About the controllability of $y_t - \varepsilon y_{xx} + My_x = 0$ w.r.t. ε

YOUCEF AMIRAT and ARNAUD MÜNCH

Nancy - IECN - November 7th 2017

Introduction - The advection-diffusion equation

Let T > 0, $M \in \mathbb{R}$, $\varepsilon > 0$ and $Q_T := (0,1) \times (0,T)$.

$$\begin{cases} L_{\varepsilon}y^{\varepsilon} := y_{t}^{\varepsilon} - \varepsilon y_{xx}^{\varepsilon} + M y_{x}^{\varepsilon} = 0 & Q_{T}, \\ y^{\varepsilon}(0, \cdot) = v^{\varepsilon}(t), \ y^{\varepsilon}(1, \cdot) = 0 & (0, T), \\ y^{\varepsilon}(\cdot, 0) = y_{0}^{\varepsilon} & (0, 1), \end{cases}$$
(1)

Well-poseddness:

$$\forall y_0^\varepsilon \in H^{-1}(0,1), v^\varepsilon \in L^2(0,T), \quad \exists ! \ y^\varepsilon \in L^2(Q_T) \cap \mathcal{C}([0,T];H^{-1}(0,1))$$

• Null control property: From (Russel'78),

$$\forall T > 0, y_0 \in H^{-1}(0,1), \exists v^{\varepsilon} \in L^2(0,T) \quad \text{such that}$$
$$y^{\varepsilon}(\cdot,T) = 0 \quad \text{in } H^{-1}(0,1).$$

- Main concern: Behavior of the controls v^{ε} as $\varepsilon \to 0$
 - Controllability of conservation law system;
 - lacktriangle Toy model for fluids when Navier-Stokes ightarrow Euler.

Introduction - The advection-diffusion equation

Let T > 0, $M \in \mathbb{R}$, $\varepsilon > 0$ and $Q_T := (0, 1) \times (0, T)$.

$$\begin{cases} L_{\varepsilon}y^{\varepsilon} := y_{\varepsilon}^{\varepsilon} - \varepsilon y_{xx}^{\varepsilon} + M y_{x}^{\varepsilon} = 0 & Q_{T}, \\ y^{\varepsilon}(0, \cdot) = v^{\varepsilon}(t), \ y^{\varepsilon}(1, \cdot) = 0 & (0, T), \\ y^{\varepsilon}(\cdot, 0) = y_{0}^{\varepsilon} & (0, 1), \end{cases}$$
(1)

Well-poseddness:

$$\forall y_0^\varepsilon \in H^{-1}(0,1), v^\varepsilon \in L^2(0,T), \quad \exists ! \ y^\varepsilon \in L^2(Q_T) \cap \mathcal{C}([0,T];H^{-1}(0,1))$$

• Null control property: From (Russel'78),

$$\forall T > 0, y_0 \in H^{-1}(0,1), \exists v^{\varepsilon} \in L^2(0,T) \quad \text{such that}$$
$$y^{\varepsilon}(\cdot,T) = 0 \quad \text{in } H^{-1}(0,1).$$

- Main concern: Behavior of the controls v^{ε} as $\varepsilon \to 0$
 - Controllability of conservation law system;
 - Toy model for fluids when Navier-Stokes → Euler.

• We note the non empty set of null controls by

$$\mathcal{C}(y_0, T, \varepsilon, M) := \{ v \in L^2(0, T); y = y(v) \text{ solves (5) and satisfies } y(\cdot, T) = 0 \}$$

For any $\varepsilon > 0$, we define the cost of control by the following quantity :

$$K(\varepsilon, T, M) := \sup_{\|y_0\|_{L^2(0,1)} = 1} \left\{ \min_{u \in \mathcal{C}(y_0, T, \varepsilon, M)} \|u\|_{L^2(0,T)} \right\}.$$

• We denote by T_M the minimal time for which the cost $K(\varepsilon, T, M)$ is uniformly bounded with respect to ε . In other words, (5) is uniformly controllable with respect to ε if and only if $T \geq T_M$.

• We note the non empty set of null controls by

$$\mathcal{C}(y_0, T, \varepsilon, M) := \{ v \in L^2(0, T); y = y(v) \text{ solves (5) and satisfies } y(\cdot, T) = 0 \}$$

For any $\varepsilon > 0$, we define the cost of control by the following quantity :

$$K(\varepsilon, T, M) := \sup_{\|y_0\|_{L^2(0,1)} = 1} \left\{ \min_{u \in \mathcal{C}(y_0, T, \varepsilon, M)} \|u\|_{L^2(0,T)} \right\}.$$

• We denote by T_M the minimal time for which the cost $K(\varepsilon, T, M)$ is uniformly bounded with respect to ε . In other words, (5) is uniformly controllable with respect to ε if and only if $T \geq T_M$.

Remark

Let v^{ε} the control of minimal L²-norm for the initial data y_0^{ε} : then

$$\|v^{\varepsilon}\|_{L^{2}(0,T)} \leq K(\varepsilon,T,M) \|y^{\varepsilon}_{0}\|_{L^{2}(0,1)}$$

Thus, $K(\varepsilon, T, M)$ is the norm of the (linear) operator $y_0^{\varepsilon} \to v_{HUM}$ where v_{HUM} is the control of minimal L^2 -norm.

Remark

By duality, the controllability property is related to the existence of C>0 such that

$$\|\varphi(\cdot,0)\|_{L^2(0,1)} \le C \|\varepsilon\varphi_X(0,\cdot)\|_{L^2(0,T)}, \quad \forall \varphi_T \in H_0^1(0,1) \cap H^2(0,1)$$
 (2)

The quantity

$$C_{obs}(\varepsilon, T, M) = \sup_{\varphi_T \in H_0^1(0, 1)} \frac{\|\varphi(\cdot, 0)\|_{L^2(0, 1)}}{\|\varepsilon \varphi_X(0, \cdot)\|_{L^2(0, T)}}$$

is the smallest constant for which (2) holds true and $K(\varepsilon, T, M) = C_{obs}(\varepsilon, T, M)$

Remark

Let v^{ε} the control of minimal L²-norm for the initial data y_0^{ε} : then

$$\|v^{\varepsilon}\|_{L^{2}(0,T)} \leq K(\varepsilon,T,M) \|y^{\varepsilon}_{0}\|_{L^{2}(0,1)}$$

Thus, $K(\varepsilon, T, M)$ is the norm of the (linear) operator $y_0^{\varepsilon} \to v_{HUM}$ where v_{HUM} is the control of minimal L^2 -norm.

Remark

By duality, the controllability property is related to the existence of C>0 such that

$$\|\varphi(\cdot,0)\|_{L^2(0,1)} \leq C \|\varepsilon\varphi_X(0,\cdot)\|_{L^2(0,T)}, \quad \forall \varphi_T \in H^1_0(0,1) \cap H^2(0,1) \tag{2}$$

The quantity

$$C_{obs}(\varepsilon, T, M) = \sup_{\varphi_T \in H_0^1(0,1)} \frac{\|\varphi(\cdot, 0)\|_{L^2(0,1)}}{\|\varepsilon \varphi_X(0, \cdot)\|_{L^2(0,T)}}.$$

is the smallest constant for which (2) holds true and $K(\varepsilon, T, M) = C_{obs}(\varepsilon, T, M)$.

$$\begin{cases} y_t^{\varepsilon} - \varepsilon y_{xx}^{\varepsilon} = 0 & Q_T, \\ y^{\varepsilon}(0, \cdot) = v^{\varepsilon}(t), \ y^{\varepsilon}(1, \cdot) = 0 & (0, T), \\ y^{\varepsilon}(\cdot, 0) = y_0^{\varepsilon} & (0, 1), \end{cases}$$

Making the change of variable $\tilde{t} = \varepsilon t$, we easily have

Lemma

$$\forall T > 0, \varepsilon > 0, \quad K(\varepsilon, T, 0) = \varepsilon^{-1/2} K(1, \varepsilon T, 0)$$

Theorem (Miller, Lissy, Tenebaum-Tucsnak,)

$$K(1, T, 0) \sim_{T \to 0^+} e^{\frac{\kappa}{T}}, \quad \kappa \in (1/2, 3/4)$$

Corollary

$$K(\varepsilon, T, 0) \sim_{\varepsilon \to 0^+} \varepsilon^{-1/2} e^{\frac{\kappa}{\varepsilon T}}, \quad \kappa \in (1/2, 3/4)$$

$$\begin{cases} y_t^{\varepsilon} - \varepsilon y_{xx}^{\varepsilon} = 0 & Q_T, \\ y^{\varepsilon}(0, \cdot) = v^{\varepsilon}(t), \ y^{\varepsilon}(1, \cdot) = 0 & (0, T), \\ y^{\varepsilon}(\cdot, 0) = y_0^{\varepsilon} & (0, 1), \end{cases}$$

Making the change of variable $\tilde{t} = \varepsilon t$, we easily have

Lemma

$$\forall T > 0, \varepsilon > 0, \quad K(\varepsilon, T, 0) = \varepsilon^{-1/2} K(1, \varepsilon T, 0)$$

Theorem (Miller, Lissy, Tenebaum-Tucsnak,)

$$K(1,T,0)\sim_{T\to 0^+}e^{\frac{\kappa}{T}},\quad \kappa\in(1/2,3/4)$$

Corollary

$$K(\varepsilon, T, 0) \sim_{\varepsilon \to 0^+} \varepsilon^{-1/2} e^{\frac{\kappa}{\varepsilon T}}, \quad \kappa \in (1/2, 3/4)$$

$$\begin{cases} y_t^{\varepsilon} - \varepsilon y_{xx}^{\varepsilon} = 0 & Q_T, \\ y^{\varepsilon}(0, \cdot) = v^{\varepsilon}(t), \ y^{\varepsilon}(1, \cdot) = 0 & (0, T), \\ y^{\varepsilon}(\cdot, 0) = y_0^{\varepsilon} & (0, 1), \end{cases}$$

Making the change of variable $\tilde{t} = \varepsilon t$, we easily have

Lemma

$$\forall T > 0, \varepsilon > 0, \quad K(\varepsilon, T, 0) = \varepsilon^{-1/2} K(1, \varepsilon T, 0)$$

