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Introduction: Fluid mechanics



Inhomogeneous Navier-Stokes equations

Physical assumptions:

• Conservation of Mass;
• Newton’s second law;

• Conservation of Volume;
• Newtonian Law;


(ρu)t +∇ · (ρu⊗ u) = µ∆u−∇p + f,
ρt +∇(ρu) = 0,
∇ · u = 0,

• ρ – density of mass;
• u – velocity field;
• p – pressure;

• µ – dynamic viscosity of the fluid;
• f – body force term;



Waves, tornados, motion of stars, smoke rings, etc



Turbulence

Definition: turbulence or turbulent flow is a flow regime characterized by
chaotic property changes.
Main characteristics of turbulence:
- Fast variations in space and time of p and u (wide range of length scales for eddies)
- Well behavior of (appropriately) averaged variables
Typically: small (resp. large) Re := U∞L

ν
⇒ laminar (resp. turbulent) flow.



Large Eddy Simulation Models
1 Reynolds decomposition:

u = u + u′ and p = p + p′, where (u, p) is a solution of

ut + (u · ∇)u +∇p = ν∆u + f, ∇ · u = 0.

Here: u is the average velocity and u′ is the fluctuation.

2 PDE’s for u and p?

ut +∇ · (u⊗ u) +∇p = ν∆u + f, ∇ · u = 0.

3 Closure problem: assumptions relating u⊗ u and u.



Reynolds hypothesis
A particular closure hypothesis:

u⊗ u ≈ z⊗ u, with z = (Id + α2A)−1u.

where α > 0 is regularized parameter that introduces an energy “penalty”
that inhibit the formation of eddies whose length-scale is smaller than α.

Leray-α model:{
ut + (z · ∇)u +∇p = ν∆u + f, ∇ · u = 0,
z− α2∆z +∇π = u, ∇ · z = 0.

Remark: Leray-α solutions→ NS solutions, as α→ 0+

References:

• LERAY, J. Essai sur le mouvement d’un fluide visqueux emplissant
l’espace. Acta Math. 63 (1934), 193-248.

• CHESKIDOV, A., HOLM, D. D., OLSON, E., AND TITI, E. S. On a
Leray-α model of turbulence. Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci. 461, 2055 (2005), 629–649.

A is the Stokes operator, i.e. A = −P∆, where P is the Leray’s projector



One dimensional fluid models

Nonviscous Burgers equation:

ut + uux = f .

• Viscous Burgers equation:

ut + uux = νuxx + f .

• Benjamin-Bona-Mahony equation:

ut − uxxt + ux + uux = f

• Korteweg-de Vries equation:

ut − uxxx + 6uux = f

• Degasperis-Procesi equation:

ut + 2κux − uxxt + 4uux − 3uxuxx − uuxxx = f

• Camassa-Holm equation:

ut + 2κux − uxxt + 3uux − 2uxuxx − uuxxx = f

• b-family:

ut+2κux−uxxt+(b + 1)uux−buxuxx−uuxxx = f



Motion in a neon tube, traffic motion, surface waves of long
wavelength, Shallow water, etc



Convectively filtered Burgers equation
Nonviscous Burgers-α: {

ut + zux = f ,
z− α2zxx = u.

Viscous Burgers-α: {
ut + zux = νuxx + f ,
z− α2zxx = u.

Motivations:
• A “toy model” for Leray-α
• Applications: models that capture shock formation

References:

• BHAT AND FETECAU, A Hamiltonian Regularization of the Burgers
Equation, JNS (′06).

• , The Riemann problem for the Leray-Burgers equation, JDE, (2009).

• G. NORGARD AND K. MOHSENI, A regularization of the Burgers equation
using a filtered convective velocity, J. Phys. A (’08).

• , On the convergence of the convectively filtered Burgers equation to the
entropy solution of the inviscid Burgers equation. MMS (’09).



Introduction: Control problems



Controllability problem
Control system is a dynamical system involving two variables, the state
and the control, i.e. {

ut = f (t, u, v),

u(0) = u0,

where u ∈ C0([0,+∞);S) is the state and v ∈ C is the control.

Goal: to find a control such that the associated state behaves in an
appropriate manner in a given final time.

Exact controllability at time T:
For any u0, uT ∈ S, find v ∈ C such that u(T) = uT ;

Particular cases:

• Exact controllability to the trajectories: uT ≡ û(T), where (û, v̂) is a
trajectory;

• Null controllability: uT ≡ 0;

Approximate controllability at time T:
For any u0, uT ∈ S and ε > 0, find v ∈ C such that ‖u(T)− uT‖S ≤ ε.



