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Introduction: Fluid mechanics
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Inhomogeneous Navier-Stokes equations

Physical assumptions:
e Conservation of Mass; e Conservation of Volume;

e Newton’s second law; e Newtonian Law;

(pu), + V- (pu®u) = pAu—Vp+f,
pr+ V(pu) =0,
V-u=0,

e p — density of mass;
g .y e 1, —dynamic viscosity of the fluid;
e u - velocity field;
’ e f—body force term;
e p — pressure;



Waves, tornados, motion of stars, smoke rings, etc
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Turbulence

Definition: turbulence or turbulent flow is a flow regime characterized by
chaotic property changes.

Main characteristics of turbulence:

- Fast variations in space and time of p and u (wide range of length scales for eddies)
- Well behavior of (appropriately) averaged variables

Typically: small (resp. large) Re := % = laminar (resp. turbulent) flow.
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Large Eddy Simulation Models

Reynolds decomposition:
u=u+u' and p =p+ p/, where (u, p) is a solution of

u+(u-Vu+Vp=vAu+f, V-u=0.

Here: u is the average velocity and u’ is the fluctuation.
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PDE’s for uw and p?
0 +V-(u@u) +Vp=vAu+f, V-u=0.

Closure problem: assumptions relating u ® u and u.



Reynolds hypothesis

A particular closure hypothesis:
u@u~zeu with z= (Id +o’A)"'w

where o > 0 is regularized parameter that introduces an energy “penalty”
that inhibit the formation of eddies whose length-scale is smaller than a.

Leray-a model:

u+(z-Vu+Vp=vAu+f, V-u=0,
z—o’Az+Vr=1u, V-z=0.

Remark: Leray-«a solutions — NS solutions, as oo — 0"

References:

e LERAY, J. Essai sur le mouvement d’un fluide visqueux emplissant
I’espace. Acta Math. 63 (1934), 193-248.

e CHESKIDOV, A., HOLM, D. D., OLSON, E., AND TITL, E. S. On a

Leray-a: model of turbulence. Proc. R. Soc. Lond. Ser. A Math. Phys.

Eng. Sci. 461, 2055 (2005), 629-649.
A is the Stokes operator, i.e. A = —PA, where [P is the Leray’s projector




One dimensional fluid models

Nonviscous Burgers equation:

e Viscous Burgers equation:

U + Uty = Vg + f.

e Benjamin-Bona-Mahony equation:

U — g + Ux + Uity = f
e Korteweg-de Vries equation:

Uy — Upey + Ouly = f

u + uu, =f.

e Degasperis-Procesi equation:

U + 2Ky — Uy + 4ty — Sty — Ul = f
e Camassa-Holm equation:

U + 2Ky — Uy + Sttty — 2ty — Ul = f
e p-family:

2R — e+ (b 4 1) sty — bttty — it = f



Motion in a neon tube, traffic motion, surface waves of long
wavelength, Shallow water, etc




Convectively filtered Burgers equation
Nonviscous Burgers-a:
U+ zue = f,
Z— OéZZxx = u.

Viscous Burgers-a:

Uy + 2Uy = Vi + f,
72—’z = u.
Motivations:
e A “toy model” for Leray-«
e Applications: models that capture shock formation

References:

e BHAT AND FETECAU, A Hamiltonian Regularization of the Burgers
Equation, NS ('06).

e — The Riemann problem for the Leray-Burgers equation, JDE, (2009).

e G. NORGARD AND K. MOHSENI, A regularization of the Burgers equation
using a filtered convective velocity, J. Phys. A ("08).

e — On the convergence of the convectively filtered Burgers equation to the u*é“
entropy solution of the inviscid Burgers equation. MMS (°09).



Introduction: Control problems
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Controllability problem

Control system is a dynamical system involving two variables, the state

and the control, i.c.
ut :f(ta M, V)a
u(0) = uy,

where u € C°([0, +00); S) is the state and v € C is the control.