Theorem (Miller, Lissy, Tenebaum-Tucsnak,)

$$K(1, T, 0) \sim_{T \to 0^+} e^{\frac{\kappa}{T}}, \quad \kappa \in (1/2, 3/4)$$

Corollary

$$K(\varepsilon, T, 0) \sim_{\varepsilon \to 0^+} \varepsilon^{-1/2} e^{\frac{\kappa}{\varepsilon T}}, \quad \kappa \in (1/2, 3/4)$$

Theorem (Coron- Guerrero)

Let T>0, $M\in\mathbb{R}^*$, $y_0\in L^2(0,1)$. Let $(v^\varepsilon)_{(\varepsilon)}$ be a sequence of functions in $L^2(0,T)$ such that for some $v\in L^2(0,T)$

$$v^{\varepsilon} \rightharpoonup v \quad \text{in} \quad L^2(0,T), \quad \varepsilon \to 0^+.$$

For $\varepsilon > 0$, let us denote by $y^{\varepsilon} \in C([0, T]; H^{-1}(0, 1))$ the weak solution of

$$\begin{cases} y_t^{\varepsilon} - \varepsilon y_{xx}^{\varepsilon} + M y_x^{\varepsilon} = 0 & Q_T, \\ y^{\varepsilon}(0, \cdot) = v^{\varepsilon}(t), \ y^{\varepsilon}(1, \cdot) = 0 & (0, T), \\ y^{\varepsilon}(\cdot, 0) = y_0 & (0, 1), \end{cases}$$
(3)

Let $y \in C([0, T]; L^2(0, 1))$ be the weak solution of

$$\begin{cases} y_{t} + My_{x} = 0 & Q_{T}, \\ y(0, \cdot) = v(t) & \text{if } M > 0 & (0, T), \\ y(1, \cdot) = 0 & \text{if } M < 0 & (0, T), \\ y(\cdot, 0) = y_{0} & (0, 1), \end{cases}$$

$$(4)$$

Then, $y^{\varepsilon} \rightharpoonup y$ in $L^{2}(Q_{T})$ as $\varepsilon \to 0^{+}$.

200

First consequence

Theorem

If
$$T<\frac{1}{|M|},\lim_{\varepsilon\to 0}K(\varepsilon,T,M)\to\infty.$$
 Consequently, $T_M\geq \frac{1}{|M|}.$

PROOF. Assume that $K(\varepsilon,T,M) \not\to +\infty$. There exists $(\varepsilon_n)_{(n\in\mathbb{N})}$ positive tending to 0 such that $(K(\varepsilon_n,T,M))_{(n\in\mathbb{N})}$ is bounded.

Let v^{ε_n} the optimal control driving y_0 to 0 at time T and y^{ε_n} the corresponding solution. Let $T_0 \in (T, 1/|M|)$. We extend y^{ε_n} and v^{ε_n} by 0 on (T, T_0) . From the inequality

$$\|v^{\varepsilon_n}\|_{L^2(0,T_0)} = \|v^{\varepsilon_n}\|_{L^2(0,T)} \le K(\varepsilon^n,T,M)\|y_0\|_{L^2(0,1)},$$

we deduce that $(v^{\varepsilon_n})_{(n\in\mathbb{N})}$ is bounded in $L^2(0,T_0)$, so we extract a subsequence $(v^{\varepsilon_n})_{(n\in\mathbb{N})}$ such that $v^{\varepsilon_n} \rightharpoonup v$ in $L^2(0,T_0)$. We deduce that $y^{\varepsilon_n} \rightharpoonup y$ in $L^2(Q_{T_0})$ solution of the transport equation. Necessarily, $y\equiv 0$ on $(0,1)\times (T,T_0)$. Contradiction.

Lemma

The uncontrolled solution ($v^{\varepsilon} = 0$) satisfies

$$||y^{\varepsilon}(\cdot,t)||_{L^{2}(0,1)} \leq ||y^{\varepsilon}(\cdot,0)||_{L^{2}(0,1)} e^{-\frac{M^{2}}{4\varepsilon}(t-\frac{1}{M})^{2}}, \quad \forall t > \frac{1}{M}$$

PROOF. Let $\alpha > 0$. We check $z^{\varepsilon}(x,t) = e^{\frac{-M\alpha x}{2\varepsilon}}y^{\varepsilon}(x,t)$ solves

$$\begin{cases} z_{\tau}^{\varepsilon} - \varepsilon z_{\chi\chi}^{\varepsilon} + M(1 - \alpha) z_{\chi}^{\varepsilon} - \frac{M^{2}}{4\varepsilon} (\alpha^{2} - 2\alpha) z^{\varepsilon} = 0 & \text{in} \quad Q_{T}, \\ z^{\varepsilon}(0, \cdot) = z^{\varepsilon}(1, \cdot) = 0 & \text{on} \quad (0, T), \\ z^{\varepsilon}(\cdot, 0) = e^{\frac{-M\alpha\chi}{2\varepsilon}} y_{0}^{\varepsilon} & \text{in} \quad (0, L), \end{cases}$$
 (5)

Consequently

$$\begin{split} \|e^{-\frac{M\alpha_{L}}{2\varepsilon}}y^{\varepsilon}(\cdot,t)\|_{L^{2}(0,1)} &\leq \|e^{-\frac{M\alpha_{L}}{2\varepsilon}}y^{\varepsilon}(\cdot,0)\|_{L^{2}(0,1)}e^{\frac{M\alpha_{L}}{4\varepsilon}(\alpha^{2}-2\alpha)t} \\ &^{\varepsilon}(\cdot,t)\|_{L^{2}(0,1)} &\leq \|e^{+\frac{M\alpha_{L}}{2\varepsilon}}\|_{L^{\infty}(0,1)}\|e^{-\frac{M\alpha_{L}}{2\varepsilon}}y^{\varepsilon}(\cdot,t)\|_{L^{2}(0,1)} \\ &\leq \|e^{+\frac{M\alpha_{L}}{2\varepsilon}}\|_{L^{\infty}(0,1)}\|e^{-\frac{M\alpha_{L}}{2\varepsilon}}y^{\varepsilon}(\cdot,0)\|_{L^{2}(0,1)}e^{\frac{M^{2}}{4\varepsilon}(\alpha^{2}-2\alpha)t} \\ &\leq \|y^{\varepsilon}(\cdot,0)\|_{L^{2}(0,1)}e^{\frac{M\alpha_{L}}{2\varepsilon}(1-Mt+\frac{M\alpha_{L}}{2})} \end{split}$$

and the result with $\alpha = t - \frac{1}{M} > 0$.

Lemma

The uncontrolled solution ($v^{\varepsilon} = 0$) satisfies

$$||y^{\varepsilon}(\cdot,t)||_{L^{2}(0,1)} \leq ||y^{\varepsilon}(\cdot,0)||_{L^{2}(0,1)} e^{-\frac{M^{2}}{4\varepsilon}(t-\frac{1}{M})^{2}}, \quad \forall t > \frac{1}{M}$$

PROOF. Let $\alpha > 0$. We check $z^{\varepsilon}(x,t) = e^{\frac{-M\alpha x}{2\varepsilon}}y^{\varepsilon}(x,t)$ solves

$$\begin{cases} z_{\tau}^{\varepsilon} - \varepsilon z_{\chi\chi}^{\varepsilon} + M(1 - \alpha) z_{\chi}^{\varepsilon} - \frac{M^{2}}{4\varepsilon} (\alpha^{2} - 2\alpha) z^{\varepsilon} = 0 & \text{in} \quad Q_{T}, \\ z^{\varepsilon}(0, \cdot) = z^{\varepsilon}(1, \cdot) = 0 & \text{on} \quad (0, T), \\ z^{\varepsilon}(\cdot, 0) = e^{\frac{-M\alpha\chi}{2\varepsilon}} y_{0}^{\varepsilon} & \text{in} \quad (0, L), \end{cases}$$
 (5)

Consequently

$$\begin{split} \|e^{-\frac{M\alpha_{L}}{2\varepsilon}}y^{\varepsilon}(\cdot,t)\|_{L^{2}(0,1)} &\leq \|e^{-\frac{M\alpha_{L}}{2\varepsilon}}y^{\varepsilon}(\cdot,0)\|_{L^{2}(0,1)}e^{\frac{M\alpha_{L}}{4\varepsilon}(\alpha^{2}-2\alpha)t} \\ &^{\varepsilon}(\cdot,t)\|_{L^{2}(0,1)} &\leq \|e^{+\frac{M\alpha_{L}}{2\varepsilon}}\|_{L^{\infty}(0,1)}\|e^{-\frac{M\alpha_{L}}{2\varepsilon}}y^{\varepsilon}(\cdot,t)\|_{L^{2}(0,1)} \\ &\leq \|e^{+\frac{M\alpha_{L}}{2\varepsilon}}\|_{L^{\infty}(0,1)}\|e^{-\frac{M\alpha_{L}}{2\varepsilon}}y^{\varepsilon}(\cdot,0)\|_{L^{2}(0,1)}e^{\frac{M^{2}}{4\varepsilon}(\alpha^{2}-2\alpha)t} \\ &\leq \|y^{\varepsilon}(\cdot,0)\|_{L^{2}(0,1)}e^{\frac{M\alpha_{L}}{2\varepsilon}(1-Mt+\frac{M\alpha_{L}}{2})} \end{split}$$

and the result with $\alpha = t - \frac{1}{M} > 0$.

