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Context

We discuss hyperbolic and parabolic equations and try to
emphasize the interest of space-time variational methods
with respect to time marching methods.



Wave like equation with initial data in L2 x H~'
Q c RN bounded domain with C2-boundary; T > 0; Qr := Q x (0, T); ¢ € C'(Q,R);
d e L(Qr); T C 89

Ly == yu — V - (c(x)Vy) + d(x, t)y = 0, Qr:=ax(0,7),
y:v1|—0(x), Yr:=00x(0,T), 1)
(¥(-,0),%1(-,0)) = (yo, 1) € H:= L*(Q) x H~'(Q), Q.

v = v(t) - control function in L2(X 7).
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v = v(t) - control function in L2(X 7).

EXISTENCE - UNIQUENESS (Lions’88)
3y = y(v) € CO([0, T]; L3(2)) N C' ([0, T]: H~1(2)) and

IYllLoo 0, 7:02(0)) < CQ,T(”}’O:% ln+ ||V||L2():T)>

NULL CONTROLLABILITY (Lions'88, Lebeau'92, Lasiecka’93, ....) If (T, g, Q)
satisfies a geometric optic condition, system (1) is null controllable at time T
uniformly with respect to the initial condition (g, y1): there exist control functions
v € L?(X7) such that

(.yV( ) T)7 (yV)f( ) T)) = (070)7 in Q. (2)




Link with the observability for the adjoint system

The controllability property of the hyperbolic equation is equivalent to the observability
for the corresponding adjoint problem :

o= = V- (c(X)Vp)+dp=0  inQr,
»=0 onXr, (3)
(90(7T)7§01(7T)):(<p07§01)6 v inQ

V= H{(Q) x L3(Q) = H'.

OBSERVABILITY INEQUALITY- System (3) is observable in time T if there exists a
positive constant Cyps > 0 such that

Tr1o
ool < Coss [ [ |52
0JrIy v

Cobs = Cobs(T,T0, 2, [IC|l o1 @) ll9ll oo (o)) - Observability constant

2
dodt Y(po, 1) € V. 4)




Minimal L2-norm control

;
Minimize J(y, v) = 1/ [v|? dt

2 Jo Mo (5)
Subjectto (y,v) € C(yo,y1: T)

where C()o, ¥1; T) denotes the non-empty linear manifold

Co,y1;: T) ={(y,v): vel?(r), ysolves (1) and satisfies (2) }.
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;
Minimize J(y, v) = 1/ [v|? dt

2 Jo Mo (5)
Subjectto (y,v) € C(yo,y1: T)

where C()o, ¥1; T) denotes the non-empty linear manifold

Co,y1;: T) ={(y,v): vel?(r), ysolves (1) and satisfies (2) }.

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

inf Jy,v)=— min  J* (¢,
pmetomin V) T T iy I (0 en)

9 2
87(5 dO'dt+<(¢01(p1)7(y07y1)>

1 T
Minimize J*(g007<p1) = 7//

2 JoJr,
Subjectto (¢g,¢1) € V. where L[*¢=0 +IC

(6)

< (%0, 1); W0, 1) >:=< Yo,01 >12 12 — < Y1, %0 >H-1 H]
H ., Op
Optimal control: v = g% 1r,



Approximation and minimization of J* over V := H}(Q) x L2(Q)

2

0
8—2‘: do dt+ < (¢o, ©1), (Yo, ¥1) >

. 107
Min J* (o, 1) = 5//
0Jr,
Subject to (g, 1) € V = H{(Q) x L3(Q) where L[*¢ =0 +IC

@)

The numerical minimization over a finite dimensional space of V w.r.t. (¢g, v1) may be
done using iterative gradient method.

The "difficulty” then is to respect at the finite dimensional level the constraint L*¢ = 0
i
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The numerical minimization over a finite dimensional space of V w.r.t. (¢g, v1) may be
done using iterative gradient method.

The "difficulty” then is to respect at the finite dimensional level the constraint L*¢ = 0
i

The usual "trick", developed initially by Glowinski ! is first to discretize the hyperbolic
equation and then to exactly control the corresponding finite dimensional system.

(ShatYnat) (8.y(x.1)
(h, At) — (0,0)

Discrete exact
controllability

(Vhat) ——— (v(1))

(h,At) — (0,0)

Exact controflability

'R. Glowinski, C.H. Li, J.-L. Lions, A numerical approach to the exact boundary
controllability of the wave equation, (1990)



1D - Negative Commutation diagram

Centered finite difference in space and time - Uniform discretization - Constant
coefficients ¢ :=1,d :=0

Aatynnat — Dnynat =0,
+ Initial conditions and Boundary terms

(Sh,at) { (8)

produces a non discrete uniformly bounded and convergent control under the (CFL)
condition At < h.

(Sh.at Ynat) (8.y(x.1)
(h,At) — (0,0)

Discrete exact
controllability

(Vhar) X (v(1)
(h, At) — (0,0)

Exact controflability

For high frequency components of the discrete solution, the discrete observability
constant Cops,p blows up as h — 0
[Glowinski-Lions’90] then [Zuazua team later].



Numerical example

Q=(0,1)-To={1}-T=24
16x  x€0,1/2],

}/O(X):{ 0 x €]1/2,1]. i yi(x)=0.

The control v with minimal L2-norm is discontinuous :

B 0 te[0,0.8] U[1.9,T],
v(t) = { 8(t — 1.4) t €]0.9,1.9],

leading to [|v[|;2(g, 1) = 4/V/3 ~ 2.3094.

©)

(10)



Usual centered finite difference scheme - control

Figure: Control P(vp)(t) vs. t € [0, T], At/h = 0.98, T = 2.4 and
h=1/10,1/20,1/30 and h = 1/40.



1D - Positive Commutation diagram with a modified scheme

Dptynat+ 5 (WP — AP)ARAAYn At — DrYhat =0,
+ Initial conditions and Boundary terms

(Sh,at) { (11)

produces a discrete uniformly bounded and converging control under the condition

At < hy/T/2.

S S, y(x,t
(Shat Yaat) (h.21) - (0.0) (S, y(x.1)

Discrete exact
controllability

(Vhat) (v(1)

(h,At) — (0,0)

Exact controfllability

2A. Miinch, A uniformly controllable and implicit scheme for the 1-D wave
equation,(2005)
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Dptynat+ 5 (WP — AP)ARAAYn At — DrYhat =0,
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(Sh,at) { (11)

produces a discrete uniformly bounded and converging control under the condition

At < hy/T/2.

S S, y(x,t
(Shat Yaat) (h.21) - (0.0) (S, y(x.1)

Discrete exact
controllability

(Vhat) (v(1)

(h,At) — (0,0)

Exact controfllability

Within this approach (discretize then control), remedies in the general case (general
domain, non constant coefficients) are unknown.

2A. Miinch, A uniformly controllable and implicit scheme for the 1-D wave
equation,(2005)



Modified scheme - control

“o 05 T s 2 25 “o 05 T s 2 25

Figure: Modified scheme - Control P(vj)(t) vs. t € [0, T] - At = 1.095445h,
T =2.4and h=1/20,1/40,1/80,1/160.



