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Semilinear 1D wave equation

w:(f1,£2)With0<€1<£2<1, T>0

y=0 onXr =09Q x (0,T) (1)
(¥(,0), 8y (-, 0)) = (uo, i) in Q2= (0,1)

(Uo, ur) € H}(Q) x L3(Q), f € L2(qg7) (control) where g7 = w x (0, T)

{ oty — Oy +9(y) =flo inQr=Q2x(0,T)




Semilinear 1D wave equation

w:(f1,£2)With0<€1<£2<1, T>0

Oy — Oxxy + 9(y) = flu inQr=Q2x(0,T)
y=0 onYXr =00 x(0,T) 1)
(¥(-,0),0:¥(,0)) = (to, u1) inQ2=(0,1)

(Uo, ur) € H}(Q) x L3(Q), f € L2(qg7) (control) where g7 = w x (0, T)

Theorem (Zuazua, AIHPC 1993)
Assume that T > 2 max(¢y,1 — £2). There exists 3 = (R, T) > 0 such that, if

5% _
lim sup Lz)l <p
Ix|—+o0 |X] In® [x]

then (1) is exactly controllable in time T, i.e., V(up, t1), (20, 21) € H}(Q) x L2(Q) 3f € L?(qr) sit.
the solution of (1) satisfies (y(-, T), 8ty (-, T)) = (29, 21)-
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@ Nonconstructive proof by a Leray Schauder fixed point argument.
@ Blow-upif g(s) ~ —sInP(|s|) with p > 2 as |s| — +oo.

@ Generalization to products of iterates of log by Cannarsa Komornik Loreti DCDS 2002.



Semilinear 1D wave equation

w:(f1,£2)With0<€1<€2<1, T>0

Oy — Oxxy + 9(y) = flu inQr=Q2x(0,T)
y=0 onYXr =00 x(0,T) 1)
(¥(-,0),0:¥(,0)) = (to, u1) inQ2=(0,1)

(Uo, ur) € H}(Q) x L3(Q), f € L2(qg7) (control) where g7 = w x (0, T)

Leray Schauder fixed point argument (Zuazua, AIHPC 1993) :

Given ¢ € L>(Qr), let f¢ be the control of minimal norm such that
nye — Oncle + ¥e 9(€) = —9(0) + felw in Qr, Ye=0 onXr,

(Ye(+0), 0tye(+,0)) = (o, u1),  (Ve(, ), Oeye (-5 T)) = (20, 21) inQ,

where gG(x) = 9X-90) it x £ 0 and §(0) = ¢’ (0). Set‘ K(€) = ye € L®(Qr) |

If 8 is small enough, then there exists M = M(||(uo, u1)l, ||(20, z1)||) > O such that

K (Bro(ay)(0, M)) C Bioo(q,)(0, M).
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Objective: design an algorithm providing an explicit sequence (fx)xen that converges
strongly to an exact control for (1).



Semilinear 1D wave equation

w:(f1,£2)With0<€1<€2<1, T>0

Oy — Oxxy + 9(y) = flu inQr=Q2x(0,T)
y=0 onYXr =00 x(0,T) 1)
(¥(-,0),0:¥(,0)) = (to, u1) inQ2=(0,1)

(Uo, ur) € H}(Q) x L3(Q), f € L2(qg7) (control) where g7 = w x (0, T)

Objective: design an algorithm providing an explicit sequence (fx)xen that converges
strongly to an exact control for (1).

First idea: usual Picard fixed point iterations yx. ¢ = K(yx) with fy,1 € L?(g7) control of
minimal L2(g7) norm for Yk+1 solution of

9(x) — g(0) ifx £0
OttYki1 — OoxYks1 + Ykr1 (V) = —9(0) + feyq1w (X)) = { x

J'(0) iftx =0

— fails in general because K not contracting, even if g is globally Lipschitz
(Fernandez-Cara Miinch MCRF 2012).