Lemma

The uncontrolled solution ($v^{\varepsilon} = 0$) satisfies

$$||y^{\varepsilon}(\cdot,t)||_{L^{2}(0,1)} \leq ||y^{\varepsilon}(\cdot,0)||_{L^{2}(0,1)} e^{-\frac{M^{2}}{4\varepsilon}(t-\frac{1}{M})^{2}}, \quad \forall t > \frac{1}{M}$$

PROOF. Let $\alpha > 0$. We check $z^{\varepsilon}(x,t) = e^{\frac{-M\alpha x}{2\varepsilon}}y^{\varepsilon}(x,t)$ solves

$$\begin{cases}
z_{t}^{\varepsilon} - \varepsilon z_{xx}^{\varepsilon} + M(1 - \alpha) z_{x}^{\varepsilon} - \frac{M^{2}}{4\varepsilon} (\alpha^{2} - 2\alpha) z^{\varepsilon} = 0 & \text{in} \quad Q_{T}, \\
z^{\varepsilon}(0, \cdot) = z^{\varepsilon}(1, \cdot) = 0 & \text{on} \quad (0, T), \\
z^{\varepsilon}(\cdot, 0) = e^{\frac{-M\alpha x}{2\varepsilon}} y_{0}^{\varepsilon} & \text{in} \quad (0, L),
\end{cases} (5)$$

Consequently

$$\begin{split} \|e^{-\frac{M\alpha x}{2\varepsilon}}y^{\varepsilon}(\cdot,t)\|_{L^{2}(0,1)} &\leq \|e^{-\frac{M\alpha x}{2\varepsilon}}y^{\varepsilon}(\cdot,0)\|_{L^{2}(0,1)}e^{\frac{M^{2}}{4\varepsilon}(\alpha^{2}-2\alpha)t} \\ \|y^{\varepsilon}(\cdot,t)\|_{L^{2}(0,1)} &\leq \|e^{+\frac{M\alpha x}{2\varepsilon}}\|_{L^{\infty}(0,1)}\|e^{-\frac{M\alpha x}{2\varepsilon}}y^{\varepsilon}(\cdot,t)\|_{L^{2}(0,1)} \\ &\leq \|e^{+\frac{M\alpha x}{2\varepsilon}}\|_{L^{\infty}(0,1)}\|e^{-\frac{M\alpha x}{2\varepsilon}}y^{\varepsilon}(\cdot,0)\|_{L^{2}(0,1)}e^{\frac{M^{2}}{4\varepsilon}(\alpha^{2}-2\alpha)t} \\ &\leq \|y^{\varepsilon}(\cdot,0)\|_{L^{2}(0,1)}e^{\frac{M\alpha x}{2\varepsilon}(1-Mt+\frac{M\alpha x}{2})} \end{split}$$

and the result with $\alpha = t - \frac{1}{M} > 0$.

We expect $T_M=\frac{L}{|M|}$ and that $\lim_{\varepsilon\to 0}K(\varepsilon,T,M)=0^+$ because the transport eq. is null controlled at time $T\geq \frac{1}{|M|}$ with $v\equiv 0$! But,

Theorem (Coron-Guerrero'2006

• If M>0, then $K(\varepsilon,T,M)\geq Ce^{c/\varepsilon}$, c, C>0, when $\varepsilon\to 0$ for $T<\frac{L}{M}$. • If M<0, then $K(\varepsilon,T,M)\geq Ce^{c/\varepsilon}$, c, C>0, when $\varepsilon\to 0$ for $T<2\frac{L}{(M)}$

More precisely, the lower bound are obtained using specific initial condition:

$$y_0(x) = K_{\varepsilon} e^{-\frac{Mx}{2\varepsilon}} \sin(\pi x), \quad (K_{\varepsilon} = \mathcal{O}(\varepsilon^{-3/2}) \quad \text{s.t.} \quad \|y_0\|_{L^2(0,1)} = 1)$$

leading, for M > 0, to

$$K(\varepsilon, T, M) \ge C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1 + M^3 \varepsilon^{-3}} \exp\left(\frac{M}{2\varepsilon} (1 - TM) - \pi^2 \varepsilon T\right)$$

$$K(\varepsilon, T, M) \ge C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1 + |M|^3 \varepsilon^{-3}} \exp\left(\frac{|M|}{2\varepsilon} (2 - TM) - \pi^2 \varepsilon T\right)$$

We expect $T_M=\frac{L}{|M|}$ and that $\lim_{\varepsilon\to 0}K(\varepsilon,T,M)=0^+$ because the transport eq. is null controlled at time $T\geq \frac{1}{|M|}$ with $v\equiv 0$! But,

Theorem (Coron-Guerrero'2006

• If M>0, then $K(\varepsilon,T,M)\geq Ce^{c/\varepsilon}$, c,C>0, when $\varepsilon\to 0$ for $T<\frac{L}{M}$. • If M<0, then $K(\varepsilon,T,M)\geq Ce^{c/\varepsilon}$, c,C>0, when $\varepsilon\to 0$ for $T<2\frac{L}{|M|}$

More precisely, the lower bound are obtained using specific initial condition:

$$y_0(x) = K_{\varepsilon} e^{-\frac{Mx}{2\varepsilon}} \sin(\pi x), \quad (K_{\varepsilon} = \mathcal{O}(\varepsilon^{-3/2}) \quad \text{s.t.} \quad \|y_0\|_{L^2(0,1)} = 1)$$

leading, for M > 0, to

$$K(\varepsilon, T, M) \ge C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1 + M^3 \varepsilon^{-3}} \exp\left(\frac{M}{2\varepsilon} (1 - TM) - \pi^2 \varepsilon T\right)$$

$$K(\varepsilon, T, M) \ge C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1 + |M|^3 \varepsilon^{-3}} \exp\left(\frac{|M|}{2\varepsilon} (2 - TM) - \pi^2 \varepsilon T\right)$$

We expect $T_M = \frac{L}{|M|}$ and that $\lim_{\varepsilon \to 0} K(\varepsilon, T, M) = 0^+$ because the transport eq. is null controlled at time $T \ge \frac{1}{|M|}$ with $\nu \equiv 0$! But,

Theorem (Coron-Guerrero'2006)

- If M > 0, then $K(\varepsilon, T, M) \ge Ce^{c/\varepsilon}$, c, C > 0, when $\varepsilon \to 0$ for $T < \frac{L}{M}$.
- If M<0, then $K(\varepsilon,T,M)\geq C\mathrm{e}^{c/\varepsilon},$ c,C>0, when $\varepsilon\to0$ for $T<2\frac{L}{|M|}$.

More precisely, the lower bound are obtained using specific initial condition:

$$y_0(x) = K_\varepsilon e^{-\frac{Mx}{2\varepsilon}} \sin(\pi x), \quad (K_\varepsilon = \mathcal{O}(\varepsilon^{-3/2}) \quad \text{s.t.} \quad \|y_0\|_{L^2(0,1)} = 1)$$

leading, for M > 0, to

$$K(\varepsilon, T, M) \ge C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1 + M^3 \varepsilon^{-3}} \exp\left(\frac{M}{2\varepsilon} (1 - TM) - \pi^2 \varepsilon T\right)$$

$$K(\varepsilon, T, M) \ge C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1 + |M|^3 \varepsilon^{-3}} \exp\left(\frac{|M|}{2\varepsilon} (2 - TM) - \pi^2 \varepsilon T\right)$$

We expect $T_M = \frac{L}{|M|}$ and that $\lim_{\varepsilon \to 0} K(\varepsilon, T, M) = 0^+$ because the transport eq. is null controlled at time $T \ge \frac{1}{|M|}$ with $\nu \equiv 0$! But,

Theorem (Coron-Guerrero'2006)

- If M > 0, then $K(\varepsilon, T, M) \ge Ce^{c/\varepsilon}$, c, C > 0, when $\varepsilon \to 0$ for $T < \frac{L}{M}$.
- If M<0, then $K(\varepsilon,T,M)\geq C\mathrm{e}^{c/\varepsilon},$ c,C>0, when $\varepsilon\to0$ for $T<2\frac{L}{|M|}$.

More precisely, the lower bound are obtained using specific initial condition:

$$y_0(x) = K_\varepsilon e^{-\frac{Mx}{2\varepsilon}} \sin(\pi x), \quad (K_\varepsilon = \mathcal{O}(\varepsilon^{-3/2}) \quad \text{s.t.} \quad \|y_0\|_{L^2(0,1)} = 1)$$

leading, for M > 0, to

$$K(\varepsilon, T, M) \ge C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1 + M^3 \varepsilon^{-3}} \exp\left(\frac{M}{2\varepsilon} (1 - TM) - \pi^2 \varepsilon T\right)$$

$$K(\varepsilon, T, M) \ge C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1 + |M|^3 \varepsilon^{-3}} \exp\left(\frac{|M|}{2\varepsilon} (2 - TM) - \pi^2 \varepsilon T\right)$$

We expect $T_M=\frac{L}{|M|}$ and that $\lim_{\varepsilon\to 0}K(\varepsilon,T,M)=0^+$ because the transport eq. is null controlled at time $T\geq \frac{1}{|M|}$ with $v\equiv 0$! But,

Theorem (Coron-Guerrero'2006)

- If M>0, then $K(\varepsilon,T,M)\geq Ce^{c/\varepsilon}$, c,C>0, when $\varepsilon\to 0$ for $T<\frac{L}{M}$.
- If M < 0, then $K(\varepsilon, T, M) \ge Ce^{c/\varepsilon}$, c, C > 0, when $\varepsilon \to 0$ for $T < 2\frac{L}{|M|}$.

More precisely, the lower bound are obtained using specific initial condition:

$$y_0(x) = K_{\varepsilon} e^{-\frac{Mx}{2\varepsilon}} \sin(\pi x), \quad (K_{\varepsilon} = \mathcal{O}(\varepsilon^{-3/2}) \quad \text{s.t.} \quad \|y_0\|_{L^2(0,1)} = 1)$$

leading, for M > 0, to

$$K(\varepsilon, T, M) \ge C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1 + M^3 \varepsilon^{-3}} \exp\left(\frac{M}{2\varepsilon} (1 - TM) - \pi^2 \varepsilon T\right)$$

$$K(\varepsilon,T,M) \geq C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1+|M|^3 \varepsilon^{-3}} \exp\biggl(\frac{|M|}{2\varepsilon} (2-TM) - \pi^2 \varepsilon T\biggr)$$

Upper bounds for T_M

Theorem (Coron-Guerrero'2006)

- If M>0, then $K(\varepsilon,T,M)\leq Ce^{-c/\varepsilon}$ when $\varepsilon\to 0$ for $T\geq \frac{4.3}{M}$. If M<0, then $K(\varepsilon,T,M)\leq Ce^{-c/\varepsilon}$ when $\varepsilon\to 0$ for $T\geq \frac{57.2}{|M|}$.

Theorem (Coron-Guerrero'2006)

$$T_M \in [1, 4.3] \frac{1}{M}$$
 if $M > 0$, $[2, 57.2] \frac{1}{|M|}$ if $M < 0$.

Theorem (Glass'2009)

$$T_M \in [1, 4.2] \frac{1}{M}$$
 if $M > 0$, $[2, 6.1] \frac{1}{|M|}$ if $M < 0$.