Second method to bypass the fact that L* o, # 0

Since we can not achieve L*¢p = 0, the idea is to relax the constraint L*¢p = 0
mnan
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2

v
ED ’ (8007<P1 )7

ll0: 21117 < Con
v obs L2(|'7—) (12)

L'¢=0, ¢, =0

by a "generalized observability inequality" :

) 2
(00 - OV < a1+ ) | 57

Lg(r7)+||L*soHi2(or)), Ve e o (13)
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Since we can not achieve L*¢p = 0, the idea is to relax the constraint L*¢p = 0
mnan

The idea is to replace the observability inequality

2

v
ED ’ (@07‘@1 )7

L2(r7)

I, 1 H%/ < Cobs

L'¢=0, ¢, =0

by a "generalized observability inequality” :

0
(00 - OV < a1+ ) | 57

2
Il ) Vo ® (13)
L2(rr) tan)

Why ? If o, € ®p a finite dimensional subspace of ®, then

) 2
on(-0) om0V < Co.r(1+Cote) (| 522

HILonlBgy)): Von€ o
L2(ry) #an

with a constant Cq 7(1 4 Cops) independant of h !l



Minimization of J*

We now replace the problem

- 1 /7110
Min J* (oo 01) = 5 | [ |52
0

Subjectto (wg, 1) € V = H}(Q) x L?(Q) where L*¢ =0

2
dodt+ < Yo, 301‘('70) >2 7<y17§0('70)>H71,Ha

(15)
by the equivalent problem

dw

minJ* (o) = 8
14

do dt+ < Yo, <)0f('70) >L2 _<y1750(' 7O)>H—1’H3

Subjectto p € W := {<p 1o € CY0, T; HI(Q)) N C' (0, T; L3(Q)), L*» = 0 € L3(Qr)
(16)

Remark- W endowed with the norm ||o||w := || 22 oo ||L2 (ry) is an Hilbert space.




Minimization of J*

We now replace the problem

) 1 /7 8@2
Min J* (g, :7// —-
(w0, 1) = 5 0|2

Subjectto (o, 1) € V = H}(Q) x L2(Q) where L*p =0

dodt+ < Yo, @T('vo) > |2 7<y17§0('70)>H717H8

(17)
by the equivalent problem

min Jy* ( 2 / /
To

Subjectto o € W := {cp L e CO0, T, HI Q) nC'(0, T; L3(Q)), L*¢ =0 ¢ LZ(OT)}
(18)

o¢|?
ov

do dt + *HL*SDH T <o, i(0) >z =(y1,9(-,0)) -1

forall r > 0.

Remark- W endowed with the norm ||¢||lw = || 8“’ ||L2 (ry) is an Hilbert space.




Relaxation of L*p = 0

In order to address the L2(Qr) constraint L* = 0, we introduce a Lagrange multiplier
X € L2(Qr); we consider the saddle point problem 3 :

sup inf Lr(p, A),
AeL?(or) PE®

L(e,A) = dr(@)+ < Lo, A >z (19)

® = {ga 1o € CO0, T; HY(Q)) N C'(0, T; L3(Q)), L*p € LZ(OT)} ow

3N. Cindea, AM, A mixed formulation for the direct approximation of the control of
minimal L2-norm for linear type wave equations, (2015)
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In order to address the L2(Qr) constraint L* = 0, we introduce a Lagrange multiplier
X € L2(Qr); we consider the saddle point problem 3 :

sup inf Lr(p, A),
AeL?(or) PE®

L(e,A) = dr(@)+ < Lo, A >z (19)

o= {go tp e CY0, T; Hi(Q)nC'(0, T; L3(Q)), L*¢ € LZ(OT)} W

Remark- For all n > 0, ® is endowed with the scalar product,

_ Op 0p _ _
<o, P >e:=< E: E >L2(Fr) +n < L*p, L*p >L2(OT)’ Vo, 0 € ®.

lelle :==+/< ¢, >e¢ isanormand (®, || - ||e) is an Hilbert space.

3N. Cindea, AM, A mixed formulation for the direct approximation of the control of
minimal L2-norm for linear type wave equations, (2015)



Mixed formulation

Find (¢, \) € ® x L2(Q7) solution of

{ alp,?) +b@ N = I7),  Vpco (20)
b(‘P)X) = 0 k2N LZ(QT)7
where
) ., _0p Op _
a dxo® R, a(pp) =< oy e < Lo, L% > 2,y (1)
b:®x [2(Qr) =R, b(p,\) =<L*¢,A>p2q (22)

l:d— R, /(50) = - <)o, (pt('vo) >2 +<.y1750('a0)>,‘-/71y}-/(1) (23)



Well-posedness

Theorem
Forallr > 0,

1. The mixed formulation is well-posed.

2. The unique solution (¢, \) € ® x L2(Qr) is the unique saddle-point of the
Lagrangian L, : ® x L?(Qr) — R defined by

Li(e) = Jar(e, ) + ble,X) — lg). (24)

3. The optimal function ¢ given by 2. satisfies ¢ € W and is the minimizer of J}
over W while the optimal function X € L2(Qr) is the state of the controlled wave
equation in the weak sense.

4. We have the following estimates

lelle < 1¥0: Y1 llH,

1 r _
X2 < 5(1 +max(1,;))||yo,y1||ﬁ, 6= (Ca+m)"/2



Well-posedness 2
The kernel N'(b) = {¢ € ®;b(p,\) =0 VA € L?(Qr)} coincides with W: we get

ar(p,¢) = ol Ve e N(b) = W.
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It remains to check the inf-sup constant property : 35 > 0 such that

b(p, \)

> 4. (25)
xel? peo [lellollAl 2
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For any fixed A € L?(Qr), we define ¢° € ® as the unique solution of
L% =xin Qr, (¥°(-,0),47(-,0)) =(0,0) on @, ¢®=0 on X7.

2
0<p0

We get b(©°, X) = [|AlI%;, and [|¢°[15 = || 55

+ AR,
(rr)
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a(e,0) = llel3, Vo e N(b) = W.
It remains to check the inf-sup constant property : 35 > 0 such that

_ble.) (25)
rel2 peo [lellollM2

For any fixed A € L?(Qr), we define ¢° € ® as the unique solution of
L% =xin Qr, (¥°(-,0),47(-,0)) =(0,0) on @, ¢®=0 on X7.

2
0<p0

We get b(©°, X) = [|AlI%;, and [|¢°[15 = || 55

+ AR,
(rr)

Dgpo

The estimate 5
17

‘ < VCa,rlAll2(qy) implies that
L2(r7)

sup D&Y b(e%. %) 1
eco ellolMz = I€PlellMez — /Car+n

leading to the inf-sup property with § = (Cq 1 + 1)~ /2.

>0




The multiplier A
Taking r = 0, the first equation reads

a,:()(go,@) + b(@v A) = /(5): Voo (26)

8@ op _
AT = — <y, 0 ,%(-,0 VP ED
I oIl <0 Bil0) >+, 0) o1 g
@)



The multiplier A

Taking r = 0, the first equation reads

ar—o(p, @)+ b@,N\) =1(%), Vpeco (26)
i.e.
¢ dp _
AN =— 0 &
//rT wow T ar < Y0, P1(5,0) > 2 +(y1,2(, 0)) =1 1, VP €
(27)

which means \ € L2(Qr) is solution in the sense of transposition of
LA=0, in Qr
(AG0), Ae(+,0)) = (yo. 1) € L2(Q) x H(Q)

(A, T), Ae(-, T)) = (0,0), (28)
:g—f on [t

Therefore, X coincides with the weak solution of the wave equation controlled by v.

e Co(o, T], L2(Q)) n C' ([0, T], H ()



Dual of the dual - Minimization w.r.t. A

Lemma
Let Pr be the linear operator from L2 into L? defined by

PrX:=L1%p, VA€l? where o€ ® solves ar(o,@)=Db(®,)\), Vgeco.

