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Introduction

Let ε > 0. Consider the partial differential equation{
Y εt(t) + (A + εB)Y ε = V ε, t > 0,

Y ε(0) = Y0
(1)

where B is an operator with higher order than the operator A.

Assume that for any ε > 0, system (1) is exactly controllable at time T > 0. The
following issues arise :

Behavior of controls V ε as ε→ 0 ?

In case of convergence of V ε, rate of convergence of V ε? Asymptotic expansion
with respect to ε of V ε?

Behavior of the cost of control with respect to ε ?

Minimal uniform time of controllability with respect to ε ?

The topic is not trivial, since in particular, boundary or internal (thin) layers may occur
as ε goes to zero, i.e. Y ε may exhibit locally singular behavior.

Rk. Huge literature devoted to singular perturbation for Optimal control:
M. G. DMITRIEV AND G. A. KURINA, Singular perturbations in control problems,
Avtomat. i Telemekh., (2006), pp. 3–51.
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Main example of the talk : The Rayleigh plate model

Let Ω ⊂ RN be a bounded domain of class C3 and Γ a subset of ∂Ω and T > 0.
For any ε > 0, we consider the following linear equation of Petrowsky type


yεtt −∆yε + ε∆2yε = 0, in QT := Ω× (0,T ),

yε = 0, ∂νyε = vε1ΓT , on ΣT := ∂Ω× (0,T ),

(yε(·, 0), yεt (·, 0)) = (y0, y1), on Ω.

(2)

Here, vε is a control function in L2(ΓT ), where ΓT is a subset of ΣT .This system
models the dynamic of linear isotropic plates occupying the domain Ω×]− ε, ε[.
yε = yε(x , t) is the transversal displacement of the plate at point x ∈ Ω and time
t ∈ (0,T ). y0 denotes the initial position and y1 the initial velocity assumed in L2(Ω)
and H−2(Ω) respectively.

Well-posedness - ∀ε > 0, vε ∈ L2(Ω), (y0, y1) ∈ L2(Ω)× H−2(Ω),
∃!yε ∈ C0([0,T ], L2(Ω)) ∩ C1([0,T ],H−2(Ω)) with the following estimate:

‖yε‖L∞(0,T ;L2(Ω)) + ‖yεt ‖L∞(0,T ;H−2(Ω)) ≤ Cε
(
‖y0‖L2(Ω) + ‖y1‖H−2(Ω) + ‖vε‖L2(ΣT )

)
(3)

for some constant cε > 0.
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Main example of the talk : The Rayleigh plate model

Controllability problem : For any final time T > 0, for any (y0, y1) ∈ L2(Ω)× H−2(Ω),
find a control function vε ∈ L2(ΓT ) such that the corresponding solution to (27) satisfies

(yε(·,T ), yεt (·,T )) = (0, 0) in L2(Ω)× H−2(Ω). (4)

For any ε > 0, this controllability property is proved in [Lions’86] assuming that the
triplet (Ω, Γ,T ) satisfies the usual geometric control condition for hyperbolic situations.

As is usual, the proof relies on an appropriate observability inequality for the adjoint
problem: ∃C > 0 independent of ε s.t.

‖ϕε0‖
2
H1

0 (Ω)
+ ‖ϕε1‖

2
L2(Ω)

+ ε‖∆ϕε0‖
2
L2(Ω)

≤ C
∫ T

0

∫
Γ
ε|∆ϕε|2, ∀(ϕε0, ϕ

ε
1) ∈ H2

0 (Ω)× L2(Ω)

(5)
where ϕε solves the corresponding homogeneous adjoint associated to the initial
condition (ϕε0, ϕ

ε
1),
ϕεtt −∆ϕε + ε∆2ϕε = 0, in QT := Ω× (0,T ),

ϕε = ∂νϕ
ε = 0, on ΣT := ∂Ω× (0,T ),

(ϕε(·, 0), ϕεt (·, 0)) = (ϕε0, ϕ
ε
1), on Ω.

(6)
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Weak convergence

Since the physical parameter ε is small with respect to one, the issue of the asymptotic
behavior of elements of C as ε is smaller and smaller arise naturally. It turns out that
the system (27) is not uniformly controllable with respect to ε. The following result is
[Lions’ 86], assuming additional regularity on the initial velocity.

Theorem (Lions’86)

Assume that the initial condition (y0, y1) belongs to L2(Ω)× H−1(Ω). Assume that the
triplet (Ω, Γ,T ) satisfies the geometric control condition. For any ε > 0, let vε be the
control of minimal L2(ΓT ) norm for yε solution of (27). Then, one has

−
√
εvε → v in L2(ΓT ), as ε→ 0,

yε → y in L∞(0,T ; L2(Ω))− weak-star, as ε→ 0
(7)

where v is the control of minimal L2(ΓT )-norm for y, solution in
C0([0,T ]; L2(Ω))× C1([0,T ]; H−1(Ω)) of the following system :


ytt −∆y = 0, in QT = Ω× (0,T ),

y = v1ΓT , on ΣT = ∂Ω× (0,T ),

(y(·, 0), yt (·, 0)) = (y0, y1), in Ω.

