Constructive exact control of semilinear 1D wave equations by a least-squares approach

SORBONNE
UNIVERSITÉ
Emmanuel Trélat

Work with Arnaud Münch
Journées Contrôle, Clermont-Ferrand, octobre 2021

Semilinear 1D wave equation

$\omega=\left(\ell_{1}, \ell_{2}\right)$ with $0 \leqslant \ell_{1}<\ell_{2} \leqslant 1, \quad T>0$

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y+g(y)=f 1_{\omega} & \text { in } Q_{T}=\Omega \times(0, T) \tag{1}\\ y=0 & \text { on } \Sigma_{T}=\partial \Omega \times(0, T) \\ \left(y(\cdot, 0), \partial_{t} y(\cdot, 0)\right)=\left(u_{0}, u_{1}\right) & \text { in } \Omega=(0,1)\end{cases}
$$

$\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad f \in L^{2}\left(q_{T}\right)$ (control) \quad where $q_{T}=\omega \times(0, T)$

Semilinear 1D wave equation

$\omega=\left(\ell_{1}, \ell_{2}\right)$ with $0 \leqslant \ell_{1}<\ell_{2} \leqslant 1, \quad T>0$

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y+g(y)=f 1_{\omega} & \text { in } Q_{T}=\Omega \times(0, T) \tag{1}\\ y=0 & \text { on } \Sigma_{T}=\partial \Omega \times(0, T) \\ \left(y(\cdot, 0), \partial_{t} y(\cdot, 0)\right)=\left(u_{0}, u_{1}\right) & \text { in } \Omega=(0,1)\end{cases}
$$

$\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad f \in L^{2}\left(q_{T}\right)$ (control) \quad where $q_{T}=\omega \times(0, T)$

Theorem (Zuazua, AIHPC 1993)

Assume that $T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$. There exists $\bar{\beta}=\bar{\beta}(\Omega, T)>0$ such that, if

$$
\limsup _{|x| \rightarrow+\infty} \frac{|g(x)|}{|x| \ln ^{2}|x|}<\bar{\beta}
$$

then (1) is exactly controllable in time T, i.e., $\forall\left(u_{0}, u_{1}\right),\left(z_{0}, z_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega) \quad \exists f \in L^{2}\left(q_{T}\right)$ s.t. the solution of (1) satisfies $\left(y(\cdot, T), \partial_{t} y(\cdot, T)\right)=\left(z_{0}, z_{1}\right)$.

Semilinear 1D wave equation

$\omega=\left(\ell_{1}, \ell_{2}\right)$ with $0 \leqslant \ell_{1}<\ell_{2} \leqslant 1, \quad T>0$

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y+g(y)=f 1_{\omega} & \text { in } Q_{T}=\Omega \times(0, T) \tag{1}\\ y=0 & \text { on } \Sigma_{T}=\partial \Omega \times(0, T) \\ \left(y(\cdot, 0), \partial_{t} y(\cdot, 0)\right)=\left(u_{0}, u_{1}\right) & \text { in } \Omega=(0,1)\end{cases}
$$

$\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad f \in L^{2}\left(q_{T}\right)$ (control) \quad where $q_{T}=\omega \times(0, T)$

Theorem (Zuazua, AIHPC 1993)

Assume that $T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$. There exists $\bar{\beta}=\bar{\beta}(\Omega, T)>0$ such that, if

$$
\limsup _{|x| \rightarrow+\infty} \frac{|g(x)|}{|x| \ln ^{2}|x|}<\bar{\beta}
$$

then (1) is exactly controllable in time T, i.e., $\forall\left(u_{0}, u_{1}\right),\left(z_{0}, z_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega) \quad \exists f \in L^{2}\left(q_{T}\right)$ s.t. the solution of (1) satisfies $\left(y(\cdot, T), \partial_{t} y(\cdot, T)\right)=\left(z_{0}, z_{1}\right)$.

- Nonconstructive proof by a Leray Schauder fixed point argument.
- Blow-up if $g(s) \simeq-s \ln ^{p}(|s|)$ with $p>2$ as $|s| \rightarrow+\infty$.
- Generalization to products of iterates of log by Cannarsa Komornik Loreti DCDS 2002.

Semilinear 1D wave equation

$\omega=\left(\ell_{1}, \ell_{2}\right)$ with $0 \leqslant \ell_{1}<\ell_{2} \leqslant 1, \quad T>0$

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y+g(y)=f 1_{\omega} & \text { in } Q_{T}=\Omega \times(0, T) \tag{1}\\ y=0 & \text { on } \Sigma_{T}=\partial \Omega \times(0, T) \\ \left(y(\cdot, 0), \partial_{t} y(\cdot, 0)\right)=\left(u_{0}, u_{1}\right) & \text { in } \Omega=(0,1)\end{cases}
$$

$\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad f \in L^{2}\left(q_{T}\right)$ (control) \quad where $q_{T}=\omega \times(0, T)$