For any r > 0, the operator Py is a strongly elliptic, symmetric isomorphism from
L2 into L2.




Dual of the dual - Minimization w.r.t. A

Lemma
Let Pr be the linear operator from L2 into L? defined by

PrX:=L1%p, VA€l? where o€ ® solves ar(o,@)=Db(®,)\), Vgeco.

For any r > 0, the operator Py is a strongly elliptic, symmetric isomorphism from
L2 into L2.




Dual of the dual - Minimization w.r.t. A

Lemma
Let Pr be the linear operator from L2 into L? defined by

PrX:=L1%p, VA€l? where o€ ® solves ar(o,@)=Db(®,)\), Vgeco.

For any r > 0, the operator Py is a strongly elliptic, symmetric isomorphism from
L2 into L2.

Theorem

sup inf Lr(e,A) = — inf JF*(A)  + Lr(pg,0)
Ac[2 PE® Ael?

where o € ® solves ar(¢g, ?) = (), V@ € ® and Ji* : L? — R defined by

1
)= 5 <P >0y ~bl0. )




Conformal Approximation
Let then &, and Aj, be two finite dimensional spaces parametrized by the variable h
such that
o, Cc®, ApCL3Qr), Vh>O0.

Then, we can introduce the following approximated problems : find (¢p, Ap) € ®p X Ap
solution of

{ a(en@n) + 0@ ) = I@).  Vep o 29)

b(cph,X,,) = 0, YA € Ap.
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For any h > 0, the well-posedness is again a consequence of two properties
» the coercivity of the bilinear form a, on the subset
Ny(b) = {on € ®p; b(wn, An) =0 VA € Ap}. From

r
ar(p,¢) > ;lelgu Vo € ®

the form a, is coercive on the full space ®, and so a fortiori on Np(b) C ¢, C ®.
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Let then &, and Aj, be two finite dimensional spaces parametrized by the variable h
such that

o, Cc®, ApCL3Qr), Vh>O0.

Then, we can introduce the following approximated problems : find (¢p, Ap) € ®p X Ap
solution of

{ar(soh,somb(soh,xh) = @), VPnE O 29)

b(en,An) = 0, YA € Ap.

For any h > 0, the well-posedness is again a consequence of two properties

» the coercivity of the bilinear form a, on the subset
Ny(b) = {on € ®p; b(wn, An) =0 VA € Ap}. From

r
ar(p,¢) > ;lelgu Vo € ®

the form a, is coercive on the full space ®, and so a fortiori on Np(b) C ¢, C ®.
» The second property is a discrete inf-sup condition : there exists § > 0 such that

5po= it sup —2LPmAn)

e > (30)
An€ML by, [[@nllo, | AnllA,

Necessary condition: dim(®,) > dim(Ap)



Finite dimensional linear system

Let np = dim &y, mp = dim A, and let the real matrices A, , € R™", By, € R,
Jp € R™:Mh and L, € R™ be defined by

ar(pn, @n) = < Arnient, {@n} >gon gh>  VPh, Ph € &y,
b(en, An) = < Ba{wn}, {An} >gms gmn,  Vion € ®p,VAp € Ap,
I(en) = < Lp,{en} >, VYon € &p

where {¢n} € R™ denotes the vector associated to pp and < -, - >gn, gn, the usual
scalar product over R™. Problem (29) reads as follows :

find {p} € R™ and {\p} € R™» such that

( Al’,h B[71— ) ( {@h} ) :< Lh ) . (31)
B[-, 0 Rnh+mh,nh+mh {)\h} R"h*mh 0 ]R"h*mh

Ay p is symmetric and positive definite for any 4 > 0 and any r > 0.
The full matrix of order my, + np, in (31) is symmetric but not positive definite.



Choice of the conformal spaces ¢ and Ay

We introduce a triangulation 7}, such that Qr = UkeT, K and we assume that {7} n~0
is a regular family. We note h := max{diam(K), K € 7j}.
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approximation based on standard triangulation of Qr is obtained with spaces of
functions continuously differentiable with respect to both x and t.
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C' finite element over Qr
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4P.G. Ciarlet, The finite element for elliptic problems, North-Holland, 1979
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C' finite element over Qr

&y = {pn € Py € C'(Qr) : wnlk €P(K) VK € Tp, on=0o0n X7}

where P(K) denotes an appropriate space of polynomial functions in x and t.

We may consider the following choices for P(K):

1. The Bogner-Fox-Schmit (BFS for short) C' element defined for rectangles. It
involves 16 degrees of freedom, namely the values of vp, wn x, ©h 1, ©n xt ON the
four vertices of each rectangle K.

2. The reduced Hsieh-Clough-Tocher (HCT for short) C' element defined for
triangles. This is a so-called composite finite element and involves 9 degrees of
freedom, namely the values of ¢, vp x, wn,t ON the three vertices of each
triangle K.

4P.G. Ciarlet, The finite element for elliptic problems, North-Holland, 1979



Convergence rate in ¢ and in L2(Qr)

Proposition (BFS element for N = 1 - Convergence in ®)
Leth> 0, letk < 2. If (0, \) € H*+2(Q7) x HX(Qr), 3K > 0

1 1
i = onlle < K (14— )1,
Vioh /1

1 \1 1
A=A <K h.
= Anllizar) < (( f5h) N fah)
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Convergence rate in ¢ and in L2(Qr)

Proposition (BFS element for N = 1 - Convergence in ®)
Leth> 0, letk < 2. If (0, \) € H*+2(Q7) x HX(Qr), 3K > 0

1 1
i = onlle < K (14— )1,
Vioh /1

1 \1 1
A=A <K h.
= Anllizar) < (( f5h) N fah)

Writing the ineq. obs. for ¢ — ¢p, € ® and using that L*(¢ — ¢p) = —L*¢pp, we get

e — enllZe(gr) < Car.7(Cabs + 1)([190 (0 — mmﬁ+WM|W)

< Ca,7(Cobs + 1) max(1, %)H% — onllo

Theorem (BFS element for N = 1 - Convergence in L?(Qr))
Leth> 0, letk < 2. If(y,\) € H**2(Qr) x H*(Qr),

2 1 1
- < Kmax(1, — (1+ +—)hk.
I nllizar) ( \/ﬁ) Jion 7




N =1 - Numerical experiments

Q=(0,1)—To={1}—T=24

(EX) Yo(x) =4x11/2)(x), »(x)=0, xeQ

v(t) =2(1 =) 11/2.8/2)(1), t€(0,T), [IVlli20,7) = 1/V3~0.5773.



N =1 - Numerical experiments

Figure: Control of minimal L?-norm v and its approximation vj, on
(0,T);r=10"2; h=2.46 x 1072



Example 1 - N = 1 - Numerical experiments

h 1.41 x 107 7.01 x 102 3.53 x 102 1.76 x 102 8.83 x 105
Tall 20, 1) 0.6003 0.5850 0.5776 0.5752 0.5747
v = vall 207y 2.87 x 107! 2.05 x 107" 1.47 x 10~ 1.08 x 10~ 8.18 x 102
Il 2y 0.62 0.598 0.586 0.581 0.578
IL*enll 2y 1.02x 107" 753x107%  58x1072  455x1072  3.6x1072
||L*¢,,\|H,1(QT) 1.92x 107 383 x 107"  746x 10710 151 x10"15 281 x101°

Table: BFS element - r = 1.

