

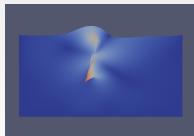
→ D. Pollard, P. Delaney, W. Duffield, E. Endo and A. Okamura, *Surface deformation in volcanic rift zones*, Tectonophysics, 1983.



Physical tests: tangential forces

Applying tangential forces: $(\sigma_{\mathcal{S}}(u)n)^{\pm} = pt^{\pm}$





Remarks and perspectives

- Remark: Optimization of the system resolution: solving faster
 - \rightarrow Direct solvers in the 2D case
 - \rightarrow Gradient algorithms in the 3D case
- Inverse problem: Geometric identification.
 From surface measurements, recovering information on inside cracks: their positions, shapes, estimation of the stress change, and displacements across them...
 - → Importance of geometries (for the crack) which do not match to the mesh (no need of remeshing, only a **local** re-assembling).

No re-meshing

$$\mathcal{A}^{\pm} = \left[\int_{\Omega^{\pm}} \sigma_{\mathcal{S}}(\varphi_i^{\pm}) : \varepsilon(\varphi_j^{\pm}) \right]_{ij}, \qquad \mathcal{A} = \left[\int_{\Omega} \sigma_{\mathcal{S}}(\varphi_i) : \varepsilon(\varphi_j) \right]_{ij},$$

A: Global matrix, with φ which do not see the crack (standard finite elements, classical integration methods).

Reduction and Extension matrices (sparse binary matrices):

$$\tilde{A}^+ = R^+ A, \qquad \tilde{A}^- = R^- A,$$

with the properties: $R^+E^+=I$, $R^+=E^{+T}$, $R^-E^-=I$, $R^-=E^{-T}$.

ightarrow Local re-assembling of the integration terms with Heaviside functions corresponding to the fracture

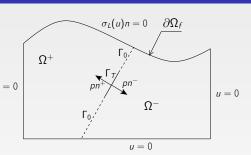
$$\Rightarrow \tilde{A}^+$$
 becomes A^+ , and \tilde{A}^- becomes A^- .

Theoretical inverse problem

$$J(\Omega) = \frac{1}{2} \int_{\partial \Omega_f} |u_{|\partial \Omega_f} - u_{obs}|^2$$

with: $\Omega = \Omega^+ \cup \Omega^-$

(the presence of the crack is encoded into this splitting)



Sensitivity w.r.t the domain: $\Omega_t = (\mathrm{Id} + t\theta)\Omega_0$

$$\Omega_t = (\mathrm{Id} + t\theta)\Omega_0$$

$$F(t) := J(\Omega_t) \Rightarrow F'(0) = DJ(\Omega_0).\theta$$

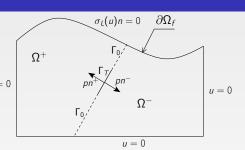
 θ with support chosen around $\Gamma = \Gamma_0 \cup \Gamma_{\tau}$.

Theoretical inverse problem

$$J(\Omega) = \frac{1}{2} \int_{\partial \Omega_f} |u_{|\partial \Omega_f} - u_{obs}|^2$$

with: $\Omega = \Omega^+ \cup \Omega^-$

(the presence of the crack is encoded into this splitting)



$$DJ(\Omega).\theta = \int_{\Gamma_0} (\theta \cdot n) K_0(u, w) + \int_{\Gamma_T} (\theta \cdot n) K_T(w)$$

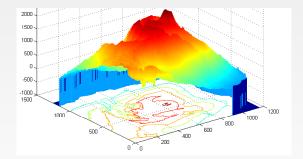
where w is solution of an adjoint problem.

Difficulty: Parameterization of Γ_T

- \rightarrow finite degrees of freedom for θ
- ightarrow discrete gradient algorithm for finding Ω_{opt}

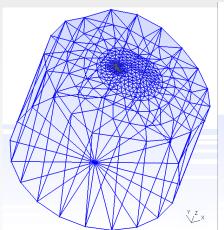
Realistic simulations

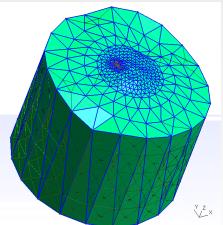
 Considering realistic topographies: the volcano Piton de la Fournaise (île de la Réunion).