Theorem (Lissy'2015)

$$T_M \in [1, 2\sqrt{3}] \frac{1}{M}$$
 if $M > 0$, $[2\sqrt{2}, 2(1+\sqrt{3})] \frac{1}{|M|}$ if $M < 0$.

 $(2\sqrt{3}\approx 3.46)$

$$T_M \in [1, K] \frac{1}{M}$$
 if $M > 0, K \approx 3.3$

Theorem (Coron-Guerrero'2006)

$$T_M \in [1, 4.3] \frac{1}{M}$$
 if $M > 0$, $[2, 57.2] \frac{1}{|M|}$ if $M < 0$.

Theorem (Glass'2009)

$$T_M \in [1, 4.2] \frac{1}{M}$$
 if $M > 0$, $[2, 6.1] \frac{1}{|M|}$ if $M < 0$.

Theorem (Lissy'2015)

$$T_M \in [1, 2\sqrt{3}] \frac{1}{M}$$
 if $M > 0$, $[2\sqrt{2}, 2(1+\sqrt{3})] \frac{1}{|M|}$ if $M < 0$.

 $(2\sqrt{3} \approx 3.46)$

$$T_M \in [1, K] \frac{1}{M}$$
 if $M > 0, K \approx 3.3$

Theorem (Coron-Guerrero'2006)

$$T_M \in [1, 4.3] \frac{1}{M}$$
 if $M > 0$, $[2, 57.2] \frac{1}{|M|}$ if $M < 0$.

Theorem (Glass'2009)

$$T_M \in [1, 4.2] \frac{1}{M}$$
 if $M > 0$, $[2, 6.1] \frac{1}{|M|}$ if $M < 0$.

Theorem (Lissy'2015)

$$T_M \in [1, 2\sqrt{3}] \frac{1}{M} \quad \text{if} \quad M > 0, \qquad [2\sqrt{2}, 2(1+\sqrt{3})] \frac{1}{|M|} \quad \text{if} \quad M < 0.$$

 $(2\sqrt{3} \approx 3.46)$

$$T_M \in [1, K] \frac{1}{M}$$
 if $M > 0, K \approx 3.3$

Theorem (Coron-Guerrero'2006)

$$T_M \in [1, 4.3] \frac{1}{M}$$
 if $M > 0$, $[2, 57.2] \frac{1}{|M|}$ if $M < 0$.

Theorem (Glass'2009)

$$T_M \in [1, 4.2] \frac{1}{M}$$
 if $M > 0$, $[2, 6.1] \frac{1}{|M|}$ if $M < 0$.

Theorem (Lissy'2015)

$$T_M \in [1, 2\sqrt{3}] \frac{1}{M} \quad \text{if} \quad M > 0, \qquad [2\sqrt{2}, 2(1+\sqrt{3})] \frac{1}{|M|} \quad \text{if} \quad M < 0.$$

 $(2\sqrt{3} \approx 3.46)$

$$T_M \in [1, K] \frac{1}{M}$$
 if $M > 0, K \approx 3.34$

Objective:

estimate the uniform minimal control time T_M !!??

We can try the following two approaches:

- Numerical estimation of $K(\varepsilon, T, M)$ with respect to ε and $T \ge \frac{1}{M}$ (for M > 0 and M < 0)
- Asymptotic analysis with respect to the parameter ε of the corresponding optimality system.

Objective:

estimate the uniform minimal control time T_M !!??

We can try the following two approaches:

- Numerical estimation of $K(\varepsilon, T, M)$ with respect to ε and $T \ge \frac{1}{M}$ (for M > 0 and M < 0)
- Asymptotic analysis with respect to the parameter ε of the corresponding optimality system.

Attempt 1 : Numerical estimation of $K(\varepsilon, T, M)$

$$K^{2}(\varepsilon, T, M) = \sup_{y_{0} \in L^{2}(0,1)} \frac{(A_{\varepsilon}y_{0}, y_{0})_{L^{2}(0,1)}}{(y_{0}, y_{0})_{L^{2}(0,1)}}$$

where $\mathcal{A}_{\varepsilon}: L^2(0,1) \to L^2(0,1)$ is the control operator defined by $\mathcal{A}_{\varepsilon} y_0 := -\hat{\varphi}(0)$ where $\hat{\varphi}$ solves the adjoint system

$$\begin{cases}
-\varphi_t - \varepsilon \varphi_{xx} - M \varphi_x = 0 & \text{in} \quad Q_T, \\
\varphi(0, \cdot) = \varphi(1, \cdot) = 0 & \text{on} \quad (0, T), \\
\varphi(\cdot, T) = \varphi_T & \text{in} \quad (0, 1),
\end{cases}$$
(6)

associated to the initial condition $\varphi_T \in H_0^1(0,1)$, solution of the extremal problem

$$\inf_{\varphi_T \in H_0^1(0,L)} J^*(\varphi_T) := \frac{1}{2} \int_0^T (\varepsilon \varphi_X(0,\cdot))^2 dt + (y_0, \varphi(\cdot,0))_{L^2(0,T)}.$$

REFORMULATION - $K(\varepsilon,T,M)$ is solution of the generalized eigenvalue problem :

$$\sup\biggl\{\sqrt{\lambda}\in\mathbb{R}:\exists\;y_0\in L^2(0,1),y_0\neq 0,\;\text{s.t.}\;\mathcal{A}_\epsilon y_0=\lambda y_0\quad\text{in}\quad L^2(0,1)\biggr\}.$$

The generalized eigenvalue problem by the power iterated method

In order to get the largest eigenvalue of the operator A_{ε} , we may employ the power iterate method (Chatelain'89):

$$\begin{cases} y_0^0 \in L^2(0,1) & \text{given such that} \quad ||y_0^0||_{L^2(0,1)} = 1, \\ \tilde{y}_0^{k+1} = \mathcal{A}_{\varepsilon} y_0^k, \quad k \ge 0, \\ y_0^{k+1} = \frac{\tilde{y}_0^{k+1}}{||\tilde{y}_0^{k+1}||_{L^2(0,1)}}, \quad k \ge 0. \end{cases}$$

$$(7)$$

The real sequence $\{\|\tilde{y}_0^k\|_{L^2(0,1)}\}_{k>0}$ converges to the eigenvalue with largest module of the operator $\mathcal{A}_{\varepsilon}$:

$$\sqrt{\|\tilde{y}_0^k\|_{L^2(0,1)}} \to K(\varepsilon, T, M) \quad \text{as} \quad k \to \infty.$$
 (8)

The L^2 sequence $\{y_0^k\}_k$ then converges toward the corresponding eigenvector.

The first step requires to compute the image of A_{ε} : this is done by determining the control of minimal L^2 norm by minimizing J^* with y_0^k as initial condition for (5).

For a fixed initial data $y^0 \in L^2(0,1)$ and ε small, the numerical approximation of controls of minimal L^2 -norm is a serious challenge:

- the minimization of J^* is ill-posed: the infimum φ_T lives in a huge dual space!!! this implies that the minimizer φ_T is highly oscillating at time T leading to highly oscillation of the control $\varepsilon\varphi_{,X}$.
- Tychonoff like regularization

$$\inf_{\varphi_T \in H_0^1(0,1)} J_{\beta}^{\star}(\varphi_T) := J^{\star}(\varphi_T) + \beta \|\varphi_T\|_{H_0^1(0,1)} \longrightarrow \|y^{\varepsilon}(\cdot,T)\|_{H^{-1}(0,1)} \le \beta \quad (9)$$

is meaningless here for T>1/|M| because the uncontrolled solution $y^{\varepsilon}(\cdot,T)$ goes to zero with ε .

• Boundary layers occurs for y^{ε} and φ^{ε} on the boundary and requires fine discretization.

For a fixed initial data $y^0 \in L^2(0,1)$ and ε small, the numerical approximation of controls of minimal L^2 -norm is a serious challenge:

- the minimization of J^* is ill-posed: the infimum φ_T lives in a huge dual space!!! this implies that the minimizer φ_T is highly oscillating at time T leading to highly oscillation of the control $\varepsilon\varphi_{,X}$.
- Tychonoff like regularization

$$\inf_{\varphi_{\mathcal{T}} \in H_0^1(0,1)} J_{\beta}^{\star}(\varphi_{\mathcal{T}}) := J^{\star}(\varphi_{\mathcal{T}}) + \beta \|\varphi_{\mathcal{T}}\|_{H_0^1(0,1)} \longrightarrow \|y^{\varepsilon}(\cdot,\mathcal{T})\|_{H^{-1}(0,1)} \le \beta \quad (9)$$

is meaningless here for T > 1/|M| because the uncontrolled solution $y^{\varepsilon}(\cdot, T)$ goes to zero with ε .

• Boundary layers occurs for y^{ε} and φ^{ε} on the boundary and requires fine discretization.

For a fixed initial data $y^0 \in L^2(0,1)$ and ε small, the numerical approximation of controls of minimal L^2 -norm is a serious challenge:

- the minimization of J^* is ill-posed: the infimum φ_T lives in a huge dual space!!! this implies that the minimizer φ_T is highly oscillating at time T leading to highly oscillation of the control $\varepsilon\varphi_{,X}$.
- Tychonoff like regularization

$$\inf_{\varphi_T \in H^1_0(0,1)} J^\star_\beta(\varphi_T) := J^\star(\varphi_T) + \beta \|\varphi_T\|_{H^1_0(0,1)} \longrightarrow \|y^\varepsilon(\cdot,T)\|_{H^{-1}(0,1)} \leq \beta \quad (9)$$

is meaningless here for T > 1/|M| because the uncontrolled solution $y^{\varepsilon}(\cdot, T)$ goes to zero with ε .

 $lackbox{f Boundary layers}$ occurs for $y^{arepsilon}$ and $\varphi^{arepsilon}$ on the boundary and requires fine discretization.

For a fixed initial data $y^0 \in L^2(0,1)$ and ε small, the numerical approximation of controls of minimal L^2 -norm is a serious challenge:

- the minimization of J^* is ill-posed: the infimum φ_T lives in a huge dual space!!! this implies that the minimizer φ_T is highly oscillating at time T leading to highly oscillation of the control $\varepsilon\varphi_{,X}$.
- Tychonoff like regularization

$$\inf_{\varphi_T \in H^1_0(0,1)} J^\star_\beta(\varphi_T) := J^\star(\varphi_T) + \beta \|\varphi_T\|_{H^1_0(0,1)} \longrightarrow \|y^\varepsilon(\cdot,T)\|_{H^{-1}(0,1)} \leq \beta \quad (9)$$

is meaningless here for T > 1/|M| because the uncontrolled solution $y^{\varepsilon}(\cdot, T)$ goes to zero with ε .