Goal: to find a control such that the associated state behaves in an
appropriate manner in a given final time.

Exact controllability at time T:
For any ug, ur € S, find v € C such that u(T) = ur;
Particular cases:

o Exact controllability to the trajectories: ur = u(T), where (%,V) is a
trajectory;
o Null controllability: uy = 0;

Approximate controllability at time T
For any ug, ur € S and e > 0, find v € C such that ||u(T) — ur||s <e.



Heat equation

We assume: £k > 0,0 C Q,v C 9Qand T > 0.
The controlled linear heat equation:

u—kAu=vlp in Qx(0,T), u—kAu=0 in Qx(0,7T),
u=0 on 090 x (0,T), u=hl, on 00 x (0,T),
u(0) = ug in . u(0) = ug in Q.

Remark: Regularizing effect —> EC does not hold.

Distributed (boundary) null controllability:
Vug € L2(Q) Iv e L*(O x (0,T))orh € L*(y x (0,T))s. t. u(-,T) = 0.

Distributed (boundary) observability inequality:
3C, >0 st le0)l2@< Cullellzioxory), Yer € LA(S).

dp

0 <C,
<|<P( Mez@e< o
References:

e Russell (’78) : method of moments;

e Lebeau & Robbiano ("95) : spectral inequalities for the low frequencies;

o Fursikov & Imanuvilov ("96) : global Carleman inequalities.

, Yor € LZ(Q)>

L2 (yx(0,T))
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Known results for the Navier-Stokes equations

Let €2 be a smooth bounded domain and 7 > 0.

w+(u-Viu=vAu—-Vp+vlp, V-u=0 in Qx(0,7),
u=0 on 0 x(0,T),
u(0) =uy in €.
Theorem [LECT: Fernandez—Cara, Guerrero, Imanuvilov, Puel (2004)]
V(u,p) witha € L®: 36 > 0s.t. |Jug — || < § = Iv € L2 s.t. u(T) = (7).
Controllability with a reduced number of controls:
- N — 1 controls - O touches the boundary [F-C, G, I, P (2006)];
- N — 1 null controls - with no assumption on O [Carrefio, G (2013)];

- N = 3, only one null control - with no assumption on O [Coron, Lissy (2014)].
Remark: Global: ECT? NC? AC?

e Open problem for Dirichlet BC;
o Solved for Navier-slip with friction BC [ Coron, Marbach, Sueur (2020)]



Known results for the Burgers equations

Let: L,T > 0,0 =(0,T) x (0,L) and O C (0, L).

U + Uy = Vityy + p, in Q, U + uuy = p, in Q,
(B") M(O, ) =V M(L, ) =Vr, On (07 T)7 (BO) M(O, ) = Vi, M(L, ) =Vr, On (07 T)a
u('70) = Yo, in (OaL)v M(,O) = Uo, in (07L)

Theorem [LECT-B,: Fursikov-Imanuvilov (1996)]
For any #, with % € L>: 3§ > 0 such that |lug — %o|| < 6 = Ip € L?, with
suppp(-, 1) C O and v; = v, = 0, such that u(T) = u(T).

Remark: Global (B,, and By) : ECT? NC? AC?

Lack of NC for B, : using only v; [ Fernandez-Cara, Guerrero (2007)]

Lack of NC for B, : using only v; and v, [ Guerrero-Imanuvilov (2007)]
GEC for By and GECT for B, : using p = p(¢), v and v, [ Chapouly (2009)]
GNC for By and GNC for B, : using only p = p(¢) and v» [ Marbach (2014)]
Lack of NC for B, : using only p = p(r) [ Marbach (2018)]



Main results: Global uniform controllability for
nonviscous models

V



M. CHAPOULY, Global controllability of nonviscous and viscous Burgers-type
equations, STAM J. Control Optim., 48 (3), 1567-1599, (2009).



