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General context and purpose

Given a suitable observation y,,s(= B(y)) of y, unique solution of a linear well-posed
PDE

{ PDE(y,Vy,..)=f Qx(0,T),

+ boundary and initial conditions
find a convergent (numerical) approximation of the following linear inverse problem :

reconstruct the solution y and the source f such that B(y) = Yops-
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+ boundary and initial conditions
find a convergent (numerical) approximation of the following linear inverse problem :

reconstruct the solution y and the source f such that B(y) = Yops-

The main aim is to highlight that space-time variational approach of first and second
order leads to robust approximation.

We consider hyperbolic (wave eq.) and parabolic (heat eq.) situation.

The approach is inspired from recent works on exact controllability



Hyperbolic situation
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Hyperbolic equation - Problem statement

QCRNVN(IN>1)-T>0,ce C(QR),dec L®Qr), (o,¥1) € H, feX.

y=0, =09 x (0, T) ™)

{Ly::ynV-(CVy)+dy:f, Qr :=Qx(0,T)
(y('70)7yt('70)):(yan1)v Q.

» Inverse Problem 1: Distributed observationon gr = w x (0, T),w C Q
H=12x H ' X=[3H),
Given (Yobs. ) € L3(qr) x X, find y s.t. {(1) and y — Yops =0 on gr}
» Inverse Problem 2: Boundary observationon 't C 92 x (0, T)

H=H} x 12 X="L3?
Given Yops,, € L3(T'7),find (y,f) s.t. {(1) and 8,y — Yops,, =0 on T}



Inverse problem 1

Z:= {y ty € C([0, T], L2(Q)) N C'([0, T, H ' (Q)), Ly € X, Y5, = o}.

Introducing the operator P : Z — X x L?(qt)
Py = (LY, ¥gr):
Inverse Problem 1 is reformulated as :

find y € Z solution of Py = (f, Yops)- (IP)

If unique continuation property holds for (1) and if y,ps is a restriction to g7 of a solution
of (1), then (IP) is well-posed: the state y corresponding to the pair (yops, f) is unique.



Most natural approach: Relaxation via Least-squares method

The most natural (and widely used in practice) approach consists in introducing a
least-squares type technic, i.e. consider the extremal problem

_ 1
minimize  J(yo, y1) := Iy — YobsllZ2q
(LS) subjectto  (yo,¥1) € H

where y solves (1)

A minimizing sequence (Yo, Y1k)(k>0) € H is defined in term of an adjoint problem.
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This raises the issue of uniform coercivity property of the discrete functional w.r.t. the
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B 1
minimize  J(yo, y1) := Iy — YobsllZ2q

(LS) subjectto  (yo,y1) € H

where y solves (1)
A minimizing sequence (Yo, Y1k)(k>0) € H is defined in term of an adjoint problem.
Drawback : it is difficult to minimize over a finite dimensional subspace of the set of
constraints

The minimization procedure first requires the discretization of J and of the system (1);

This raises the issue of uniform coercivity property of the discrete functional w.r.t. the
approximation parameter.

The "Discretization then Inverse problem" procedure is discussed in [L. Baudouin, M.
De Buhan, S. Ervedoza, 2013]



A not so different approach : Luenberger observers type approach

[Auroux-Blum 2005],[Chapelle,Cindea,Moireau,2012], [Ramdani-Haine 2011], etc...
Define a dynamic

Ly = G(Yobs, q1)
y(-,0) fixed

such that

Iy ) = y( Ollng) — 0 as t—oo
N(Q) - appropriate norm
The reversibility of the eq. then allows to recover y for any time.

But again, on a numerically point of view, this method requires to prove uniform
discrete observability properties.



Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]

QR. method (Quasi-Reversibility): for any ¢ > 0, find y. € Z such that

(PYe, PY) xx12(gr) T €W ¥z = ((f, Yobs)s PY) xx12(g7),xx(2(q7) » (QR)
forally € Z,



Klibanov and co-workers approach: Quasi-reversibility for ill-posed problem

[Klibanov, Beilina 20xx], [Bourgeois, Darde 2010]

QR. method (Quasi-Reversibility): for any ¢ > 0, find y. € Z such that

(PYe, PY) xx12(gr) T €W ¥z = ((f, Yobs)s PY) xx12(g7),xx(2(q7) » (QR)
forally € Z,
equivalent to the minimization over Z of

¥ =Py = (£, Yovs) 3 12(qr) T+ €IV IZ

@
= 1Ly — I+ 11y — Yobsla(q, + ellyI

€ > 0 a Tikhonov parameter which ensures y € Z and the well-posedness
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Keeping y as the main variable ...

Without loss of generality, f = 0.

Z:={y:yeC(0,T],L3(Q))nC'([0, T, H (), Ly € X, yj5, = 0}.

Hypothesis (Generalized Observability Inequality)
Assume that 3Cops = C(w, T, |IC|| 1 @) lldllLoo(q)) St -

(1) 1y(0),%(-O)lIF < Cobs(uyniz(qr) + ||Ly||§), ez @)

ein1-D, (3) if T > T*(c, d) [Fernandez-Cara, Cindea,Miinch, COCV 2013],
einN-D,forc=1and d =0, (3) if (,w, T) satisfies geometric optic condition
[Bardos, Lebeau, Rauch, 1992]

Y12 0.y < Ca,7( Copsll¥llZyy + (14 Cans)lILyl% ) Wy € Z. @
(Qr) (ar)



Non cylindrical situation in 1D

[Castro-Cindea-Miinch, SICON 2014] !, [Lebeau, 2017]2

In 1D with ¢ = 1 and d = 0, the observability ineq. also holds for non cylindrical

domains.

Qr

Qr

o

Qr

! C. Castro, N. Cindea, A. Miinch, Controllability of the 1D wave equation with inner moving force, SICON

(2014)]

Time dependent domains gr C Qr =Q x (0, T)

2G. Lebeau, J. Le Rousseau, P. Terpolilli, E. Trélat, Geometric control condition for the wave equation with a

time-dependent domain, (2017)




Equivalent formulation of IP

Within this hypothesis, for any n > 0, we define on Z the bilinear form

)
ypz= [ yydaten [y g wyez
ar

(Z,] - |I) is a Hilbert space.

®)
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; ] 2 T2
(P) II"IfJ(y) = EHy _yobSHLZ(qT) + §HLyHX r=0
subjectto y € W:={ye Z; Ly =0in X}

(P) is well posed : J is continuous over W, strictly convex and J(y) — +oo as
I¥llw — oo

The solution of (P) in W does not depend on .

From (3), the solution y in Z of (P) satisfies (y(-,0), y:(-,0)) € H, so that problem (P)
is equivalent to the minimization of J w.r.t (yo,y1) € H .



