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Objective and outline of the talk

• Objective : In this talk, we discuss the longtime behavior of the
solution u of the system

ut + ux + uxxx + uux = 0 (0,+∞)× (0,L),

u(t, 0) = u(t,L) = ux(t,L) = 0 (0,+∞),

u(0, ·) = u0 (0,L),

where u0 is an initial data with ‖u0‖L2(0,L) small.

• Outline of the talk :

The Korteweg-De Vries (KdV) equation.

Control of a KdV system.

Controllability vs the decay properties.

Decay properties of the KdV system for the critical lengths.

Conclusion and perspectives.



Part 1 : The Korteweg-De Vries (KdV)
equation.



Korteweg-De Vries (KdV) equation

• The KdV equation

ut(t, x) + ux(t, x) + uxxx(t, x) + u(t, x)ux(t, x) = 0 (1)

is a mathematical model of waves on shallow water surfaces.

• The KdV equation also furnishes a very useful nonlinear
approximation model including a balance between a weak
nonlinearity and weak dispersive effects.

• The KdV equation was first introduced by Boussinesq in 1877
and rediscovered by Korteweg and de Vries in 1895. The history of
the KdV equation started with experiments by Russell in 1834.

• The KdV equations has been investigated extensively : Miura,
Gardner, Kruskal, Lax, Kato, Saut, Teman, Bourgain, Kenig, Tao
. . .



Part 2 : Control of a KdV system.



Control of the KdV equation

The control of the KdV equation has been attracted the control
commnunity. Linearized approaches and non-linear methods have
been proposed, see the survey of Rosier & Zhang 09, and Cerpa 14.

In this talk, we first discuss the following control problem
ut + ux + uxxx + uux = 0 (0, T)× (0,L),

u(·,L) = u(·, 0) = 0 (0, T)
∂xu(·,L) = U (0, T)
u(0, ·) = u0 (0,L),

where u is the state and U is the control. This control problem was
initially investigated by Rosier in 97.



To this end, Rosier introduced the following set of critical lengths

N :=

{
2π

√
k2 + kl+ l2

3
; k, l ∈ N∗

}
.

and obtained the following remarkable results

If L 6∈ N, the linearized control KdV problem is controllable in
small time.

If L ∈ N, there is a subspace ML of L2(0,L) such that the
linearized control problem is not null-controllable in finite time
using controls in L2 for initial data in ML.

As a consequence, he showed that the control KdV system is
locally controllable in small time if L 6∈ N.



On the linearized KdV system
Fix T > 0 and let u be a solution of the linearized KdV system{

ut + ux + uxxx = 0 (0, T)× (0,L),
u(·,L) = u(·, 0) = ∂xu(·,L) = 0 (0, T).

(2)

In this talk, we are mainly concentrated on solutions in

XT := C([0, T ];L2(0,L)) ∩ L2((0, T);H1(0,L)).

Multiplying the equation of u with u and integrating by parts yield

d

dt

∫L
0
|u(t, x)|2 dx+ |ux(t, 0)|2 = 0.

Then ∫L
0
|u(t, x)|2 dx+

∫t
0
|ux(s, 0)|2 ds =

∫L
0
|u(0, x)|2 dx,

which implies, in particular,∫T
0
|ux(t, 0)|2 dt 6

∫L
0
|u(0, x)|2 dx.



On the control of the linearized KdV system

By the HUM, the linearized KdV system is null-controllable in time
T with initial datum in L2(0,L) using the controls in L2(0, T) iff the
following observability inequality∫T

0
|ux(t, 0)|2 dx > CT ,L

∫L
0
|u(0, x)|2 dx (3)

holds for all solutions u of the linearized system (2).
One can show that for L ∈ N, the observability inequality does not
hold for any T > 0. For example, in the case L = k2π (k = l),
u(t, x) = 1 − cos x is a solution of the linearized KdV equation
satisfying

u(t, 0) = u(t,L) = ux(t, 0) = ux(t,L) = 0.



On the critical lengths
One can show that if the observability inequality does not hold,
then ∃ a sequence of solutions (un) of the linearized KdV system
s.t.

n

∫T
0
|un,x(t, 0)|2 dx 6

∫L
0
|un(0, x)|2 dx = 1.