0.52 0.72
r=1: IV = vall2g, 7y & 112 A%, ||L*<ph\|L2(QT) ~ 15.67 - h>''%,

-2 0.45 0.37
r=10"2: IV = Vhll 29,7 % 0-83 - ,||L*<ph\|L2(QT)z0.24<h .

A curiosity : [|Vall2(0, 7y is close to [|¥all 2(q 7!




Example 1 - N = 1 - Numerical experiments
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Figure: The dual variable o, in Qr; h=2.46 x 1072;r = 102,



Example 1 - N = 1 - Numerical experiments
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Figure: The primal variable Ay, in Qr; h = 2.46 x 1072; r =102,



Mesh adaptation
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Example 1 - N = 1 - Numerical experiments

t 0o X

Figure: The dual variable ¢, in Qr corresponding to the finer mesh; r =2 x 10~3.



Example 1 - N = 1 - Numerical experiments

Figure: The primal variable A, in Q7 corresponding to the finer mesh.



Minimization of J* with respect to A
JF(N) == 3 < PrA A > 20, —blgo, V)

1 . . . . . . . . .
0 0 50 100 150 200 250 300 350 400 450

n

Figure: Evolution of 19"l :2(ay)/19° 1 2(qy) W-rt- the iterate nfor r = 10 (x), r = 1
(@), r=10"2(0)and r = H? (<) ; h=19.99 x 10~3.



Minimization of J* with respect to A

JF(N) = 3 < PrA A > 20, —blgo, V)

h 156 x 10T 792x1072 3.99x 102 1.99x10=2 999 x 103
f iterates 20 26 31 44 61
mp = card({\n}) 231 840 3198 12555 49749
IAn(1, ')||L2(0,T) 0.6089 0.5867 0.5775 0.5746 0.5742
|lv— Ah(1,-)HLz(077) 240 x 10~ 1.68x 10" 128x10~!" 9.69x 1072 7.62x 1072
||)‘h”L2(QT) 0.6178 0.5963 0.5857 0.5806 0.5784

Table: BFS element - Conjugate gradient algorithm - r = 1.

Remind: [|v||;2(o, ) ~ 0.5773



Comparison with the bi-harmonic regularization

[Glowinski’92]

. €
min__ Jf(¢0.01) = I (v0.01) + 5 leo il € >0,
(vosp1)EV

V= H2(Q)n H(Q) x HI(Q)

(33)

Time Marching method here | : h = Ax; At = 0.8Ax



Comparison with the bi-harmonic regularization

[Glowinski’92]

. €
min__ Jf(¢0.01) = I (v0.01) + 5 leo il € >0,

(p0,p1)EV (33)
V= H2(Q)n H(Q) x HI(Q)
Time Marching method here | : h = Ax; At = 0.8Ax
h 156 x 10~T  7.92x 102 3.99 x 102 9.99 x 103
t iterates 62 > 5000 78 39
Cafd({tpom 301,7}) 44 84 164 644
IVall 20,7y 0.5484 0.5603 0.5671 0.5736
v —Vallzor |272x1071 2283x10°" 1.81x 10" 1.24 x 10~
IYnll2eap 0.5386 0.5557 0.5649 0.5731

Table: Biharmonic Tychonoff regularization; e = h'8.

Remind: ||v|| 2, 1) & 0.5773
Remark : If e = K2, the CG algorithm diverges.




The discrete inf-sup test - Evaluation of oy,

5p= inf sup —2EmAn) (34)

An€hn opedy l@nllo, [ Anlla, —

Taking n = r > 0 so that ar(p, %) = (v, ?)e, We have ®

5y = inf{\/3 : BhA,j;B,Z{A,,} =3ddp{n}, V{An} €R™\ {0}}. (35)

o0

10

5K. Bathe, D. Chapelle, The discrete inf-sup test, (2003)



The discrete inf-sup test - Evaluation of oy,

5p= inf sup —2EmAn) (34)

An€hn opedy l@nllo, [ Anlla, —
Taking n = r > 0 so that ar(p, %) = (v, ?)e, We have ®
5y = inf{\/3 : BhA,j;B,{{A,,} =3ddp{n}, V{An} €R™\ {0}}. (35)

10°

oy~ Cr as h— 0"

h
\7

If r = h?, (®p, Ap) passes
10 the discrete inf-sup test !

10? 107"
h

BFS finite element - h — /6, , for r = 1 (0),
r=10"2 (), r=hx andr = H (<)

5K. Bathe, D. Chapelle, The discrete inf-sup test, (2003)



Stabilized mixed formulation "a la Barbosa-Hughes"
6

a>0

sup |nf Lr.a(p,N),
AEAPE

Lra(@.N) = Le(@. ) = SINEz 410y = 3 1% = Dol

(36)

6H. Barbosa, T. Hugues : The finite element method with Lagrange multipliers on the boundary: circumventing
the Babusyka-Brezzi condition, 1991



Stabilized mixed formulation "a la Barbosa-Hughes"

6
a>0
sup inf Lra(cp,)\)
AEAPE N (36)
Lra(e.) = Lol ) = SN y-1q = 5113 = Doeller,.

A= {A e C([o, TI;L2(Q) n C' ([0, T); H~(Q)),
Lx e L3([0, T]; H7 (), A, 0) = Ar(+,0) = 0, A\, € Lz(rr)}'
A is a Hilbert space endowed with the following inner product
p— T — p— —
(A, M)A ::/ (LA(t),LA(t)),_,q(Q)dt—k/ Adodt, VA AEN
0 rr

using notably that
IMl2op) < Ca, V<A A>A, VAEA (37)

for some positive constant Cq 7. We denote [|A[[a := /< XA, X >p.

6H. Barbosa, T. Hugues : The finite element method with Lagrange multipliers on the boundary: circumventing
the Babusyka-Brezzi condition, 1991



Stabilized mixed formulation "a la Barbosa-Hughes" - 2

Then, Va € (0, 1), we consider the following mixed formulation:

|
3
<€
A
m

©

{ ar,a(p, ) + ba (2, A) (38)

ba(ipvx) - Ca()\ax) = 07 vx € A7

Ao :Px® R, aralp,p)=0- a)/ Oy Oy p dodt + r// L*o L*pdxdt
rr Qr
(39)
ba: P XAN—=R, ba(p,A)= // L*oXdxdt — Oc/ Oy pAdodt (40)
ar rr

!
Ca iAXA—=R, Ca(AN)= a/ (LA(), LX(1)) 110y Ot + a/ ANdodt  (41)
0 rr



Stabilized mixed formulation "a la Barbosa-Hughes" - 3

Proposition
Va € (0, 1), the stabilized mixed formulation (38) is well-posed. Moreover, the
unique pair (¢, ) € ® x A satisfies

(1 —a)+

af
Ollplls + all AR < —————llyo ¥ 1%z (42)

with 6 := min(1 — «, r/n).




Stabilized mixed formulation "a la Barbosa-Hughes" - 3

Proposition
Va € (0, 1), the stabilized mixed formulation (38) is well-posed. Moreover, the
unique pair (¢, ) € ® x A satisfies

(1 —a)+

af
Ollplls + all AR < —————llyo ¥ 1%z (42)

with 6 := min(1 — «, r/n).