Optimality of (P)

In order to solve (P), we have to deal with the constraint eq. which appears in W. We
introduce a Lagrange multiplier A € X’ and the following mixed formulation: find
(¥,A) € Z x X’ solution of

I(y), vyeZ

{ ar(y,y) + b7, )
0, VX €A,

b(y, )

where
-
a:ZxZ—R, al(y,y) ::/ y7dxdt+r/ (Ly, L?)HA(Q) dt,
ar /0

.
b:ZxX —R, by, ::/ O ) ey -1y

A ,
1:Z R, I(y) = // Yovs y dxdt.

ar

System (22) is the optimality system corresponding to the extremal problem (P).

3

SN. Cindea, AM, Inverse problem for linear hyperbolic equations using mixed
formulations, Inverse Problems (2015)



Well-posedness of the mixed formulation

Theorem
Forallr > 0,

1. The mixed formulation (22) is well-posed.

2. The unique solution (y,\) € Z x X’ is the unique saddle-point of the Lagrangian
L:Z x X' — R defined by

1

L(y, ) :zéar(%y) + by, A) —1(y).

3. We have the estimate

Illy = IYlli2qr) < Wobsllizgry:  IMxr <24/ Ca,r + nllYobsllizigr)- ()



Well-posedness
The kernel N (b) = {y € Z; b(y,\) =0 VA € X’} coincides with W: we easily get

ar(y,y) = lyllz, Yy eN(b)=W.
It remains to check the inf-sup constant property : 3§ > 0 such that

bly,n)
Aex'yez IyllzINx

®)
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Well-posedness
The kernel N'(b) = {y € Z;b(y,A) =0 VA € X'} coincides with W: we easily get
ar(y.y) =yl VyeN(b)=W
It remains to check the inf-sup constant property : 3§ > 0 such that

bly,n)
Aex'yez IyllzINx

For any fixed A € X’, we define y° € Z as the unique solution of
L.yo =—AXin QT’ (yo(’o)’yz(‘)(’o)) = (Oa O) on Q, yO =0on X7

We get b(y°, \) = [IX%, and [l = lI¥°1%, ., + 7l

L2(qr)

The estimate [|y°||2(q,) < v/Ca,T|[Allx implies that

by, ) b(y°.N) 1

sup > >
vez WlvlAllx: = lIyPlvIMix: = /Car+7

leading to (8) with § = (Cq,7 + 1)~ /2.

>0




Remark 1

Taking r = 0, the first equation of the mixed formulation reads
T
[ 0= yooyaasc+ [ <ALy sy =0 vyez
ar 0 ’
which means that the multiplier A € X’ solves in the sense of transposition

LX=—(Y —Yobs)1gr» A=0 in Zr,
A6 T)=X(T)=0 inQ

Therefore, A coincides with the weak solution of the wave equation controlled by v.

e CO(fo, T, Hi()) n C'([o, T], L3(2))



Remark 1

Taking r = 0, the first equation of the mixed formulation reads

)
[ 0= yooyaasc+ [ <ALy sy =0 vyez
ar 0 ’

which means that the multiplier A € X’ solves in the sense of transposition

LX=—(Y —Yobs)1gr» A=0 in Zr, ©)
A6 T)=X(T)=0 inQ

Therefore, A coincides with the weak solution of the wave equation controlled by v.
X e (o, T], Ky () n C'([0, T], L3(9)

If yobs is the restriction to g7 of a solution of (1), then A vanishes everywhere.

In that case, sup, ¢ inf,cy Lr(y, A) = inf,cy Lr(y,0) and the mixed formulation is
reduced to : find y € Z such that

)
aly.9) = [[ yyaeter [y 19 @t =10 Wez
ar



Remark 2

In the general case, the mixed formulation can be rewritten as follows: find
(z,\) € Z x X’ solution of

{ (Pry, PrY) xxc12(gry + (LY, Mx,xr = (0, Yobs)s Pry) xx12(q7)» vyeZ,
VA e X’

with Pry := (VTLY, ¥|g;)-

Analogy with the quasi-reversibility method [Klibanov-Beilina 08, Bourgeois-Darde 10]:
forany € > 0, find y. € Z such that

(Pye, F?>X><L2(q7) +e(ye,¥)z = ((f, Yobs)» FV)XXLQ(qT),XxB(qT) , YyeZ, (QR)
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In the general case, the mixed formulation can be rewritten as follows: find
(z,\) € Z x X’ solution of

{ (Pry, PrY) xxc12(gry + (LY, Mx,xr = (0, Yobs)s Pry) xx12(q7)» vy €
VA e X’

with Pry := (VTLY, ¥|g;)-

Analogy with the quasi-reversibility method [Klibanov-Beilina 08, Bourgeois-Darde 10]:
forany € > 0, find y. € Z such that

(Pye, F?>X><L2(q7) +e(ye,¥)z = ((f, Yobs)» FV)XXLQ(qT),XxB(qT) , YyeZ, (QR)

equivalent to the minimization over Z of

y =Py = (f, Yobs) 3 27y +ElIVIZ

(10)
= 1Ly — I+ 11y — Yobsla(qy, +ellyI



Remark 3: Stabilized mixed formulation "a la Barbosa-Hughes"
4

A= {A € C([0, T Hy ()N C'([0, T]; LA(Q)), LA € LA(Qr), A, T) = M( T) = 0}~

sup inf £ S A
)\E?\yez ra(YsA)

(6%
‘C",Ot(yv >‘) = ‘Cf’(yv A)_EIIL)‘ + (y - yobs)1wHi2(QT)7 a>0.

H. Barbosa, T. Hugues : The finite element method with Lagrange multipliers on the boundary: circumventing
the Babusyka-Brezzi condition, 1991



Remark 3: Stabilized mixed formulation "a la Barbosa-Hughes"
4

A= {/\ € C([0, T]; H(Q))nC' ([0, T]; L3(Q)), LX € L2(Q7), A, T) = X\e(-, T) = o}.

sup |nf Lra(y, )
XENY

(03
‘C",Ot(yv >‘) = ‘Cf’(yv A)_EIIL)‘ + (y - yobs)1wHi2(QT)7 a>0.
For o > 0, find (y, ) € Z x A such that

{ar,a(y,y)+ba(y,A) = hao(), ey )

boz(y) >‘) - CQ(A’X) = IZ,Q(X)v VX S A)
T
ara:ZxZ—R, aray,y)=010-« / yydxdt+r/ (L L) y—1(gyat;
0
ba  ZXA—R, balyA)i= /O 19 1y -1 ey a/quL)\ dxt,
Ca iAXA DR, ca(hN)i= a/ LALX, dat
Qr
Mo i Z= R ha() =0 =a) [ yopoyaet,
ar

baoiN—=R, by = —a/ Yobs L dxdt.
ar

H. Barbosa, T. Hugues : The finite element method with Lagrange multipliers on the boundary: circumventing
the Babusyka-Brezzi condition, 1991



Remark 3: Stabilized mixed formulation "a la Barbosa-Hughes"

Proposition
Under the hypothesis (H), for any o € (0, 1), the corresponding mixed
formulation is well-posed. The unique pair (y,\) in Z x N satisfies

(1—a)® a?
oulyl + 02IR < (525 4 2 yonslag

with 61 := min(1 — a,rn_1),92 = %min (a, C&})

(12)




Remark 3: Stabilized mixed formulation "a la Barbosa-Hughes"

Proposition
Under the hypothesis (H), for any o € (0, 1), the corresponding mixed
formulation is well-posed. The unique pair (y,\) in Z x N satisfies

1—a)? a?
oulyl + 02IR < (525 4 2 yonslag (12

with 61 := min(1 — a,rn_1),92 = %min (a, C&})

Proposition
Ifo € (0,1), the solution (y, \) € Z x X' of (22) coincides with the stabilized o
solution in Z x A.