Heat equation
We assume: κ > 0, O ⊂ Ω, γ ⊂ ∂Ω and T > 0.
The controlled linear heat equation: ut − κ∆u = v1O in Ω× (0,T),
u = 0 on ∂Ω× (0,T),
u(0) = u0 in Ω.

 ut − κ∆u = 0 in Ω× (0,T),
u = h1γ on ∂Ω× (0,T),
u(0) = u0 in Ω.

Remark: Regularizing effect =⇒ EC does not hold.

Distributed (boundary) null controllability:
∀ u0 ∈ L2(Ω) ∃ v ∈ L2(O × (0,T)) or h ∈ L2(γ × (0,T)) s. t. u(· ,T) ≡ 0.

Distributed (boundary) observability inequality:
∃Cw > 0 s. t. ‖ϕ(0)‖L2(Ω)≤ Cw‖ϕ‖L2(O×(0,T)), ∀ϕT ∈ L2(Ω).(

‖ϕ(0)‖L2(Ω)≤ Cw

∥∥∥∥∂ϕ∂ν
∥∥∥∥

L2(γ×(0,T))

, ∀ϕT ∈ L2(Ω).

)
References:
• Russell (’78) : method of moments;
• Lebeau & Robbiano (’95) : spectral inequalities for the low frequencies;
• Fursikov & Imanuvilov (’96) : global Carleman inequalities.



Known results for the Navier-Stokes equations

Let Ω be a smooth bounded domain and T > 0.
ut + (u · ∇)u = ν∆u−∇p + v1O, ∇ · u = 0 in Ω× (0,T),

u = 0 on ∂Ω× (0,T),

u(0) = u0 in Ω.

Theorem [LECT: Fernández–Cara, Guerrero, Imanuvilov, Puel (2004)]
∀(û, p̂) with û ∈ L∞: ∃ δ > 0 s.t. ‖u0 − û0‖ < δ⇒ ∃ v ∈ L2 s.t. u(T) = û(T).

Controllability with a reduced number of controls:
- N − 1 controls - O touches the boundary [F–C, G, I, P (2006)];
- N − 1 null controls - with no assumption on O [Carreño, G (2013)];
- N = 3, only one null control - with no assumption on O [Coron, Lissy (2014)].

Remark: Global: ECT? NC? AC?

• Open problem for Dirichlet BC;

• Solved for Navier-slip with friction BC [ Coron, Marbach, Sueur (2020)]



Known results for the Burgers equations

Let: L,T > 0, Q = (0,T)× (0,L) and O ⊂ (0,L).

(Bν)


ut + uux = νuxx + p, in Q,
u(0, ·) = vl, u(L, ·) = vr, on (0, T),
u(·, 0) = y0, in (0, L),

(B0)


ut + uux = p, in Q,
u(0, ·) = vl, u(L, ·) = vr, on (0, T),
u(·, 0) = u0, in (0, L).

Theorem [LECT-Bν: Fursikov-Imanuvilov (1996)]
For any û, with û ∈ L∞: ∃ δ > 0 such that ‖u0 − û0‖ < δ⇒ ∃p ∈ L2, with
supp p(·, t) ⊂ O and vl ≡ vr ≡ 0, such that u(T) = û(T).

Remark: Global (Bν and B0) : ECT? NC? AC?

• Lack of NC for Bν : using only vl [ Fernández-Cara, Guerrero (2007)]

• Lack of NC for Bν : using only vl and vr [ Guerrero-Imanuvilov (2007)]

• GEC for B0 and GECT for Bν : using p = p(t), vl and vr [ Chapouly (2009)]

• GNC for B0 and GNC for Bν : using only p = p(t) and vr [ Marbach (2014)]

• Lack of NC for Bν : using only p = p(t) [ Marbach (2018)]



Main results: Global uniform controllability for
nonviscous models



M. CHAPOULY, Global controllability of nonviscous and viscous Burgers-type
equations, SIAM J. Control Optim., 48 (3), 1567-1599, (2009).



Inviscid Burgers-α system

Given a time T > 0 and a length L > 0 the inviscid Burgers-α system is
given by:

(Bα0 )



ut + zux = p(t) in (0,T)× (0,L),

z− α2zxx = u in (0,T)× (0,L),

z(·, 0) = vl, z(·,L) = vr on (0,T),

u(·, 0) = vl on Il,

u(·,L) = vr on Ir,

u(0, ·) = u0 in (0,L),

where Il = {t ∈ [0,T] : vl(t) > 0} and Ir = {t ∈ [0,T] : vr(t) < 0};
• The triplet (p, vl, vr) are the controls and the couple (u, z) is the

associated state;

• Motivation: Regularization of the inviscid Burgers equation, member
b = 0 of the so-called b-family...



