
Constructive exact control of semilinear 1D
wave equations by a least-squares approach

Emmanuel Trélat
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Semilinear 1D wave equation

ω = (`1, `2) with 0 6 `1 < `2 6 1, T > 0


∂tt y − ∂xx y + g(y) = f1ω in QT = Ω× (0,T )

y = 0 on ΣT = ∂Ω× (0,T )

(y(·, 0), ∂t y(·, 0)) = (u0, u1) in Ω = (0, 1)

(1)

(u0, u1) ∈ H1
0 (Ω)× L2(Ω), f ∈ L2(qT ) (control) where qT = ω × (0,T )
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(u0, u1) ∈ H1
0 (Ω)× L2(Ω), f ∈ L2(qT ) (control) where qT = ω × (0,T )

Theorem (Zuazua, AIHPC 1993)

Assume that T > 2 max(`1, 1− `2). There exists β̄ = β̄(Ω,T ) > 0 such that, if

lim sup
|x|→+∞

|g(x)|
|x | ln2 |x |

< β̄

then (1) is exactly controllable in time T , i.e., ∀(u0, u1), (z0, z1) ∈ H1
0 (Ω)× L2(Ω) ∃f ∈ L2(qT ) s.t.

the solution of (1) satisfies (y(·, T ), ∂t y(·, T )) = (z0, z1).
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Theorem (Zuazua, AIHPC 1993)

Assume that T > 2 max(`1, 1− `2). There exists β̄ = β̄(Ω,T ) > 0 such that, if

lim sup
|x|→+∞

|g(x)|
|x | ln2 |x |

< β̄

then (1) is exactly controllable in time T , i.e., ∀(u0, u1), (z0, z1) ∈ H1
0 (Ω)× L2(Ω) ∃f ∈ L2(qT ) s.t.

the solution of (1) satisfies (y(·, T ), ∂t y(·, T )) = (z0, z1).

Nonconstructive proof by a Leray Schauder fixed point argument.

Blow-up if g(s) ' −s lnp(|s|) with p > 2 as |s| → +∞.

Generalization to products of iterates of log by Cannarsa Komornik Loreti DCDS 2002.
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Leray Schauder fixed point argument (Zuazua, AIHPC 1993) :

Given ξ ∈ L∞(QT ), let fξ be the control of minimal norm such that

∂tt yξ − ∂xx yξ + yξ ĝ(ξ) = −g(0) + fξ1ω in QT , yξ = 0 on ΣT ,

(yξ(·, 0), ∂t yξ(·, 0)) = (u0, u1), (yξ(·,T ), ∂t yξ(·,T )) = (z0, z1) in Ω,

where ĝ(x) = g(x)−g(0)
x if x 6= 0 and ĝ(0) = g′(0). Set K (ξ) = yξ ∈ L∞(QT ) .

If β is small enough, then there exists M = M(‖(u0, u1)‖, ‖(z0, z1)‖) > 0 such that

K
(
B̄L∞(QT )(0,M)

)
⊂ B̄L∞(QT )(0,M).
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strongly to an exact control for (1).
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y = 0 on ΣT = ∂Ω× (0,T )

(y(·, 0), ∂t y(·, 0)) = (u0, u1) in Ω = (0, 1)

(1)

(u0, u1) ∈ H1
0 (Ω)× L2(Ω), f ∈ L2(qT ) (control) where qT = ω × (0,T )

Objective: design an algorithm providing an explicit sequence (fk )k∈IN that converges
strongly to an exact control for (1).

First idea: usual Picard fixed point iterations yk+1 = K (yk ) with fk+1 ∈ L2(qT ) control of
minimal L2(qT ) norm for yk+1 solution of

∂tt yk+1 − ∂xx yk+1 + yk+1 ĝ(yk ) = −g(0) + fk+11ω ĝ(x) =

{ g(x)− g(0)

x
if x 6= 0

g′(0) if x = 0

→ fails in general because K not contracting, even if g is globally Lipschitz
(Fernández-Cara Münch MCRF 2012).