Remark 4 - Link with controllability

The mixed formulation has a structure very closed to the one we get when we address

- using the same approach - the null controllability of (1): the control of minimal

L2(qgr)-norm which drives to rest (yo, 1) € HJ(Q) x L3(Q) is given by v = ¢ 14,

where (¢, \) € ¢ x L2(0, T; H}(Q)) solves

I(®), Ve o
0, VX € [3(0, T; H{ (),

{ a(e, @) + b7, A)
b(p, )

where
a:0xd R, a(p,P) = // o(x, )B(x, t) dx dt
ar
.
b:ox [2(0, T; H)(0,1)) = R, b(p,\) :/ Lo A >yt
0 Y
1
e =R, I(p)=—<ei0), % >H71(Q)’H&(Q) +/O ©(+,0) y1 dx.

with ® = {¢ € L?(qgr), ¢ = 0 on X7 such that Ly € L2(0, T; H='(0,1))}.
[Cindea- Miinch, Calcolo 2015]



Remark 5

"Reversing the order of priority" between the constraint y — yops = 0 in L2(g7) and
Ly — f = 0in X, a possibility could be to minimize the functional

minimize J(y) := ||Ly — f||%
subjecttoy € Z andto ¥y — yops =0 in L2(gy)

via the introduction of a Lagrange multiplier in L2(qg7).

The proof of the inf-sup property : there exists § > 0 such that

Mg, Ay axat
ret2(ar) yez Ml 2 I¥lly

of the corresponding mixed-formulation is however unclear.

This issue is solved by the introduction of a e-term in J: (Klibanov-Beilina 20xx).
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Remark 6 : Dual of the mixed problem - Minimization over A

Theorem

inf Lr(y,\) = — inf J7*(A)  + Lr(¥o,0
Sup it Le(y:A) = = inf, JT7(A) -+ £r(yo,0)

where yy € Z solves ar(yo,y) = I(¥),Vy € Y and

1 T
X SR, J,**()\):E/ (P A) xr dt — b(yp, A)-
0
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Remark 6 : Dual of the mixed problem - Minimization over A

Theorem

inf Lr(y,\) = — inf J7*(A)  + Lr(¥o,0
Sup it Le(y:A) = = inf, JT7(A) -+ £r(yo,0)

where yy € Z solves ar(yo,y) = I(¥),Vy € Y and

1 T
X SR, J,**(/\):E/O (P A) xr dt — b(yp, A)-

Lemma
Let P; be the linear operator from X' into X' defined by

Ped:=—AT"(Ly), YA€ X' where yeZ solves ar(y,y)=b(y,)\),VyeZ

ie.
T T
/ yydxdt + r/ <Ly, Ly >4+ dt:/ <Ly,A>x x dt,Vy € Z. (15)
qr 0 0

For any r > 0, the operator P, is a strongly elliptic, symmetric isomorphism from
X" into X'.




Remark 7 - Boundary observation

(Yo, y1) € HI(Q) x [2(Q) - Q of class C?

The results apply if the distributed observation on g7 is replaced by a Neumann
boundary observation on a sufficiently large subset X 1 of 9Q x (0, T) (i.e. assuming

% =y, 0bs € L2(T7) is known on ¥7).

If (Qr, X7, T) satisfy some geometric condition, then there exists a positive constant
Cobs = C(w, T, HCHC1 @) 19l oo (@)) such that

0
1030 O 5y < e 5

Ly ),vyez (16)
25 12(ar

It suffices to re-define the form ain by a(y, y) := [fy, 2 %Y dodx and the form / by
I(y) = fsz 61,}’0[)5 dodx forally,y € Z.



Inverse problem 2: Simultaneous reconstruction of y and the source from 9,y
f(x, 1) = o(t)u(x)
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f(x, 1) = o(t)p(x)
ci=1,d(x,1) = d(x) € LP(Q), o € C'([0, T]), 0(0) # 0, u € H~1(Q)

Theorem (Yamamoto-Zhang 2001)

Assume that (I'r, T, Qr) satisfies the geometric optic condition. Let
y = y(u) € C([0, T]; H{(©2)) N C'([0, T]; L3(2)) be the weak solution of (1) with
c:=1and (y,y1) = (0,0). 3C > 0 s.t.

071”#“/-/71(9) < Hav,VHLZ(rT) < C”MHH*WQ)? Vi e H1(Q).
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c:=1and (y,y1) = (0,0). 3C > 0 s.t.

071”#“/-/71(9) < Hav,VHLZ(rT) < C”MHH*WQ)? Vi e H1(Q).




Inverse problem 2: Simultaneous reconstruction of y and the source from 9,y

f(x, 1) = o(t)p(x)
ci=1,d(x,1) = d(x) € LP(Q), o € C'([0, T]), 0(0) # 0, u € H~1(Q)

Theorem (Yamamoto-Zhang 2001)

Assume that (I'r, T, Qr) satisfies the geometric optic condition. Let
y = y(u) € C([0, T]; H{(©2)) N C'([0, T]; L3(2)) be the weak solution of (1) with
c:=1and (y,y1) = (0,0). 3C > 0 s.t.

071”#“/-/71(9) < Hav,VHLZ(rT) < C”MHH*WQ)? Vi e H1(Q).

This leads to the extremal problem :

. 1 r '
(Y1) = 31000 — Yoaoe)laey + 5 [ (Ly = on)? ot
T

subject to (y, 1) € W = {(y, w): y € G0, TI; Hy(2)) n €1 ([0, TI; £2(2)),
)€ H1(Q), Ly — o = 0in Qr, (-, 0) = yi(-, 0) = o}.

(Py.u)
Attached to ||(y, p)|lw := ||c(x)8yy||L2(rT), W is a Hilbert space.



Recovering the solution and the source f when the pair (y, f) is unique

r= {(y,u);y € C([0, TI; Hy () N C'([0, TL; LA(R)), u € H™'(Q),
(17)
Ly~ on € L2(@n). (.0 = (- 0) =0 .