Global uniform exact controllability result

Theorem [Global uniform exact controllability result in C1]
Let α,T,L > 0 be given. The inviscid Burgers-α system is globally exactly
controllable in C1. That is, for any given u0, uT ∈ C1([0,L]), there exist a
time-dependent control pα ∈ C0([0,T]), a couple of boundary controls
(vαl , v

α
r ) ∈ C1([0,T];R2) and an associated state

(uα, zα) ∈ C1([0,T]× [0,L];R2) satisfying (Bα0 ) in the classical sense and

uα(T, ·) = uT in (0,L).

Moreover, there exists a positive constant C > 0 (depending on u0 and uT

but independent of α) such that

‖(zα, uα)‖C1([0,T]×[0,L];R2) + ‖pα‖C0([0,T]) + ‖(vαl , v
α
r )‖C1([0,T];R2) ≤ C.



Strategy of the proof. Return method

The return method has been introduced by J.-M. Coron.

The principle of the method is the following:

• find a trajectory of the nonlinear system such that the linearized
system around it is controllable.

• Then, one hope to construct a solution of the nonlinear controllability
problem close to such trajectory.



Strategy of the proof. Return method

The proof is splitted in 4 steps:
• Step 1: we linearize the system around a suitable trajectory;
• Step 2: we prove the global controllability for the linearized system;
• Step 3: we deduce the local controllability for the nonlinear system;
• Step 4: we use a scaling argument to deduce the desired global result.



Local null-controllability of the “perturbed”system

For k ≥ 1, let us introduce the set:

ΛL,T,k :=
{
λ ∈ Ck

0([0,T]; [0,∞)) : ‖λ‖L1(0,T) > L
}
.

Then, (û, ẑ) = (λ, λ) is a trajectory for (Bα0 ) with (p̂, v̂l, v̂r) = (λ′, λ, λ).
The linearization around (û, ẑ) = (λ, λ) is:

ut + λ(t)ux = 0, z− α2zxx = u in (0,T)× R,

which is globally controllable to zero.

One can see that the velocity λ(t) is “fast enough” such that
Φλ(T; 0, x) ∈ R\supp u(·, 0), for all x ∈ [0,L].

Consider the the flux Φλ ∈ C1([0, T]× [0, T]× R), solution to:{
φ′λ(s; t, x) = λ(t),
φλ(s; s, x) = x.



Local null-controllability of the “perturbed”system

Then, one may expect the null-controllability for the “perturbed” system:

(PBα0 )



yt + (λ(t) + w)yx = 0, w− α2wxx = y in (0,T)× (0,L),

w(·, 0) = ql, w(·,L) = qr on (0,T),

y(·, 0) = ql on Jl,

y(·,L) = qr on Jr,

y(0, ·) = y0 in (0,L).

Jl = {t ∈ [0, T] : ql(t) > 0} and Jr = {t ∈ [0, T] : qr(t) < 0}



Local null-controllability of the “perturbed”system

Theorem [Local null control for the “perturbed”inviscid Burgers-α system]
Let T, L > 0 be given and assume that λ ∈ ΛL,T,0. Then, there exist δ > 0
and C > 0 (both independent of α) such that, for any y0 ∈ C1([0,L]) with
‖y0‖C1([0,L]) ≤ δ, there exists (ql, qr) ∈ C1([0,T];R2) and an associated state
(y,w) ∈ C1([0,T]× [0,L];R2) solution to (PBα0 ) and

y(T, ·) = 0 in (0,L).

Moreover, there exists C > 0 (independent of α) such that

‖y‖C1([0,T]×[0,L]) ≤ C‖y0‖C1([0,L]) ∀α > 0.

Remark:

• (u, z) := (y,w) + (λ, λ), (vl, vr) := (ql, qr) + (λ, λ) and p := λ′.
Then, a local uniform null controllability result holds for (u, z).

• Scaling arguments + time-reversibility =⇒ Global EC in C1.



Sketch of the proof. I

• Since λ ∈ ΛL,T,0 then there exists η ∈ (0,L/2) such that∫ T

0
λ(t) dt > L + 2η.