Leray Schauder fixed point argument (Zuazua, AIHPC 1993) :
Given $\xi \in L^{\infty}\left(Q_{T}\right)$, let f_{ξ} be the control of minimal norm such that

$$
\begin{aligned}
& \partial_{t t} y_{\xi}-\partial_{x x} y_{\xi}+y_{\xi} \widehat{g}(\xi)=-g(0)+f_{\xi} 1_{\omega} \quad \text { in } Q_{T}, \quad y_{\xi}=0 \quad \text { on } \Sigma_{T}, \\
& \left(y_{\xi}(\cdot, 0), \partial_{t} y_{\xi}(\cdot, 0)\right)=\left(u_{0}, u_{1}\right), \quad\left(y_{\xi}(\cdot, T), \partial_{t} y_{\xi}(\cdot, T)\right)=\left(z_{0}, z_{1}\right) \quad \text { in } \Omega,
\end{aligned}
$$

where $\widehat{g}(x)=\frac{g(x)-g(0)}{x}$ if $x \neq 0$ and $\widehat{g}(0)=g^{\prime}(0)$. Set $K(\xi)=y_{\xi} \in L^{\infty}\left(Q_{T}\right)$.
If β is small enough, then there exists $M=M\left(\left\|\left(u_{0}, u_{1}\right)\right\|,\left\|\left(z_{0}, z_{1}\right)\right\|\right)>0$ such that

$$
K\left(\bar{B}_{L^{\infty}\left(Q_{T}\right)}(0, M)\right) \subset \bar{B}_{L^{\infty}\left(Q_{T}\right)}(0, M)
$$

Semilinear 1D wave equation

$\omega=\left(\ell_{1}, \ell_{2}\right)$ with $0 \leqslant \ell_{1}<\ell_{2} \leqslant 1, \quad T>0$

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y+g(y)=f 1_{\omega} & \text { in } Q_{T}=\Omega \times(0, T) \tag{1}\\ y=0 & \text { on } \Sigma_{T}=\partial \Omega \times(0, T) \\ \left(y(\cdot, 0), \partial_{t} y(\cdot, 0)\right)=\left(u_{0}, u_{1}\right) & \text { in } \Omega=(0,1)\end{cases}
$$

$\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad f \in L^{2}\left(q_{T}\right)$ (control) \quad where $q_{T}=\omega \times(0, T)$

Objective: design an algorithm providing an explicit sequence $\left(f_{k}\right)_{k \in N}$ that converges strongly to an exact control for (1).

Semilinear 1D wave equation

$\omega=\left(\ell_{1}, \ell_{2}\right)$ with $0 \leqslant \ell_{1}<\ell_{2} \leqslant 1, \quad T>0$

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y+g(y)=f 1_{\omega} & \text { in } Q_{T}=\Omega \times(0, T) \tag{1}\\ y=0 & \text { on } \Sigma_{T}=\partial \Omega \times(0, T) \\ \left(y(\cdot, 0), \partial_{t} y(\cdot, 0)\right)=\left(u_{0}, u_{1}\right) & \text { in } \Omega=(0,1)\end{cases}
$$

$\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad f \in L^{2}\left(q_{T}\right)$ (control) \quad where $q_{T}=\omega \times(0, T)$

Objective: design an algorithm providing an explicit sequence $\left(f_{k}\right)_{k \in N}$ that converges strongly to an exact control for (1).

First idea: usual Picard fixed point iterations $y_{k+1}=K\left(y_{k}\right)$ with $f_{k+1} \in L^{2}\left(q_{T}\right)$ control of minimal $L^{2}\left(q_{T}\right)$ norm for y_{k+1} solution of

$$
\partial_{t t} y_{k+1}-\partial_{x x} y_{k+1}+y_{k+1} \widehat{g}\left(y_{k}\right)=-g(0)+f_{k+1} 1_{\omega} \quad \widehat{g}(x)= \begin{cases}\frac{g(x)-g(0)}{x} & \text { if } x \neq 0 \\ g^{\prime}(0) & \text { if } x=0\end{cases}
$$

\rightarrow fails in general because K not contracting, even if g is globally Lipschitz (Fernández-Cara Münch MCRF 2012).

Semilinear 1D wave equation

$\omega=\left(\ell_{1}, \ell_{2}\right)$ with $0 \leqslant \ell_{1}<\ell_{2} \leqslant 1, \quad T>0$

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y+g(y)=f 1_{\omega} & \text { in } Q_{T}=\Omega \times(0, T) \tag{1}\\ y=0 & \text { on } \Sigma_{T}=\partial \Omega \times(0, T) \\ \left(y(\cdot, 0), \partial_{t} y(\cdot, 0)\right)=\left(u_{0}, u_{1}\right) & \text { in } \Omega=(0,1)\end{cases}
$$

$\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad f \in L^{2}\left(q_{T}\right)$ (control) \quad where $q_{T}=\omega \times(0, T)$

Objective: design an algorithm providing an explicit sequence $\left(f_{k}\right)_{k \in \mathrm{~N}}$ that converges strongly to an exact control for (1).

Second idea: apply the Newton method to
$\widetilde{F}(y, f)=\left(\partial_{t t} y-\partial_{x x} y+g(y)-f 1_{\omega}, y(\cdot, 0)-u_{0}, \partial_{t} y(\cdot, 0)-u_{1}, y(\cdot, T)-z_{0}, \partial_{t} y(\cdot, T)-z_{1}\right)$
\rightarrow fails to converge if the initial guess $\left(y_{0}, f_{0}\right)$ is not close enough to a zero of \tilde{F}.