Hypothesis
3Cobs = C(T'7, T, [[Cll o1 q): dllLoe () > 0 st -

lall? 1) < cobs(nc(x)auyniz( )ity = ouniz(oﬂ), V(y.m) €Y. (He)

rr



Recovering the solution and the source f when the pair (y, f) is unique

r= {(y,u);y € C([0, TI; Hy () N C'([0, TL; LA(R)), u € H™'(Q),
(17)
Ly~ on € L2(@n). (.0 = (- 0) =0 .

Hypothesis
3Cobs = C(T'7, T, [[Cll o1 q): dllLoe () > 0 st -

lall? 1) < cobs(nc(x)auyniz( )ity = ouniz(oﬂ), V(y.m) €Y. (He)

rr



Recovering the solution and the source f when the pair (y, f) is unique

v= {(y,m;y € C([0, TI; H§(22)) N C'([0, T]; L3(Q)). u € H'(Q),
(17)
Ly~ on € L2(@n). (.0 = (- 0) =0 .

Hypothesis
HCobs C(rT» T, ||C||c1(Q ||dHL°o Q)) >0s.t:

”u”Z 1(Q < CObS(HC( )8Vy||L2 r7) + ”Ly - O-p“”i2(or))7 V(y,u) ey. (HZ)

Then, Vn > 0, we define on Y the bilinear form

(), () y = //r (e(x)2 0.y 8.7 dodt+n | /Q (Ly—ou) (Ly—om) dxat Yy, € Z.
T T (18)
H(y,z)”Y:: <(_y,,U«),(_y,,U«) >y

Lemma
Under the hypotheses (Hy), the space (Y, || - ||y) is a Hilbert space.



Recovering the solution and the source f: mixed formulation

Find ((y, ), A) € Y x L2(Qr) solution of

Iy, %), v(y,m)eY

{ ar((y, ), (7.0)) + b7 77). A) “9)
0, YA € LZ(QT),

b((y, 1), )

where
a:YxY =R, al((y.u) (V.0) = //r R)00y0,7 doct
T
—H//(;; (Ly — op)(Ly — op) dxdt,r > 0
T
b:Y x[3(Qr) =R, b((y,p),\) = //Q MLy — op)dx dt,
.

I2Y =R, Iy,p):= // CQ(X)BVyy,,,obsdet.
rr

5N. Cindea, AM, Simultaneous reconstruction of the solution and the source of
hyperbolic equations from boundary measurements: a robust numerical approach,
Inverse Problems (2016)



PARABOLIC SITUATION

QCRV(IN>1)-T>0,ce C'(QR)),deL>(Qr), yo€H

y=0, Yr:=0Qx(0,T) (20)

{ Ly:=y;—V-(cVy)+dy=1f, Qr:=Qx(0,T)
y(-,0) = Yo, Q

» Inverse Problem : Distributed observationon gr = w x (0, T),w C Q

Given (Vops, f) € (L2(q7), X), find y 5.t. {(20) and y — yops =0 on qr}

WELL-KNOWN DIFFICULTY:

(Ly € 12(Qr).y € 2(q7). ¥z, = o) — y € C(I5. TLH)(Q), V6> 0



Observability inequality for the heat eq. (Carleman inequality)

Let pc, pc,0 be some Carleman weights of the form

po(t) = t* exp(1/1),  peo(t) = t” exp(1/1)

// p32ly[? ox dt
_c(// \Ly|2dxdt+// oz |y2dxdt>,Vye Y.
Q

(21)



Second order mixed formulation .... as for the wave equation

We then define the following extremal problem :

Minimize J(y) := %// P 21y (X, ) = Yobs(X, t)|2dxdt+r//o (p~Ly)? dx ot
ar T

Subjectto y e W := {y €Y:p'ly=0in LZ(QT)}

(P)
with pg, p € R where (p« € R})

R={w:we C(Qr);w>p,>0in Qr;w € L>(Q x (6, T)) V5 > 0}



Second order mixed formulation .... as for the wave equation

We then define the following extremal problem :

Minimize J(y) := %// P 21y (X, ) = Yobs(X, t)|2dxdt+r// (p~Ly)? dx ot
ar Qr
Subjectto y e W := {y €Y:p'ly=0in LZ(QT)}

(P)
with pg, p € R where (p, € R})

R:={w:we C(Qr);w>p,>0in Qr;w € L=(Q x (5, T)) V§ > 0}
Let )y := {y €C?(Q7):y=0o0n ):T} and for n > 0, p € R, the bilinear form by
= [[ otyyaaten [[ fpyaca vy e,
ar T

Let Y be the completion of ), for this scalar product endowed with the norm

1B = o5 ' VIZagqry + 1o LY gy VY € V-



Mixed formulation

Find (y,A) € Y x L2(Qr) solution of

{ar<y,y)+b(y,x) = y) Ve,
b(y,X) = 0 Y € L2(QT),

where
ar:YxY—-R, ay,y) = // pgzy?dxdt-kr// p 2Ly Ly dx dt
ar Qr
b:Y x L2(Qr) — R, b(y,A)::// p~ 'Ly \dx dt
Qr

1Y SR, I(y)::// P5'2Y Yobs O
ar

(22)



Mixed formulation

Theorem
Letpy € R and p € RN L*>°(Qr).

1. The mixed formulation (22) is well-posed.

2. The unique solution (y,\) € ¥ x L?(Qr) is the unique saddle-point of the
Lagrangian L, : Y x L?(Qr) — R defined by

Ly, N) = paly,y) + by N) ~ 19).

3. The solution (y, \) satisfies the estimates

- —2 —1
Wlly < llog Yovsllizary:  1Mli2gary < 2y/ox 2lolBa oy + 71105 " Yobslliz(ay):



Mixed formulation

Theorem
Letpy € R and p € RN L*>°(Qr).

1. The mixed formulation (22) is well-posed.

2. The unique solution (y,\) € ¥ x L?(Qr) is the unique saddle-point of the
Lagrangian L, : Y x L?(Qr) — R defined by

Ly, N) = paly,y) + by N) ~ 19).

3. The solution (y, \) satisfies the estimates

- —2 —1
Wlly < llog Yovsllizary:  1Mli2gary < 2y/ox 2lolBa oy + 71105 " Yobslliz(ay):

Corollary
Letpy € R,p € RN L>*(Qr) and assume 3K s.t.

po < Kpco, p<Kpe in Qr.

If (y, M) is the solution of the mixed formulation (22), then 3C > 0 such that

logollizar) < Cllylly-



Stabilization

The first equation of the mixed formulation (22) reads as follows:

// ngyydxdtJr// p*Mﬂdxdt:// Py 2 Yobs Y dx dt Wy € V.
ar Qr ar

p~ '\ € L2(Qr) solves the parabolic equation in the transposition sense, i.e. p~'A
solves the problem:

L (p7"N) = —pg 2 (¥ — Yobs)1ar in  Qr,
p~IA=0 on X7,
(P~ "N, T)=0 in Q.