 $lackbox{f Boundary layers}$ occurs for $y^{arepsilon}$ and $\varphi^{arepsilon}$ on the boundary and requires fine discretization.

For a fixed initial data $y^0 \in L^2(0,1)$ and ε small, the numerical approximation of controls of minimal L^2 -norm is a serious challenge:

- the minimization of J^* is ill-posed: the infimum φ_T lives in a huge dual space!!! this implies that the minimizer φ_T is highly oscillating at time T leading to highly oscillation of the control $\varepsilon\varphi_{,X}$.
- Tychonoff like regularization

$$\inf_{\varphi_T \in H_0^1(0,1)} J_{\beta}^{\star}(\varphi_T) := J^{\star}(\varphi_T) + \beta \|\varphi_T\|_{H_0^1(0,1)} \longrightarrow \|y^{\varepsilon}(\cdot,T)\|_{H^{-1}(0,1)} \le \beta \quad (9)$$

is meaningless here for T > 1/|M| because the uncontrolled solution $y^{\varepsilon}(\cdot, T)$ goes to zero with ε .

• Boundary layers occurs for y^{ε} and φ^{ε} on the boundary and requires fine discretization.

$$y_0(x) = \sin(\pi x); \quad T = 1; \quad M = 1$$

Control of minimal $L^2(0,T)$ -norm $v^{\varepsilon}(t) \in [0,T]$ for $\varepsilon = 10^{-1}, 10^{-2}$ and 10^{-3}

$$y_0(x) = \sin(\pi x); \quad T = 1; \quad M = -1$$

Control of minimal $L^2(0,T)$ -norm $v^{\varepsilon}(t)\in[0,T]$ for $\varepsilon=10^{-1},10^{-2}$ and 10^{-3}

In agreement with Coron-Guerrero'2006,

$$K(\varepsilon, T, M) \ge C_1 \frac{\varepsilon^{-3/2} T^{-1/2} M^2}{1 + M^3 \varepsilon^{-3}} \exp\left(\frac{M}{2\varepsilon} (1 - TM) - \pi^2 \varepsilon T\right)$$
(10)

Corresponding worst initial condition

Figure: T=1 - M=1 - The optimal initial condition y_0 in (0,1) for $\varepsilon=10^{-1}$ (full line), $\varepsilon=10^{-2}$ (dashed line) and $\varepsilon=10^{-3}$ (dashed-dotted line).

 \Rightarrow y_0 is close to $e^{-\frac{Mx}{2\varepsilon}}\sin(\pi x)/\|e^{-\frac{Mx}{2\varepsilon}}\sin(\pi x)\|_{L^2(0,1)}$

Left: Cost of control w.r.t. ε for $T = \frac{1}{|M|}$; **Right**: Corresponding control v^{ε} in the neighborhood of T for $\varepsilon = 10^{-3}$

Corresponding worst initial condition for M = -1

Figure: T=1 - M=-1 - The optimal initial condition y_0 in (0,1) for $\varepsilon=10^{-1}$ (full line), $\varepsilon=10^{-2}$ (dashed line) and $\varepsilon=10^{-3}$ (dashed-dotted line).

Attempt 2 : Asymptotic analysis w.r.t. ε

We take M > 0.

Optimality system:

$$L_{\varepsilon}y^{\varepsilon} = 0, \quad L_{\varepsilon}^{*}\varphi^{\varepsilon} = 0, \qquad (x,t) \in Q_{T},$$

$$y^{\varepsilon}(\cdot,0) = y_{0}^{\varepsilon}, \qquad x \in (0,1),$$

$$v^{\varepsilon}(t) = y^{\varepsilon}(0,t) = \varepsilon\varphi_{X}^{\varepsilon}(0,t), \qquad t \in (0,T),$$

$$y^{\varepsilon}(1,t) = 0, \qquad t \in (0,T),$$

$$\varphi^{\varepsilon}(0,t) = \varphi^{\varepsilon}(1,t) = 0, \qquad t \in (0,T),$$

$$-\beta\varphi_{XX}^{\varepsilon}(\cdot,T) + y^{\varepsilon}(\cdot,T) = 0, \qquad x \in (0,1).$$

$$(11)$$

 $\beta > 0$ - Regularization parameter

Attempt 2 : Asymptotic analysis w.r.t. ε

We take M > 0.

Optimality system:

$$\begin{cases}
L_{\varepsilon}y^{\varepsilon} = 0, & L_{\varepsilon}^{\star}\varphi^{\varepsilon} = 0, & (x,t) \in Q_{T}, \\
y^{\varepsilon}(\cdot,0) = y_{0}^{\varepsilon}, & x \in (0,1), \\
v^{\varepsilon}(t) = y^{\varepsilon}(0,t) = \varepsilon\varphi_{x}^{\varepsilon}(0,t), & t \in (0,T), \\
y^{\varepsilon}(1,t) = 0, & t \in (0,T), \\
\varphi^{\varepsilon}(0,t) = \varphi^{\varepsilon}(1,t) = 0, & t \in (0,T), \\
-\beta\varphi_{xx}^{\varepsilon}(\cdot,T) + y^{\varepsilon}(\cdot,T) = 0, & x \in (0,1).
\end{cases}$$
(11)

 $\beta > 0$ - Regularization parameter

Direct problem - Asymptotic expansion

$$\begin{cases} y_t^{\varepsilon} - \varepsilon y_{xx}^{\varepsilon} + M y_x^{\varepsilon} = 0, & (x, t) \in (0, 1) \times (0, T), \\ y^{\varepsilon}(0, t) = v^{\varepsilon}(t), & t \in (0, T), \\ y^{\varepsilon}(1, t) = 0, & t \in (0, T), \\ y^{\varepsilon}(x, 0) = y_0(x), & x \in (0, 1), \end{cases}$$

$$(12)$$

 y_0 and v^{ε} are given functions.

We assume that

$$v^{\varepsilon} = \sum_{k=0}^{m} \varepsilon^k v^k,$$

the functions v^0 , v^1 , \cdots , v^m being known.

We construct an asymptotic approximation of the solution y^{ε} of (12) by using the matched asymptotic expansion method.

Direct problem - Asymptotic expansion

Let us consider two formal asymptotic expansions of y^{ε} :

- the outer expansion

$$\sum_{k=0}^{m} \varepsilon^k y^k(x,t), \quad (x,t) \in (0,T),$$

- the inner expansion

$$\sum_{k=0}^{m} \varepsilon^{k} Y^{k}(z,t), \quad z = \frac{1-x}{\varepsilon} \in (0, \varepsilon^{-1}), \ t \in (0, T).$$

Direct problem - Outer expansion

Putting $\sum_{k=0}^{m} \varepsilon^k y^k(x,t)$ into equation (12)₁, the identification of the powers of ε yields

$$\begin{split} \varepsilon^0: \quad y_t^0 + M y_x^0 &= 0, \\ \varepsilon^k: \quad y_t^k + M y_x^k &= y_{xx}^{k-1}, \quad \text{ for any } 1 \leq k \leq m. \end{split}$$

Taking the initial and boundary conditions into account we define y^0 and y^k $(1 \le k \le m)$ as functions satisfying the transport equations, respectively,

$$\begin{cases} y_{0}^{1} + My_{x}^{0} = 0, & (x, t) \in Q_{T}, \\ y^{0}(0, t) = v^{0}(t), & t \in (0, T), \\ y^{0}(x, 0) = y_{0}(x), & x \in (0, 1), \end{cases}$$
(13)

and

$$\begin{cases} y_t^k + M y_x^k = y_{xx}^{k-1}, & (x,t) \in Q_T, \\ y^k(0,t) = v^k(t), & t \in (0,T), \\ y^k(x,0) = 0, & x \in (0,1). \end{cases}$$
(14)

Direct problem - Outer expansion

$$y^{0}(x,t) = \begin{cases} y_{0}(x - Mt) & x > Mt, \\ v^{0}\left(t - \frac{x}{M}\right), & x < Mt. \end{cases}$$

Using the method of characteristics we find that, for any $1 \le k \le m$,

$$y^{k}(x,t) = \begin{cases} \int_{0}^{t} y_{xx}^{k-1}(x + (s-t)M, s)ds, & x > Mt, \\ v^{k}\left(t - \frac{x}{M}\right) + \int_{0}^{x/M} y_{xx}^{k-1}(sM, t - \frac{x}{M} + s)ds, & x < Mt. \end{cases}$$

Remai

$$y^{1}(x,t) = \begin{cases} t y_{0}(x - Mt), & x > Mt, \\ v^{1}\left(t - \frac{x}{M}\right) + \frac{x}{M^{3}}(v^{0})''\left(t - \frac{x}{M}\right), & x < Mt, \end{cases}$$

$$y^{2}(x,t) = \begin{cases} \frac{t^{2}}{2} y_{0}^{(4)}(x - Mt), & x > Mt, \\ v^{2}\left(t - \frac{x}{M}\right) + \frac{x}{M^{3}}(v^{1})''\left(t - \frac{x}{M}\right) \\ - \frac{2x}{M^{5}}(v^{0})^{(3)}\left(t - \frac{x}{M}\right) + \frac{x^{2}}{2M^{3}}(v^{0})^{(4)}\left(t - \frac{x}{M}\right), & x < Mt. \end{cases}$$

Direct problem - Outer expansion

$$y^{0}(x,t) = \begin{cases} y_{0}(x - Mt) & x > Mt, \\ v^{0}\left(t - \frac{x}{M}\right), & x < Mt. \end{cases}$$

Using the method of characteristics we find that, for any $1 \le k \le m$,

$$y^{k}(x,t) = \begin{cases} \int_{0}^{t} y_{xx}^{k-1}(x + (s-t)M, s)ds, & x > Mt, \\ v^{k}\left(t - \frac{x}{M}\right) + \int_{0}^{x/M} y_{xx}^{k-1}(sM, t - \frac{x}{M} + s)ds, & x < Mt. \end{cases}$$