(8)
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Weak convergence

The degeneracy observed by Lions1 comes from the following lemma

Lemma

Ω ∈ C3. Let a0 ∈ H1(Ω) and, for any ε > 0, aε the solution in H2(Ω) of{
− ε∆aε + aε = a0, Ω,

aε = 0, ∂Ω
(9)

satisfies
−
√
ε
∂aε
∂ν
→ a0 in L2(∂Ω)

1J-.L. Lions, Exact controllability and singular perturbations, in Wave motion:
theory, modelling, and computation (Berkeley, Calif., 1986), vol. 7 of Math. Sci. Res.
Inst. Publ., Springer, New York, 1987, pp. 217–247.
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Main example of the talk : The Rayleigh plate model

The control of minimal L2-norm is given by vε = ∆ϕε 1ΓT where ϕε solves the adjoint
problem 

ϕεtt + ε∆2ϕε −∆ϕε = 0, in QT := Ω× (0,T ),

ϕε = ∂νϕ
ε = 0, on ΣT := ∂Ω× (0,T ),

(ϕε(·, 0), ϕεt (·, 0)) = (ϕε0, ϕ
ε
1), on Ω.

(10)

with initial condition minimizing the conjugate functional J?ε : H2
0 (Ω)× L2(Ω)→ R

defined by

J?ε (ϕε0, ϕ
ε
1) =

ε

2
‖∆ϕε‖2

L2(ΓT )
− (y0, ϕ

ε
1)L2(Ω),L2(Ω) + (y1, ϕ

ε
0)H−2(Ω),H2(Ω).

•
√
ε∆ϕε is bounded in L2(ΓT ) but ∆ϕε is not bounded; this is due to the boundary

layer of length O(
√
ε);

• The conjugate functional is not uniformly coercive for the norm H2
0 (Ω)× L2(Ω) with

respect to ε. (the minimization of J?ε is ill-conditionned)

• Uniform (w.r.t. ε) gap of the spectrum of the unbounded operator
Aε0 : D(Aε0) ∪ L2(Ω)→ L2(Ω) defined by Aε0 = −∆ + ε∆2 with D(Aε0) = (H4 ∩ H2

0 )(Ω).
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Asymptotic analysis of the controllability problem - The one dimensional case

Ω = (0, 1). We consider a positive smooth weight function η ≥ 0 with compact support
in (0,T ), i.e. η ∈ C∞0 (0,T ), and such that η(t) > η0 > 0 in a subinterval
[δ,T − δ] ⊂ (0,T ) with δ such that T − 2δ > 2. The optimality system associated to
the null control which minimizes ∫ T

0
η−1(t)|vε|2dt .

is given by



yεtt + εyεxxxx − yεxx = 0, in QT ,

yε(0, ·) = yε(1, ·) = yεx (0, ·) = 0, yεx (1, ·) = vε = ηϕεxx (1, ·) in (0,T ),

(yε(·, 0), yεt (·, 0)) = (y0, y1), in (0, 1),

yε(·,T ) = yεt (·,T ) = 0, in (0, 1),

ϕεtt + εϕεxxxx − ϕεxx = 0, in QT ,

ϕε(0, ·) = ϕε(1, ·) = ϕεx (0, ·) = ϕεx (1, ·) = 0 in (0,T ),

ϕε(·,T ) = ϕε0, ϕ
ε
t (·,T ) = ϕε1, in (0, 1).

(11)

J.-L. Lions Perturbations singulières dans les problèmes aux limites et en contrôle
optimal. Lecture Notes in Mathematics. Springer 1973.
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Asymptotic analysis of the controllability problem - The one dimensional case -

Difficulties



yεtt + εyεxxxx − yεxx = 0, in QT ,

yε(0, ·) = yε(1, ·) = yεx (0, ·) = 0, yεx (1, ·) = vε = ηϕεxx (1, ·) in (0,T ),

(yε(·, 0), yεt (·, 0)) = (y0, y1), in (0, 1),

yε(·,T ) = yεt (·,T ) = 0, in (0, 1),

ϕεtt + εϕεxxxx − ϕεxx = 0, in QT ,

ϕε(0, ·) = ϕε(1, ·) = ϕεx (0, ·) = ϕεx (1, ·) = 0 in (0,T ),

ϕε(·,T ) = ϕε0, ϕ
ε
t (·,T ) = ϕε1, in (0, 1).

(12)

The situation is tricky because

yε exhibits a boundary layer of size O(
√
ε) at x = 0 and x = 1 and an inner

angular layer of size O(ε1/4) along the characteristics {(x , t) ∈ QT , x − t = 0}
and {(x , t) ∈ QT , x + t − 1 = 0};
ϕε exhibits a boundary layer of size O(

√
ε) at x = 0 and x = 1 and an inner

angular layer of size (O(ε1/4)) along characteristics parallel to
{(x , t) ∈ QT , x − t = 0} and {(x , t) ∈ QT , x + t − 1 = 0};
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Asymptotic analysis of the controllability problem - The one dimensional case -

Difficulties


yεtt + εyεxxxx − yεxx = 0, in QT ,

yε(0, ·) = yε(1, ·) = yεx (0, ·) = 0, yεx (1, ·) = vε = ηϕεxx (1, ·) in (0,T ),

(yε(·, 0), yεt (·, 0)) = (y0, y1), in (0, 1),

yε(·,T ) = yεt (·,T ) = 0, in (0, 1),

(13)

One can avoid the angular layer, imposing compatibilities conditions at the points
∂Ω× {t = 0} between the initial data and the boundary conditions.