Proposition
Ifa € (0, 1), the solution (¢, \) € ® x L2(Q) coincides with the stabilized solution
(Pa, Aa) € ® X A




Stabilized mixed formulation "a la Barbosa-Hughes" - Numerical approximation
a € (0,1),r>0.
by, C P, AR CA, vh > 0.

Find (¢n, An) € ®5, x Ay, solution of

{ ar,a(¢n @n) + ba(An, @) = h(@h)s Vo, € $p (43)
ba(Xn, on) — Ca(Ans Ap) 0, VAp € Ap.

In view of the properties of ar,«, Ca, /1, this formulation is well-posed.



Stabilized mixed formulation "a la Barbosa-Hughes" - Numerical approximation

a€(0,1),r>0.
Sy C P, AR CA, vh > 0.

Find (¢n, An) € ®5, x Ay, solution of

{ ara(en®n) +ba(in @) = h(@h),  Veh € “3)
ba(An, ¥hn) = Ca(Xn, An) 0, VAp € Ap.

In view of the properties of ar,«, Ca, /1, this formulation is well-posed.

A= {X € ®p; A(-,0) = Ae(-,0) = 0} (44)

Proposition (BFs element for N = 1 - Rate of convergence for the norm
d x A)

Leth > 0, let k < 2 be a positive integer and o € (0,1). Let (y, X\) and (yn, An)
be the solution of (38) and (43) respectively. If (y, \) belongs to

HK2(Qr) x HK2(Qr), then there exists a positive constant

K = K(llllgr+2(qy) o r,m) independent of h, such that

o — enllo + IA = Anlla < KhE. (45)

Remark - no 6, here Il r > 0 is arbitrary



Remark 1: The situation may be simpler with a different cost |?

1 1 77
Minimize J(y, v :7// 2dxdt—i-f// v[]2 do dt
(y;v) 5 QT|Y| 2 /o r0\| (46)
Subjectto (y,v) € C(yo,y1: T)

v:g—(p in (0,T)xTg and y =p in Qr.
14

ddt

Minimize J* (i, o, ¢1) = // | dx ot 4+ = //
o

+ < (0, 1), Vo, 1) >
Subject to (i, w0, 1) € L2(Qr) x V,

where ¢ solves the nonhomogeneous backward problem

L*o=p in Qr, =0 on Xy, (@('10)790/('70)):(9007901) (48)




Remark 1: The situation may be much simpler with a different cost !!?!

7
Replacing p by L* and miniminiz over ¢ lead to

2k do dt

Minimize J; (2 // IL*of2 dx ot + //
o

+ < (‘P( 70)7‘Pf( 70)),(}/0,}/1) >

(49)

Subjectto ¢ € ®

and to the well-posed variational formulation: find ¢ € ® such that

o e Tr opdp _
[ vergaa [ [ do dt =< (7(-,0), 7 0)), (Yo, 1) >, V@ € ®
ar 0Jry Ov Ov
(50)

N. Cindea, E. Fernandez-Cara, AM, Numerical controllability of the wave equation
through primal methods and Carleman estimates (2012)



Non constant coefficient: Ly := yy — (¢(X)yx)x + d(x, t)y
ce c'([0,1])

1 x €[0,0.45]
o(x) = { €[1.,5] (¢'(x)>0), xe(0.45,0.55) (51)
5 x € [0.55,1]

Figure: yo(x) = e—500(x-02)* anq ¢ given by (51) -The solution J, over Qr -
h = (1/80, 1/80).



Remark 2: The distributed case

Ly=vlg, qr=wx(0,T)CQx(0,T)

- 1 /7
ming* () = 5 [ [ 1o dxat < yo, 91(,0) >yt ~ ol Oz
Subjectto p € W := {Lp cp € L3(qr), @iz, = 0,0 =0€ L3(0, T, H‘1(Q))}
(52)
Optimal control : v = ¢ 14,

Generalized observability inequality : 3Cgps S.t.

2
||<P07<P1||L2( Q)xH-1(Q) < CObS(H‘P”LZ (ar) + HL*LPHLZ(O T:H— ))’ Vo € ®

Multiplier :

b(go,)\):/o AL ) >y @ A E L2(0, T HY(R)



The distributed case : Non cylindrical situation in 1D with constant coefficient
8
9

The variational approach is well-adapted to the non cylindrical situation.

T |- .
2t B 20 B 2t B
. (1)
7r(t)
Qr
qr ap
¢ t t t .
1r f 1+ f 1F [ah f
Qr Qr
or 1 or 1 of 1 of :
0 0.5 1 0 05 1 0 05 1 0 05 1
xr T T T

Time dependent domains gr C Qr =Q x (0, T)

8C. Castro, N. Cindea, A. Miinch, Controllability of the 1D wave equation with inner moving force, SICON
(2014)]

9G. Lebeau, J. Le Rousseau, P. Terpolilli, E. Trélat, Geometric control condition for the wave equation with a
time-dependent domain, (2016)



Remark 3 : Inverse problems -

Given a distributed observation yops € L2(g7), f € X := L2(H~), reconstruct y such
that
Ly=f in Qr, y=0 on X7, ¥Y—Yobs=0 on qr




Remark 3 : Inverse problems -

Given a distributed observation yops € L2(g7), f € X := L2(H~), reconstruct y such
that
Ly=f in Qr, y=0 on X7, ¥Y—Yobs=0 on qr

- ] 2
(LS) { minmize J(y07y1) = EHy - yObS”LZ(qT)
subjectto  (yo,¥1) € L2 x H 'where Ly —f=0

The "Discretization then Inverse problem" procedure is discussed in [L. Baudouin, M.
De Buhan, S. Ervedoza, 2013]




Remark 3 : Inverse problems -

Given a distributed observation yops € L2(g7), f € X := L2(H~), reconstruct y such
that
Ly=f in Qr, y=0 on X7, ¥Y—Yobs=0 on qr

- ] 2
(LS) { minmize J(y07y1) = EHy - yobS”LZ(qT)
subjectto  (yo,¥1) € L2 x H 'where Ly —f=0

The "Discretization then Inverse problem" procedure is discussed in [L. Baudouin, M.
De Buhan, S. Ervedoza, 2013]

Keeping y as the main variable 19....
) infJ(y) := *Ily yobsIILz @tz ity -3, r>o0
subjectto ye W:={ye Z, Ly—f=0in X}

The multiplier A € X’ is a "measure" of the quality of y,ps to reconstruct y.

'ON. Cindea, AM, Inverse problem for linear hyperbolic equations using mixed
formulations, Inverse Problems, (2015).



2D example - Observation on gr

0.5

Q

&

-0.2

T T T
0.33 0.85 1.4

(a)

(b)

Mesh number

0 1 2

Number of elements
Number of nodes

5730 44900 196 040
3432 24633 103566

Characteristics of the three meshes associated with Q7.



2D example - Observation on gr

Ay =10, inQ 3
{ Yo =0, on a9, yi =0
Mesh number 0 1 2
Vn—7n]
P P@D | 188 % 10~ 8.04x 1072 5.41 x 102
2o,
ILYall 2y 3.21 2.01 1.17

[Anllzq,) | 826x 1075 3.62x 1075 2.24 x 10-°

r=h-T=2



2D example - Observation on qr

y and y, in Qr



Example 2 - N = 2 - The stadium

AVp vaava
SR
R svANATAST

SOALE

STOEAT
RS

X
S 2 Zave
SRSEREE
LTAVAY AVAN o0

Figure: Bunimovich’s stadium and the subset I of 9Q on which the observations are
available. Example of mesh of the domain Q7.