Therefore, p~'A belongs to C°([0, T1; H(Q)) N L2(0, T; H2(Q) N HI(R)).

Ai={X:p7 "X e CO0, TILA(R)), po L* (07" N) € L2(Qr),
p"A=00nZ7, (p~"N(, T)=0}.

sup inf Lra(y,N),
sup nf, Lr, (v, A)

2

(0%
Lra(y,\) = Lr(y,\) — E’ ‘o
.

oo (L*(p*1 )+ o2y — yobs)u)

(23)



Dual formulation
For any r > 0, let us define the linear operator 7; from L?(Qr) into L?(Qr) by

TA:=p 'Ly, vxel?Qr)
where y € Y is the unique solution to
ar(y7Y):b(Y7A)7 Wey (25)

Lemma

For any r > 0, the operator I, is a strongly elliptic, symmetric isomorphism from
LZ(QT) into LZ(QT).



Dual formulation
For any r > 0, let us define the linear operator 7; from L?(Qr) into L?(Qr) by

TA:=p 'Ly, vxel?Qr)
where y € Y is the unique solution to

ar(y,y) =b(y,A), vyey. (25)

Lemma
For any r > 0, the operator I, is a strongly elliptic, symmetric isomorphism from
LZ(QT) into LZ(QT).

Proposition
Foranyr > 0, letyy € Y be the unique solution of

a’(.VOv?): I(?)v Wey
and let J5* : L?(Qr) — L2(Qr) be the functional defined by
1
IO = 1 // (TIAAdx dt — b(yo, A).
2 /o,
The following equality holds :

sup inf Lr(y,A\)=— inf  J*F(A) + Lr(%,0).
Ael2(Qr)YEY A€L2(Qr)



H} — L2 first order formulation

First order formulation involving y and the flux p = ¢(x)Vy.

y=0 on X1, (26)

{I(y,p):=yzv-p+dy:f, J(y,p) :=c(x)Vy—-p=0 in Qr,
y(x,0) = yo(x) in Q.

(¥0,f) € L3(Q) x L2(Qr) = p € L3(Qr),y € L?(0, T, H} (), 1 € L2(0, T, H~'(Q))

» Inverse Problem : Distributed observationon gr = w x (0, T),w C Q

{X = L*(qr),
Given (Yops, f) € (L2(q7), X), find (y, p) 5.t. {(26) and y — ypps =0 on qr}

8D. de Souza, AM, Inverse problems for linear parabolic equations using mixed
formulations - Part 1 : Theoretical analysis, Journal of Inverse and Ill posed problems
(2017)



Parabolic case: HJ — L first order formulation of the parabolic

The extremal problem is then :

Minimize J(y,p) 2// Py 2ly(x, t) — Yops(X, )2 dx dt +r...

(y,p) eV = {(y, p)eU : p; ' T(y,p) =0inL3(Qr), p~'Z(y,p) =0in L2(Or)}



Parabolic case: HJ — L first order formulation of the parabolic

The extremal problem is then :

Minimize J(y,p) 2// Py 2ly(x, t) — Yops(X, )2 dx dt +r...

(y,p) eV = {(y, p)eU : p; ' T(y,p) =0inL3(Qr), p~'Z(y,p) =0in L2(Or)}
U - completion of Uy := {(y, p) e C'(QT)xC'(Q7) :y=0o0n }:T} for

((,P). (7, Pt // o5y ydxdrm// pT27(y,P) - T(7,P) dx ot

+”2//o p2Z(y,P)I(y,P) dxdt ¥(y,p),(¥,P) € Up.

forany ny,m2 > 0and any p, po, p1 € R

I P)IE = llog ' Y122y +milley ' T, g,y + melle ™ 2 P22 g



Parabolic case: H] — L? first order formulation - Mixed formulation

Precisely, we set X := L?(Qr) x L2(Qr) and then we consider the following mixed
formulation : find ((y, p), (A, 1)) € U x X solution of

{ar«y,p),(y,p))+b((y,p),(x,u>) = 17B)  VEREU o
b((y,p),(\,m) = 0 YO, ) € X

where

aUxU—E  al(y.p).(7.p) = // ooy ¥ dxa

+r // p72T(y.P)- T, ﬁ)dxdt+r2// I(y, p)Z(7.P) dx df

billx X — B, b((y.p).(\ ) = //oTpr J(y,p)~udxdt+//07p*1z(y,p>xdxdt

U =R, I(y,p):= // Po 2Y Yobs dx dit.
ar

vr=(n,nr) € (R")?



Parabolic case: H] — L first order formulation - Global stability

Proposition (Imanuvilov-Puel-Yamamoto, 2010)

B(x
pp(X, 1) :=exp (%) , B(x) =K (eK2 - eﬂo(x)) ,
pp,O(Xv t) = tpp(xv t)v Pp,1 (X7 t) = t71pp(xv t)7 pp,?(xv t) = tizpp()ﬂ t)
3C = C(w,T) > 0stt.
1o oy o 1 9¥ e 0y < C (105G 1oy + om0l 20y + 175 ey )

for any
yek={yel20,T:H(Q): y € 2O, T:H ()},
ly=g+V-GinQr, (g,G)€ L3(Qr)x L¥(Qr).

Ly =Z(y,p) = V- J(¥,p),
JW,p)=c(x)Vy —p, Z(y,p):=yi—V-p+ady



FINITE DIMENSIONAL APPROXIMATION



Conformal Approximation of the mixed formulation (boundary observation

case, to fix idea)
Let then Z}, and Ay, be two finite dimensional spaces parametrized by the variable h
such that
ZncZ, MCLl?Qr), Vh>0.
Then, we can introduce the following approximated problems : find (z, Ap) € Z, x Ap
solution of

{ ar(yn, ¥n) +b(¥n,An) = 1(¥n), V¥h € Zp (28)
b(yn Xn) = 0, YXn € Ap.



Conformal Approximation of the mixed formulation (boundary observation

case, to fix idea)
Let then Z}, and Ay, be two finite dimensional spaces parametrized by the variable h
such that
ZncZ, MCLl?Qr), Vh>0.

Then, we can introduce the following approximated problems : find (z, Ap) € Z, x Ap
solution of

{ a(n In) + DT ) = I7h). V€2 8

b(yh,Xh) = 07 VXh € Ap.

For any h > 0, the well-posedness is again a consequence of two properties

» the coercivity of the bilinear form a, on the subset
Nin(b) = {yh € Zh; b(¥n, An) =0 VAp € Ap}. From the relation

.
ar(y,y) > EllyH%, VyeZ

the form a, is coercive on the full space Z, and so a fortiori on Np(b) C Z, C Z.