Semilinear 1D wave equation

ω = (`1, `2) with 0 6 `1 < `2 6 1, T > 0


∂tt y − ∂xx y + g(y) = f1ω in QT = Ω× (0,T )

y = 0 on ΣT = ∂Ω× (0,T )

(y(·, 0), ∂t y(·, 0)) = (u0, u1) in Ω = (0, 1)

(1)

(u0, u1) ∈ H1
0 (Ω)× L2(Ω), f ∈ L2(qT ) (control) where qT = ω × (0,T )

Objective: design an algorithm providing an explicit sequence (fk )k∈IN that converges
strongly to an exact control for (1).

Second idea: apply the Newton method to

F̃ (y , f ) =
(
∂tt y−∂xx y+g(y)−f1ω , y(· , 0)−u0, ∂t y(· , 0)−u1, y(· ,T )−z0, ∂t y(· ,T )−z1

)
→ fails to converge if the initial guess (y0, f0) is not close enough to a zero of F̃ .



Semilinear 1D wave equation

ω = (`1, `2) with 0 6 `1 < `2 6 1, T > 0


∂tt y − ∂xx y + g(y) = f1ω in QT = Ω× (0,T )

y = 0 on ΣT = ∂Ω× (0,T )

(y(·, 0), ∂t y(·, 0)) = (u0, u1) in Ω = (0, 1)

(1)

(u0, u1) ∈ H1
0 (Ω)× L2(Ω), f ∈ L2(qT ) (control) where qT = ω × (0,T )

Objective: design an algorithm providing an explicit sequence (fk )k∈IN that converges
strongly to an exact control for (1), for any initial guess.

Third idea (the good one): apply an optimal step descent method (with appropriate
descent direction) to

Ẽ(y , f ) =
1
2
‖F̃ (y , f )‖2

→ This is a least-squares method (actually, equivalent to a damped Newton method).

(see related ideas in recent works by Lemoine Münch Pedregal 2021, for Navier-Stokes equations)



Least square algorithm

We consider the Hilbert space

H =
{

(y , f ) ∈ L2(QT )× L2(qT ) | y ∈ C([0,T ]; H1
0 (0, 1)) ∩ C1([0,T ]; L2(0, 1)),

∂tt y − ∂xx y ∈ L2(QT )
}

endowed with the scalar product

((y1, f1), (y2, f2))H = (y1, y2)L2(QT )+
(
(y1(·, 0), ∂t y1(·, 0)), (y2(·, 0), ∂t y2(·, 0))

)
H1

0 (Ω)×L2(Ω)

+
(
∂tt y1 − ∂xx y1, ∂tt y2 − ∂xx y2

)
L2(QT )

+ (f1, f2)L2(qT )

Let A and A0 be the subspaces of H defined by

A =
{

(y , f ) ∈ H | (y(·, 0), ∂t y(·, 0)) = (u0, u1), (y(·,T ), ∂t y(·,T )) = (z0, z1) in Ω
}

A0 =
{

(y , f ) ∈ H | (y(·, 0), ∂t y(·, 0)) = (0, 0), (y(·,T ), ∂t y(·,T )) = (0, 0) in Ω
}
.

We have A = (y , f ) +A0 ∀(y , f ) ∈ A.



Least square algorithm

We define the least-squares functional E : A → IR (“error” functional) by

E(y , f ) =
1
2

∥∥∂tt y − ∂xx y + g(y)− f1ω
∥∥2

L2(QT )
∀(y , f ) ∈ A

Least-squares minimization problem

Given (y , f ) ∈ A,

min
(y,f )∈A0

E(y + y , f + f )

In the framework of Zuazua’s theorem, this minimum is zero and is reached.



Least square algorithm
Assume that T > 2 max(`1, 1− `2). Given any (y , f ) ∈ A, ∃!(Y 1,F 1) ∈ A0
with F 1 of minimal L2(qT ) norm, solving

∂tt Y 1 − ∂xx Y 1 + g′(y) Y 1 = F 11ω +
(
∂tt y − ∂xx y + g(y)− f1ω

)
in QT ,

Y 1 = 0 on ΣT ,

(Y 1(·, 0), ∂t Y 1(·, 0)) = (0, 0), (Y 1(·,T ), ∂t Y 1(·,T )) = (0, 0) in Ω,

called the solution of minimal control norm. It satisfies

‖Y 1‖L∞(QT ) 6 CeC
√
‖g′(y)‖L∞

√
E(y , f ).
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called the solution of minimal control norm. It satisfies

‖Y 1‖L∞(QT ) 6 CeC
√
‖g′(y)‖L∞

√
E(y , f ).