2 - Recovering of the initial data

Example 2 - N

Figure: (a) Initial data yo given by (53). (b) Reconstructed initial data y(-, 0).



Parabolic case

QCRN; Qr=0x(0,T);qr =w x (0, T)
{ Yt — V- (e(xX)Vy) +d(x,t)y =v1,, in
y= 07
y(X7 0) :yO(X)7 in
c:= (1)) € C'( Mn(R)); (6(x)€,€) > olé[? in 2 (co > 0),
d € L>=(Qr), yo € LA(Q);

v = v(x,t) is the control y = y(x,t) is the associated state.

Ir, (54)



Parabolic case

QCRN; Qr=0x(0,T);qr =w x (0, T)
{ Yi—=V-(c(x)Vy)+d(x,t)y=v1,, in Qr,
y=0, in X7, (54)
y(x,0) = yo(x), in Q.
c:=(cij) € C' (2 Mn(R)); (¢(x)E,€) > colél? in Q2 (co > 0),
d e L>(Qr), yo € L3(Q);

v = v(x,t) is the control y = y(x,t) is the associated state.
We introduce the linear manifold
Co, T) ={(y,v): v e L?qr), ysolves (54) and satisfies y(T,-) = 0}.

non empty (see FURSIKOV-IMANUVILOV’96, ROBBIANO-LEBEAU’95)).

NOTATIONS -
Ly =y — V- (c(x)Vy) +d(x, t)y;  L*¢ = —pr — V- (c(x)Vep) + d(x, D)o



N = 1 - L?(gr)-norm of the HUM control with respect to time

Figure: yo(x) = sin(zx) - T=1-w = (0.2,0.8) - t — |[V(-, )| 2(g.1) in [0, T]



N =1 - L2-norm of the HUM control with respect to time: Zoom near T

0.2

0.05 1 1 1 1 1 1 1
0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

t

Figure: yp(x) =sin(mx) - T =1-w = (0.2,0.8) - t — |[v(-, 1)l 2(¢ 1) i [0.92T, T]



Minimal L2 norm control

Since it is difficult to construct pairs (v, y) € C(yo, T) (a fortiori minimizing sequences
for J 1), it is standard to consider the corresponding dual :

1
inf _ J(y,v) =— inf J*(¢7), J* :f/ 2dxdt+/ 0, -)yodx
o J ) == ot on), Sen) =5 | @ | 400,90
where ¢ solves the backward system

[*¢=0 Qr=(0,T)xQ,
=0 Tr=(0,T)x0Q  &T,)=or Q



Minimal L2 norm control

Since it is difficult to construct pairs (v, y) € C(yo, T) (a fortiori minimizing sequences
for J 1), it is standard to consider the corresponding dual :

1
inf _ J(y,v) =— inf J*(¢7), J* :f/ 2dxdt+/ 0, -)yodx
o J ) == ot on), Sen) =5 | @ | 400,90
where ¢ solves the backward system

[*¢=0 Qr=(0,T)xQ,
=0 Tr=(0,T)x0Q  &T,)=or Q

The Hilbert space H is defined as the completion of D(2) with respect to the norm

1/2
||¢THH:</q ¢2(t,x)dxdt) )
T



Minimal L2 norm control

Since it is difficult to construct pairs (v, y) € C(yo, T) (a fortiori minimizing sequences
for J 1), it is standard to consider the corresponding dual :

. . 1
nf Ly == i en), o) = 5 [

2
axat + / 0, )yodx
(V. V)EC(0,T) o’ o 0o

where ¢ solves the backward system

[*¢=0 Qr=(0,T)xQ,
=0 Tr=(0,T)x0Q  &T,)=or Q

The Hilbert space H is defined as the completion of D(2) with respect to the norm

1/2
o7l = (/ (1, x dxdt) .

From the observability inequality
[6(0, )22 < Cops(w, Dllé7llF Vor € L2(),

J* is coercive on H. The HUM control is given by v = ¢X,, on Q7.



lll-posedness

- The completed space H is huge:
H*cH vs>0!

(H may also contain elements which are not distribution !!):
Micu ™! proved in 1D that

the set of initial data yg, for which the corresponding ¢, minimizer of J*, does not
belong to any negative Sobolev spaces, is dense in L2(0, 1) !!!

-The dual variable ¢ is the Lagrange multiplier for the constraint y (-, T) = 0 may
belong to a "large" dual space, much larger than L2(Q):

<y(T),¢r>=0

-ll-posedness here is therefore related to the hugeness of H, poorly approximated
numerically.

-This phenomenon is unavoidable (unless w = 2 !) and is independent of the choice of
the norm !

s, Micu, Regularity issues for the null-controllability of the linear 1-d heat equation,
2011



Optimal backward solution ¢ on dw x [0, T]

T=1, y(x)=sin(xx), a(x)=a =1/10, w=(0.2,0.8)

Figure: T=1-w=(0.2,0.8) - "(-,0.8) for N = 80 on [0, T] (Left) and on
[0.927, T] (Right).

[Carthel-Glowinski-Lions’94, JOTA], [AM-Zuazua’11, Inverse Problems]



Remedies : Carleman weights !!

Change of the norm : framework of Fursikov-Imanuvilov’96 2

1 1
Minimize J(y,Vv) = > //o Aly|? dx dt + > // palv|? dx dt 55)
T ar

Subjectto (y,v) € C(y, T).

where p, pg are non-negative continuous weights functions such that
pypo € L®(Qr_s5) V6 >0.

12A.V. Fursikov and O. Yu. Imanuvilov, Controliability of Evolution Equations, Lecture
Notes Series, number 34. Seoul National University, Korea, (1996):1-163:



Primal (direct) approach

Following Fursikov-Imanuvilov'96, we assume Carleman type weights :

ptost) = oxp (00 ). o) = (T = 0%/Zp(x, 1), 50) = Ky (o — o000
where the K; are sufficiently large positive constants (depending on T, ¢y and |[c|| 1)

and By € C*(Q), fo > 0in Q, (Bo)jsq = 0, [VBo| > 0 outside w.
(56)



Primal (direct) approach

Following Fursikov-Imanuvilov'96, we assume Carleman type weights :

ptost) = oxp (00 ). o) = (T = 0%/Zp(x, 1), 50) = Ky (o — o000
where the K; are sufficiently large positive constants (depending on T, ¢y and |[c|| 1)

and By € C*(Q), fo > 0in Q, (Bo)jsq = 0, [VBo| > 0 outside w.
(56)
We introduce o
Po={qeC?Qr):q=0o0n X1}.

In this linear space, the bilinear form

(.q)e = [[ s72pLiqavat+ [[ ppqaxat
Qr ar

is a scalar product (unique continuation property).
Let P be the completion of Py for this scalar product.