• Let the extension operators:
• π1 : C1([0, L]) 7→ C1(R) and π2 : C2([0, L]) 7→ C2(R);

• πi(f ) = f in [0, L], for i = 1, 2;

• suppπi(f ) ⊂ (−η, L + η), for i = 1, 2.

• We will use a fixed-point argument. For such, let us introduce the
Banach space F := C0([0,T]; C0([0,L])) ∩ L∞(0,T; C0,1([0,L])) and
the set

BR := {h ∈ F such that ‖h‖F ≤ R}

where R > 0 will be chosen appropriately.



Sketch of the proof. II
• Given h ∈ BR there exists a unique w ∈ C0([0,T]; C2([0,L])) solution

to the time-dependent elliptic problem:{
w− α2wxx = h in (0,T)× (0,L),

w(·, 0) = h(·, 0), w(·,L) = h(·,L) on (0,T).

Using the maximum principle: ‖w‖C0([0,T];C1([0,L])) ≤ ‖h‖F ≤ R.

Let w∗ ∈ C0([0,T]; C2(R)) given by w∗(t, ·) := π2(w)(t, ·). Then,
there exists C1 > 0 (independent of α) such that

(?) ‖w∗‖C0([0,T];C1(R)) ≤ C1‖w‖C0([0,T];C1([0,L])).

• Consider the the flux Φ∗ ∈ C1([0,T]× [0,T]× R), solution to:{
φ∗t (s; t, x) = λ(t) + w∗(t, φ∗(s; t, x)),
φ∗(s; s, x) = x.

Then, if we consider the flux Φλ ∈ C1([0,T]× [0,T]× R) associated
with the ODE ξ′(t) = λ(t), using (?) and choosing R :=

η

C1T
, we get:

(??) ‖Φ∗ − Φλ‖C0([0,T]×[0,T]×R) ≤ T‖w∗‖C0([0,T];C0(R)) ≤ η.



Sketch of the proof. III

• We define y∗0 := π1(y0) ∈ C1(R) and search for y ∈ C1([0,T]× R)
solution to the transport equation:

yt + (λ(t) + w∗(t, x))yx = 0 in (0,T)× R,
y(0, ·) = y∗0 in R,
y(T, ·) = 0 in [0,L].

Using the method of characteristic we deduce that

(? ? ?) y(t, x) := y∗0(Φ∗(t; 0, x)), ∀(t, x) ∈ [0,T]× R,

is a classical solution to the transport equation above.
• Using (??), we get Φ∗(T; 0, ·) < −η in (−∞,L].

Since supp y∗0 ⊂ (−η,L + η), we have y(T, ·) ≡ 0 in [0,L].
• Moreover,

‖y‖C1([0,T]×[0,L]) ≤ C2‖y0‖C1([0,L])

for some C2 > 0, independent of α.



Sketch of the proof. IV
• For y0 ∈ C1([0,L]) small enough we can define the fixed-point

mapping F : BR 7→ BR by:

F(h)(t, x) := y(t, x), ∀ (t, x) ∈ [0,T]× [0,L],

where y is the function defined in (? ? ?).
• By an induction argument, there exists C > 0

‖Fm(h1)−Fm(h2)‖E ≤
CmTm

m!
‖h1 − h2‖E ∀m ≥ 1.

• Finally:
1 Fm is a contraction in E for m large enough;

2 Consider B̃R := B‖·‖E
R and F̃m being the extension of Fm to B̃R;

3 F̃m(B̃R) ⊂ BR ∩ C1([0, T]× [0, L]);

4 There exists a unique y ∈ B̃R such that F̃m(y) = y.

F := C0([0, T]; C0([0, L])) ∩ L∞(0, T; C0,1([0, L])) and E := C0([0, T]; C0([0, L])).



Main results: Global uniform controllability for
viscous models



Viscous Burgers-α system

• Given a time T > 0 and a length L > 0 the Viscous Burgers-α system is
given by:

(Bα1 )


ut + zux = uxx + p(t) in (0,T)× (0,L),

z− α2zxx = u in (0,T)× (0,L),

z(·, 0) = u(·, 0) = vl, z(·,L) = u(·,L) = vr on (0,T),

u(0, ·) = u0 in (0,L).

• The triplet (p, vl, vr) are the controls and the couple (u, z) is the
associated state;

• Motivation: Regularization of the viscous Burgers equation, 1D-version
of the Leray-α model, member b = 0 of the so-called viscous
b-family...