One can then prove that ∃ a non-zero solution of{
ut + ux + uxxx = 0 (0, T)× (0,L),

u(·, 0) = u(·,L) = ∂xu(·, 0) = ∂xu(·,L) = 0 (0, T).
(4)

via a compactness argument. One can also show that this set of
solutions is of finite dimension and derive the existence of a
non-zero solution of the system{

−ipv+ vx + vxxx = 0 (0,L),
v(0) = v(L) = vx(0) = vx(L) = 0.

(5)

This characterizes all critical lengths (Rosier 97). Set

ML = span
{
u(0, ·); u is a solution of (4)

}
.



Control properties for the critical lengths

• dimML = 1 : Coron & Crépeau 04, the control KdV system is
locally controllable in small time.
• dimML > 2, Cerpa 07, and Cerpa & Crépeau 09, the control
KdV system is locally controllable in finite time.
• dimML > 2, Jean-Michel Coron & Armand Koenig & H.M. Ng.
20, for a class of critical lengths, the KdV system is NOT locally
controllable in small time (∃k, l : k− l 6∈ 3N). This is surprising
when compared with internal controls : for any L > 0, the KdV
system is locally controllable in small time when the control is
located in any open subset of (0,L) ; this result is due to Menzala
& Vasconcellos & Zuazua 02, Pazoto 05.

∗ The starting point of the analysis is the power expansion method introduced
by Jean-Michel Coron and Emmanuelle Crépeau :

u = εu1 + ε
2u2 + . . . .

The idea is to obtain further information using the nonlinear term.



Part 3 : Controllability vs the decay
properties.



Controllability vs the decay property

Recall that the linearized control KdV system is controllable iff∫T
0
|ux(t, 0)|2 dx > CT ,L

∫L
0
|u(0, x)|2 dx

holds for all solutions u of the linearized KdV system{
ut + ux + uxxx = 0 (0, T)× (0,L),

u(·, 0) = u(·,L) = ∂xu(·,L) = 0 (0, T).

Concerning u, one also has∫L
0
|u(T , x)|2 dx+

∫T
0
|ux(s, 0)|2 ds =

∫L
0
|u(0, x)|2 dx.

Thus if the linearized control KdV system is controllable then u
decays exponentially, and hence a similar fact holds for the
(nonlinear) KdV system locally around 0. This interesting
connection was observed by Menzala & Vasconcellos & Zuazua 02.



Part 4 : Decay properties of the KdV system
for the critical lengths.



Decay property of the KdV systems for the critical lengths

Motivated by this connection, we next deal with the long time
behavior of the solutions of the KdV system, for critical lengths,

ut + ux + uxxx + uux = 0 (0,+∞)× (0,L),

u(t, 0) = u(t,L) = ux(t,L) = 0 (0,+∞),

u(0, ·) = u0 (0,L),

where u0 ∈ L2(0,L) is the initial data assumed to be small.

This is the main topic of the talk.

This problem is open for a while. Previous works :
• Chu & Coron & Shang 15 : dimML = 1.
• Tang & Chu & Shang & Coron 18 : k = l = 2.
The analysis is based on establishing the existence and smoothness
of a center manifold associated with the (non-linear) KdV system.
• The smallness of initial datum is necessary, Doronin & Natali 14.



New results and approach

We first introduce some notations/conventions. Let L ∈ N. There
exists exactly nL ∈ N∗ pairs (km, lm) ∈ N∗ × N∗ (1 6 m 6 nL)
such that km > lm, and

L = 2π

√
k2
m + kmlm + l2m

3
. (6)

For 1 6 m 6 nL, set

pm = p(km, lm) =
(2km + lm)(km − lm)(2lm + km)

3
√

3(k2
m + kmlm + l2m)3/2

. (7)



For 1 6 m 6 nL, set

η1,m = −
2πi(2km + lm)

3L
, η2,m = η1,m +

2πi

L
km, η3,m = η2,m +

2πi

L
lm.