This follows from the general estimate (variant of Zuazua 1993):

Potential A ∈ L∞(QT ), source B ∈ L2(QT ) , T > 2 max(`1, 1− `2).
The (unique) L2-minimal norm control u ∈ L2(qT ) such that

∂tt z − ∂xx z + Az = u1ω + B in QT , z = 0 on ΣT ,

(z(·, 0), ∂t z(·, 0)) = (z0, z1), (z(·,T ), ∂t z(·,T )) = (0, 0) in Ω,

satisfies

‖u‖L2(qT ) + ‖(z, ∂t z)‖L∞(0,T ;H1
0×L2) 6 C

(
‖B‖L2 e(1+C)

√
‖A‖L∞ + ‖z0, z1‖H1

0×L2

)
eC
√
‖A‖L∞

for some constant C > 0 only depending on Ω and T .
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Lemma

The (Gateaux) derivative of E at (y , f ) ∈ A along the direction (Y 1,F 1) of minimal
control norm is

E ′(y , f ) · (Y 1,F 1) = lim
λ→0
λ6=0

E((y , f ) + λ(Y 1,F 1))− E(y , f )

λ
= 2E(y , f )

Consequence: −(Y 1,F 1) is a descent direction for E .



Least square algorithm

Lemma (followed)

1√
2 max

(
1,‖g′(y)‖L∞

)‖E ′(y , f )‖A′
0
6
√

E(y , f ) 6 1√
2

CeC
√
‖g′(y)‖L∞ ‖E ′(y , f )‖A′

0

Assume that g ∈ C1,s(IR) for some s ∈ [0, 1]. Then

E
(
(y , f )− λ(Y 1,F 1)

)
6
(
|1− λ|+ λ1+s K (y)E(y , f )

s
2

)2
E(y , f ) ∀λ ∈ IR

where K (y) = C [g′]s
(

CeC
√

‖g′(y)‖L∞
)1+s

with [g′]s = sup
a,b∈IR

a 6=b

|g′(a)− g′(b)|
|a− b|s

< +∞.

Consequence: any critical point (y , f ) ∈ A of E (i.e., E ′(y , f ) = 0) is a zero of E , and
thus is a pair solution of the controllability problem. Moreover:

given any sequence (yk , fk )k∈IN in A such that ‖E ′(yk , fk )‖A′
0
→ 0 and

such that ‖g′(yk )‖L∞ is uniformly bounded, we have E(yk , fk )→ 0.

Thanks to this instrumental property, a minimizing sequence for E cannot be stuck in a
local minimum, and this, even though E fails to be convex (it has multiple zeros).



Least square algorithm

This leads to define, for any (arbitrarily) fixed m > 1, the sequence (yk , fk )k∈IN in A by


(y0, f0) ∈ A

(yk+1, fk+1) = (yk , fk )− λk (Y 1
k ,F

1
k )

λk = argmin
λ∈[0,m]

E
(
(yk , fk )− λ(Y 1

k ,F
1
k )
)

(optimal step along the descent direction −(Y 1
k ,F

1
k ))

where (Y 1
k ,F

1
k ) ∈ A0 is the solution of minimal control norm of


∂tt Y 1

k − ∂xx Y 1
k + g′(yk ) · Y 1

k = F 1
k 1ω + (∂tt yk − ∂xx yk + g(yk )− fk 1ω) in QT

Y 1
k = 0 on ΣT

(Y 1
k (·, 0), ∂t Y 1

k (·, 0)) = (0, 0) in Ω



Least square algorithm: unconditional convergence
result

Theorem (Münch Trélat, 2021)