The boundary layer of size O(
√
ε)) are unavoidable ! One can use the matched

asymptotic expansion method which requires however regularity !
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∂Ω× {t = 0} between the initial data and the boundary conditions.

The boundary layer of size O(
√
ε)) are unavoidable ! One can use the matched

asymptotic expansion method which requires however regularity !

Arnaud Münch Control and boundary layers



Regularity property of the weighted control

Let X = L2(0, 1)× H−2(0, 1) and X∗ = H2
0 (0, 1)× L2(0, 1) its dual, with duality

product given by

< (y0, y1), (ϕ0, ϕ1) >X ,X∗=

∫
Ω

y0ϕ1 dx − (y1, ϕ0)H−2,H2
0
, (14)

where (·, ·)H−2,H2
0

represents the usual duality product.

Definition

For any (y0, y1) ∈ X we define the minimal L2-weighted control vε(t) associated to
(27) as the function

vε(t) = η(t)ϕεxx (1, t) ∈ L2(0,T ) (15)

where ϕε is the solution of the adjoint system with initial data (ϕε0, ϕ
ε
1), the minimizer of

Jε(ϕ0, ϕ1) =
ε

2

∫
Σ0

η(t)|ϕεxx (1, t)|2 dt− < (y0, y1), (ϕ0, ϕ1) >X ,X∗ , (16)

in (ϕ0, ϕ1) ∈ X∗.
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Regularity property of the weighted control: scale Hilbert spaces

Fondamental property: If the initial data (y0, y1) are smooth, then the same is true for
(ϕε0, ϕ

ε
1), the minimizer of Jε? and so for the weighted control.

Let Aε0 : D(Aε0) ⊂ L2(0, 1)→ L2(0, 1) be the unbounded operator Aε0 = −∂2
xx + ε∂4

xxxx
with domain D(Aε0) = H4 ∩ H2

0 (0, 1). Aε0 is a dissipative self-adjoint operator.

We also define the unbounded skew-adjoint operator on X = L2(0, 1)× H−2(0, 1),

Aε =

(
0 I
−Aε0 0

)
, D(Aε) = H2

0 (0, 1)× L2(0, 1).

Associated to Aε we consider the usual scale of Hilbert spaces Xα = D((Aε)α), α > 0.
Note that if we use the duality product (14) then

(Aε)∗ : D((Aε)∗) ⊂ X∗ → X∗,

is given by

(Aε)∗ =

(
0 −I

Aε0 0

)
, D((Aε)∗) = X∗1 = X .

In general, X∗α = D(((Aε)∗)α) = D((Aε)α+1).
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Regularity property of the weighted control

The following result is a direct consequence of the results of [Dehman-Lebeau 2009],
[Ervedoza-Zuazua 2010]:

Theorem

Given any (y0, y1) ∈ X = L2(0, 1)× H−2(0, 1), there exists a unique weighted control
vε of system (27) satisfying (15). This control is the one that minimizes the norm

∫ T

0
η−1|vε|2dt .

Furthermore, if (y0, y1) ∈ D((Aε)α) for some α > 0, then the control vε satisfies

vε ∈ Hα0 (0,T )

[α]⋂
k=0

Ck ([0,T ]),

with the estimate ‖vε‖Hα0 (0,T ) ≤ C‖(y0, y1)‖Xα and the corresponding

(ψT ,ε
0 , ψT ,ε

1 ) ∈ X∗α = Xα+1. In particular, the controlled solution y belongs to

(y , y ′) ∈ Cα([0,T ]; X0)

[α]⋂
k=0

Ck ([0,T ]; Xα−k ).
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Rate of convergence - First term

Definition

Let v0 is the null control for u solution of
utt − uxx = 0, in QT ,

u(0, ·) = 0, u(1, ·) = v0 in (0,T ),

(u(·, 0), ut (·, 0)) = −(y0, y1), in Ω.

(17)

which minimizes v →
∫ T

0 η−1(t)|v |2dt .

Theorem (Castro, Munch 2019)

Assume that (y0, y1) ∈ Z4 ⊂ H4 × H2
0 and T > 2. Let ε > 0 and vε be the control of

minimal L2-weighted norm for (27) associated to the data (y0, y1). Then, there exists a
constant C > 0 such that ∥∥∥∥ε1/2vε − v0

∥∥∥∥
L2(0,T )

≤ Cε1/4.

We recover and refine the weak convergence results due to Lions (1986).
Rk. ‖e−x/

√
ε‖L2(0,1) = ‖e−(1−x)/

√
ε‖L2(0,1) = O(ε1/4)
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utt − uxx = 0, in QT ,

u(0, ·) = 0, u(1, ·) = v0 in (0,T ),

(u(·, 0), ut (·, 0)) = −(y0, y1), in Ω.
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Rate of convergence - First and second term

Definition

Let ϕa be the solution of


ϕa

tt − ϕ
a
xx = 0, in QT ,

ϕa(0, ·) = −ϕ0
x (0, ·), ϕa(1, ·) = ϕ0

x (1, ·) in (0,T ),

(ϕa(·, 0), ϕa
t (·, 0)) = (0, 0), in Ω.