Semilinear 1D wave equation

w:(f1,£2)With0<€1<€2<1, T>0

Oy — Oxxy + 9(y) = flu inQr=Q2x(0,T)
y=0 onYXr =00 x(0,T) 1)
(¥(-,0),0:¥(,0)) = (to, u1) inQ2=(0,1)

(Uo, ur) € H}(Q) x L3(Q), f € L2(qg7) (control) where g7 = w x (0, T)

Objective: design an algorithm providing an explicit sequence (fx)xen that converges
strongly to an exact control for (1).

Second idea: apply the Newton method to
F(y,f) = (Ouy—0uy+9(y)— 1w, ¥(-,0)—to, Oy (-,0)—tn, y(-, T) =20, By (-, T)—21)

— fails to converge if the initial guess (yo, fy) is not close enough to a zero of F.



Semilinear 1D wave equation

w:(f1,£2)With0<€1<£2<1, T>0

Oy — Oxxy + 9(y) = flu inQr=Q2x(0,T)
y=0 onYXr =00 x(0,T) 1)
(¥(-,0),0:¥(,0)) = (to, u1) inQ2=(0,1)

(Uo, ur) € H}(Q) x L3(Q), f € L2(qg7) (control) where g7 = w x (0, T)

Objective: design an algorithm providing an explicit sequence (fx)xen that converges
strongly to an exact control for (1), for any initial guess.

Third idea (the good one): apply an optimal step descent method (with appropriate
descent direction) to

~ 1 ~

E(y.f) = 3 IF. DIP
— This is a least-squares method (actually, equivalent to a damped Newton method).

(see related ideas in recent works by Lemoine Miinch Pedregal 2021, for Navier-Stokes equations)



Least square algorithm

We consider the Hilbert space

H= {(y, f) e L*(Qr) x L%(qr) | y € C([0, T]; H3(0, 1)) nC'([0, T]; L%(0, 1)),
Oty — Oxxy € Lz(QT)}
endowed with the scalar product
((y1 i )’ (y27 f2))7-£ = (y1 s YZ)L2(QT)+((y1 (': 0)) Oth ('7 0)): (,V2('7 0)7 at.VZ(': 0)))H8(Q)><L2(Q)
+ (Oityr — Oxx ¥, Oyo — axx,VZ)Lz(QT) + (i, 2)12(g)
Let A and Aj be the subspaces of H defined by
A={h e | (1(-0),8(,0)) = (o, ur), (¥(:, T), &y (-, T)) = (2, 21) in 2}
Ao ={(r,N €H | (¥(-,0),0¥(-,0) = (0,0), (¥(:, T),8¥(-, T)) = (0,0) in Q}.

We have A= (y,f)+.A4y Y(¥,f) € A



Least square algorithm

We define the least-squares functional E : . A — R (“error” functional) by

1
E(y,f) = EHatty—axx}"‘t‘g(,V) - f1w||i2(QT) V(y,f)e A

Least-squares minimization problem

Given (¥, f) € A,

min E(y+y,f+f
L y+y )

In the framework of Zuazua’s theorem, this minimum is zero and is reached.



Least square algorithm

Assume that T > 2max(¢y,1 — £2). Givenany (y,f) € A, 3(Y', F') e Ay
with F' of minimal L?(g7) norm, solving
Y =Y +g ()Y = F1u+ (00y — By +9(y) - 1) in O,
Y'=0 on X,
(Y'(50),8Y'(-,0)) = (0,0), (Y'(-,T),8Y'(-,T)) = (0,0) inQ,

called the solution of minimal control norm. It satisfies

1Y lloo (@) < CeVIT W= \/E(y, 1).
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Y =Y +g ()Y = F1u+ (00y — By +9(y) - 1) in O,
Y'=0 on X,
(Y'(-,0),0:Y'(-,0)) = (0,0), (Y'(-,T),8:Y'(-,T)) = (0,0) in Q,

called the solution of minimal control norm. It satisfies

1Y lloo (@) < CeVIT W= \/E(y, 1).