Inviscid Burgers-a system

Given a time 7 > 0 and a length L > O the inviscid Burgers-a system is
given by:

U + zu, = p(1) in(0,7) x (0,L),

1—a’za=u in (O,T)x( L),
(BY) 2(,0)=v;, z(-,L)=v, on (0,

u(-,0) =w on I,

u(+,L)=v, on I,

u(0,-) = up in (0,L),

where [; = {t € [0,7] : v(¢t) >0}and I, = {r € [0,T] : v,(r) < O0};
e The triplet (p,v;,v,) are the controls and the couple (u,z) is the

associated state;

e Motivation: Regularization of the inviscid Burgers equation, member
b = 0 of the so-called b-family...



Global uniform exact controllability result

Theorem [Global uniform exact controllability result in C']

Let o, T,L > 0 be given. The inviscid Burgers-a system is globally exactly
controllable in C'. That is, for any given ug,ur € C'([0,L]), there exist a
time-dependent control p® € C°([0, T]), a couple of boundary controls
(v, v®) € C'([0, T]; IR?) and an associated state

r

(u*,z*) € C'([0, T] x [0, L]; R?) satisfying (BS) in the classical sense and
u*(T,") =ur in (0,L).

Moreover, there exists a positive constant C > 0 (depending on u and ur
but independent of o) such that

1%, u*) e o,y x o,y + 1P oo,z + 1OV vl (o, mm2) < C-



Strategy of the proof. Return method

The return method has been introduced by J.-M. Coron.

The principle of the method is the following:
o find a trajectory of the nonlinear system such that the linearized
system around it is controllable.

e Then, one hope to construct a solution of the nonlinear controllability
problem close to such trajectory.



The proof is
e Step 1:
o Step 2:
o Step 3:
o Step 4:

Strategy of the proof. Return method

splitted in 4 steps:
we linearize the system around a suitable trajectory;
we prove the global controllability for the linearized system;

we deduce the local controllability for the nonlinear system;

we use a scaling argument to deduce the desired global result.



Local null-controllability of the “perturbed” system

For k > 1, let us introduce the set:
Apgi={X € C([0,T);[0,00)) : [ Mllpror) > L}

Then, (#,2) = (A, A) is a trajectory for (BS) with (p,V;,V,) = (N, A\, A).
The linearization around (i,Z) = (A, \) is:

u+AOu, =0, z—a’z=uin (0,T) x R,

which is globally controllable to zero.

One can see that the velocity \(¢) is “fast enough” such that
®,(T;0,x) € R\supp u(+,0), for all x € [0, L].

Consider the the flux ® € C'([0,T] x [0, T] x R), solution to:

{ Py (s:1,%) = A(D),

d))\(s; S,X) =X



Local null-controllability of the “perturbed” system

Then, one may expect the null-controllability for the “perturbed” system:

Vit AO) +wye =0, w—a’wy=y in

W(' 0) =41, W('vl‘) =d(r

(PBg) Y(,O)—CIZ
y(,L) =g,
)7(07 ):

Ji={re[0,T]: q(r) >0}andJ, = {r € [0,T] :

on
on
on

in

q(r) < 0}

x (0,1),



Local null-controllability of the “perturbed” system

Theorem [Local null control for the “perturbed”inviscid Burgers-« system]

Let T, L > 0 be given and assume that A € Ay 7 9. Then, there exist § > 0
and C > 0 (both independent of «) such that, for any y, € C!([0,L]) with
Ivoll et (jo,7) < 9. there exists (g1, ¢,) € C'([0, T]; R?) and an associated state
(y,w) € C'([0,T] x [0, L]; R?) solution to (PBY) and

Moreover, there exists C > 0 (independent of ) such that

I¥ller o,y <0,y < Cllyollero,y Ve > 0.