Carleman estimates

Lemma (Fursikov-Imanuvilov'96, Fernandez-Cara-Guerrero’06)
Let p and pg be given by (56). For any § > 0, one has

P — CO([0, T — 8]; HY (%)),

where the embedding is continuous. In particular, there exists C > 0, only
depending onw, T, ay and ||a|| 1, such that, for all g € P,

lat- 012, <0<// —2\L*q|2dxdt+//p |q|2dxdt> (57)




Primal (direct) approach

Proposition

Let p and po be given by (56). Let (y, v) be the corresponding optimal pair for J.
Then there exists p € P such that

y=p"2L"P, v=—p;plg- (58)

The function p is the unique solution in P of

1
// p_ZL*pL*qudt+// po_zpqudt:/ Yo(x) q(x,0)dx, Vqe P
Qr ar 0
(59)




Primal (direct) approach

Proposition

Let p and po be given by (56). Let (y, v) be the corresponding optimal pair for J.
Then there exists p € P such that

y=p"2L"P, v=—p;plg- (58)

The function p is the unique solution in P of

1
// p_ZL*pL*qudt+// po_zpqudt:/ Yo(x) q(x,0)dx, Vqe P
Qr ar 0
(59)

Remark
p solves, at least in D', the following differential problem, that is second order in time
and fourth order in space:

L(pizL*p) + P62p1w =0, (x,1) €(0,1) x (0,7)
p(x,t) =0, (—p~2L*p)(x,1) =0 (x,t) € {0,1} x (0, T) (60)
(= 2L*p)(x,0) = yo(x), (—p~2L*p)(x,T) =0, x € (0,1).



Conformal approximation

For large integers Ny and N;, we set Ax = 1/Nx, At = T/N; and h = (Ax, At). Let
us introduce the associated uniform triangulation 7, , with

aQr=J k.

KeT,
The following (conformal) finite element approximations of the space P are introduced:
Ph={an € Cy{(Qr) : anlk € (Psx ®P1,)(K) VK € Tp, Guls, =0},

where C;;?(@T) is the space of the functions in C°(Qr) that are continuously
differentiable with respect to x in Q7.



Conformal approximation

For large integers Ny and N;, we set Ax = 1/Nx, At = T/N; and h = (Ax, At). Let
us introduce the associated uniform triangulation 7, , with

aQr=J k.
KeT,

The following (conformal) finite element approximations of the space P are introduced:
Ph={an € Cy{(Qr) : anlk € (Psx ®P1,)(K) VK € Tp, Guls, =0},

where C;;?(@T) is the space of the functions in C°(Qr) that are continuously

differentiable with respect to x in Q7.
The variational equality (59) is approximated as follows:

1
[ o2rentraaxat+ [[ sponandxat= [ yo(0 anx,0) ox
Qr ar 0

Van € Pn; pn € Ph.
(61)




Conformal approximation

Theorem (Fernandez-Cara, AM)
Let py € Py be the unique solution to (62). Let us set

Yn = P_2L*ph, Vh = 7p072ph 1q7-~
Then one has
Iy = ¥alliz(op) — 0 and |lv = vall2(q,) — O as h—0

where (y, v) is the minimizer of J.
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where (y, v) is the minimizer of J.




Conformal approximation

Theorem (Fernandez-Cara, AM)
Let py € Py be the unique solution to (62). Let us set

Yn = P_2L*ph, Vh = 7p072ph 1q7-~
Then one has
ly — YhHL2(QT) —0and |lv— VhHL2(qT) — 0, as h—0

where (y, v) is the minimizer of J.

In practice, we introduce the variable
mpy = py 'Pn € py ' Ph C py ' P C C([0, T], H}(22)) and we solve
2 — — ! —
[ o2 omn o+ [ mymaxat = [ yo ol 0)ma(.0) o
T ar

Ymn € py 'Pni M € py  Ph.
(62)



Experiment with w = (0.2,0.8)

Ax = At /20 /80 /160 /320
conditioning 1.33 x 101 7.86 x 102 2.17 x 10% 2.30 x 1054

IPn(- > Tl 20,1y | 285 x 10" 1.59 x 103 4.70 x 10* 6.12 x 108

IyaC> Dl 20,0y | 437 % 1072 1.09 x 1072 5.44 x 1073 2.71 x 1073
”Vh”LZ(qT) 1.228 1.269 1.281 1.288

Table: T =1/2, yo(x) = sin(xx), a(x)

= 107" yn(-, D2y = Oh).

Figure: w = (0.2,0.8). The adjoint state p, and its restriction to (0,1) x {T}.



Experiments with w = (0.2,0.8)

T =1/2, yo(x) = sin(rx), a(x) = 10~".

Figure: w = (0.2,0.8). The state y}, (Left) and the control v;, (Right).



Experiments with w = (0.3,0.4)

Ax = Af /20 /40 /80 /160 /320

conditioning 3.06 x 1014 5.24 x 1022 2.13 x 103 5.11 x 10% 4.03 x 10°%
Pn(-» Dll20,1y | 1-37 103 5.51 x 10° 5.12 x 10* 2.16 x 10° 3.90 x 10°
yaC s Dl 20,4y | 1-55 % 1077 946 x 1072 6.12x 1072 3.91 x 1072 2.41 x 1072

Ivnll 2(g7) 5.813 8.203 10.68 13.20 15.81

Table: T =1/2, yp(x) = sin(rx), a(x) = 10~". |lyn(-, T)ll 2(0,1) = O(h*).

Figure: w = (0.3,0.4). The adjoint state py, in Q (Left) and its restriction to
(0,1) x {T} (Right).



Experiments with w = (0.3,0.4)

Figure: w = (0.3,0.4). The state yj, (Left) and the control v}, (Right).

13
14

'3E. Fernandez-Cara and AM, Numerical null controllability of the 1-d heat equation:
primal algorithms, (2013),

4E. Fernandez-Cara and A. Miinch, Numerical null controllability of the 1-d heat
equation: Carleman weights and duality, JOTA, (2013)



L?-weighted norm

Minimize J(y, v) = 1 p2|v|? dx dt
2/)g "0
.

Subjectto (y,v) € C(yo, T).

(63)

where pg are non-negative continuous weights functions such that
pspo € L*(Qr_s) V3 >0.




L?-weighted norm

Minimize J(y, v) = 1 p2|v|? dx dt
2/)g "0
.

(63)
Subjectto (y,Vv) € C(yo, T).
where pg are non-negative continuous weights functions such that
pspo € L*(Qr_s) V3 >0.
min  J*( // 2l (x, DPax dt + (o, ¢(-,0))2(0y- (64)
PEWpg.p 2

Wopo ={p € By p~ ' L*0 = 01in L2(Qr)}

5p, Araujo de Souza, AM, A mixed formulation for the direct approximation of the
control of minimal L2-weighted norm for the linear heat equation. (2016)



Application: Controllability for semi-linear heat equation
16

¥t — 0.y — Bylog™ (1 + |y]) = vl02,0.8), (X, 1) €(0,1) x (0,1/2)

y(x, 1) =0, (x,t) €{0,1} x (0,1/2)  (69)

y(x,0) = 40sin(7x), x € (0,1).
Without control, blow up at t ~ 0.318.

Figure: Fixed point method - h = (1/60, 1/60) - y5(x) = 40sin(7x) - Control v,
(Left) and corresponding controlled solution y, (Right) in Qr.

8. Fernandez-Cara and AM, Numerical null controllability of semi-linear 1D heat
equations : fixed point, least squares and Newton methods, (2012)



A space-time Least-squares approach for controllability

We define the non-empty set 7
A= {(% v); y € C([0, T]; LA(Q)NL(0, T; Hy (Q)): ¥ € L2(0, T, H™(Q)),
¥(0) =yo,¥(~T)=0,v e LZ(QT)}

and find (y, v) € A solution of the heat eq. !

7AM, P. Pedregal, Numerical null controllability of the heat equation through a least
squares and variational approach. European Journal of Applied Mathematics, (2014):



A space-time Least-squares approach for controllability

We define the non-empty set 7
A= {(% v); y € C([0, T]; L3(Q))NL(0, T; H3 (Q)); ¥ € L3(0, T,H™(Q)),
V(.0 = oy ) =0.v € L2(ar) |
and find (y, v) € A solution of the heat eq. !