Semilinear 1D wave equation

$\omega=\left(\ell_{1}, \ell_{2}\right)$ with $0 \leqslant \ell_{1}<\ell_{2} \leqslant 1, \quad T>0$

$$
\begin{cases}\partial_{t t} y-\partial_{x x} y+g(y)=f 1_{\omega} & \text { in } Q_{T}=\Omega \times(0, T) \tag{1}\\ y=0 & \text { on } \Sigma_{T}=\partial \Omega \times(0, T) \\ \left(y(\cdot, 0), \partial_{t} y(\cdot, 0)\right)=\left(u_{0}, u_{1}\right) & \text { in } \Omega=(0,1)\end{cases}
$$

$\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega), \quad f \in L^{2}\left(q_{T}\right)$ (control) \quad where $q_{T}=\omega \times(0, T)$

Objective: design an algorithm providing an explicit sequence $\left(f_{k}\right)_{k \in N}$ that converges strongly to an exact control for (1), for any initial guess.

Third idea (the good one): apply an optimal step descent method (with appropriate descent direction) to

$$
\widetilde{E}(y, f)=\frac{1}{2}\|\widetilde{F}(y, f)\|^{2}
$$

\rightarrow This is a least-squares method (actually, equivalent to a damped Newton method).

Least square algorithm

We consider the Hilbert space

$$
\begin{array}{r}
\mathcal{H}=\left\{(y, f) \in L^{2}\left(Q_{T}\right) \times L^{2}\left(q_{T}\right) \mid y \in \mathcal{C}\left([0, T] ; H_{0}^{1}(0,1)\right) \cap \mathcal{C}^{1}\left([0, T] ; L^{2}(0,1)\right),\right. \\
\left.\partial_{t t} y-\partial_{x x} y \in L^{2}\left(Q_{T}\right)\right\}
\end{array}
$$

endowed with the scalar product

$$
\begin{aligned}
&\left(\left(y_{1}, f_{1}\right),\left(y_{2}, f_{2}\right)\right)_{\mathcal{H}}=\left(y_{1}, y_{2}\right)_{L^{2}\left(Q_{T}\right)}+\left(\left(y_{1}(\cdot, 0), \partial_{t} y_{1}(\cdot, 0)\right),\left(y_{2}(\cdot, 0), \partial_{t} y_{2}(\cdot, 0)\right)\right)_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)} \\
&+\left(\partial_{t t} y_{1}-\partial_{x x} y_{1}, \partial_{t t} y_{2}-\partial_{x x} y_{2}\right)_{L^{2}\left(Q_{T}\right)}+\left(f_{1}, f_{2}\right)_{L^{2}\left(q_{T}\right)}
\end{aligned}
$$

Let \mathcal{A} and \mathcal{A}_{0} be the subspaces of \mathcal{H} defined by

$$
\begin{aligned}
\mathcal{A} & =\left\{(y, f) \in \mathcal{H} \mid\left(y(\cdot, 0), \partial_{t} y(\cdot, 0)\right)=\left(u_{0}, u_{1}\right),\left(y(\cdot, T), \partial_{t} y(\cdot, T)\right)=\left(z_{0}, z_{1}\right) \text { in } \Omega\right\} \\
\mathcal{A}_{0} & =\left\{(y, f) \in \mathcal{H} \mid\left(y(\cdot, 0), \partial_{t} y(\cdot, 0)\right)=(0,0),\left(y(\cdot, T), \partial_{t} y(\cdot, T)\right)=(0,0) \text { in } \Omega\right\} .
\end{aligned}
$$

We have $\quad \mathcal{A}=(\bar{y}, \bar{f})+\mathcal{A}_{0} \quad \forall(\bar{y}, \bar{f}) \in \mathcal{A}$.

Least square algorithm

We define the least-squares functional $E: \mathcal{A} \rightarrow \mathbf{R}$ ("error" functional) by

$$
E(y, f)=\frac{1}{2}\left\|\partial_{t t} y-\partial_{x x} y+g(y)-f 1_{\omega}\right\|_{L^{2}\left(Q_{T}\right)}^{2} \quad \forall(y, f) \in \mathcal{A}
$$

Least-squares minimization problem
Given $(\bar{y}, \bar{f}) \in \mathcal{A}$,

$$
\min _{(y, f) \in \mathcal{A}_{0}} E(\bar{y}+y, \bar{f}+f)
$$

In the framework of Zuazua's theorem, this minimum is zero and is reached.