Global exact controllability to constant trajectories

Theorem [Global exact controllability to constant trajectories]
Let α,T,L > 0 be given. The viscous Burgers-α system is globally exactly
controllable in L∞ to constant trajectories. That is, for any u0 ∈ L∞(0,L)
and N ∈ R, there exist controls pα∈C0([0,T]) and (vαl , v

α
r )∈H3/4(0,T;R2)

and states (uα, zα)∈L2(0,T; H1(0,L;R2))∩L∞(0,T; L∞(0,L;R2))
satisfying (Bα1 ),

uα(T, ·) = N in (0,L)
and the estimates

‖pα‖C0([0,T]) + ‖(vαl , v
α
r )‖H3/4([0,T];R2) ≤ C,

where C is a positive constant (depending on u0 and N but independent of
α). Moreover, if u0 ∈ H1

0(0,L) then the same conclusion holds with
(uα, zα) ∈ L2(0,T; H2(0,L;R2)) ∩ H1(0,T; L2(0,L;R2)).

The proof is splitted in three steps:
• Step 1: Smoothing effect;
• Step 2: Uniform approximate controllability;
• Step 3: Uniform local exact controllability to the trajectories.



Smoothing effect

Proposition [Smoothing effect]
Let u0 ∈ L∞(0,L) be given and let (uα, zα) be the solution to the
uncontrolled viscous Burgers-α system (that is, pα = vαl = vαr = 0). Then,
there exist T∗ ∈ (0,T/2) and C > 0 (independent of α) such that the
solution uα belongs to C0([T∗,T]; C2([0,L])) and satisfies

‖uα‖C0([T∗,T];C2([0,L])) ≤ CΛ(‖u0‖L∞),

where Λ : R+ → R+ is continuous and satisfies Λ(s)→ 0 as s→ 0+.

Sketch of the proof:
• Smoothing effect for parabolic operators
• Energy estimates.



Uniform approximate controllability
Proposition [Uniform approximate controllability]
Let u0, uf ∈ C2([0,L]) be given. There exist positive constants τ∗ and
K > 0, independent of α, such that, for any τ ∈ (0, τ∗], there exist
pα ∈ C0([0, τ ]), (vαl , v

α
r ) ∈ H3/4(0, τ ;R2) and associated states (uα, zα), in

appropriated functional spaces, solution to (Bα1 ), with T replaced by τ , and
satisfying

‖uα(τ)− uf ‖H1 ≤ K
√
τ and ‖pα‖C0 + ‖(vαl , v

α
r )‖H3/4 ≤ C ∀α > 0.

Strategy of the proof:
• Heuristic procedure: let us consider the decomposition{

uα := yα,τ + λτ+rα,τ ,
zα := wα,τ + λτ+qα,τ .

• Replacing them in (Bα1 ):
uαt − uαxx + zαuαx = λτt (t)+ [yα,τt + (λτ (t) + wα,τ )yα,τx ]

+ [rα,τt − rα,τxx + (qα,τ + wα,τ + λτ )rα,τx
+qα,τyα,τx − yα,τxx ]

zα − α2zαxx =
[
(wα,τ + λτ )− α2(wα,τ + λτ )xx

]
+
[
qα,τ − α2qα,τxx

]
.

• Then, we have: Inviscid part + viscous remainder.



Sketch of the proof. I
For τ > 0 small enough and λτ ∈ C1

0(0, τ) taken appropriately, we get
controls (vα,τl , vα,τr ) ∈ C2([0, τ ]) such that

yα,τt + (λτ (t) + wα,τ )yα,τx = 0 in (0, τ)× (0,L),

wα,τ − α2wα,τxx = yα,τ in (0, τ)× (0,L),

yα,τ (·, 0) = wα,τ (·, 0) = vα,τl on (0, τ),

yα,τ (·,L) = wα,τ (·,L) = vα,τr on (0, τ),

yα,τ (0, ·) = u0 in (0,L),

yα,τ (τ, ·) = uf in (0,L).

Remark:
We note that ‖uα(τ, ·)− uf ‖H1(0,L) = ‖rα,τ (τ, ·)‖H1(0,L).

Then, the remaining question is:
Is it possible to find K > 0 (independent of α and τ ) such that

‖rα,τ (τ, ·)‖H1(0,L) ≤ K
√
τ ?

λ ∈ C1
0(0, 1;R+) with ‖λ‖L1(0,1/2) > L and λ(t) = λ(1− t). We set λτ (t) = 1

τ
λ( t
τ

).