Then, the following useful properties hold :

eη1,mL = eη2,mL = eη3,mL (8)

and η1,m,η2,m,η3,m are the three solutions of

z3 + z− ipm = 0. (9)

Define{
ψm(x) =

∑3
j=1(ηj+1,m − ηj,m)eηj+2,mx [0,L],

Ψm(t, x) = e−itpmψm(x) R× [0,L],

One can check that Ψm is a solution of the linearized KdV
equation satisfying

Ψm(t, 0) = Ψm(t,L) = Ψm,x(t,L) = 0 = Ψm,x(t, 0).

Then, the unreachable space for the linearized KdV system,

ML = span
{{

<(ψm(x)); 1 6 m 6 nL
}
∪
{
=(ψm(x)); 1 6 m 6 nL

}}
.



For 1 6 m 6 nL with km 6= lm, let σj,m (1 6 j 6 3) be the
solutions of

σ3 −3(k2
m+kmlm+ l2m)σ+2(2km+ lm)(2lm+km)(km− lm) = 0,

and set, with the convention σj+3,m = σj,m for j > 1,

sm = s(km, lm) :=

3∑
j=1

σj,m(σj+2,m − σj+1,m)

×
(
e

4πi(km−lm)
3 e2πiσj,m + e−2πiσj,m

)
. (10)

Here are the new results



Theorem (H.M.Ng. 20)

Let L ∈ N. Assume that either dimML = 1 or

(km 6= lm and sm 6= 0) ∀ 1 6 m 6 nL. (11)

Then ∃ε0 = ε0(L) > 0 s.t. ∀u0 (real) with ‖u0‖L2(0,L) 6 ε0, the
unique solution u of the KdV system satisfies

lim
t→∞ ‖u(t, ·)‖L2(0,L) = 0.

More precisely, ∃C = C(L) > 0 s.t., for t > C/‖u0‖2
L2(0,L) and

‖u0‖L2(0,L) 6 ε0, it holds

‖u(t, ·)‖L2(0,L) 6
1

2
‖u(0, ·)‖L2(0,L).

Consequently, for some c = c(L) > 0,

‖u(t, ·)‖L2(0,L) 6 c/t
1/2 for t > 0. (12)



Comments

• We conclude that ‖u(t, ·)‖L2(0,L) 6 c/t
1/2 for t > 0 not the fact

that
‖u(t, ·)‖L2(0,L) 6 c‖u(0, ·)‖L2(0,L)/t

1/2 for t > 0, (13)

which is not true.

• When km 6= lm for all 1 6 m 6 nL, the condition sm 6= 0 for all
1 6 m 6 nL is almost equivalent to the fact that the second order
approximation of solutions with initial conditions in ML decays.
(the first oder approximation conserves the L2-norm).

• The condition km 6= lm for all 1 6 m 6 nL means that dimML

is even.



Condition (11) can be checked numerically easily. We have

Corollary (H.M.Ng 20)

Let L ∈ N. Assume that either dimML = 1 or 1 6 km, lm 6 1000
for some 1 6 m 6 nL. Then the decay properties hold if km 6= lm
for all 1 6 m 6 nL.

One can show that sm 6= 0 for a class of infinite elements of
(km, lm).

The optimality of the decay rate 1/t1/2 is open ; however, we can
prove that

Proposition (H.M.Ng 20)

Let L ∈ N. Then ∃c > 0 s.t. ∀ε > 0, ∃u0 ∈ L2(0,L) s.t.

‖u0‖L2(0,L) 6 ε and ‖u(t, ·)‖L2(0,L) > c ln(t+ 2)/t for some t > 0,

where u is the solution of the KdV system corresponding to u0.



Ideas of the proof - Slide 1

The analysis is inspired from the power expansion method.