Least square algorithm

Assume that $T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$. Given any $(y, f) \in \mathcal{A}, \quad \exists!\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ with F^{1} of minimal $L^{2}\left(q_{T}\right)$ norm, solving

$$
\left\{\begin{array}{lc}
\partial_{t t} Y^{1}-\partial_{x x} Y^{1}+g^{\prime}(y) Y^{1}=F^{1} 1_{\omega}+\left(\partial_{t t} y-\partial_{x x} y+g(y)-f 1_{\omega}\right) & \text { in } Q_{T}, \\
Y^{1}=0 & \text { on } \Sigma_{T}, \\
\left(Y^{1}(\cdot, 0), \partial_{t} Y^{1}(\cdot, 0)\right)=(0,0), \quad\left(Y^{1}(\cdot, T), \partial_{t} Y^{1}(\cdot, T)\right)=(0,0) & \text { in } \Omega,
\end{array}\right.
$$

called the solution of minimal control norm. It satisfies

$$
\left\|Y^{1}\right\|_{L \infty\left(Q_{T}\right)} \leqslant C e^{C \sqrt{\left\|g^{\prime}(y)\right\|_{L \infty}}} \sqrt{E(y, f)} .
$$

Least square algorithm

Assume that $T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$. Given any $(y, f) \in \mathcal{A}, \quad \exists!\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ with F^{1} of minimal $L^{2}\left(q_{T}\right)$ norm, solving

$$
\left\{\begin{array}{lc}
\partial_{t t} Y^{1}-\partial_{x x} Y^{1}+g^{\prime}(y) Y^{1}=F^{1} 1_{\omega}+\left(\partial_{t t} y-\partial_{x x} y+g(y)-f 1_{\omega}\right) & \text { in } Q_{T} \\
Y^{1}=0 & \text { on } \Sigma_{T} \\
\left(Y^{1}(\cdot, 0), \partial_{t} Y^{1}(\cdot, 0)\right)=(0,0), \quad\left(Y^{1}(\cdot, T), \partial_{t} Y^{1}(\cdot, T)\right)=(0,0) & \text { in } \Omega
\end{array}\right.
$$

called the solution of minimal control norm. It satisfies

$$
\left\|Y^{1}\right\|_{L \infty\left(Q_{T}\right)} \leqslant C e^{C \sqrt{\left\|g^{\prime}(y)\right\|_{L \infty}}} \sqrt{E(y, f)}
$$

This follows from the general estimate (variant of Zuazua 1993):

Potential $A \in L^{\infty}\left(Q_{T}\right)$, source $B \in L^{2}\left(Q_{T}\right), T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$.
The (unique) L^{2}-minimal norm control $u \in L^{2}\left(q_{T}\right)$ such that

$$
\begin{aligned}
& \partial_{t t} z-\partial_{x x} z+A z=u 1_{\omega}+B \quad \text { in } Q_{T}, \quad z=0 \quad \text { on } \Sigma_{T}, \\
& \left(z(\cdot, 0), \partial_{t} z(\cdot, 0)\right)=\left(z_{0}, z_{1}\right), \quad\left(z(\cdot, T), \partial_{t} z(\cdot, T)\right)=(0,0) \quad \text { in } \Omega,
\end{aligned}
$$

satisfies
$\|u\|_{L^{2}\left(q_{T}\right)}+\left\|\left(z, \partial_{t} z\right)\right\|_{L^{\infty}\left(0, T ; H_{0}^{1} \times L^{2}\right)} \leqslant C\left(\|B\|_{L^{2}} e^{(1+C) \sqrt{\|A\|_{L \infty}}}+\left\|z_{0}, z_{1}\right\|_{H_{0}^{1} \times L^{2}}\right) e^{C \sqrt{\|A\|_{L^{\infty}}}}$
for some constant $C>0$ only depending on Ω and T.

Least square algorithm

Assume that $T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$. Given any $(y, f) \in \mathcal{A}, \quad \exists!\left(Y^{1}, F^{1}\right) \in \mathcal{A}_{0}$ with F^{1} of minimal $L^{2}\left(q_{T}\right)$ norm, solving

$$
\left\{\begin{array}{lc}
\partial_{t t} Y^{1}-\partial_{x x} Y^{1}+g^{\prime}(y) Y^{1}=F^{1} 1_{\omega}+\left(\partial_{t t} y-\partial_{x x} y+g(y)-f 1_{\omega}\right) & \text { in } Q_{T} \\
Y^{1}=0 & \text { on } \Sigma_{T} \\
\left(Y^{1}(\cdot, 0), \partial_{t} Y^{1}(\cdot, 0)\right)=(0,0), \quad\left(Y^{1}(\cdot, T), \partial_{t} Y^{1}(\cdot, T)\right)=(0,0) & \text { in } \Omega
\end{array}\right.
$$

called the solution of minimal control norm. It satisfies

$$
\left\|Y^{1}\right\|_{L^{\infty}\left(Q_{T}\right)} \leqslant C e^{C \sqrt{\left\|g^{\prime}(y)\right\|_{L \infty}}} \sqrt{E(y, f)}
$$

Lemma

The (Gateaux) derivative of E at $(y, f) \in \mathcal{A}$ along the direction $\left(Y^{1}, F^{1}\right)$ of minimal control norm is

$$
E^{\prime}(y, f) \cdot\left(Y^{1}, F^{1}\right)=\lim _{\substack{\lambda \rightarrow 0 \\ \lambda \neq 0}} \frac{E\left((y, f)+\lambda\left(Y^{1}, F^{1}\right)\right)-E(y, f)}{\lambda}=2 E(y, f)
$$

Consequence: $-\left(Y^{1}, F^{1}\right)$ is a descent direction for E.