Conformal Approximation of the mixed formulation (boundary observation

case, to fix idea)
Let then Z}, and Ay, be two finite dimensional spaces parametrized by the variable h
such that
ZncZ, MCLl?Qr), Vh>0.

Then, we can introduce the following approximated problems : find (z, Ap) € Z, x Ap
solution of

{ a(n In) + DT ) = I7h). V€2 8

b(y’hxh) = 07 VXh € /\h.
For any h > 0, the well-posedness is again a consequence of two properties

» the coercivity of the bilinear form a, on the subset
Nin(b) = {yh € Zh; b(¥n, An) =0 VAp € Ap}. From the relation

r
ar(y,y) > EllyH%, vyez
the form a, is coercive on the full space Z, and so a fortiori on Np(b) C Z, C Z.

» The second property is a discrete inf-sup condition : there exists § > 0 such that

b(yn, An)

op = e LCAGUPAE. S
An€Mn y, ez, [1YnllzZ, [ AnllA,

(29)

A necessary condition is: dim(Z,) > dim(Ap)



Linear system

Let np = dim Z,, m, = dim Ap, and let the real matrices A, , € R, By, € R™h"h,
Jp € RM:Mh and Ly, € R™ be defined by

ar(Yn: ¥n) = (Arn{¥n}, {(Vn ) ron gon VY, ¥n € Zn,
b(yn: An) = (Bn{yn}, {*n})rmn gma VYn € Zn, An € An,
— _ — (30)
/ o )‘h>\h dx dt = <Jh{>\h}7 {)‘h}>Rmh,]R’"h V)\h, )‘h c /\h,
.
I(yn) = (Ln, {¥n})rrn Vyh € Zp,

where {yx} € R"» denotes the vector associated to y, and (-, )gn, gn, the usual scalar
product over R™. With these notations, the problem (28) reads as follows: find
{yn} € R™ and {\p} € R™ such that

Bh 0 Rn+Mp:Np+mp {)\h} ROn+Mp 0 RA+Mp

The matrix of order my, + np, is symmetric but not positive definite.



First estimate

Proposition
Leth > 0. Let (y,\) and (yn, A\n) be the solution of (22) and of (28) respectively. Let &y,
the discrete inf-sup constant defined by (29). Then,

Iy = ymlle <21+ )y, Z0) + =l M)

d(y, Zn) + 7d(/\ An)

DY <
2= 2nlizan < ( féh) NG

d()\7 /\h) = inthe,\h ||)\ — /\h||L2(O )



Choice of the conformal spaces Z, and Ay,

We introduce a triangulation 7}, such that Qr = UkeT, K and we assume that {7} n~0
is a regular family. We note h := max{diam(K), K € 7j}.



Choice of the conformal spaces Z, and Ay,

We introduce a triangulation 7}, such that Qr = UkeT, K and we assume that {7} n~0
is a regular family. We note h := max{diam(K), K € 7j}.

We define the finite dimensional space

An = {Xn € C°(Qr), Anlk € P1(K) VK € T, Ap=0on I7}C L*(Qr)



Choice of the conformal spaces Z, and Ay,

We introduce a triangulation 7, such that Q7 = UkeT, K and we assume that {7} n~0
is a regular family. We note h := max{diam(K), K € 7j}.

We define the finite dimensional space

An = {Xn € C°(Qr), Anlk € P1(K) VK € T, Ap=0on I7}C L*(Qr)

The space Z, must be chosen such that Ly, € L?(Q7) for any yj, € Zy,. This is
guaranteed as soon as yj, possesses second-order derivatives in L2(Qr). A conformal
approximation based on standard triangulation of Qr is obtained with spaces of
functions continuously differentiable with respect to both x and t.



Choice of the conformal spaces Z, and Ay,

We introduce a triangulation 7, such that Q7 = UkeT, K and we assume that {7} n~0
is a regular family. We note h := max{diam(K), K € 7j}.

We define the finite dimensional space

An = {Xn € C°(Qr), Anlk € P1(K) VK € T, Ap=0on I7}C L*(Qr)

The space Z, must be chosen such that Ly, € L?(Q7) for any yj, € Zy,. This is
guaranteed as soon as yj, possesses second-order derivatives in L2(Qr). A conformal
approximation based on standard triangulation of Qr is obtained with spaces of
functions continuously differentiable with respect to both x and t.

We introduce the space Zj, as follows:

Zp={pn€ ®pe C'(Qr): ynlk EP(K) VK ETh, yp=00nX7}C Z

where P(K) denotes an appropriate space of polynomial functions in x and t.



Choice of the conformal spaces Z, and Ay,

We introduce a triangulation 7, such that Q7 = UkeT, K and we assume that {7} n~0
is a regular family. We note h := max{diam(K), K € 7j}.

We define the finite dimensional space

An = {Xn € C°(Qr), Anlk € P1(K) VK € T, Ap=0on I7}C L*(Qr)

The space Z, must be chosen such that Ly, € L?(Q7) for any yj, € Zy,. This is
guaranteed as soon as yj, possesses second-order derivatives in L2(Qr). A conformal
approximation based on standard triangulation of Qr is obtained with spaces of
functions continuously differentiable with respect to both x and t.

We introduce the space Zj, as follows:

Zp={pn€ ®pe C'(Qr): ynlk EP(K) VK ETh, yp=00nX7}C Z

where P(K) denotes an appropriate space of polynomial functions in x and t.



C' finite element over Qr

Zn=1{yn€ Z, € C'(Qr) : ynlx € P(K) VK € Tp, yo=0o0n X7}

where P(K) denotes an appropriate space of polynomial functions in x and t.

"P.G. Ciarlet, The finite element for elliptic problems, North-Holland, 1979



C' finite element over Qr

Zy={yn € Zh € C'(Qr) : ynlk € P(K) VK € Tp, yp=0o0n X1}

where P(K) denotes an appropriate space of polynomial functions in x and t.

We may consider the following choices for P(K):

1. The Bogner-Fox-Schmit (BFS for short) C' element defined for rectangles. It
involves 16 degrees of freedom, namely the values of yx, yp x, ¥a.t, Yn.xt ON the
four vertices of each rectangle K.

"P.G. Ciarlet, The finite element for elliptic problems, North-Holland, 1979



C' finite element over Qr

Zy={yn € Zh € C'(Qr) : ynlk € P(K) VK € Tp, yp=0o0n X1}

where P(K) denotes an appropriate space of polynomial functions in x and t.

We may consider the following choices for P(K):

1. The Bogner-Fox-Schmit (BFS for short) C' element defined for rectangles. It
involves 16 degrees of freedom, namely the values of yx, yp x, ¥a.t, Yn.xt ON the
four vertices of each rectangle K.