Sketch of the proof. II

Indeed, it is possible to prove that (using Faedo-Galerkin method and energy
estimates) that there exists a unique couple (rα,τ , qα,τ ), in appropriated
functional spaces, solution to the viscous remainder system:

rα,τt + (qα,τ + wα,τ + λτ )rα,τx − rα,τxx + qα,τyα,τx − yα,τxx = 0 in (0, τ)× (0,L),

qα,τ − α2qα,τxx = rα,τ in (0, τ)× (0,L),

rα,τ (·, 0) = 0, rα,τx (·,L) = 0, on (0, τ),

qα,τ (·, 0) = 0, qα,τ (·,L) = rα,τ (·,L), on (0, τ),

rα,τ (0, ·) = 0 in (0,L).

Moreover, there exists K > 0 (independent of α and τ ) such that

‖rα,τ‖C0([0,τ ];H1(0,L)) ≤ K
√
τ .

The controls:
pα := λτ , vl := yα,τ (·, 0) + λτ and vr := yα,τ (·,L) + λτ + rα,τ (·,L).



Uniform local exact controllability to the trajectories

Theorem[Uniform local exact controllability to the C1 trajectories]
Let T,L, α > 0 and m̂ ∈ C1([0,T]) be given. There exists δ > 0
(independent of α) such that, for any initial data u0 ∈ H1(0,L) satisfying
‖u0 − m̂(0)‖H1 ≤ δ there exist pα ∈ C0([0,T]) and
(vαl , v

α
r ) ∈ H3/4(0,T;R2) and associated states

(uα, zα) ∈ L2(0,T; H2(0,L;R2)) ∩ H1(0,T; L2(0,L;R2)) satisfying (Bα1 )
and

uα(T, ·) ≡ m̂(T).

Moreover, pα = m̂′ and the following estimates hold:

‖pα‖C0([0,T]) + ‖(vαl , v
α
r )‖H3/4([0,T];R2) ≤ C ∀α > 0,

where C > 0 is a positive constant independent of α.



Uniform local exact controllability to the trajectories
We write (uα, zα) = (yα + m̂,wα + m̂) and pα = m̂′. Then, (yα,wα) must
satisfy 

yαt − yαxx + (wα + m̂)yαx = 0 in (0,T)× (0,L),

wα − α2wαxx = yα in (0,T)× (0,L),

yα(·, 0) = wα(·, 0) = hαl in (0,T),

yα(·, 0) = wα(·,L) = hαr in (0,T),

yα(0, ·) = y0 in (0,L),

where y0 := u0 − m̂(0) and (hαl , h
α
r ) := (vαl − m̂, vαr − m̂). Therefore, the

result in the previous slide is equivalent to the local null-controllability to
the above system.
References:

• F.D. ARARUNA, E. FERNÁNDEZ-CARA AND DS, On the control of
the Burgers-α model, Advances in Differential Equations 18(2013),
935-954.

• E. FERNÁNDEZ-CARA AND DS, Remarks on the control of a family of
b-equations, Trends in Control Theory and Partial Differential
Equations 32 (2019), 123-138.



Proof (Global exact controllability to constant trajectories)
• First step: Let u0 ∈ L∞(0,L) and (uα1 , z

α
1 ) the solution to the

uncontrolled viscous Burgers-α system. Then, for τ > 0 small enough,
uα1 (T/2− τ, ·) ∈ C2([0,L]).

• Second step: Let us define uα2,0 := uα1 (T/2− τ, ·). Using the
approximate controllability result for uα2,0 and N we get controls
(pα, vαl,2, v

α
r,2) and states (uα2 , z

α
2 ) such that, uα2 (0, ·) = uα2,0 and

‖uα2 (τ, ·)− N‖H1(0,L) ≤ K
√
τ .

• Third step: Let us define uα3,0 := uα2 (τ, ·). For τ > 0 small enough,
‖uα3,0 − N‖H1(0,L) ≤ K

√
τ ≤ δ. Using the local controllability result

to trajectories for uα3,0 and N we get controls (vαl,3, v
α
r,3) and states

(uα3 , z
α
3 ) such that, uα3 (0, ·) = uα3,0 and

uα3 (T/2, ·) = N.

Using the three steps, we conclude the proof!!



Final comments

• Other similar α-models: (viscous Camassa-Holm, Degasperis-Procesi,
etc.). Local NC? YES!

• Global control results? open question.

• Reducing the number of controls?

• Extension to high dimensions? Local null control for Leray-α by
Araruna, Fernández-Cara and S (2014).

• Global control results? Open question. first step: Euler-α models. . .



Thank you very much for your attention!!!