Remark

$$y^{1}(x,t) = \begin{cases} t y_{0}^{"}(x-Mt), & x > Mt, \\ v^{1}\left(t-\frac{x}{M}\right) + \frac{x}{M^{3}}(v^{0})^{"}\left(t-\frac{x}{M}\right), & x < Mt, \end{cases}$$

$$y^{2}(x,t) = \begin{cases} \frac{t^{2}}{2} y_{0}^{(4)}(x-Mt), & x > Mt, \\ v^{2}\left(t-\frac{x}{M}\right) + \frac{x}{M^{3}}(v^{1})^{"}\left(t-\frac{x}{M}\right) \\ -\frac{2x}{M^{5}}(v^{0})^{(3)}\left(t-\frac{x}{M}\right) + \frac{x^{2}}{2M^{6}}(v^{0})^{(4)}\left(t-\frac{x}{M}\right), & x < Mt. \end{cases}$$

Direct problem - Inner expansion

Now we turn back to the construction of the inner expansion. Putting $\sum_{k=0}^{m} \varepsilon^k Y^k(z,t)$ into equation (12)₁, the identification of the powers of ε yields

$$\begin{split} \varepsilon^{-1}: & \quad Y^0_{zz}(z,t) + MY^0_z(z,t) = 0, \\ \varepsilon^{k-1}: & \quad Y^k_{zz}(z,t) + MY^k_z(z,t) = Y^{k-1}_t(z,t), \quad \text{ for any } 1 \leq k \leq m. \end{split}$$

We impose that $Y^k(0,t)=0$ for any $0 \le k \le m$ and use the asymptotic matching conditions

$$\begin{split} Y^0(z,t) &\sim y^0(1,t), \quad \text{as } z \to +\infty, \\ Y^1(z,t) &\sim y^1(1,t) - y_x^0(1,t)z, \quad \text{as } z \to +\infty, \\ Y^2(z,t) &\sim y^2(1,t) - y_x^1(1,t)z + \frac{1}{2}y_{xx}^0(1,t)z^2, \quad \text{as } z \to +\infty, \\ &\cdots \end{split}$$

$$Y^{m}(z,t) \sim y^{m}(1,t) - y_{x}^{m-1}(1,t)z + \frac{1}{2}y_{xx}^{m-2}(1,t)z^{2} + \dots + \frac{1}{m!}(y^{0})_{x}^{(m)}(1,t)(-z)^{m},$$
as $z \to +\infty$.

Direct problem - Inner expansion

Lemma

$$Y^{0}(z,t) = y^{0}(1,t) (1 - e^{-Mz}), \quad (z,t) \in (0,+\infty) \times (0,T).$$

For any $1 \le k \le m$, the solution of reads

$$Y^{k}(z,t) = Q^{k}(z,t) + e^{-Mz}P^{k}(z,t), \quad (z,t) \in (0,+\infty) \times (0,T), \tag{15}$$

where

$$P^{k}(z,t) = -\sum_{i=0}^{k} \frac{1}{i!} \frac{\partial^{i} y^{k-i}}{\partial x^{i}} (1,t) z^{i}, \quad Q^{k}(z,t) = \sum_{i=0}^{k} \frac{(-1)^{i}}{i!} \frac{\partial^{i} y^{k-i}}{\partial x^{i}} (1,t) z^{i}.$$

Let $\mathcal{X}:\mathbb{R}\to[0,1]$ denote a \emph{C}^2 cut-off function satisfying

$$\mathcal{X}(s) = \begin{cases} 1, & s \geq 2, \\ 0, & s \leq 1, \end{cases}$$

Figure: The function $\mathcal{X}_{\varepsilon}$.

We define, for $\gamma \in (0,1)$, the function $\mathcal{X}_{\varepsilon}(x) = \mathcal{X}\left(\frac{1-x}{\varepsilon^{\gamma}}\right)$, then introduce the function

$$\mathbf{w}_{m}^{\varepsilon}(x,t) = \mathcal{X}_{\varepsilon}(x) \sum_{k=0}^{m} \varepsilon^{k} \mathbf{y}^{k}(x,t) + (1 - \mathcal{X}_{\varepsilon}(x)) \sum_{k=0}^{m} \varepsilon^{k} \mathbf{Y}^{k} \left(\frac{1 - x}{\varepsilon}, t\right), \quad (16)$$

defined to be an asymptotic approximation at order m of the solution y^{ε} of (12).

Compatibility conditions - Regularity

Lemma

(i) Assume that $y_0 \in C^{2m+1}[0,1]$, $v^0 \in C^{2m+1}[0,T]$ and the following C^{2m+1} -matching conditions are satisfied

$$M^{p}(y_{0})^{(p)}(0) + (-1)^{p+1}(v^{0})^{(p)}(0) = 0, \quad 0 \le p \le 2m+1.$$
 (17)

Then the function y^0 belongs to $C^{2m+1}([0,1] \times [0,T])$. (ii) Additionally, assume that $v^k \in C^{2(m-k)+1}[0,T]$, and the following $C^{2(m-k)+1}$ -matching conditions are satisfied, respectively,

$$(v^k)^{(p)}(0) = \sum_{i+j=p-1} (-1)^i M^i \frac{\partial^{p+1} y^{k-1}}{\partial x^{i+2} \partial t^j}(0,0), \quad 0 \le p \le 2(m-k) + 1.$$
 (18)

Then the function y^k belongs to $C^{2(m-k)+1}([0,1] \times [0,T])$.

Compatibility conditions - example with m = 2

Lemma

(i) Assume that $y_0 \in C^5[0,1]$, $v^0 \in C^5[0,T]$ and the following C^5 -matching conditions are satisfied

$$M^{p}(y_{0})^{(p)}(0) + (-1)^{p+1}(v^{0})^{(p)}(0) = 0, \quad 0 \le p \le 5.$$
 (19)

Then the function y^0 belongs to $C^5([0,1] \times [0,T])$.

(ii) Additionally, assume that $v^1 \in \mathring{C^3}[0,T]$, $\mathring{v}^2 \in \mathring{C}^1[0,T]$ and the following C^3 and C^1 -matching conditions are satisfied, respectively,

$$\begin{cases} v^{1}(0) = 0, & (v^{1})^{(1)}(0) = M^{-2}(v^{0})^{(2)}(0) = y_{0}^{(2)}(0), \\ (v^{1})^{(2)}(0) = 2M^{-2}(v^{0})^{(3)}(0) = -2My_{0}^{(3)}(0), \\ (v^{1})^{(3)}(0) = 3M^{-2}(v^{0})^{(4)}(0) = 3M^{2}y_{0}^{(4)}(0), \end{cases}$$
(20)

$$v^2(0) = 0, \quad (v^2)^{(1)}(0) = 0.$$
 (21)

Then the function y^1 belongs to $C^3([0,1] \times [0,T])$, and the function y^2 belongs to $C^1([0,1] \times [0,T])$.

Lemma

Let w_m^ε be the function defined by (16). Assume the previous regularity and compatibility. Then there is a constant c_m independent of ε such that

$$\|L_{\varepsilon}(w_m^{\varepsilon})\|_{C([0,T];L^2(0,1))} \le c_m \varepsilon^{\frac{(2m+1)\gamma}{2}}.$$
 (22)

$$\begin{split} L_{\varepsilon}(w_{m}^{\varepsilon})(x,t) &= \sum_{i=1}^{5} J_{\varepsilon}^{i}(x,t), \\ J_{\varepsilon}^{1}(x,t) &= -\varepsilon^{m+1} y_{xx}^{m}(x,t) \mathcal{X}_{\varepsilon}(x), \\ J_{\varepsilon}^{2}(x,t) &= \varepsilon^{m} (1 - \mathcal{X}_{\varepsilon}(x)) Y_{t}^{m} \left(\frac{1-x}{\varepsilon},t\right), \\ J_{\varepsilon}^{3}(x,t) &= M \mathcal{X}' \left(\frac{1-x}{\varepsilon^{\gamma}}\right) \varepsilon^{-\gamma} \left(\sum_{k=0}^{m} \varepsilon^{k} Y^{k} \left(\frac{1-x}{\varepsilon},t\right) - \sum_{k=0}^{m} \varepsilon^{k} Y^{k}(x,t)\right), \\ J_{\varepsilon}^{4}(x,t) &= \mathcal{X}'' \left(\frac{1-x}{\varepsilon^{\gamma}}\right) \varepsilon^{1-2\gamma} \left(\sum_{k=0}^{m} \varepsilon^{k} Y^{k} \left(\frac{1-x}{\varepsilon},t\right) - \sum_{k=0}^{m} \varepsilon^{k} Y^{k}(x,t)\right), \\ J_{\varepsilon}^{5}(x,t) &= 2 \mathcal{X}' \left(\frac{1-x}{\varepsilon^{\gamma}}\right) \varepsilon^{1-\gamma} \left(\varepsilon^{-1} \sum_{k=0}^{m} \varepsilon^{k} Y_{z}^{k} \left(\frac{1-x}{\varepsilon},t\right) + \sum_{k=0}^{m} \varepsilon^{k} Y_{x}^{k}(x,t)\right). \end{split}$$

Asymptotic approximation- Convergence

Theorem

Let y^{ε} be the solution of problem (12) and let w_m^{ε} be the function defined by (16). Assume that the assumptions of Lemma 6 hold true. Then there is a constant c_m independent of ε such that

$$\|y^{\varepsilon} - w_m^{\varepsilon}\|_{\mathcal{C}\left([0,T];L^2(0,1)\right)} \le c_m \varepsilon^{\frac{2m+1}{2}\gamma}. \tag{23}$$

Introduce the function $z^{\varepsilon} = y^{\varepsilon} - w_m^{\varepsilon}$. It satisfies

$$\begin{cases} L_{\varepsilon}(z^{\varepsilon}) = -L_{\varepsilon}(w_{m}^{\varepsilon}), & (x,t) \in (0,1) \times (0,t), \\ z^{\varepsilon}(0,t) = z^{\varepsilon}(1,t) = 0, & t \in (0,T), \\ z^{\varepsilon}(x,0) = z_{0}^{\varepsilon}(x), & x \in (0,1), \end{cases}$$
(24)