2. The reduced Hsieh-Clough-Tocher (HCT for short) C' element defined for
triangles. This is a so-called composite finite element and involves 9 degrees of
freedom, namely the values of yp, yh x, ¥n,: On the three vertices of each triangle
K.

"P.G. Ciarlet, The finite element for elliptic problems, North-Holland, 1979



Convergence rate in Z and in L2(Qr)

Proposition (BFS element for N = 1 - Convergence in Z)
Leth> 0, letk < 2. If (y,\) € H*2(Qr) x H*(Q7), 3K > 0

1 1 1 1 1
- <K — 4+ — ), A=A <K((1+ H.
Iy = yallz < (*W +f) A= Mlizan < K ( (14 ﬂh) +ﬂh)




Convergence rate in Z and in L2(Qr)

Proposition (BFS element for N = 1 - Convergence in Z)
Leth> 0, letk < 2. If (y,\) € H*2(Qr) x H*(Q7), 3K > 0

1 1 1 1 1
- <K — 4+ — ), A=A <K((1+ H.
Iy = yallz < (*W +f) A= Mlizan < K ( (14 ﬂh) +ﬂh)




Convergence rate in Z and in L2(Qr)

Proposition (BFS element for N = 1 - Convergence in Z)
Leth> 0, letk < 2. If (y,\) € H*2(Qr) x H*(Q7), 3K > 0

1 1 1 1 1
ly — yh||z<K(1+—+—)hk, 1A = Xnll,2 gK((1 ) + )hk.
Jion i JER) o o
Writing the ineq. obs. for y — y, € Z and using that L(y — y,) = —Lyp, we get

1y = Yhli22(ary < Ca.7(Cons + 1)IB (Y = yn)lar ) + Iyl g )

< Ca,7(Copbs + 1) max(1, *)Hy = ¥nllz
VN

Theorem (BFS element for N = 1 - Convergence in L?(Qr))
Leth >0, letk < 2. If (y,\) € H*2(Qr) x H*(Qr),

2 1 1
y—y gKmax1,—(1+ +—)hk.
ll wll2(ar) ( \/77) N



The discrete inf-sup test - Evaluation of oy,
Taking n = r > 0 so that ar(p, ) = (v, @)e, We have 8

5p = inf{\/S L BhA Br{dn} = 6 Jn{An}, Y {An} € RN\ {0}}

6,7;7 ~ Cr as h— 0+, Cr>0 (32)

h
7

Figure: BFS finite element - Evolution of /73y , with respect to h for r = 1 (0J),
r=10"2 (), r=hx andr = R ().

8K. Bathe, D. Chapelle, The discrete inf-sup test, (2003)



Choice of r versus dp,

2 1 1
Iy = yull2(qp) < Kmax(1, W)O tot W) he.

Optimal parameter: r ~ 1 leading to [ly — yxll;2(q,) < KH~".



Choice of r versus dp,

2 1 1
Iy = yull2(qp) < Kmax(1, W)O tot W) he.

Optimal parameter: r ~ 1 leading to [ly — yxll;2(q,) < KH~".

Vr 1 1«
1A= Anll2iap) < K27(1 Tt ﬁ)h :

Optimal parameter: r ~ h leading to [|X — Anll;2(q,) < Kohk—1.



€ (0, 1) - Stabilized mixed formulation

The problem (11) becomes : find (yp, A\p) € Z x A solution of

{ ara(Yn¥n) + b ¥n) = h.a(Fn) VY € Zn
ba (X, ¥h) — Ca(An, An) = bo(An), VAn € Ap,

Ay = {)\ € Zh; )\(-7 T) = )\[(~7 T) = 0}

Proposition (BFS element for N = 1 - Rates of convergence )
Leth> 0, letk € {0,2}. If the solution (y, \) € H**2(Qr) x HX(Q7), 3K > 0

Iy = ¥allz + I = Anlla < KHE.



Recovering the solution and the source € H='(Q)

{ar((yh,uh),m,uh))+b(yh,xh) = 1), Y(Vhs Tin) € Yh

z e (34)
b((yhuuh)7)‘h) 0, VAp € Ap.

Theorem (BFS element for N = 1 - Rate of convergence L?(Qr))

Leth> 0, letk,q € {0,2} be two nonnegative integers. If
((y: 1), A) € HKP2(Qr) x HI(Q) x H¥(Qr), 3

K = K(I¥lle2(any Il ity €l 1 gy 1 loe o)

independent of h, such that

1
1y = ¥alliz(ap) < KCa,7(1 + lloll 20,7y v/ Cobs) max(1, %)

[(1 \[15’7 +17)h"+ (1 +ﬁ)(A ) }




First order versus second order - Heat case

Heat eq. ; Observation on gr
» Second order formulation in (y, A) ;

Q3 x Qy approximation => &, &~ %

h

(v:A) € H3(Qr) x H'(Qr) = llp7 oy = ¥n)llizqay) < KW
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First order versus second order - Heat case

Heat eq. ; Observation on gr

» Second order formulation in (y, \) ;

Q3 x Qy approximation => &, &~ %
_ h
(v,A) € H3(Qr) x H'(Qr) = Hﬂtl(y— yllziapy < KW

» First order formulation in ((y, p), (A, »));

(@1 x Q1) x (Q1 x Qq) approximation; = 6, = 0Vr, h > 0 (Ker(B}) # {0})
» First order stabilized formulation in ((y, p), (A, 1)) is needed

If (v, ), (\, ) € (H*(Qr) x H*(Qr)) x (H'(Qr) x H'(Qr))

o7 5 = ¥n)lizgay) < Kh



EXPERIMENTS



Numerical illustration - N = 1

(EX1) yo(x) =1—12x 1], y1(x) =1@/3.2/3(x),  x€(0,1)

in H} x L2 for which the Fourier coefficients are

42 1
& = 542 sin(rk/2), by = H(cos(rrk/3) —cos(2rk/3)), k>0

f=0. T =2 - The corresponding solution of (1) with ¢ = 1, d = 0 is given by

y(x,t) = Z (ak cos(kmt) + %‘r sin(kwt)) V25sin(kmx)

k>0



Example 1 - N = 1 - Observation on gr

gr =(0.1,0.3) x (0, 7)

h 7.01 x 1072 3.53 x 10— 176 x 102  8.83 x 1075 4.42 x 109
Ty=ynll, 2
PO | q01 %1071 481 x 1072 2.34x 1072 1.45x 1072  5.68 x 1073
T2y
ly=ynll, 2
WL(QT) 134 x10~1  505x1072 237x10"2 1.16x10"2  5.80 x 1073
L%(qT)
\|Ly,,|\L2<0T) 718 x 1072 659 x 1072  6.11x 1072 555x 1072 510 x 1072
Xl 20y 1.07x107%  470x 1075 232x107% 1.15x10"5 576x10°°
# CG iterates 29 46 83 133 201
Iy = ynll 20 Ily = ynll,2
@ _ o(h°‘574), (ar) :O(h°'94). (35)
I¥ll2ap) 1¥ll2(q7)
_ 0.123
Itynll 2qpy = OB ). (36)



Example 2 - N = 1 - Observation on gr

Y—yn and Xp

in Qr
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Iterative local refinement of the mesh according to the gradient of y,



Example 1 - N = 1 - Mesh adaptation

t 0o X
Reconstructed state y;, on the adapted mesh
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Exemple 2 : N =1 - Non cylindrical domain qr
Triangular meshes - reduced HCT elements

Domain q‘T (a) and domain q% (b) triangulated using some coarse meshes.