The key of the analysis is to (observe and) establish the following
fact : Let L ∈ N. Under the stated conditions (either dimML = 1

or
(
(km 6= lm and sm 6= 0)∀ 1 6 m 6 nL

)
), there exist two

constants T0 > 0 and C > 0 depending only on L such that for
T > T0, one has, for all u0 with ‖u0‖L2(0,L) sufficiently small, the
corresponding solution u of the (nonlinear) KdV system satisfies

‖u(T , ·)‖L2(0,L) 6 ‖u0‖L2(0,L)

(
1 − C‖u0‖2

L2(0,L)

)
for T > T0. (14)

Note that, for non-critical lengths, one can prove that, for any T > 0,

‖u(T , ·)‖L2(0,L) 6 ‖u0‖L2(0,L)

(
1 − CT ,L‖u0‖1

L2(0,L)

)
. (15)



Ideas of the proof - Slide 2

To get an idea of how to prove (14), let consider the case
u0 ∈ML \ {0} with ‖u0‖L2(0,L) small, which is somehow the worst
case. Let ũ1 be the unique solution of

ũ1,t + ũ1,x + ũ1,xxx = 0 (0,+∞)× (0,L),

ũ1(·, 0) = ũ1(·,L) = ũ1,x(·,L) = 0 (0,+∞),

ũ1(0, ·) = u0/ε (0,L),

(16)

with ε = ‖u0‖L2(0,L) > 0, and let ũ2 be the unique solution of
ũ2,t + ũ2,x + ũ2,xxx + ũ1,xũ1 = 0 (0,+∞)× (0,L),

ũ2(·, 0) = ũ2(·,L) = ũ2,x(·,L) = 0 (0,+∞),

ũ2(0, ·) = 0 (0,L).

(17)

Then, with uε = εũ1 + ε2ũ2,

uε,t + uε,x + uε,xxx + uεuε,x = ε3(ũ1ũ2)x + ε
4ũ2ũ2,x. (18)



Ideas of the proof - Slide 3

By considering the system of εũ1 + ε2ũ2 − u, we can prove that,
for τ > 0 (arbitrary),

‖(εũ1 + ε2ũ2 − u)x(·, 0)‖L2(0,τ) 6 cτε
3, (19)

for some cτ > 0 depending only on τ and L, provided that ε is
sufficiently small. Since ũ1(t, ·) ∈ML for all t > 0, one has

ũ1,x(t, 0) = 0 for t > 0.

Thus, if one can show that, for some τ0 > 0 and for some c0 > 0

‖ũ2,x(·, 0)‖L2(0,τ0)
> c0, (20)

then from (19) one has, for ε small enough,

‖ux(·, 0)‖L2(0,τ0)
> c0ε

2.

This implies (14) with T0 = τ0 since∫L
0
|u(T , x)|2 dx+

∫T
0
|ux(s, 0)|2 ds =

∫L
0
|u(0, x)|2 dx.



Ideas of the proof - Slide 4
Recall that

ũ2,t + ũ2,x + ũ2,xxx + ũ1,xũ1 = 0 (0,+∞)× (0,L),

ũ2(·, 0) = ũ2(·,L) = ũ2,x(·,L) = 0 (0,+∞),

ũ2(0, ·) = 0 (0,L).

To establish (20), we construct a special solution W of{
Wt +Wx +Wxxx + ũ1,xũ1 = 0 (0,+∞)× (0,L),

W(·, 0) =W(·,L) =Wx(·,L) = 0 (0,+∞),
(21)

via a separation-of-variable process (some details are given later !).
To this end, we recall that

ML = span
{{

<(ψm(x)); 1 6 m 6 nL
}
∪
{
=(ψm(x)); 1 6 m 6 nL

}}
.

where{
ψm(x) =

∑3
j=1(ηj+1,m − ηj,m)eηj+2,mx [0,L],

Ψm(t, x) = e−itpmψm(x) R× [0,L],



Ideas of the proof - Slide 5

Moreover, we can prove for such a solution W that

W is bounded by ‖ũ1(0, ·)‖L2(0,L) up to a positive constant,

and Wx(·, 0) is a non-trivial quasi-periodic function. (22)

It is in the proof of the existence of W and the second fact of (22)
that the stated conditions are required. Thus, for large τ,

‖Wx(·, 0)‖L2(τ,2τ) > C by the theory of quasi-periodic functions ! !