For any (y, v) € A, we define the "corrector” ¢ = ¢(y, v) € H'(Qr) solution of the Qr-
elliptic problem

—C“—V-(a(X)Vc)—i—(Ly—v1w):0, (X7t)€QT,
¢ =0, xeQ,te{0, T} (66)
c=0, XeXT.

7AM, P. Pedregal, Numerical null controllability of the heat equation through a least
squares and variational approach. European Journal of Applied Mathematics, (2014):



Least-squares approach (2)

Theorem

y is a controlled solution of the heat eq. by the control function v 1,, € L?(gr) if
and only if (y, v) is a solution of the extremal problem

inf  E(y,v) ;=1// (et + a(x)|Vel?)dx dt. (67)
(y,v)eA 2 Qr




Least-squares approach (2)

Theorem
y is a controlled solution of the heat eq. by the control function v 1,, € L?(gr) if
and only if (y, v) is a solution of the extremal problem

inf  E(y,v) ;=1// (et + a(x)|Vel?)dx dt. (67)
(y,v)eA 2 Qr

Theorem
Any minimizing sequence {yx, Vk }k>o for E converges strongly to a minimizer
(which depend on (yg, vp))-

The numerical analysis has yet to be done ! You are welcome !



A numerical application in 1D (inner controllability)

N=1,Q=(0,1),w=(02,05), yo(x) = sin(rx), a(x) = a = 0.25, T = 1/2,
d:=0
Starting point of the algorithm: (y, f) = (yo(x)(1 — t/T)?,0) € A

Up(x) = sin(nx) - Control acting on w = (0.2,0.5) - = 106 - log1o(En(yj) (dashed
line) and logyo([lg71l.4) (full line) vs. the iteration n of the CG algorithm.



A numerical application in 1D (inner controllability)

R
i
\\\\ R

(y,v) € Aalong Qr at convergence



A numerical application in 1D (inner controllability)

4
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Isovalues along Qr of the corresponding corrector ¢: |[¢]| 41(q,) ~ 10~4



INVERSE PROBLEM FOR HEAT - RECONSTRUCTION OF y FROM Yar

QCcRVN(N>1)-T>0,ce C'(QR)),deL®(Qr), o€ H

y =0, 7= 09 x (0, T) (68)
Q.

{ Ly :=y;—V-(cVy)+dy=1f, Qr:=Qx(0,T)
y(-,0) = yo,

» Inverse Problem : Distributed observation on gr = w x (0, T),w C Q

{X = L%(ar),
Given (Vops; f) € (L2(qr7), X), find y 5.t. {(68) and y — Yops =0 on gr}

WELL-KNOWN DIFFICULTY:

(Ly € L%(Qr),y € L2(ar), Yz, = 0) =y € C([6, T], H3 (), V6 >0

18

18, Araujo de Souza, AM, Inverse problems for linear parabolic equations using
mixed formulations - Part 1 : Theoretical analysis. (2016)



Second order mixed formulation .... as in the previous part

We then define the following extremal problem :

Minimize J(y) := %// Py 21y (X, ) — Yobs(x, )| dx dt + r//o (p~"Ly)? dxdt
ar JQr

Subjectto y € W := {y €Y :p 'Ly=0in L2(QT)}

(P)
with pg, p € R where (p. € R})

R:={w:weC(Qr);w>p,>0in Qr;we L>®(Qx (5, T)) V6 > 0}



H} — L2 first order formulation

First order formulation involving y and the flux p = ¢(x)Vy.

y=0 on Xr, (69)

{I(y,p):=yt—V-p+dy=f, Jy,p)=c(x)Vy—p=0 in Qr,
y(x,0) = yo(x) in  Q

(Yo, f) € L3(Q) x L2(Qr) = p € L3(Qr), ¥ € L2(0, T, H}(Q)). y1 € L2(0, T,H-(Q))

» Inverse Problem : Distributed observationon gr = w x (0, T),w C Q

Given (Yobs, f) € (L3(qr), X), find (y,p) 5.t. {(69) and y — yops =0 on qr}



N =1 - Heat eq. Comparison with the standard method

Yo(x) = sin(mx)?, Qr = (0,1)x (0,T), qr=(07,08) x (0,T), T=1/2

. M 2 S pkx
min (Jh(,VOh)+ ?HyOhHLZ(Q)) vs.  min Jr*(An) over Ap

: e o8 /5}/ " - P
e oz el 02
X 0 t te
— Yh —Jh
Wy =Ielizan g gg 1072, W Ilizan 500, 492

IYlli2an 1Yl 2ap)

(70)



N =1 - Comparison with the standard method

Yo(x) =sin(zx)®, Qr=(0,1)x(0,T), qr=(0.7,08)x (0,T), T=1/2

0.2 0.4 0.6 0.8 1

Restriction at (0,1) x {0}



N =1 - Comparison with the standard method

0 100 200 300 400 500 10 1 1.5 2

k
Evolution of the relative residu % w.r.t. iterate k

25

35




Final comments

THE VARIATIONAL APPROACH CAN BE USED IN THE CONTEXT OF MANY OTHER
CONTROLLABLE SYSTEMS FOR WHICH APPROPRIATE CARLEMAN ESTIMATES ARE
AVAILABLE.

THE APPROXIMATION IS ROBUST (WE HAVE TO INVERSE SYMMETRIC DEFINITE
POSITIVE AND VERY SPARSE MATRICE WITH DIRECT LU AND CHOLESKY SOLVERS)

WITH CONFORMAL TIME-SPACE FINITE ELEMENTS APPROXIMATIONS, WE OBTAIN
STRONG CONVERGENCE RESULTS WITH RESPECT TO h = (Ax, At).

THE PRICE TO PAY IS TO USED C' FINITE ELEMENTS (AT LEAST IN SPACE) ..... BUT we
MAY INTRODUCE LOWER ORDER SYSTEM.

IN THAT SPACE-TIME APPROACH, THE SUPPORT OF THE CONTROL MAY VARIES IN TIME
(WITHOUT ADDITIONAL DIFFICULTIES).

THIS APPROACH MAY BE APPLIED FOR INVERSE PROBLEMS, OBSERVATION PROBLEMS,
RECONSTRUCTION OF DATA, ....

MESH ADAPTIVITY MAY BE VERY USEFUL, IN PARTICULAR IN THE PARABOLIC SITUATION



Ongoing works

» Extension to sparse control (L' term in the cost)
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» Average controllability 19

19Martinez-Frutos, Kessler, M, Periago, Robust optimal Robin boundary control for
the transient heat equation with random input data, (2016).
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Ongoing works

» Extension to sparse control (L' term in the cost)
» Average controllability 19
» Approximation of observability constant ( to infer or not observability property)

lle(-, 0)I1%
B () where L*¢o =0 (71)

)

Cobs(T,w) = sup >
PTEH(Q) H‘F’”LZ(‘ux(o,T))

in particular for the VERY SINGULAR case of the transport-diffusion equation

Yi—eyxx+yx =0, Qr:=(0,1) x(0,7),
y(0,1) = ve(t), y(1, 1) = 0, (72)
¥(x,0) = yo(x) € L2(0,1)

ase— 0.

19Martinez-Frutos, Kessler, M, Periago, Robust optimal Robin boundary control for
the transient heat equation with random input data, (2016).