(18)

and depends on v0 (through ϕ0, optimal adjoint solution).

Let v1 = −η(t)ϕa
x (1, ·)− v where v is the null control for u solution of


utt − uxx = 0, in QT ,

u(0, ·) = −y0
x (0, ·), u(1, ·) = v(t) + y0

x (1, ·) + η(t)ϕa
x (1, ·) in (0,T ),

(u(·, 0), ut (·, 0)) = (0, 0), in Ω.

(19)

which minimizes v →
∫ T

0 η−1(t)|v |2dt .
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Let ϕa be the solution of


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Rate of convergence - First and second term

Definition

Let ϕa be the solution of


ϕa

tt − ϕ
a
xx = 0, in QT ,

ϕa(0, ·) = −ϕ0
x (0, ·), ϕa(1, ·) = ϕ0

x (1, ·) in (0,T ),

(ϕa(·, 0), ϕa
t (·, 0)) = (0, 0), in Ω.

(18)

and depends on v0 (through ϕ0, optimal adjoint solution).

Let v1 = −η(t)ϕa
x (1, ·)− v where v is the null control for u solution of


utt − uxx = 0, in QT ,

u(0, ·) = −y0
x (0, ·), u(1, ·) = v(t) + y0

x (1, ·) + η(t)ϕa
x (1, ·) in (0,T ),

(u(·, 0), ut (·, 0)) = (0, 0), in Ω.

(19)

which minimizes v →
∫ T

0 η−1(t)|v |2dt .
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Rate of convergence - First and second terms

Theorem (Castro, Munch, 2019)

Assume that (y0, y1) ∈ Z5 ⊂ (H5 × H3
0 )(Ω).

Consider v j , 0 ≤ j ≤ 1, the controls obtained previously. Let ε > 0 and vε be the
control of minimal L2-weighted norm for (27) associated to the data (y0, y1). Then,
there exists a constant C > 0 such that∥∥∥∥ε1/2vε − (v0 +

√
εv1)

∥∥∥∥
L2(0,T )

≤ Cε3/4.
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Rate of convergence - First, second and third terms

Definition

Let ϕa be the solution of
ϕa

tt − ϕ
a
xx = −ϕ0

xxxx , in QT ,

ϕa(0, ·) = −ϕ1
x (0, ·), ϕa(1, ·) = ϕ1

x (1, ·) in (0,T ),

(ϕa(·, 0), ϕa
t (·, 0)) = (0, 0), in Ω.

(20)

and depends on v1 (through ϕ1, optimal adjoint solution) and v0 (through y0).

Let v2 = −η(t)ϕa
x (1, ·)− v where v is the null control for u solution of


utt − uxx = −y0

xxxx , in QT ,

u(0, ·) = −y1
x (0, ·), u(1, ·) = v(t) + y1

x (1, ·) +
1
2

y0
tt (1, ·) + η(t)ϕa

x (1, ·) in (0,T ),

(u(·, 0), ut (·, 0)) = (0, 0), in Ω.
(21)

which minimizes v →
∫ T

0 η−1(t)|v |2dt .
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Rate of convergence - First, second and third terms

Theorem (Castro, Munch, 2019)

Assume that (y0, y1) ∈ Z6 ⊂ (H6 × H4
0 )(Ω) and T > 2.

Consider v j , 0 ≤ j ≤ 2, the controls obtained previously. Let ε > 0 and vε be the
control of minimal L2-weighted norm for (27) associated to the data (y0, y1). Then,
there exists a constant C > 0 such that∥∥∥∥ε1/2vε − (v0 +

√
εv1 + εv2)

∥∥∥∥
L2(0,T )

≤ Cε5/4.
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Sketch of the proof (1)

Very technical proof ! (see details at arxiv.org/abs/1907.04118)
Matched asymptotic expansion method on the direct problem: Assuming
vε = ε−1/2v0 + v1 +

√
εv2, we explicitly construct an approximation ỹε of the

solution yε of the form

ỹε(x , t) =
2∑

j=0

εj/2
[
y j (x , t)− y j (0, t)e−z −

(
y j (1, t) +

w
2

y j−2
tt (1, t)

)
e−w

]
.

(22)
with z = x/

√
ε and w = (1− x)/

√
ε

Matched asymptotic expansion method on the adjoint problem: Assuming the
initial condition of the adjoint problem of the form

ϕ̃ε(x , 0) =
2∑

k=0

εk/2
[
ϕk

0(x)− ϕk
0(0)e−x/ε1/2

− ϕk
0(1)e−(1−x)/ε1/2]

ϕ̃εt (x , 0) =
2∑

k=0

εk/2
[
ϕk

1(x)− ϕk
1(0)e−x/ε1/2

− ϕk
1(1)e−(1−x)/ε1/2]

,

for some (ϕk
0 , ϕ

k
1) with k = 0, 1, 2, we explicitly construct an approximation

ϕ̃ε(x , t) =
2∑

j=0

εj/2
[
ϕj (x , t)− ϕj (0, t)e−z −

(
ϕj (1, t) +

w
2
ϕ

j−2
tt (1, t)

)
e−w

]
.