Note that, for all δ > 0, ∃Tδ > 0 s.t. it holds, for τ > Tδ,

‖yx(·, 0)‖L2(τ,2τ) 6 δ‖y0‖L2(0,L), (23)

for all solution y of the linearized KdV system (which in particular
can be applied to ũ2 −W). This yields that ∂xW is a good approximation

for ∂xũ2 for time sufficiently large (we do not say that W is a good

approximation for ũ2 for time sufficiently large !).

Combining (22) and (23), we can derive (20).



On the construction of W
By the definition of ML, there exists (αm)nL

m=1 ⊂ C such that

1

ε
u0 = <

{
nL∑
m=1

αmΨm(0, x)

}
. (24)

The function ũ1 defined by (16) is then given by

ũ1(t, x) = <

{
nL∑
m=1

αmΨm(t, x)

}
= <

{
nL∑
m=1

αme
−ipmtψm(x)

}
.

Since <f(t, x)<fx(t, x) =
1
8

((
f(t, x)2)x +

(
f̄(t, x)2

)
x
+ 2(|f(t, x)|2)x

)
, one has

ũ1,x(t, x)ũ1(t, x) =
1

8

nL∑
m1=1

nL∑
m2=1

(
αm1αm2e

−i(pm1
+pm2

)tψm1(x)ψm2(x)
)
x

+
1

8

nL∑
m1=1

nL∑
m2=1

(
αm1αm2e

−i(pm1
+pm2

)tψm1(x)ψm2(x)
)
x

+
1

4

nL∑
m1=1

nL∑
m2=1

(
αm1 ᾱm2e

−i(pm1
−pm2

)tψm1(x)ψ̄m2(x)
)
x

.



We search W of the form

W =
1

8

nL∑
m1=1

nL∑
m2=1

(
αm1αm2e

−i(pm1
+pm2

)tϕm1,m2(x)
)
x

+
1

8

nL∑
m1=1

nL∑
m2=1

(
αm1αm2e

−i(pm1
+pm2

)tϕm1,m2(x)(x)
)
x

+
1

4

nL∑
m1=1

nL∑
m2=1

(
αm1 ᾱm2e

−i(pm1
−pm2

)tφm1,m2(x)
)
x

.

Here

− i(pm1 + pm2)ϕm1,m2(x) +ϕm1,m2

′(x) +ϕm1,m2

′′′(x)

+
(
ψm1ψm2

) ′
(x) = 0 in (0,L),

ϕm1,m2(0) = ϕm1,m2(L) = ϕ
′
m1,m2

(L) = 0,

− i(pm1 − pm2)φm1,m2(x) + φm1,m2

′(x) + φm1,m2

′′′(x)

+
(
ψm1ψ̄m2

) ′
(x) = 0 in (0,L),

φm1,m2(0) = φm1,m2(L) = φ
′
m1,m2

(L) = 0.



One can solve ψm1,m2 and ϕm1,m2 explicitly in principle by noting

Lemma

Let L ∈ N and 1 6 m1,m2 6 nL. We have, in [0,L],

(
ψm1ψm2

) ′
(x) =

3∑
j=1

3∑
k=1

(ηj+1,m1 − ηj,m1)(ηk+1,m2 − ηk,m2)

(ηj+2,m1 + ηk+2,m2)e
(ηj+2,m1

+ηk+2,m2
)x,

and

(
ψm1ψ̄m2

) ′
(x) =

3∑
j=1

3∑
k=1

(ηj+1,m1 − ηj,m1)(η̄k+1,m2 − η̄k,m2)

(ηj+2,m1 + η̄k+2,m2)e
(ηj+2,m1

+η̄k+2,m2
)x.



More facts on ϕm,m

− i(pm1
+ pm2

)ϕm1,m2
(x) +ϕm1,m2

′(x) +ϕm1,m2
′′′(x)

+
(
ψm1

ψm2

) ′
(x) = 0 in (0,L),

ϕm1,m2
(0) = ϕm1,m2

(L) = ϕ ′m1,m2
(L) = 0.

Definition

For z ∈ C, let λj = λj(z) (1 6 j 6 3) be the roots of the equation

λ3 + λ− iz = 0, (25)

and set

Q(z) =


1 1 1

eλ1L eλ2L eλ3L

λ1e
λ1L λ2e

λ2L λ3e
λ3L

 . (26)

Recall that

η1,m = −
2πi(2km + lm)

3L
, η2,m = η1,m +

2πi

L
km, η3,m = η2,m +

2πi

L
lm.