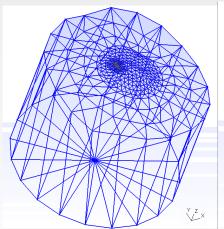
(Data provided by satellites pictures, produced by IGN: Institut Géographique National)

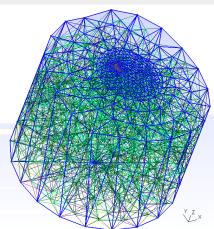
Computational domain



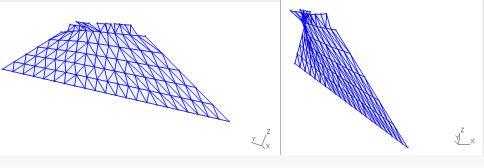


Computational domain

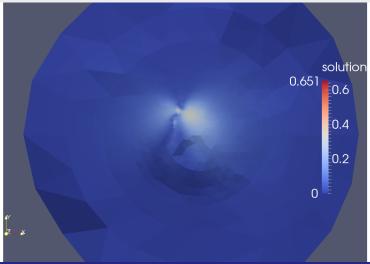


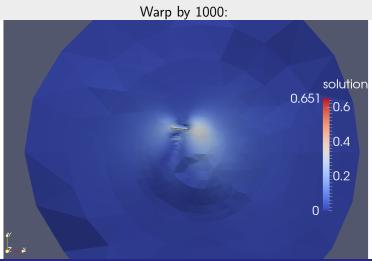


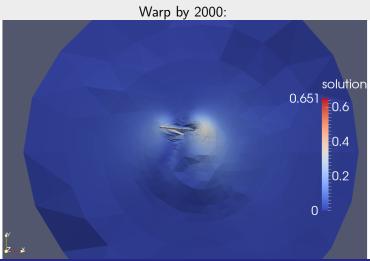
Realistic fractures (called dikes)



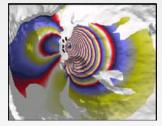
Triangles touching the surface \rightarrow Openings due to traction forces





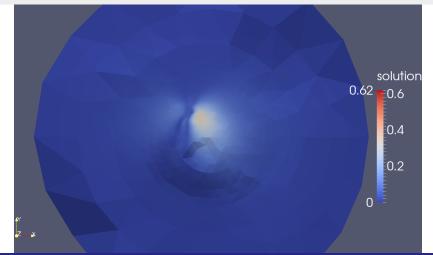


 Comparing quantitatively our results with experimental data obtained by interferometry:

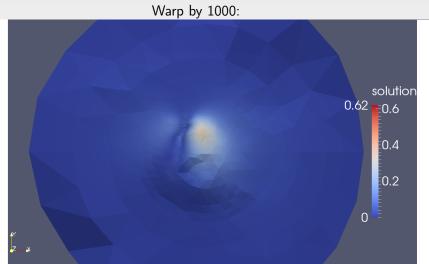


Ref: Fukushima & Al.: Finding realistic dike models from interferometric synthetic aperture radar data: The February 2000 eruption at Piton de la Fournaise, J. Geophysical Research, 2005.

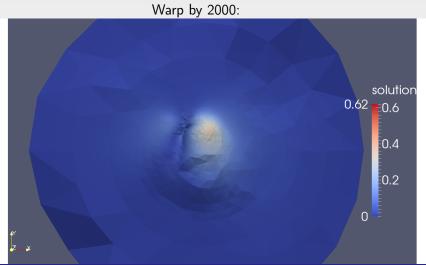
 Considering realistic elasticity coefficients obtained by muon tomography.



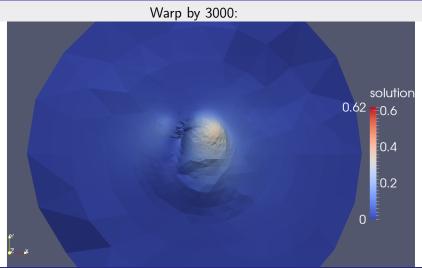
Sébastien Court - Université Blaise Pascal (France)



Sébastien Court - Université Blaise Pascal (France)



Sébastien Court - Université Blaise Pascal (France)



Sébastien Court - Université Blaise Pascal (France)

All the implementation/simulations are performed with Getfem++, a free finite element library developed in particular by Julien Pommier and Yves Renard:

Y. Renard, J. Pommier, Getfem++.

An open source generic C++ library for finite element methods, http://home.gna.org/getfem/

THANK YOU FOR YOUR ATTENTION!