(23)
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Sketch of the proof (1)

Very technical proof ! (see details at arxiv.org/abs/1907.04118)
Matched asymptotic expansion method on the direct problem: Assuming
vε = ε−1/2v0 + v1 +

√
εv2, we explicitly construct an approximation ỹε of the

solution yε of the form

ỹε(x , t) =
2∑

j=0

εj/2
[
y j (x , t)− y j (0, t)e−z −

(
y j (1, t) +

w
2

y j−2
tt (1, t)

)
e−w

]
.

(22)
with z = x/

√
ε and w = (1− x)/

√
ε

Matched asymptotic expansion method on the adjoint problem: Assuming the
initial condition of the adjoint problem of the form

ϕ̃ε(x , 0) =
2∑

k=0

εk/2
[
ϕk

0(x)− ϕk
0(0)e−x/ε1/2

− ϕk
0(1)e−(1−x)/ε1/2]

ϕ̃εt (x , 0) =
2∑

k=0

εk/2
[
ϕk

1(x)− ϕk
1(0)e−x/ε1/2

− ϕk
1(1)e−(1−x)/ε1/2]

,

for some (ϕk
0 , ϕ

k
1) with k = 0, 1, 2, we explicitly construct an approximation

ϕ̃ε(x , t) =
2∑

j=0

εj/2
[
ϕj (x , t)− ϕj (0, t)e−z −

(
ϕj (1, t) +

w
2
ϕ

j−2
tt (1, t)

)
e−w

]
.

(23)
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Sketch of the proof (2)

A priori estimate for yε − ỹε and ϕε − ϕ̃ε. The main tool is the following lemma

Lemma
Let ψε be the solution of the system

ψεtt + εψεxxxx − ψεxx = f , in QT ,
ψε(0, ·) = g1, ψε(1, ·) = g2, in (0,T ),
ψεx (0, ·) = h1, ψεx (1, ·) = h2, in (0,T ),
ψε(·, 0) = ψ0, ψεt (·, 0) = ψ1, in Ω,

(24)

where f ∈ L1(0,T ; L2), g1, g2, h1, h2 ∈ H2(0,T ) and (ψ0, ψ1) ∈ H2 × L2 satisfying the
compatibility conditions

ψε0 (0) = g1(0), ψε0 (1) = g2(0), ψε0,x (0) = h1(0), ψε0,x (1) = h2(0). (25)

Then, there exists a constant C > 0 such that

‖ψε‖L∞(0,T ;H1) + ‖ψεt ‖L∞(0,T ;L2) + ε1/2‖ψεxx‖L∞(0,T ;L2) ≤ C F (f , g1, g2, h1, h2, ψ0, ψ1),

‖ε1/2ψεxx (0, ·) + ψεx (0, ·)‖L2(0,T ) ≤ C F (f , g1, g2, h1, h2, ψ0, ψ1),

‖ε1/2ψεxx (1, ·)− ψεx (1, ·)‖L2(0,T ) ≤ C F (f , g1, g2, h1, h2, ψ0, ψ1),

(26)where

F (f , g1, g2, h1, h2, ψ0, ψ1) = ‖f‖L1(0,T ;L2) + ‖g1‖H2(0,T ) + ‖g2‖H2(0,T )

+ ε1/2(‖h1‖H2(0,T ) + ‖h2‖H2(0,T )) + ‖(ψ0, ψ1)‖H1×L2 + ε1/2‖ψ0,xx‖L2 .
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A priori estimate for yε − ỹε and ϕε − ϕ̃ε. The main tool is the following lemma

Lemma
Let ψε be the solution of the system

ψεtt + εψεxxxx − ψεxx = f , in QT ,
ψε(0, ·) = g1, ψε(1, ·) = g2, in (0,T ),
ψεx (0, ·) = h1, ψεx (1, ·) = h2, in (0,T ),
ψε(·, 0) = ψ0, ψεt (·, 0) = ψ1, in Ω,

(24)

where f ∈ L1(0,T ; L2), g1, g2, h1, h2 ∈ H2(0,T ) and (ψ0, ψ1) ∈ H2 × L2 satisfying the
compatibility conditions

ψε0 (0) = g1(0), ψε0 (1) = g2(0), ψε0,x (0) = h1(0), ψε0,x (1) = h2(0). (25)

Then, there exists a constant C > 0 such that

‖ψε‖L∞(0,T ;H1) + ‖ψεt ‖L∞(0,T ;L2) + ε1/2‖ψεxx‖L∞(0,T ;L2) ≤ C F (f , g1, g2, h1, h2, ψ0, ψ1),

‖ε1/2ψεxx (0, ·) + ψεx (0, ·)‖L2(0,T ) ≤ C F (f , g1, g2, h1, h2, ψ0, ψ1),

‖ε1/2ψεxx (1, ·)− ψεx (1, ·)‖L2(0,T ) ≤ C F (f , g1, g2, h1, h2, ψ0, ψ1),

(26)where

F (f , g1, g2, h1, h2, ψ0, ψ1) = ‖f‖L1(0,T ;L2) + ‖g1‖H2(0,T ) + ‖g2‖H2(0,T )

+ ε1/2(‖h1‖H2(0,T ) + ‖h2‖H2(0,T )) + ‖(ψ0, ψ1)‖H1×L2 + ε1/2‖ψ0,xx‖L2 .