Lemma

Let L ∈ N and 1 6 m 6 nL with km 6= lm. Let λj = λj(2pm) and
Q = Q(2ipm). Set

D = Dm,m =

3∑
j=1

3∑
k=1

(ηj+1,m − ηj,m)(ηk+1,m − ηk,m)

3ηj+2,mηk+2,m
,

χm,m(x) = −

3∑
j=1

3∑
k=1

(ηj+1,m − ηj,m)(ηk+1,m − ηk,m)

3ηj+2,mηk+2,m

× e(ηj+2,m+ηk+2,m)x in [0,L].

Then

ϕm,m(x) = χm,m(x) +

3∑
j=1

aje
λjx, (27)

Q(a1,a2,a3)
T = D(1, e(η1,m+η1,m)L, 0)T. (28)



Lemma

Assume that km 6= lm. We have

Dm,m 6= 0

and
χ ′m,m(0) = 0.

The proof is simple and based on the information :

η1,m = −
2πi(2km + lm)

3L
, η2,m = η1,m +

2πi

L
km, η3,m = η2,m +

2πi

L
lm.

In particular, we have

eη1,mL = eη2,mL = eη3,mL.

Proposition

Let L ∈ N and 1 6 m 6 nL with km 6= lm. If sm 6= 0 then

ϕ ′m,m(0) 6= 0.



Recall that

L = 2π

√
k2
m + kmlm + l2m

3
.

pm = p(km, lm) =
(2km + lm)(km − lm)(2lm + km)

3
√

3(k2
m + kmlm + l2m)3/2

,

sm = s(km, lm) :=

3∑
j=1

σj,m(σj+2,m − σj+1,m)

(
e

4πi(km−lm)
3 e2πiσj,m + e−2πiσj,m

)
.

where, for km 6= lm, σj,m (1 6 j 6 3) are the solutions of

σ3 −3(k2
m+kmlm+ l2m)σ+2(2km+ lm)(2lm+km)(km− lm) = 0.



A result related to quasi-periodic functions

Lemma

Let ` ∈ N∗, aj ∈ C, qj > 0 for 1 6 j 6 `, and Mj1,j2 ,Nj1,j2 ∈ C with
1 6 j1, j2 6 `. Assume that{

qj1 6= qj2 for 1 6 j1 6= j2 6 `,

Mj,j 6= 0 for 1 6 j 6 `.

Set, for t ∈ R,

g(t) =
∑̀
j1=1

∑̀
j2=1

(
aj1aj2Mj1,j2e

−i(qj1
+qj2

)t

+ āj1 āj2M̄j1,j2e
i(qj1

+qj2
)t + 2aj1 āj2Nj1,j2e

−i(qj1
−qj2

)
)

.

Given 0 < γ1 < γ2, ∃γ0 > 0 and τ0 > 0 independent of aj s.t. if
γ1 6

∑`
j=1 |aj|

2 6 γ2, then

‖g‖L2(τ,2τ) > γ0 for all τ > τ0.

Proof : The proof involves the theory of quasiperiodic functions.



As a consequence, we obtain

Corollary

Assume that km 6= lm and sm 6= 0 for 1 6 m 6 nL. We have

‖Wx(·, 0)‖L2(τ,2τ) > C for all τ > τ0.

Note that
qj1 6= qj2 ⇔ pm1 6= pm2 : automatic

Mj,j 6= 0⇔ sm 6= 0 : assumption



Part 5 : Conclusion and perspectives.



Conclusion and perspectives.

• We derive a condition for which the decay of the order 1/t1/2

holds. We also show that the decay cannot be faster than
ln(2 + t)/t, so not faster than 1/t then.
• This condition can be checked numerically, and is based on the
second approximation and the information of the second
approximation is obtained approximately for sufficiently large time.
• Part of the analysis involves the theory of quasi-periodic
functions.
• The approach presented is quite robust and can be applied to
other problems.

Thank you for your attention !