This follows from the general estimate (variant of Zuazua 1993):

Potential A € L>(Qr), source B € L?(Qr), T > 2max(41,1 — £).
The (unique) L2-minimal norm control u € L?(qg7) such that

oz — Oxxz+Az=ul, +B in Qr, z=0 onXr,

(Z(~,0),8{Z(~,0)) = (20»21)’ (Z(-, T),8[Z(~, T)) = (070) in Q,
satisfies
ll2qpy + 12 012w o o 12 < C (1Bl FOVIAS 20, 20, ) OV AT

for some constant C > 0 only depending on Q2 and T.




Least square algorithm

Assume that T > 2max(¢y,1 — £2). Givenany (y,f) € A, 3(Y', F') e Ay
with F' of minimal L?(g7) norm, solving
Y =0 Y +9'(y) Y = F'1, + <3tty — Oy +9(y) — f1w) in Qr,
Y'=0 on X,
(Y'(50),8Y'(-,0)) = (0,0), (Y'(-,T),8Y'(-,T)) = (0,0) inQ,

called the solution of minimal control norm. It satisfies

1Y lloo (@) < CeVIT W= \/E(y, 1).

The (Gateaux) derivative of E at (y, f) € A along the direction (Y', F!) of minimal
control norm is

Ey.f)- (Y, FY) = tim EQW N+ ML FD) - EQ. 1)

A—0 A
AH0

= 2E(y,f)

Consequence: —(Y', F!) is a descent direction for E.



Least square algorithm

Lemma (followed)

°
j IE'(y: Dllay < VEW, D) < J5CeVITWl= || E/(y, || o

I
V2max (1,[1g" ()l o

@ Assume that g € C"5(R) for some s € [0, 1]. Then
2
E((y: )= MY",F) < <|1 — A+ A K(Y)E(y, f)g) E(y,f) VA€eR
where K(y) = C[9']s (Cecv g’ W)l oo )1+S with  [g]s = sup lg'(a) —g'®)l < g9,

a,beR la— b|s
a#b

Consequence: any critical point (y, f) € A of E (i.e., E’(y,f) = 0) is a zero of E, and
thus is a pair solution of the controllability problem. Moreover:

given any sequence (yx, fx)ken in A such that ||E’(y, fk)HA6 — 0 and
such that ||g’(yk)|| L is uniformly bounded, we have E(y, fx) — 0.

Thanks to this instrumental property, a minimizing sequence for E cannot be stuck in a
local minimum, and this, even though E fails to be convex (it has multiple zeros).




Least square algorithm

This leads to define, for any (arbitrarily) fixed m > 1, the sequence (yx, fx)ken in A by

(Yo, h) € A
Wit 1) = Wk, fi) — Me( YR, F)

Ak = argmin E ((¥k, ) — A(Y{, Fy))
Ael0,m]

(optimal step along the descent direction —( Y}, F}))

where (Y}, F!) € Ay is the solution of minimal control norm of

Ot Yy — O Vi + 0 (V) - Ya = Filw + (Ouvk — OV + 9(¥k) — filw)  in Qr
Y,I =0 on Xt

(Y;(,O),B[Y;(,O))Z (070) in Q




Least square algorithm: unconditional convergence

result

Theorem (Miinch Trélat, 2021)
Assume that T > 2 max(¢y,1 — £»), that g € C'-S(R) for some s € [0, 1], and that

>0 3Bel0 lg’()| <a+BInP(A +|x]) VxeR. (2

,m) |

In the case where s = 0 (i.e., g’ € L>°(R)) but ¢’ ¢ C'»5(R) for any s € (0, 1], we
assume moreover that 2||g’|| - C2eCV 19"l < 1. Then:

(*)] The sequence (Y, f)ken In A, initialized at any (yo, fy) € A, converges to
(¥, f) € A, solution of (1) such that (y(:, T),0:y(:, T)) = (20, 21)-

@ X\>0 VKEN and X — 1.
@ E(y,fx) — 0 (decreasing).