Using the Gronwall Lemma it holds that

$$\|z^{\varepsilon}(\cdot,t)\|_{L^{2}(0,1)}^{2} \leq \left(\|L_{\varepsilon}(w_{m}^{\varepsilon})\|_{L^{2}(Q_{T})}^{2} + \|z_{0}^{\varepsilon}\|_{L^{2}(0,1)}^{2}\right) e^{t}, \quad \forall t \in (0,T].$$
 (25)

We have

$$z_0^{\varepsilon}(x) = (1 - \mathcal{X}_{\varepsilon}(x)) \left(y_0(x) - \sum_{k=0}^m \varepsilon^k Y^k \left(\frac{1-x}{\varepsilon}, 0 \right) \right),$$

Convergence with respect to m

Theorem

Let, for any $m \in \mathbb{N}$, y_m^ε denote the solution of problem (12). We assume that the initial condition y_0 belongs to $C^\infty[0,1]$ and there are $c,b \in \mathbb{R}$ such that

$$\|y_0^{(m)}\|_{C[0,1]} \le c b^m, \quad \forall m \in \mathbb{N}.$$
 (26)

We assume that $(v^k)_{k\geq 0}$ is a sequence of polynomials of degree $\leq p-1$, $p\geq 1$, uniformly bounded in $C^{p-1}[0,T]$. We assume in addition that, for any $k\in \mathbb{N}$, for any $m\in \mathbb{N}$, the functions v^k and y_0 satisfy the matching conditions. Let w_m^ε be the function defined by (16). Then, there is $\varepsilon_0>0$ such that, for any fixed $0<\varepsilon<\varepsilon_0$, we have

$$y_m^{\varepsilon} - w_m^{\varepsilon} \to 0$$
 in $C([0, T], L^2(0, 1))$, as $m \to +\infty$,

consequently

$$\lim_{m \to +\infty} w_m^{\varepsilon}(x,t) = \mathcal{X}_{\varepsilon}(x) \sum_{k=0}^{\infty} \varepsilon^k y^k(x,t) + (1 - \mathcal{X}_{\varepsilon}(x)) \sum_{k=0}^{\infty} \varepsilon^k Y^k \left(\frac{1-x}{\varepsilon},t\right)$$
$$= y^{\varepsilon}(x,t) \quad a.e. \text{ in } (0,1) \times (0,T),$$

where y^{ε} is the solution of problem (12) with $y^{\varepsilon}(0,t) = \sum_{k=0}^{\infty} \varepsilon^k v^k(t), \ t \in (0,T)$.

Let $m \in \mathbb{N}$, $\frac{T}{M} > \frac{1}{M}$ and $a \in]0, T - \frac{1}{M}[$. Assume regularity and matching conditions on the initial condition y_0 and functions v^k , $0 \le k \le m$. Assume moreover that

$$v^k(t) = 0, \quad 0 \le k \le m, \forall t \in [a, T].$$

Then, the solution y^{ε} of problem (12) satisfies the following property

$$\|y^{\varepsilon}(\cdot,T)\|_{L^{2}(0,1)} \leq c_{m} \varepsilon^{\frac{(2m+1)\gamma}{2}}, \quad \forall \gamma \in (0,1)$$

for some constant $c_m > 0$ independent of ε . The function $v^{\varepsilon} \in C([0,T])$ defined by $v^{\varepsilon} := \sum_{k=0}^m \varepsilon^k v^k$ is an approximate null control for (5).

Remark

For $\varepsilon > 0$ small enough, we can not pass to the limit as $m \to \infty$ in order to get a null-controllability result.

Let $y_0(x) = 1$. The functions v^k , $k \ge 0$ defined as follows

$$v^{0}(t) = \mathcal{X}(t), \quad v^{k}(t) = 0, \quad k > 0$$
 (27)

with $\mathcal{X} = \{ f \in C^{\infty}[0, T], f(0) = 1, f(a) = 0, f^{(p)}(0) = f^{(p)}(a) = 0, p \in \mathbb{N}^{*} \}, a \in [0, T]$ satisfy the matching conditions.

If $a \in]0, T-1/M[$, then $\|w_m^{\varepsilon}(\cdot, T)\|_{L^2(0,T)} = 0 \ \forall m \in \mathbb{N}.$

If $\lim_{m\to\infty} c_m \varepsilon^{\frac{(2m+1)\gamma}{2}} = 0$, then the function $v^{\varepsilon} = \sum_{k=0}^{\infty} \varepsilon^k v^k = v^0$ is a null control for y^{ε} as time T. Contradiction.

$$y^{0}(x) = 1, \quad v^{0}(t) = \mathcal{X}(t), \quad v^{k}(t) = 0, \quad k > 0$$
 (28)

 $\mathcal{X}(t)=e^{-kt^{2m+2}}$, with k>0 so that $\mathcal{X}^p(0))=0$ for all $p\leq 2m+1$. M=1, $k=10^2$, T=1 and m=2. $Y_0(z,t)=(1-e^{-z})$ independent of t while Y_1 and Y_2 are identically zero.

$$\begin{split} w_0^\varepsilon(x,T) &= \mathcal{X}_\varepsilon(x) y^0(x,T) + (1-\mathcal{X}_\varepsilon(x)) \; Y^0\left(\frac{1-x}{\varepsilon},T\right), \quad (x,t) \in Q_T, \\ &= \mathcal{X}_\varepsilon(x) v^0(T(1-x)) + (1-\mathcal{X}_\varepsilon(x)) \; y_0(0) \bigg(1-e^{-\frac{M(1-x)}{\varepsilon}}\bigg) \end{split}$$

If
$$supp(v^0) \subset [0, T\varepsilon^{\gamma}],$$

$$\|w_0^{\varepsilon}(\cdot,T)\|_{L^2(0,1)} \leq |y_0(0)| \, \varepsilon^{\gamma/2}$$

and

$$\begin{split} &\|y^{\varepsilon}(\cdot,T)\|_{L^{2}(0,1)} \\ &\leq \|w^{\varepsilon}_{0}(\cdot,T)\|_{L^{2}(0,1)} + \|(y^{\varepsilon}-w^{\varepsilon}_{0})(\cdot,T)\|_{L^{2}(0,1)} \\ &\leq |y_{0}(0)|\,\varepsilon^{\gamma/2} + \varepsilon\|v^{0}\|_{L^{2}(0,\varepsilon^{\gamma}T)} \\ &\leq |y_{0}(0)|(c\varepsilon^{\tau(\gamma)} + \varepsilon^{\gamma/2}), \end{split}$$

The case of initial condition y_0^{ε} of the form $y_0^{\varepsilon}(x) = e^{-\frac{Mx}{2\varepsilon}}f(x)$

Let us consider the case of the $C^{\infty}([0,1])$ initial data (with L=1):

$$y_0^{\varepsilon}(x) := K_{\varepsilon} \sin(\pi x) e^{-\frac{Mx}{2\varepsilon}}, \quad K_{\varepsilon} = \mathcal{O}(\varepsilon^{-3/2}).$$
 (29)

Taking m=0, the function $L_{\varepsilon}(w_0^{\varepsilon})$ involves the term $-\varepsilon y_{xx}^0(x,t)\mathcal{X}_{\varepsilon}(x)$. For points in $C^-:=\{(x,t)\in Q_T, x>Mt\}$, we obtain $y^0(x,t)=y_0^{\varepsilon}(x-Mt)$; this leads, to (writing that $\mathcal{X}_{\varepsilon}=1$ on $(0,1-2\varepsilon^{\gamma})$)

$$\varepsilon \|y_{xx}^{0} \mathcal{X}_{\varepsilon}\|_{L^{2}(C^{-})} \geq \varepsilon \mathcal{K}_{\varepsilon} \left(\int_{0}^{1-2\varepsilon^{\gamma}} \int_{0}^{x/M} \left((\sin(\pi(x-Mt))e^{-\frac{M(x-Mt)}{2\varepsilon}})_{xx} \right)^{2} dt dx \right)^{1/2}$$

$$= \varepsilon \mathcal{K}_{\varepsilon} \mathcal{O}(1) = \mathcal{O}(\varepsilon^{-1/2}). \tag{30}$$

The case of initial condition y_0^{ε} of the form $y_0^{\varepsilon}(x) = e^{-\frac{Mx}{2\varepsilon}}$

$$\begin{cases} y^{\varepsilon}(x,t) = e^{\frac{M\alpha}{2\varepsilon} \left(x - \frac{(2-\alpha)Mt}{2}\right)} z^{\varepsilon}(x,t), \\ L_{\varepsilon}y^{\varepsilon}(x,t) = e^{\frac{M\alpha}{2\varepsilon} \left(x - \frac{(2-\alpha)Mt}{2}\right)} \left(z_{t}^{\varepsilon} - \varepsilon z_{xx}^{\varepsilon} + M(1-\alpha)z_{x}^{\varepsilon}\right) \end{cases}$$
(31)

We then define the approximations

$$\begin{cases}
z_{m}^{\varepsilon}(x,t) = \mathcal{X}_{\varepsilon}(x) \sum_{k=0}^{m} \varepsilon^{k} z^{k}(x,t) + (1 - \mathcal{X}_{\varepsilon}(x)) \sum_{k=0}^{m} \varepsilon^{k} Z^{k} \left(\frac{1-x}{\varepsilon},t\right), \\
y_{m}^{\varepsilon}(x,t) = e^{\frac{M\alpha}{2\varepsilon} \left(x - \frac{(2-\alpha)Mt}{2}\right)} z_{m}^{\varepsilon}(x,t)
\end{cases} (32)$$

The main issue is now to find control functions \overline{v}^k satisfying the matching conditions such that $\|L_{\varepsilon}y_{\varepsilon}^{\varepsilon}\|_{C([0,T],L^2(0,1))}$ goes to zero with ε .