Least square algorithm

Lemma (followed)

$$
\frac{1}{\sqrt{2} \max \left(1,\left\|g^{\prime}(y)\right\| L \infty\right)}\left\|E^{\prime}(y, f)\right\|_{\mathcal{A}_{0}^{\prime}} \leqslant \sqrt{E(y, f)} \leqslant \frac{1}{\sqrt{2}} C e^{C \sqrt{\left\|g^{\prime}(y)\right\|_{L \infty}}}\left\|E^{\prime}(y, f)\right\|_{\mathcal{A}_{0}^{\prime}}
$$

- Assume that $g \in \mathcal{C}^{1, s}(\mathbb{R})$ for some $s \in[0,1]$. Then

$$
\begin{aligned}
& \quad E\left((y, f)-\lambda\left(Y^{1}, F^{1}\right)\right) \leqslant\left(|1-\lambda|+\lambda^{1+s} K(y) E(y, f)^{\frac{s}{2}}\right)^{2} E(y, f) \quad \forall \lambda \in \mathbf{R} \\
& \text { where } K(y)=C\left[g^{\prime}\right]_{s}\left(c e^{c \sqrt{\left\|g^{\prime}(y)\right\|} L^{\infty}}\right)^{1+s} \quad \text { with } \quad\left[g^{\prime}\right]_{s}=\sup _{\substack{a, b \in \mathbf{R} \\
a \neq b}} \frac{\left|g^{\prime}(a)-g^{\prime}(b)\right|}{|a-b|^{s}}<+\infty .
\end{aligned}
$$

Consequence: any critical point $(y, f) \in \mathcal{A}$ of E (i.e., $E^{\prime}(y, f)=0$) is a zero of E, and thus is a pair solution of the controllability problem. Moreover:
given any sequence $\left(y_{k}, f_{k}\right)_{k \in \mathrm{~N}}$ in \mathcal{A} such that $\left\|E^{\prime}\left(y_{k}, f_{k}\right)\right\|_{\mathcal{A}_{0}^{\prime}} \rightarrow 0$ and such that $\left\|g^{\prime}\left(y_{k}\right)\right\|_{L \infty}$ is uniformly bounded, we have $E\left(y_{k}, f_{k}\right) \rightarrow 0$.

Thanks to this instrumental property, a minimizing sequence for E cannot be stuck in a local minimum, and this, even though E fails to be convex (it has multiple zeros).

Least square algorithm

This leads to define, for any (arbitrarily) fixed $m \geqslant 1$, the sequence $\left(y_{k}, f_{k}\right)_{k \in \mathrm{~N}}$ in \mathcal{A} by

$$
\left\{\begin{array}{l}
\left(y_{0}, f_{0}\right) \in \mathcal{A} \\
\left(y_{k+1}, f_{k+1}\right)=\left(y_{k}, f_{k}\right)-\lambda_{k}\left(Y_{k}^{1}, F_{k}^{1}\right) \\
\lambda_{k}=\underset{\lambda \in[0, m]}{\operatorname{argmin}} E\left(\left(y_{k}, f_{k}\right)-\lambda\left(Y_{k}^{1}, F_{k}^{1}\right)\right)
\end{array}\right.
$$

(optimal step along the descent direction $-\left(Y_{k}^{1}, F_{k}^{1}\right)$)
where $\left(Y_{k}^{1}, F_{k}^{1}\right) \in \mathcal{A}_{0}$ is the solution of minimal control norm of

$$
\left\{\begin{array}{lr}
\partial_{t t} Y_{k}^{1}-\partial_{x x} Y_{k}^{1}+g^{\prime}\left(y_{k}\right) \cdot Y_{k}^{1}=F_{k}^{1} 1_{\omega}+\left(\partial_{t t} y_{k}-\partial_{x x} y_{k}+g\left(y_{k}\right)-f_{k} 1_{\omega}\right) & \text { in } Q_{T} \\
Y_{k}^{1}=0 & \text { on } \Sigma_{T} \\
\left(Y_{k}^{1}(\cdot, 0), \partial_{t} Y_{k}^{1}(\cdot, 0)\right)=(0,0) & \text { in } \Omega
\end{array}\right.
$$

Least square algorithm: unconditional convergence result

Theorem (Münch Trélat, 2021)

Assume that $T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$, that $g \in \mathcal{C}^{1, s}(\mathbb{R})$ for some $s \in[0,1]$, and that

$$
\begin{equation*}
\left.\exists \alpha \geqslant 0 \quad \exists \beta \in\left[0, \frac{s^{2}}{C^{2}(2 s+1)^{2}}\right) \quad|\quad| g^{\prime}(x) \right\rvert\, \leqslant \alpha+\beta \ln ^{2}(1+|x|) \quad \forall x \in \mathbf{R} . \tag{2}
\end{equation*}
$$

In the case where $s=0$ (i.e., $\left.g^{\prime} \in L^{\infty}(\mathbb{R})\right)$ but $g^{\prime} \notin \mathcal{C}^{1, s}(\mathbb{R})$ for any $s \in(0,1]$, we assume moreover that $2\left\|g^{\prime}\right\|_{L^{\infty}} C^{2} e^{C \sqrt{\left\|g^{\prime}\right\|_{L \infty}}}<1$. Then:

- The sequence $\left(y_{k}, f_{k}\right)_{k \in \mathrm{~N}}$ in \mathcal{A}, initialized at any $\left(y_{0}, f_{0}\right) \in \mathcal{A}$, converges to $(\bar{y}, \bar{f}) \in \mathcal{A}$, solution of (1) such that $\left(y(\cdot, T), \partial_{t} y(\cdot, T)\right)=\left(z_{0}, z_{1}\right)$.
- $\lambda_{k}>0 \quad \forall k \in \mathbf{N}$ and $\quad \lambda_{k} \rightarrow 1$.
- $E\left(y_{k}, f_{k}\right) \rightarrow 0$ (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order $\geqslant 1+s$ after a finite number of iterations.
$g \in \mathcal{C}^{1, s}(\mathbb{R})$ means that $g \in \mathcal{C}^{1}(\mathbb{R})$ and g^{\prime} is uniformly Hölder continuous with exponent s, i.e.,

$$
\left[g^{\prime}\right]_{s}=\sup _{\substack{a, b \in \mathbb{R} \\ a \neq b}} \frac{\left|g^{\prime}(a)-g^{\prime}(b)\right|}{|a-b|^{s}}<+\infty
$$

Least square algorithm: unconditional convergence result

Theorem (Münch Trélat, 2021)

Assume that $T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$, that $g \in \mathcal{C}^{1, s}(\mathbb{R})$ for some $s \in[0,1]$, and that

$$
\begin{equation*}
\left.\exists \alpha \geqslant 0 \quad \exists \beta \in\left[0, \frac{s^{2}}{C^{2}(2 s+1)^{2}}\right) \quad|\quad| g^{\prime}(x) \right\rvert\, \leqslant \alpha+\beta \ln ^{2}(1+|x|) \quad \forall x \in \mathbf{R} . \tag{2}
\end{equation*}
$$

In the case where $s=0$ (i.e., $\left.g^{\prime} \in L^{\infty}(\mathbb{R})\right)$ but $g^{\prime} \notin \mathcal{C}^{1, s}(\mathbb{R})$ for any $s \in(0,1]$, we assume moreover that $2\left\|g^{\prime}\right\|_{L^{\infty}} C^{2} e^{C \sqrt{\left\|g^{\prime}\right\|_{L \infty}}}<1$. Then:

- The sequence $\left(y_{k}, f_{k}\right)_{k \in \mathrm{~N}}$ in \mathcal{A}, initialized at any $\left(y_{0}, f_{0}\right) \in \mathcal{A}$, converges to $(\bar{y}, \bar{f}) \in \mathcal{A}$, solution of (1) such that $\left(y(\cdot, T), \partial_{t} y(\cdot, T)\right)=\left(z_{0}, z_{1}\right)$.
- $\lambda_{k}>0 \quad \forall k \in \mathbf{N}$ and $\quad \lambda_{k} \rightarrow 1$.
- $E\left(y_{k}, f_{k}\right) \rightarrow 0$ (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order $\geqslant 1+s$ after a finite number of iterations.

- The convergence is unconditional.
- The limit $(\bar{y}, \bar{f})=\left(y_{0}, f_{0}\right)-\sum_{k=0}^{+\infty} \lambda_{k}\left(Y_{k}^{1}, F_{k}^{1}\right)$ depends on the initialization. It also depends on the selection criterion: F_{k}^{1} is the control of minimal norm.

Least square algorithm: unconditional convergence result

Theorem (Münch Trélat, 2021)

Assume that $T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$, that $g \in \mathcal{C}^{1, s}(\mathbb{R})$ for some $s \in[0,1]$, and that

$$
\begin{equation*}
\left.\exists \alpha \geqslant 0 \quad \exists \beta \in\left[0, \frac{s^{2}}{C^{2}(2 s+1)^{2}}\right) \quad|\quad| g^{\prime}(x) \right\rvert\, \leqslant \alpha+\beta \ln ^{2}(1+|x|) \quad \forall x \in \mathbb{R} . \tag{2}
\end{equation*}
$$

In the case where $s=0$ (i.e., $\left.g^{\prime} \in L^{\infty}(\mathbb{R})\right)$ but $g^{\prime} \notin \mathcal{C}^{1, s}(\mathbb{R})$ for any $s \in(0,1]$, we assume moreover that $2\left\|g^{\prime}\right\|_{L^{\infty}} C^{2} e^{C \sqrt{\left\|g^{\prime}\right\|_{L \infty}}}<1$. Then:

- The sequence $\left(y_{k}, f_{k}\right)_{k \in \mathrm{~N}}$ in \mathcal{A}, initialized at any $\left(y_{0}, f_{0}\right) \in \mathcal{A}$, converges to $(\bar{y}, \bar{f}) \in \mathcal{A}$, solution of (1) such that $\left(y(\cdot, T), \partial_{t} y(\cdot, T)\right)=\left(z_{0}, z_{1}\right)$.
- $\lambda_{k}>0 \quad \forall k \in \mathbf{N}$ and $\lambda_{k} \rightarrow 1$.
- $E\left(y_{k}, f_{k}\right) \rightarrow 0$ (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order $\geqslant 1+s$ after a finite number of iterations.