Arnaud Münch Control and boundary layers



Sketch of the proof (2)
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Sketch of the proof (3)

Substitution of the expansion ỹε and ϕ̃ε in the optimality system :



yεtt + εyεxxxx − yεxx = 0, in QT ,

yε(0, ·) = yε(1, ·) = yεx (0, ·) = 0, yεx (1, ·) = vε = ηϕεxx (1, ·) in (0,T ),

(yε(·, 0), yεt (·, 0)) = (y0, y1), in (0, 1),

yε(·,T ) = yεt (·,T ) = 0, in (0, 1),

ϕεtt + εϕεxxxx − ϕεxx = 0, in QT ,

ϕε(0, ·) = ϕε(1, ·) = ϕεx (0, ·) = ϕεx (1, ·) = 0 in (0,T ),

ϕε(·,T ) = ϕε0, ϕ
ε
t (·,T ) = ϕε1, in (0, 1).

(27)
In particular,

2∑
j=0

εj/2v j +O(ε3/2) = η(t)ϕεxx (1, t) = −η(t)
2∑

j=0

εj/2ϕ
j
x (1, t) +O(ε3/2),

leads to
v j (t) = −η(t)ϕj

x (1, t), j = 0, 1, 2. (28)
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Sketch of the proof (4)

Consider now the error function wε = yε − ỹε and ζε = ϕε − ϕ̃ε. They satisfy
the coupled system

ζεtt + εζεxxxx − ζεxx = 0, in QT ,
ζε(0, t) = ζε(1, t) = 0, t ∈ (0,T ),
ζεx (0, t) = ζεx (1, t) = 0, t ∈ (0,T ),

ζε(x , 0) = ϕε0 − ψ
ε
0 , ζεt (x , 0) = ϕε1 − φ̃

ε
1, x ∈ (0, 1),

(29)


wεtt + εwεxxxx − wεxx = 0, in QT ,
wε(0, t) = wε(1, t) = 0, t ∈ (0,T ),
wεx (0, t) = 0, wεx (1, t) = η(t)ζεxx (1, t), t ∈ (0,T ),
wε(x , 0) = 0, wεt (x , 0) = 0, x ∈ (0, 1),
wε(x ,T ) = −gε0 , wεt (x ,T ) = −gε1 .

(30)

Note that this is the optimality system for the unique minimal weighted L2-norm
that drives the initial state (0, 0) to the final state (−gε0 ,−gε1 ). Therefore,

‖η(t)ζεxx (1, ·)‖L2(0,T ) = ‖vε − η(t)ϕ̃εxx (1, t)‖L2(0,T ) ≤ C‖(gε0 , g
ε
1 )‖X1

= ε1/2‖g0
0,xx‖L2 + ‖(gε0 , g

ε
1 )‖H1×L2 = O(εn/2+1/4)

which allows to conclude.
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Construction of a convergent discrete approximation

The asymptotic expansion of vε is also relevant from an approximation viewpoint, since
the expansion

vε =
1
√
ε

(v0 +
√
εv1 + εv2) +O(ε3/4) (in L2) (31)

involves controls for wave equations which are simpler to approximate than vε.

Corollary (Convergent discrete approximation of vε)

Assume that for k = 0, 1, 2, {vk
h }(h>0), is approximation of vk , h being a discretization

parameter, satisfying ‖vk − vk
h ‖L2(0,T ) = O(hα) for some α > 0.

Then the approximation

vεh := ε−1/2(v0
h +
√
εv1

h + εv2
h )

satisfies the estimate

‖
√
ε(vε − vεh )‖L2(0,T ) = O(ε3/4) +O(hα), ∀ε > 0, h > 0.
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Numerical experiments

T = 2.5, (y0, y1) = (sin(2πx)4, 0) ∈ Z 6. η(t) =
(
(1− e−40t )(1− e−40(T−t))

)3.
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Controls
√
εvε (blue) and v0 (red) over [0,T ] and ε = 10−1 (top-left), ε = 10−2

(top-right), ε = 10−3 (bottom-left) and ε = 10−4 (bottom-right).
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Numerical experiments: v1 and v2

T = 2.5, (y0, y1) = (sin(2πx)4, 0) ∈ Z 6. η(t) =
(
(1− e−40t )(1− e−40(T−t))

)3.
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Controls v1 (left) and v2 (right) over [0,T ].
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Numerical experiments

T = 2.5, (y0, y1) = (sin(2πx)4, 0) ∈ Z 6. η(t) =
(
(1− e−40t )(1− e−40(T−t))

)3,
t ∈ [0,T ]. ‖v0‖L2(0,T ) ≈ 0.349834

ε ] CG iterates ‖
√
εvε‖L2(0,T ) Eε0 Eε1 Eε2

10−1 5 0.2625 4.68× 10−1 4.12× 10−1 3.1× 10−1

10−2 11 0.2965 4.28× 10−1 3.32× 10−1 2.1× 10−1

10−3 24 0.3542 3.61× 10−1 2.82× 10−1 1.79× 10−1

10−4 51 0.3510 1.47× 10−1 8.71× 10−2 6.21× 10−2

5× 10−5 90 0.3508 9.29× 10−2 4.35× 10−2 2.01× 10−2

10−5 101 0.3499 3.59× 10−2 8.34× 10−3 2.37× 10−3

5× 10−6 171 0.3498 2.40× 10−2 4.30× 10−3 9.31× 10−4

10−6 203 0.3498 9.95× 10−3 8.34× 10−4 1.13× 10−4

Eε0 = ‖
√
εvε − v0‖L2(0,T ) = O(ε0.58),

Eε1 = ‖
√
εvε − v0 −

√
εv1‖L2(0,T ) = O(ε1.01),

Eε2 = ‖
√
εvε − v0 −

√
εv1 − εv2‖L2(0,T ) = O(ε1.36),
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Numerical experiments

T = 2.5, (y0, y1) = (sin(2πx)4, 0) ∈ Z 6. η(t) =
(
(1− e−40t )(1− e−40(T−t))

)3.