Assume that T > 2 max(`1, 1− `2), that g ∈ C1,s(IR) for some s ∈ [0, 1], and that

∃α > 0 ∃β ∈ [0, s2

C2(2s+1)2 ) | |g′(x)| 6 α+ β ln2(1 + |x |) ∀x ∈ IR. (2)

In the case where s = 0 (i.e., g′ ∈ L∞(IR)) but g′ /∈ C1,s(IR) for any s ∈ (0, 1], we
assume moreover that 2‖g′‖L∞C2eC

√
‖g′‖L∞ < 1. Then:

The sequence (yk , fk )k∈IN in A, initialized at any (y0, f0) ∈ A, converges to
(y , f ) ∈ A, solution of (1) such that (y(·,T ), ∂t y(·,T )) = (z0, z1).

λk > 0 ∀k ∈ IN and λk → 1.

E(yk , fk )→ 0 (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order
> 1 + s after a finite number of iterations.

g ∈ C1,s(IR) means that g ∈ C1(IR) and g′ is uniformly Hölder continuous with exponent s, i.e.,

[g′]s = sup
a,b∈IR

a 6=b

|g′(a)− g′(b)|
|a− b|s

< +∞.
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result

Theorem (Münch Trélat, 2021)

Assume that T > 2 max(`1, 1− `2), that g ∈ C1,s(IR) for some s ∈ [0, 1], and that

∃α > 0 ∃β ∈ [0, s2

C2(2s+1)2 ) | |g′(x)| 6 α+ β ln2(1 + |x |) ∀x ∈ IR. (2)
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assume moreover that 2‖g′‖L∞C2eC

√
‖g′‖L∞ < 1. Then:

The sequence (yk , fk )k∈IN in A, initialized at any (y0, f0) ∈ A, converges to
(y , f ) ∈ A, solution of (1) such that (y(·,T ), ∂t y(·,T )) = (z0, z1).

λk > 0 ∀k ∈ IN and λk → 1.

E(yk , fk )→ 0 (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order
> 1 + s after a finite number of iterations.

• The convergence is unconditional.

• The limit (y , f ) = (y0, f0)−
+∞∑
k=0

λk (Y 1
k ,F

1
k ) depends on the initialization.

It also depends on the selection criterion: F1
k is the control of minimal norm.



Least square algorithm: unconditional convergence
result
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Assume that T > 2 max(`1, 1− `2), that g ∈ C1,s(IR) for some s ∈ [0, 1], and that

∃α > 0 ∃β ∈ [0, s2

C2(2s+1)2 ) | |g′(x)| 6 α+ β ln2(1 + |x |) ∀x ∈ IR. (2)
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λk > 0 ∀k ∈ IN and λk → 1.

E(yk , fk )→ 0 (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order
> 1 + s after a finite number of iterations.

• (2) implies that lim sup
|x|→+∞

|g(x)|
|x | ln2 |x |

<
s2

(2s + 1)2C2

“Limit case”: g(x) = a + bx + 1
9C2+ε

x ln2(1 + |x|) for any ε > 0 and a, b ∈ IR.

There exist cases covered by Zuazua’s theorem but not by the above.



Least square algorithm: unconditional convergence
result

Theorem (Münch Trélat, 2021)

Assume that T > 2 max(`1, 1− `2), that g ∈ C1,s(IR) for some s ∈ [0, 1], and that
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λk > 0 ∀k ∈ IN and λk → 1.

E(yk , fk )→ 0 (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order
> 1 + s after a finite number of iterations.

• The finite number of iterations is k0 = 0 if (1 + s) c E(y0, f0)
s
2 < 1 and otherwise

k0 =

⌊
(1+s)

1+ 1
s

s

(
c

1
s
√

E(y0, f0)− 1
)⌋

+ 1 with c = [g′]s C2+se(1+s)C
√
α(1 + M)(1+s)C

√
β .