Remark:
o (M7Z) = (y7 W) + (Aa )‘)’ (Vla Vr) = (qlaqr) + ()‘7 >‘) andp =N,
Then, a local uniform null controllability result holds for (u, z).
o Scaling arguments + time-reversibility — Global EC in C'.



Sketch of the proof. 1

Since A € Ap 1, then there exists n € (0,L/2) such that

T
/ A(t)dt > L+ 2n.
0
Let the extension operators:
o 1 : C'([0,L]) — C'(R) and m, : C*([0,L]) — C*(R);
o mi(f) =fin[0,L], fori=1,2;

e suppm(f) C (—m,L+n),fori=1,2.
We will use a fixed-point argument. For such, let us introduce the
Banach space F := C°(]0, T]; C°([0, L])) N L>=(0, T; C*'([0,L])) and
the set
Bg := {h € F such that ||h||r < R}

where R > 0 will be chosen appropriately.



Sketch of the proof. 11
e Given h € By there exists a unique w € C°([0, T]; C*([0, L])) solution
to the time-dependent elliptic problem:
w—a*wy =h in
W(-,O) = h('ao)ﬂ W('vL) = h('7L) on ( )
Using the maximum principle: |[wl|co(jo,73;c1(0,2))) < IIhllF < R.
Let w* € C°([0, T]; C3(R)) given by w*(t,-) := m(w)(t, -). Then,
there exists C; > 0 (independent of «) such that
(*) HW*”C”([O,T];C‘(R)) < Cl||WHC°([O,T];C‘([O,L]))-
e Consider the the flux ®* € C!([0, T] x [0, 7] x R), solution to:
1 (8:1,%) = A1) +w* (1, 0" (51,%)),
¢* (s35,x) = x.
Then, if we consider the flux ®, € C'([0, 7] x [0, T] x R) associated

with the ODE ¢’(¢) = A(¢), using (x) and choosing R := % we get:
1

(%%) 2% — @ oo, x[0,71xR) < TIIW [l co(o,r1500m)) < M-



Sketch of the proof. 111

We define y; := 7 (yo) € C'(R) and search for y € C'([0, 7] x R)
solution to the transport equation:

e+ (A(#) +w*(£,x))y, =0 in (0,7) x R,
)7(07 ) = yé in R,
¥T,)=0 in [0,L].

Using the method of characteristic we deduce that
(% % %) y(t,x) == y5(®*(£;0,x)), V(t,x) €[0,T] x R,

is a classical solution to the transport equation above.
Using (x*), we get ®*(T;0,-) < —n in (—o0,L].
Since suppy§ C (—n,L + ), we have y(7,-) = 01in [0, L].
Moreover,

Ivllcr (o, 11x 0,y < Callyoller o,

for some C, > 0, independent of .



Sketch of the proof. IV

e Fory, € C'([0,L]) small enough we can define the fixed-point
mapping F : Bg — Bg by:

F(h)(t,x) := y(1,x), ¥V (1,x) € [0,T] x [0, L],

where y is the function defined in (x * %).

e By an induction argument, there exists C > 0

mm

i " cnT
| F"(h1) — F"(ha)||e < -

||/’ll —/’12||E Vm Z 1

o Finally:
F"™ is a contraction in E for m large enough;

Consider By := E,‘l‘ e ana Fm being the extension of F" to Bg;
F"(Br) C BN C(]0,T] x [0,L]):

There exists a unique y € Bg such that 7" (y) =y.

F:= %[0, 7];C°([0,L])) N L>=(0, T; C%1(]0,L])) and E := C°(]0, T]; C°([0, L])).



Main results: Global uniform controllability for
viscous models

V



Viscous Burgers-a system

e Given atime 7 > 0 and a length L > 0 the Viscous Burgers-a system is
given by:

Uy + zuy = g + p(t) in (0,7) x (0,L),
(BY) -z =u in (0,T) x (0,L),

z2(+,0) =u(-,0) =v;, z(-,L)=u(-,L)=v, on (0,T),

u(0,-) = up in (0,L).

e The triplet (p,v;,v,) are the controls and the couple (u, z) is the
associated state;

e Motivation: Regularization of the viscous Burgers equation, 1 D-version
of the Leray-a model, member b = 0 of the so-called viscous
b-family...