10-6 10-5 10-4

10-3

10-2

10-1

Evolution of ‖
√
εvε − v0‖L2(0,T ) and ‖

√
εvε − v0 −

√
εv1‖L2(0,T ) with respect to ε.
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A similar but more complex example : Null controllability of a 2× 2 system

The model of an elastic cylindric arch (considered in [AmmarKhodja-Geymonat-Munch,
2010]) of length one and constant curvature c > 0

uεtt − (uεx + cvε)x = 0, in QT ,

vεtt + c(uεx + cvε) + εvεxxxx = 0, in QT ,

uε(0, ·) = vε(0, ·) = vεx (0, ·) = vε(1, ·) = 0, in (0,T ),

uε(1, ·) = f ε, vεx (1, ·) = gε in (0,T ),

(uε(·, 0), uεt (·, 0)) = (u0, u1), (vε(·, 0), vεt (·, 0)) = (v0, v1), in (0, 1).

(32)

uε and vε denote the tangential and normal displacement of the arch.

For any T > T?(c, ε) and (u0, u1) ∈ H1
0 (0, 1)× L2(0, 1), (v0, v1) ∈ H2

0 (0, 1)× L2(0, 1),
(32) is null controllable through the controls f ε and gε.

vε exhibits a boundary layer which makes the control gε not uniformly bounded w.r.t. ε:

gε = ε−1/2g0 + g1 + ε1/2g2 + · · · , f ε = f 0 + ε1/2f 1 + · · · (33)

The underlying limit operator involves an essential spectrum (as ε→ 0)
σess(AM ) = {0} so that (32) is not uniformly controllable with respect to the data, as
ε→ 0.
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Open Problem - The advection-diffusion equation

Let T > 0, M ∈ R?, ε > 0 and QT := (0, 1)× (0,T ).
Lεyε := yεt −εy

ε
xx + Myεx = 0, in QT ,

yε(0, ·) = vε(t), yε(1, ·) = 0, in (0,T ),

yε(·, 0) = yε0 , in (0, 1).
(34)

x

t

0
0 1

T ≥ 1
M

T = 1
M

yε(x, 0) = yε0(x)

y
ε (
0,
t)
=
v
ε (
t)

y
ε (
1,
t)
=
0

•Well-posedness:

∀yε0 ∈ H−1(0, 1), vε ∈ L2(0,T ), ∃! yε ∈ L2(QT ) ∩ C([0,T ]; H−1(0, 1))

• Null controllability property: From [Fursikov’91],

∀T > 0, yε0 ∈ H−1(0, 1), ∃vε ∈ L2(0,T ) s.t. yε(·,T ) = 0 in H−1(0, 1)

• Main concern: Behavior of the controls vε as ε→ 0

• Remark: yε exhibits internal and boundary layers as ε→ 0 and make non trivial the
analysis of the direct and control problems !
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Behavior of the free solution

Lemma (Exponential decay of ‖yε(·,T )‖L2(0,T ) for T > 1
|M| )

Let α ∈ [0, 1). The free solution (i.e. vε = 0) satisfies

‖yε(·, t)‖L2(0,1) ≤ ‖y
ε
0 ‖L2(0,1)e

− Mα2
4ε(1−α) , ∀t ≥

1
|M|(1− α)

.

Proposition (Amirat, Munch, 2019, Polynomial decay of
‖yε(·,T )‖L2(0,T ) for T = 1

|M| )

Assume M > 0 and vε ≡ 0, yε0 = y0 ∈ H3(0, 1). For ε > 0 small enough, the free
solution yε satisfies∥∥∥∥yε

(
·,

1
|M|

)∥∥∥∥
L2(0,1)

≤ c
(
|y0(0)|ε1/4 + |y (1)

0 (0)|ε3/4 + |y (2)
0 (0)|ε5/4

)
+O(ε3/2) (35)

for some constant c > 0, independent of ε.

=⇒ For ε small enough, the cost of approximate controllability is zero.
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Direct problem - Asymptotic analysis - Without compatibility conditions

ε

√
ε

x

t

0
0 1

T ≥ 1
M

t = 1
M

yε(x, 0) = yε0(x)

y
ε (
0,
t)
=
v
ε (
t)

y
ε (
1,
t)
=
0

Singular layers zone for yε in the case M > 0.

Occurence of two interacting singular layers of different sizes !
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Direct problem - Matched asymptotic expansion method - Case 2 - First order

approximation (1)

Let
Pε = P0

ε +
√
εP1/2
ε + εP1

ε + ε3/2P3/2
ε

Theorem (Amirat, Munch, 19)

Assume v ∈ H3([0,T ]), y0 ∈ H3([0, 1]). Then ∃C > 0 independent of ε s.t.