- (2) implies that $\limsup _{|x| \rightarrow+\infty} \frac{|g(x)|}{|x| \ln ^{2}|x|}<\frac{s^{2}}{(2 s+1)^{2} C^{2}}$
"Limit case": $g(x)=a+b x+\frac{1}{9 C^{2}+\varepsilon} x \ln ^{2}(1+|x|)$ for any $\varepsilon>0$ and $a, b \in \mathbb{R}$.
There exist cases covered by Zuazua's theorem but not by the above.

Least square algorithm: unconditional convergence result

Theorem (Münch Trélat, 2021)

Assume that $T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$, that $g \in \mathcal{C}^{1, s}(\mathbb{R})$ for some $s \in[0,1]$, and that

$$
\begin{equation*}
\left.\exists \alpha \geqslant 0 \quad \exists \beta \in\left[0, \frac{s^{2}}{C^{2}(2 s+1)^{2}}\right) \quad|\quad| g^{\prime}(x) \right\rvert\, \leqslant \alpha+\beta \ln ^{2}(1+|x|) \quad \forall x \in \mathbf{R} . \tag{2}
\end{equation*}
$$

In the case where $s=0$ (i.e., $\left.g^{\prime} \in L^{\infty}(\mathbb{R})\right)$ but $g^{\prime} \notin \mathcal{C}^{1, s}(\mathbb{R})$ for any $s \in(0,1]$, we assume moreover that $2\left\|g^{\prime}\right\|_{L^{\infty}} C^{2} e^{C \sqrt{\left\|g^{\prime}\right\|_{L \infty}}}<1$. Then:

- The sequence $\left(y_{k}, f_{k}\right)_{k \in \mathrm{~N}}$ in \mathcal{A}, initialized at any $\left(y_{0}, f_{0}\right) \in \mathcal{A}$, converges to $(\bar{y}, \bar{f}) \in \mathcal{A}$, solution of (1) such that $\left(y(\cdot, T), \partial_{t} y(\cdot, T)\right)=\left(z_{0}, z_{1}\right)$.
- $\lambda_{k}>0 \quad \forall k \in \mathbf{N}$ and $\quad \lambda_{k} \rightarrow 1$.
- $E\left(y_{k}, f_{k}\right) \rightarrow 0$ (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order $\geqslant 1+s$ after a finite number of iterations.

- The finite number of iterations is $k_{0}=0$ if $(1+s) c E\left(y_{0}, f_{0}\right)^{\frac{s}{2}}<1$ and otherwise

$$
k_{0}=\left\lfloor\frac{(1+s)^{1+\frac{1}{s}}}{s}\left(c^{\frac{1}{s}} \sqrt{E\left(y_{0}, f_{0}\right)}-1\right)\right\rfloor+1 \text { with } c=\left[g^{\prime}\right]_{s} c^{2+s} e^{(1+s) c \sqrt{\alpha}}(1+M)^{(1+s) c \sqrt{\beta}} .
$$

Least square algorithm: unconditional convergence result

Theorem (Münch Trélat, 2021)

Assume that $T>2 \max \left(\ell_{1}, 1-\ell_{2}\right)$, that $g \in \mathcal{C}^{1, s}(\mathbb{R})$ for some $s \in[0,1]$, and that

$$
\begin{equation*}
\left.\exists \alpha \geqslant 0 \quad \exists \beta \in\left[0, \frac{s^{2}}{C^{2}(2 s+1)^{2}}\right) \quad|\quad| g^{\prime}(x) \right\rvert\, \leqslant \alpha+\beta \ln ^{2}(1+|x|) \quad \forall x \in \mathbf{R} . \tag{2}
\end{equation*}
$$

In the case where $s=0$ (i.e., $\left.g^{\prime} \in L^{\infty}(\mathbb{R})\right)$ but $g^{\prime} \notin \mathcal{C}^{1, s}(\mathbb{R})$ for any $s \in(0,1]$, we assume moreover that $2\left\|g^{\prime}\right\|_{L^{\infty}} C^{2} e^{C \sqrt{\left\|g^{\prime}\right\|_{L \infty}}}<1$. Then:

- The sequence $\left(y_{k}, f_{k}\right)_{k \in \mathrm{~N}}$ in \mathcal{A}, initialized at any $\left(y_{0}, f_{0}\right) \in \mathcal{A}$, converges to $(\bar{y}, \bar{f}) \in \mathcal{A}$, solution of (1) such that $\left(y(\cdot, T), \partial_{t} y(\cdot, T)\right)=\left(z_{0}, z_{1}\right)$.
- $\lambda_{k}>0 \quad \forall k \in \mathbf{N}$ and $\quad \lambda_{k} \rightarrow 1$.
- $E\left(y_{k}, f_{k}\right) \rightarrow 0$ (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order $\geqslant 1+s$ after a finite number of iterations.

- If $s=0$, we add a smallness condition on $\left\|g^{\prime}\right\|_{L \infty}$.