Global exact controllability to constant trajectories

Theorem [Global exact controllability to constant trajectories]
Let o, T, L > 0 be given. The viscous Burgers-a system is globally exactly
controllable in L> to constant trajectories. That is, for any uy € L>°(0, L)
and N € R, there exist controls p® € C°([0, T]) and (v, v®) € H/4(0, T; R?)
and states (u®,z%) € L*(0,T; H'(0, L; R?))NL>(0, T; L>=(0, L; R?))
satisfying (B{'),
u*(T,-)=N in (0,L)

and the estimates

2% oo,y + 1T s Vil 0,172y < €
where C is a positive constant (depending on uy and N but independent of

). Moreover, if ug € H}(0, L) then the same conclusion holds with
(u®,z%) € L*(0,T; H*(0,L; R?)) N H' (0, T; L*(0, L; R?)).

The proof is splitted in three steps:
e Step 1: Smoothing effect;
o Step 2: Uniform approximate controllability;
o Step 3: Uniform local exact controllability to the trajectories.



Smoothing effect

Proposition [Smoothing effect]

Let up € L*°(0, L) be given and let (u*,z*) be the solution to the
uncontrolled viscous Burgers-c« system (that is, p® = vi* = v = 0). Then,
there exist 7* € (0,7/2) and C > 0 (independent of «) such that the
solution u® belongs to C°([T*, T]; C*([0,L])) and satisfies

[l coqr=,m:c2(10,7)) < CAlluo[zo< ),
where A : R, — R is continuous and satisfies A(s) — Oas s — 0T.
Sketch of the proof:

o Smoothing effect for parabolic operators
¢ Energy estimates.



Uniform approximate controllability

Proposition [Uniform approximate controllability]
Let up, uy € C*([0,L]) be given. There exist positive constants 7. and
K > 0, independent of «, such that, for any 7 € (0, 7], there exist
p* € C([0,7]), (v, v®) € H¥*(0,7;R?) and associated states (u®,z%), in
appropriated functional spaces, solution to (B{'), with T replaced by 7, and
satisfying

[u®(7) = urlle < Kv/7 and [p*flco + (67,97 lpsre < € Vo> 0.

Strategy of the proof:
e Heuristic procedure: let us consider the decomposition
u® = ya,T + >\T+ra,'r
{ Za e + )\‘r_’_qoc,‘r’.
e Replacing them in (BY"):

up —ug, +z2%ug = AT()+ [+ (AT (1) + w7
+ [rtaﬂ' _ r)?)c’T + (qa,‘r + W T + )\T)I’?’T
4Ty — Y]

7o — OézZ;Yx — [(woz,'r + )\‘r) _ a2(wo¢,r + )\T)xx]+ [qa,‘r _ sz%?f] lif@—

e Then, we have: Inviscid part + viscous remainder.



Sketch of the proof. 1

For 7 > 0 small enough and A\™ € C}(0,7) taken appropriately, we get
controls (v, v®7) € C*([0, 7]) such that

YA @ +w ST =0 in - (0,7) x (0,L),
whT — QPwT = T in (0,7) x (0,L),
¥OT(,0) = wT(L0) =T on (0,7),
YT (L) = WO (L) =T on (0,7),
¥ (0,) = o in (0,L),
YOI (T, ) = ur in (0,L).
Remark:
We note that [[u®(7, ) — urllg 0,0y = [l (7, )l 0,.0)-

Then, the remaining question is:
Is it possible to find K > 0 (independent of o and 7) such that

77 (e o) < KVT 72

X € 50, 1;Ry) with Al 119 1/2) > Land A(r) = (1 —1). Weset A7 () = LA(L).