2D example: Q = (0,1)? - Observation on gr

(a)

(b)

Mesh Number 0 1 2 3
Number of elements | 5320 15320 31740 120160
Number of nodes 3234 8799 17 670 64 411

Characteristics of the three meshes associated with Q7.




2D example: Q = (0,1)? - Observation on gr
(Y0, y1) € H3(Q) x L3(Q):

Yo(xq, X2)

— (1= [2x1 —1))(1 — 2% — 1
(EX2-2D) {y1(x1,x2):g( [2x; — 1])(1 — [2x2 — 1)

122(X1,%2)
3’3

The Fourier coefficients of the corresponding solution are

(X1 9X2) €Q

(37)

Mesh number 0 1 2 3
Ty—=yall
CMRE@D | 47451072 372x 1072 24x 1072 1.35x 102
2@,
ILynlli2ay) 1.18 0.89 0.99 0.99

IMllizigpy | 321x10°5  1.46x10°% 1.02x 1075 3.56 x 10

Table: Example EX2-2D — r = A2



2D example - Observation on gr

0.5

Q

&

-0.2

T T T
0.33 0.85 1.4

(a)

(b)

Mesh number

0 1 2

Number of elements
Number of nodes

5730 44900 196 040
3432 24633 103566

Characteristics of the three meshes associated with Q7.



2D example - Observation on gr

Ay =10, inQ 3
{ Yo =0, on a9, yi =0
Mesh number 0 1 2
Vn—7n]
P P@D | 188 % 10~ 8.04x 1072 5.41 x 102
2o,
ILYall 2y 3.21 2.01 1.17

[Anllzq,) | 826x 1075 3.62x 1075 2.24 x 10-°

r=h-T=2



2D example - Observation on qr

y and y, in Qr



Numerical illustration - N = 1 - Observationon 't
f=0-T=2

(EX2) yo(x)=1—[2x—1], y1(x) =11/3,2/3(x), x€(0,1)

in H} x L2 for which the Fourier coefficients are

——

U
3 0.5 1 15 2
t

Figure: The observation y,, ops 0n {1} x (0, T) associated to initial data EX1.



Numerical illustration - N = 1 - Observationon 't

h 7.07 x 10~ 353 x 1072 1.76 x 1072  8.83 x 1075  4.42 x 109

HY—MHLz(QT)
T2q.)
160 6=yl 20

1.63x 1072  6.63x 1073 278x10°% 129x10~% 572x10~*

767 x107%  495x107% 324x107% 216x1073 1.48x 1073

“BV}/HLZ(FT)
Iynl2(ap) 0.937 1.204 1.496 1.798 2.135
IAall 774 x 1073 3.74%x107% 1.72x107% 790 x 10~*  3.60 x 104

mi2ar)
card({\p}) 861 3321 13 041 51681 205 761
# CG iterates 57 103 172 337 591

Iy =yl 2. 10w (y = ya)ll 21
@) _ h1-20), (r) — O,
F=Hh- HYHLZ(QT) Ha"yHLZ(I'T) (39)

Inll2gpy = OB Il 2, = O™ *#).




Example 2 - N = 2 - The stadium

AVp vaava
SR
R svANATAST

SOALE

STOEAT
RS

X
S 2 Zave
SRSEREE
LTAVAY AVAN o0

Figure: Bunimovich’s stadium and the subset I of 9Q on which the observations are
available. Example of mesh of the domain Q7.



2 - Recovering of the initial data

Example 2 - N

Figure: (a) Initial data yo given by (38). (b) Reconstructed initial data y(-, 0).



N = 1 - Reconstruction of y and p from the boundary

i[ 0.1
0.9F
0
0.8f
o7r -0.1
0.6/
0.5r -0.2
0.4¢
0.3f -0.3
0.2
0al -0.4
0
. . | | 05 . . .
0 0.2 0.4 0.6 0.8 1 (] 0.5 1 15
X t

Figure: u(x) and corresponding 9, y|q, = yx(1,t) on (0, T).




N = 1 - Reconstruction of y and p from the boundary

Ax = At =1/160

x10
1.4 1
1.2f '. 8
i o
M 6
0.8t L
[ T e v
0.6/ 4
0.4t 2
02t
0 ‘."‘.'.", - °
0% 02 0.4 o 0.2 0.4 0.6 0.8 1
X
. —1
Figure: and A _{n—pn)
gure: up, p T=a=1Gal
”H_P‘hHH71(Q) _2 —4
WN7.18>< 107+, \ly—yhlle(QT)~8.68x10



N = 1 - Reconstruction of y and p from the boundary

0
-05
-1
-15
-2
-25
0 0.2 0.4 0.6 0.8 1 ~o 0.5 1 15
X t

Figure: u(x) = % and corresponding du¥|q; = yx(1,t) on (0, T).



N = 1 - Reconstruction of y and p from the boundary

Ax = At = L

x10

0 02 0.4 06 0.8
X
. AT
Figure: pp, p and ﬁ'
0
le=pnlly—1@) 72 _ .
ilyrg 2211075y = yillizay) = 3:56 x 10



N = 1 - Reconstruction of y and p from the boundary

Figure: y — yp and \p



N =1 - Heat eq. Comparison with the standard method

Yo(x) = sin(mx)?, Qr = (0,1)x (0,T), qr=(07,08) x (0,T), T=1/2

; h2 2 R * ok
T()"?(Jh(YOh)JF?HVOhHLz(Q)) vs. nilth (An) over Ap

: e o8 /5}/ " - P
e oz el 02
X 0 t te
— Yh —Jh
Wy =Ielizan g gg 1072, W Ilizan 500, 492

IYlli2an 1Yl 2ap)

(40)



N =1 - Comparison with the standard method

Yo(x) =sin(zx)®, Qr=(0,1)x(0,T), qr=(0.7,08)x (0,T), T=1/2

0.2 0.4 0.6 0.8 1

Restriction at (0,1) x {0}



N =1 - Comparison with the standard method

0 100 200 300 400 500 10 1 1.5 2

k
Evolution of the relative residu % w.r.t. iterate k

25

35
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THANK YOU FOR YOUR ATTENTION