Steps of proof

Denote $E_{k}=E\left(y_{k}, f_{k}\right)$. By the lemma we have (with $K\left(y_{k}\right)=\left[g^{\prime}\right]_{s} C^{2+s} e^{(1+s) c \sqrt{\left\|g^{\prime}\left(y_{k}\right)\right\|_{L \infty}} \text {) }}$

$$
\begin{equation*}
E_{k+1} \leqslant \min _{\lambda \in[0, m]}\left(|1-\lambda|+\lambda^{1+s} K\left(y_{k}\right) E_{k}^{\frac{s}{2}}\right)^{2} E_{k} \tag{3}
\end{equation*}
$$

Main difficulty

Prove that the sequence $\left(\left\|y_{k}\right\|_{L^{\infty}}\right)_{k \in N}$ remains uniformly bounded.

This is done by a priori / a posteriori arguments:

A priori assumption: $\left\|y_{k}\right\|_{L \infty} \leqslant M \quad \forall k \in \mathbb{N}$
Keeping track of all estimates in the chain of arguments \Rightarrow a posteriori satisfied (for M large enough).

Steps of proof

Denote $E_{k}=E\left(y_{k}, f_{k}\right)$. By the lemma we have (with $K\left(y_{k}\right)=\left[g^{\prime}\right]_{s} C^{2+s} e^{(1+s) c \sqrt{\left\|g^{\prime}\left(y_{k}\right)\right\|_{L \infty}} \text {) }}$

$$
\begin{equation*}
E_{k+1} \leqslant \min _{\lambda \in[0, m]}\left(|1-\lambda|+\lambda^{1+s} K\left(y_{k}\right) E_{k}^{\frac{s}{2}}\right)^{2} E_{k} \tag{3}
\end{equation*}
$$

Step 1

There exists $k_{0} \in \mathbf{N}$ such that $\left(E_{k}\right)_{k \geqslant k_{0}}$ decays to 0 with order $\geqslant 1+s$.

Idea: use the a priori estimate $\left\|g^{\prime}\left(y_{k}\right)\right\|_{L \infty} \leqslant \alpha+\beta \ln ^{2}(1+M)$ and infer from (3)

$$
c^{\frac{1}{s}} \sqrt{E_{k+1}} \leqslant \begin{cases}\left(c^{\frac{1}{s}} \sqrt{E_{k}}\right)^{1+s} & \text { if }(1+s)^{\frac{1}{s}} C^{\frac{1}{s}} \sqrt{E_{k}}<1 \\ c^{\frac{1}{s}} \sqrt{E_{k}}-\frac{s}{(1+s)^{1+\frac{1}{s}}} & \text { if }(1+s)^{\frac{1}{s}} C^{\frac{1}{s}} \sqrt{E_{k}} \geqslant 1\end{cases}
$$

with $c=\left[g^{\prime}\right]_{s} C^{2+s} e^{(1+s) C \sqrt{\alpha}}(1+M)^{(1+s) C \sqrt{\beta}}$

Steps of proof

Denote $E_{k}=E\left(y_{k}, f_{k}\right)$. By the lemma we have (with $K\left(y_{k}\right)=\left[g^{\prime}\right]_{s} C^{2+s} e^{(1+s) c \sqrt{\left\|g^{\prime}\left(y_{k}\right)\right\|_{L \infty}} \text {) }}$

$$
\begin{equation*}
E_{k+1} \leqslant \min _{\lambda \in[0, m]}\left(|1-\lambda|+\lambda^{1+s} K\left(y_{k}\right) E_{k}^{\frac{s}{2}}\right)^{2} E_{k} \tag{3}
\end{equation*}
$$

Step 1

There exists $k_{0} \in \mathbf{N}$ such that $\left(E_{k}\right)_{k \geqslant k_{0}}$ decays to 0 with order $\geqslant 1+s$.

Step 2

$\lambda_{k} \rightarrow 1$ as $k \rightarrow+\infty$ at least with order $1+s$.

Step 3

$$
\sum_{k \geqslant 0} \sqrt{E_{k}}<+\infty \text { and } \sum_{k=p}^{+\infty} \sqrt{E_{k}} \leqslant \operatorname{Cst} \sqrt{E_{p}} \text { for every } p \in \mathbf{N} .
$$

Step 4

$(\bar{y}, \bar{f})=\left(y_{0}, f_{0}\right)-\sum_{k=0}^{+\infty} \lambda_{k}\left(Y_{k}^{1}, F_{k}^{1}\right)$ with convergence of order $\geqslant 1+s$ after k_{0} iterations.

Further comments

Minimization functional

The descent direction $-\left(Y^{1}, F^{1}\right)$ is designed by minimizing $J(v)=\|v\|_{2, q_{T}}^{2}$. The analysis remains true for $J(y, v)=\left\|w_{1} v\right\|_{2, q_{T}}^{2}+\left\|w_{2} y\right\|_{2}^{2}$ for some weights.

Local controllability when removing the growth condition on g
If $g \in \mathcal{C}^{1, s}(\mathbb{R})$ for some $s \in(0,1]$ and if $E\left(y_{0}, f_{0}\right)$ is small snough, then the convergence result remains true.

Multi-dimensional case

Generalization to 2D and 3D under the stricter growth condition $|g(x)| \leqslant \beta|x| \ln ^{1 / 2}|x|$ at infinity, for $\beta>0$ small enough (Bottois Lemoine Münch 2021).

Boundary control

Open issue.

Semilinear heat equations

Treated in Lemoine Marín-Gayte Münch COCV 2021.