Moreover, the convergence of all these sequences is at least linear, and is of order
> 1 + s after a finite number of iterations.

gec' »S(R) means that g € @ (R) and g’ is uniformly Hélder continuous with exponent s, i.e.,
[0)s = sup l9’(a) — g’ (b)]
g (S CA
a,beER |a — b|®
a#b
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,m) |

In the case where s = 0 (i.e., g’ € L>°(R)) but ¢’ ¢ C'»5(R) for any s € (0, 1], we
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)

e The convergence is unconditional.

+o00o
o The limit (7,7) = (yo,%) — > _ (Y4, Fi) depends on the initialization.
k=0
It also depends on the selection criterion: F,I is the control of minimal norm.
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lg(x)] s?
° implies that limsu
{)imp |X|*>+opo |x]In?|x| ~ (2s+ 1)2C?

“imi _ 1
Limit case™ g(x) = a+ bx + 52

. xIn?(1 + |x|)forany e > Oand a, b € R.
€

There exist cases covered by Zuazua'’s theorem but not by the above.
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@ The sequence (yk, fk)ken in A, initialized at any (yo, fy) € A, converges to
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e The finite number of iterations is ko = 0 if (1 + s) ¢ E(yo, fo)g < 1 and otherwise

141
Ko = V“s) " (ot VEGR ) - ‘)J 1 i = [g]y G250V (1 4 14910V,
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result
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)

e |f s =0, we add a smallness condition on ||g’|| < -



Steps of proof

Denote Ex = E(yk, f). By the lemma we have (with K(yx) = [g']s C2+5 e +ICVIII BlILoo )

E 1 oK (yEL) E
< min (1= A+ A
r < min (112 + XK (0] ) E ®

Prove that the sequence (||« || )ken remains uniformly bounded.

This is done by a priori / a posteriori arguments:
A priori assumption: ||yk|lrce <M VK EN

Keeping track of all estimates in the chain of arguments = a posteriori satisfied (for M
large enough).



Steps of proof

Denote Ex = E(yk, f). By the lemma we have (with K(yx) = [g']s C2+5 e +ICVIII BlILoo )

_ 1+s 2
Eeer < min (11 =N+ A"k EL ) E @

There exists kg € N such that (Ex)x>k, decays to 0 with order > 1 + s.

Idea: use the a priori estimate ||g’ (yk)||Lc < @+ BIn?(1 + M) and infer from (3)

(c%\/Ek)Hs if (1+8)scs/Ex <1
civE— —S— if (1+s)scsy/E>1

(1+s)

1
Cs\/Eki1 <

with ¢ = [g']s C2+Sel+9ICVa(1 1 p)(1+9)CVE



Steps of proof

Denote Ex = E(yk, f). By the lemma we have (with K(yx) = [g']s C2+5 e +ICVIII BlILoo )

E m 1 +AMtsK E% 2E 3
< i —A A
k+1 AE[(I)? ] (l | (V) E§ ) K (3)

There exists kg € N such that (Ex)x>k, decays to 0 with order > 1 + s.

Ak — 1 as k — +oo at least with order 1 + s.

+oco
> k>0 VEk < +00 and Z V/Ex < Csty/ Ep for every p € N.
k=p

Step 4

+o0o
@, 1) = (Y0, o) — D _ M( Y, Fi) with convergence of order > 1 + s after k iterations.
k=0

4




Further comments

Minimization functional
The descent direction —( Y, F') is designed by minimizing J(v) = ||v||3 a7
The analysis remains true for J(y, v) = ||wy v||3 g [lway||3 for some weights.

Local controllability when removing the growth condition on g

If g € CS(R) for some s € (0, 1] and if E(yp, fy) is small snough, then the
convergence result remains true.

Multi-dimensional case

| A

Generalization to 2D and 3D under the stricter growth condition |g(x)| < 8]x|In'/? |x|
at infinity, for 8 > 0 small enough (Bottois Lemoine Miinch 2021).

Boundary control

Open issue.

Semilinear heat equations

Treated in Lemoine Marin-Gayte Miinch COCV 2021.