Least square algorithm: unconditional convergence
result

Theorem (Münch Trélat, 2021)

Assume that T > 2 max(`1, 1− `2), that g ∈ C1,s(IR) for some s ∈ [0, 1], and that

∃α > 0 ∃β ∈ [0, s2

C2(2s+1)2 ) | |g′(x)| 6 α+ β ln2(1 + |x |) ∀x ∈ IR. (2)

In the case where s = 0 (i.e., g′ ∈ L∞(IR)) but g′ /∈ C1,s(IR) for any s ∈ (0, 1], we
assume moreover that 2‖g′‖L∞C2eC

√
‖g′‖L∞ < 1. Then:

The sequence (yk , fk )k∈IN in A, initialized at any (y0, f0) ∈ A, converges to
(y , f ) ∈ A, solution of (1) such that (y(·,T ), ∂t y(·,T )) = (z0, z1).

λk > 0 ∀k ∈ IN and λk → 1.

E(yk , fk )→ 0 (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order
> 1 + s after a finite number of iterations.

• If s = 0, we add a smallness condition on ‖g′‖L∞ .



Steps of proof
Denote Ek = E(yk , fk ). By the lemma we have (with K (yk ) = [g′]s C2+s e(1+s)C

√
‖g′(yk )‖L∞ )

Ek+1 6 min
λ∈[0,m]

(
|1− λ|+ λ1+sK (yk )E

s
2

k

)2
Ek (3)

Main difficulty

Prove that the sequence (‖yk‖L∞ )k∈IN remains uniformly bounded.

This is done by a priori / a posteriori arguments:

A priori assumption: ‖yk‖L∞ 6 M ∀k ∈ IN

Keeping track of all estimates in the chain of arguments⇒ a posteriori satisfied (for M
large enough).



Steps of proof
Denote Ek = E(yk , fk ). By the lemma we have (with K (yk ) = [g′]s C2+s e(1+s)C

√
‖g′(yk )‖L∞ )

Ek+1 6 min
λ∈[0,m]

(
|1− λ|+ λ1+sK (yk )E

s
2

k

)2
Ek (3)

Step 1

There exists k0 ∈ IN such that (Ek )k>k0 decays to 0 with order > 1 + s.

Idea: use the a priori estimate ‖g′(yk )‖L∞ 6 α+ β ln2(1 + M) and infer from (3)

c
1
s
√

Ek+1 6


(
c

1
s
√

Ek
)1+s if (1 + s)

1
s c

1
s
√

Ek < 1

c
1
s
√

Ek − s

(1+s)
1+ 1

s
if (1 + s)

1
s c

1
s
√

Ek > 1

with c = [g′]s C2+se(1+s)C
√
α(1 + M)(1+s)C

√
β



Steps of proof
Denote Ek = E(yk , fk ). By the lemma we have (with K (yk ) = [g′]s C2+s e(1+s)C

√
‖g′(yk )‖L∞ )

Ek+1 6 min
λ∈[0,m]

(
|1− λ|+ λ1+sK (yk )E

s
2

k

)2
Ek (3)

Step 1

There exists k0 ∈ IN such that (Ek )k>k0 decays to 0 with order > 1 + s.

Step 2

λk → 1 as k → +∞ at least with order 1 + s.

Step 3

∑
k>0

√
Ek < +∞ and

+∞∑
k=p

√
Ek 6 Cst

√
Ep for every p ∈ IN.

Step 4

(y , f ) = (y0, f0)−
+∞∑
k=0

λk (Y 1
k ,F

1
k ) with convergence of order > 1 + s after k0 iterations.



Further comments

Minimization functional

The descent direction −(Y 1,F 1) is designed by minimizing J(v) = ‖v‖2
2,qT

.

The analysis remains true for J(y , v) = ‖w1v‖2
2,qT

+ ‖w2y‖2
2 for some weights.

Local controllability when removing the growth condition on g

If g ∈ C1,s(IR) for some s ∈ (0, 1] and if E(y0, f0) is small snough, then the
convergence result remains true.

Multi-dimensional case

Generalization to 2D and 3D under the stricter growth condition |g(x)| 6 β|x | ln1/2 |x |
at infinity, for β > 0 small enough (Bottois Lemoine Münch 2021).

Boundary control

Open issue.

Semilinear heat equations

Treated in Lemoine Marı́n-Gayte Münch COCV 2021.