∥∥∥∥yε(·, t)− Pε(·, t)
∥∥∥∥

L2(0,1))

≤ C(ε3/2 + ε1/2e
− M2

2ε1/2 t
) ∀t ∈ [0,T ]

and (assuming y0(1) = y ′0(1) = 0)

‖(yε − Pε)x‖L2(QT )) ≤ Cε
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Numerical illustration

As an illustration, we consider the simple case v ≡ 0 and y0 ≡ 1 for which



Pε(x , t) = W 0
ε (w , t)−

(
W 0
ε (Mτ, t) + ε1/2zW 0

ε,w (Mτ, t)+

ε
z2

2
W 0
ε,ww (Mτ, t) + ε3/2 z3

6
W 0
ε,www (Mτ, t)

)
e−Mz ,

w =
x −Mt
√
ε

, Mτ =
1−Mt
√
ε

, z =
1− x
ε

.

with

W 0
ε (w , t) =

y0(0)− v(0)

2
erf
(

w
2
√

t

)
+

y0(0) + v(0)

2

+
v(0)− y0(0)

2
e

Mw√
ε

+ M2 t
ε erfc

(
w

2
√

t
+

M
√

t
√
ε

) (36)
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Numerical illustration

Pε in (0, 1)× (0, 1.2/M); M = 1, ε = 10−2; v ≡ 0, y0 ≡ 1.
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Asymptotic controllability property

With respect to the null controllability issue
There is a kind of competition between the transport and the diffusion terms:
as ε→ 0, the transport term becomes dominant, pushes the solution out of
(0, 1) and makes ‖yε(·,T )‖2 small for all T ≥ 1/|M|. However, as ε→ 0, the
diffusion term, which is the main tools to control to zero the solution, is small.

Intuitively, one have to wait enough time, from t = 1/|M|, to control uniformly
w.r.t. ε the remainder yε(·, 1/|M|).
The negative case M < 0 is the "most singular" since then the transport term
pushes the solution yε from the right to the left line x = 0 where the control acts.
The control requires more "energy" to act on the whole spatial domain.

Theorem (Coron, Guerrero, Glass, Lissy, ....)

Define the cost of control as follows.

K (ε,T ,M) := sup
‖yε0 ‖L2(0,1)

=1

{
min

v∈C(yε0 ,T ,ε,M)
‖v‖L2(0,T )

}
.

If T < 1/|M|, K (ε,T ,M) blows up (exponentially) as ε→ 0.

if M > 0 and T ≥ C/M, K (ε,T ,M)→ 0. (C ≈ 3.34). (Darde-Ervedoza, 2017).

If M < 0, and T < 2
√

2/|M|, K (ε,T ,M)→∞. (Lissy, 2015).

If M < 0, and T > 2(1 +
√

3)/|M|, K (ε,T ,M)→ 0. (Lissy, 2015).
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If M < 0, and T < 2
√

2/|M|, K (ε,T ,M)→∞. (Lissy, 2015).

If M < 0, and T > 2(1 +
√

3)/|M|, K (ε,T ,M)→ 0. (Lissy, 2015).
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Asymptotic controllability property

With respect to the null controllability issue
There is a kind of competition between the transport and the diffusion terms:
as ε→ 0, the transport term becomes dominant, pushes the solution out of
(0, 1) and makes ‖yε(·,T )‖2 small for all T ≥ 1/|M|. However, as ε→ 0, the
diffusion term, which is the main tools to control to zero the solution, is small.

Intuitively, one have to wait enough time, from t = 1/|M|, to control uniformly
w.r.t. ε the remainder yε(·, 1/|M|).
The negative case M < 0 is the "most singular" since then the transport term
pushes the solution yε from the right to the left line x = 0 where the control acts.
The control requires more "energy" to act on the whole spatial domain.
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Failure of the asymptotic analysis

The optimality system associated to the control of minimal L2-norm is



yεt − εy
ε
xx + Myεx = 0, (x , t) ∈ QT ,

ϕεt + εϕεxx + Mϕεx = 0, (x , t) ∈ QT ,

yε(·, 0) = yε0 , x ∈ (0, 1),

vε(t) = yε(0, t) = εϕεx (0, t), t ∈ (0,T ),

yε(1, t) = 0, . t ∈ (0,T ),

ϕε(0, t) = ϕε(1, t) = 0, t ∈ (0,T ),

yε(·,T ) = 0, x ∈ (0, 1).

Main difficulty: whatever be the regularity of yε0 , the control of minimal L2(0,T )-norm is
only L2(0,T ) (with weight, it can be L∞(0,T )) !?!!
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A last example: dissipative wave equation

There are many others partial differential equations involving a small (singular)
parameter. We mention the case of the dissipative wave equation (ω denotes an open
nonempty subset of (0, 1))

εyεtt + yεt − yεxx = vε1ω , in QT ,

yε(0, t) = yε(1, t) = 0, in (0,T ),

(yε(·, 0), yεt (·, 0)) = (y0, y1), in (0, 1)

controllable for any ε > 0 and for which one can find a sequence of controls {vε}ε>0
which converges to a null control for the heat equation (we refer to [Lopez-Zuazua
2006] using spectral arguments).

As ε→ 0, an initial singular layer at t = 0 is developed ! Rate of convergence of vε ?
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The end
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