Sketch of the proof. 11

Indeed, it is possible to prove that (using Faedo-Galerkin method and energy
estimates) that there exists a unique couple (r®7, ¢“7), in appropriated
functional spaces, solution to the viscous remainder system:

T (T WS NS — T 4 g Ty —y&T =0 in (0,7) x (0,L),
g — g = T in  (0,7) x (0,L),
roT(,0)=0, r&7(,L)=0, on (0,7),
g7 (,0)=0, ¢*7(-,L)=r""(-,L), on (0,7),
r*7(0,:) =0 in (0,L).

Moreover, there exists K > 0 (independent of « and 7) such that

77 (| cogo, 100 (0,0)) < KN/

The controls:
pr =N, v i =y*7(,0) + AT and v, ;== y*7 (-, L) + X" + r*7(, L).



Uniform local exact controllability to the trajectories

Theorem| Uniform local exact controllability to the C' trajectories]
Let T,L,a > 0 and m € C!([0, T]) be given. There exists § > 0
(independent of o) such that, for any initial data uy € H'(0, L) satisfying
lluo — m(0)|| 1 < § there exist p* € C°(]0, T]) and
(vl V) € H3/4(0, T; R?) and associated states
(u,z%) € L*(0,T; H2(0,L, R?)) N H'(0, T; L*(0, L; R?)) satisfying (Bf')
and

u*(T,-) = m(T).

Moreover, p® = m’ and the following estimates hold:
1Pl coco,my + NOF s vl o, 1m2y) < € Ve >0,

where C > 0 is a positive constant independent of a.



Uniform local exact controllability to the trajectories
We write (u®,z%) = (y* + m, w* + m) and p® = m’. Then, (y*, w*) must
satisfy

¥ = Ya+ W +m)yl =0 in (0,7)x(0,L),
we — azwf;c =y in (0,7) x (0,L),
Y, 0) =w(-,0) = A’ in (0,7),
y*(-,0) = w*(-,L) = h? in (0,7),

(0,L),

)
y “ (Oa ) =Yo in
where yo 1= up —m(0) and (hY, he) := (v —m, v — m). Therefore, the
result in the previous slide is equivalent to the local null-controllability to

the above system.
References:

e F.D. ARARUNA, E. FERNANDEZ-CARA AND DS, On the control of
the Burgers-a model, Advances in Differential Equations 18(2013),
935-954.

e E. FERNANDEZ-CARA AND DS, Remarks on the control of a family of
b-equations, Trends in Control Theory and Partial Differential
Equations 32 (2019), 123-138.
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Proof (Global exact controllability to constant trajectories)

o First step: Let uyp € L>°(0,L) and (u$, z{*) the solution to the
uncontrolled viscous Burgers-a system. Then, for 7 > 0 small enough,
u$(T/2 —7,-) € C*([0,L]).

e Second step: Let us define ug', := uf(T/2 — 7,-). Using the
approximate controllability result for Uy and N we get controls
(P, iy, vY,) and states (u5', z5') such that, us'(0,-) = u, and

[uS(7,-) = Nllgio.) < KVT.

e Third step: Let us define ug', := u3'(7, ). For 7 > 0 small enough,
|u§'y — Nllm 0,y < Ky/T < 4. Using the local controllability result
to trajectories for ug') and N we get controls (vj5,vy'3) and states
(u§,z5") such that, ug'(0,-) = ug'y and

us (T/2,-) =N. u#



Final comments

Other similar a-models: (viscous Camassa-Holm, Degasperis-Procesi,
etc.). Local NC? YES!

Global control results? open question.
Reducing the number of controls?

Extension to high dimensions? Local null control for Leray-« by
Araruna, Fernandez-Cara and S (2014).

Global control results? Open question. first step: Euler-a models. ..



Thank you very much for your attention!!!
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