The case of initial condition y_0^{ε} of the form $y_0^{\varepsilon}(x) = e^{-\frac{Mx}{2\varepsilon}}$

$$\begin{cases} y^{\varepsilon}(x,t) = e^{\frac{M\alpha}{2\varepsilon} \left(x - \frac{(2-\alpha)Mt}{2}\right)} z^{\varepsilon}(x,t), \\ L_{\varepsilon}y^{\varepsilon}(x,t) = e^{\frac{M\alpha}{2\varepsilon} \left(x - \frac{(2-\alpha)Mt}{2}\right)} \left(z_{t}^{\varepsilon} - \varepsilon z_{xx}^{\varepsilon} + M(1-\alpha)z_{x}^{\varepsilon}\right) \end{cases}$$
(31)

We then define the approximations

$$\begin{cases}
z_{m}^{\varepsilon}(x,t) = \mathcal{X}_{\varepsilon}(x) \sum_{k=0}^{m} \varepsilon^{k} z^{k}(x,t) + (1 - \mathcal{X}_{\varepsilon}(x)) \sum_{k=0}^{m} \varepsilon^{k} Z^{k} \left(\frac{1-x}{\varepsilon},t\right), \\
y_{m}^{\varepsilon}(x,t) = e^{\frac{M\alpha}{2\varepsilon} \left(x - \frac{(2-\alpha)Mt}{2}\right)} z_{m}^{\varepsilon}(x,t)
\end{cases} (32)$$

The main issue is now to find control functions \overline{v}^k satisfying the matching conditions such that $\|L_{\varepsilon} y_{\varepsilon}^{\varepsilon}\|_{C([0,T],L^2([0,1])}$ goes to zero with ε .

The case of initial condition y_0^{ε} of the form $y_0^{\varepsilon}(x) = e^{-\frac{Mx}{2\varepsilon}}$

$$\begin{cases} y^{\varepsilon}(x,t) = e^{\frac{M\alpha}{2\varepsilon} \left(x - \frac{(2-\alpha)Mt}{2}\right)} z^{\varepsilon}(x,t), \\ L_{\varepsilon}y^{\varepsilon}(x,t) = e^{\frac{M\alpha}{2\varepsilon} \left(x - \frac{(2-\alpha)Mt}{2}\right)} \left(z_{t}^{\varepsilon} - \varepsilon z_{xx}^{\varepsilon} + M(1-\alpha)z_{x}^{\varepsilon}\right) \end{cases}$$
(31)

We then define the approximations

$$\begin{cases}
z_{m}^{\varepsilon}(x,t) = \mathcal{X}_{\varepsilon}(x) \sum_{k=0}^{m} \varepsilon^{k} z^{k}(x,t) + (1 - \mathcal{X}_{\varepsilon}(x)) \sum_{k=0}^{m} \varepsilon^{k} Z^{k} \left(\frac{1-x}{\varepsilon},t\right), \\
y_{m}^{\varepsilon}(x,t) = e^{\frac{M\alpha}{2\varepsilon} \left(x - \frac{(2-\alpha)Mt}{2}\right)} z_{m}^{\varepsilon}(x,t)
\end{cases} (32)$$

The main issue is now to find control functions \overline{v}^k satisfying the matching conditions such that $\|L_{\varepsilon}y_{\overline{m}}^{\varepsilon}\|_{C([0,T],L^2(0,1))}$ goes to zero with ε .

Figure: $(0,1) \times (0,T) = D_{\beta}^+ \cup (D_{\beta}^- \cap C_{\alpha}^-) \cup (D_{\beta}^- \cap C_{\alpha}^+).$

$$L_{\varepsilon}y_{m}^{\varepsilon}(x,t)=e^{\frac{M\alpha}{2\varepsilon}\left(x-\frac{(2-\alpha)Mt}{2}\right)}L_{\varepsilon,\alpha}Z_{m}^{\varepsilon}(x,t)$$

$$\ln D_\beta^- \cap C_\alpha^+, L_{\varepsilon,\alpha} Z_m^\varepsilon(x,t) = -\varepsilon^{m+1} Z_{xx}^m(x,t)$$

$$\begin{split} L_{\varepsilon}y_{0}^{\varepsilon}(x,t) &= -\frac{\varepsilon}{M_{\alpha}^{2}}e^{\frac{M_{\alpha}}{2\varepsilon}\left(x - \frac{(2-\alpha)M!}{2}\right)}(\overline{v}^{0})^{(2)}\left(t - \frac{x}{M_{\alpha}}\right), \\ &= -\frac{\varepsilon}{M_{\alpha}^{2}}e^{-\frac{M_{\alpha}^{2}x}{4\varepsilon(1-\alpha)}}e^{\frac{\alpha(2-\alpha)M^{2}}{4\varepsilon}\left(\frac{x}{M_{\alpha}} - t\right)}(\overline{v}^{0})^{(2)}\left(t - \frac{x}{M_{\alpha}}\right). \end{split}$$

$$\begin{cases} (\overline{v}^{0})^{(2)}(t) = (C_{1} + C_{2}t)e^{\frac{-\eta + \alpha(2-\alpha)M^{2}}{4\varepsilon}t}, & t \in [0, \beta], \\ \overline{v}^{0}(0) = Z_{0}^{\varepsilon}(0), & \overline{v}^{0}(\beta) = 0, \\ (\overline{v}^{0})^{(1)}(0)) = -M_{\alpha}(Z_{0}^{\varepsilon})'(0), & (\overline{v}^{0})^{(1)}(\beta) = 0, \end{cases}$$

$$\| \mathit{L}_{\varepsilon}(y_{0}^{\varepsilon}) \|_{\mathit{L}^{1}(\mathit{L}^{2}(\mathcal{D}_{\alpha}^{-} \cap \mathcal{C}_{\alpha}^{+}))} \approx (\overline{v}^{0})(0)\mathcal{O}(\varepsilon^{1/2}) + (\overline{v}^{0})^{(1)}(0)\mathcal{O}(\varepsilon^{3/2}).$$

Figure: $(0,1) \times (0,T) = D_{\beta}^+ \cup (D_{\beta}^- \cap C_{\alpha}^-) \cup (D_{\beta}^- \cap C_{\alpha}^+).$

$$L_{\varepsilon}y_{m}^{\varepsilon}(x,t)=e^{\frac{M\alpha}{2\varepsilon}\left(x-\frac{(2-\alpha)Mt}{2}\right)}L_{\varepsilon,\alpha}Z_{m}^{\varepsilon}(x,t)$$

$$\ln {\color{red} D^-_{\beta}} \cap {\color{red} C^+_{\alpha}}, \, L_{\varepsilon,\alpha} z^\varepsilon_m(x,t) = -\varepsilon^{m+1} z^m_{xx}(x,t)$$

$$\begin{split} L_{\varepsilon}y_{0}^{\varepsilon}(x,t) &= -\frac{\varepsilon}{M_{\alpha}^{2}} e^{\frac{M\alpha}{2\varepsilon} \left(x - \frac{(2-\alpha)Mt}{2}\right)} (\overline{v}^{0})^{(2)} \left(t - \frac{x}{M_{\alpha}}\right), \\ &= -\frac{\varepsilon}{M_{\alpha}^{2}} e^{-\frac{M\alpha^{2}x}{4\varepsilon(1-\alpha)}} e^{\frac{\alpha(2-\alpha)M^{2}}{4\varepsilon} \left(\frac{x}{M_{\alpha}} - t\right)} (\overline{v}^{0})^{(2)} \left(t - \frac{x}{M_{\alpha}}\right). \end{split}$$

$$\begin{cases} (\overline{v}^{0})^{(2)}(t) = (C_{1} + C_{2}t)e^{\frac{-\eta + \alpha(2-\alpha)M^{2}}{4\varepsilon}t}, & t \in [0, \beta], \\ \overline{v}^{0}(0) = Z_{0}^{\varepsilon}(0), & \overline{v}^{0}(\beta) = 0, \\ (\overline{v}^{0})^{(1)}(0)) = -M_{\alpha}(Z_{0}^{\varepsilon})'(0), & (\overline{v}^{0})^{(1)}(\beta) = 0, \end{cases}$$

$$\| \mathit{L}_{\varepsilon}(y_{0}^{\varepsilon}) \|_{\mathit{L}^{1}(\mathit{L}^{2}(\mathcal{D}_{\alpha}^{-} \cap \mathcal{C}_{\alpha}^{+}))} \approx (\overline{v}^{0})(0)\mathcal{O}(\varepsilon^{1/2}) + (\overline{v}^{0})^{(1)}(0)\mathcal{O}(\varepsilon^{3/2}).$$

Figure: $(0,1) \times (0,T) = D_{\beta}^+ \cup (D_{\beta}^- \cap C_{\alpha}^-) \cup (D_{\beta}^- \cap C_{\alpha}^+).$

$$L_{\varepsilon}y_{m}^{\varepsilon}(x,t)=e^{\frac{M\alpha}{2\varepsilon}\left(x-\frac{(2-\alpha)Mt}{2}\right)}L_{\varepsilon,\alpha}Z_{m}^{\varepsilon}(x,t)$$

$$\ln {\color{red} D^-_{\beta}} \cap {\color{red} C^+_{\alpha}}, \, L_{\varepsilon,\alpha} z^{\varepsilon}_m(x,t) = -\varepsilon^{m+1} z^m_{xx}(x,t)$$

$$\begin{split} L_{\varepsilon}y_{0}^{\varepsilon}(x,t) &= -\frac{\varepsilon}{M_{\alpha}^{2}}e^{\frac{M_{\alpha}}{2\varepsilon}\left(x - \frac{(2-\alpha)Mt}{2}\right)}(\overline{v}^{0})^{(2)}\left(t - \frac{x}{M_{\alpha}}\right), \\ &= -\frac{\varepsilon}{M_{\alpha}^{2}}e^{-\frac{M_{\alpha}^{2}x}{4\varepsilon(1-\alpha)}}e^{\frac{\alpha(2-\alpha)M^{2}}{4\varepsilon}\left(\frac{x}{M_{\alpha}} - t\right)}(\overline{v}^{0})^{(2)}\left(t - \frac{x}{M_{\alpha}}\right) \end{split}$$

$$\begin{cases} (\overline{v}^{0})^{(2)}(t) = (C_{1} + C_{2}t)e^{\frac{-\eta + \alpha(2-\alpha)M^{\epsilon}}{4\varepsilon}t}, & t \in [0, \beta], \\ \overline{v}^{0}(0) = z_{0}^{\varepsilon}(0), & \overline{v}^{0}(\beta) = 0, \\ (\overline{v}^{0})^{(1)}(0)) = -M_{\alpha}(z_{0}^{\varepsilon})'(0), & (\overline{v}^{0})^{(1)}(\beta) = 0, \\ (33) \end{cases}$$

$$\|L_{\varepsilon}(y_0^{\varepsilon})\|_{L^1(L^2(D_{\beta}^-\cap C_{\alpha}^+))} \approx (\overline{v}^0)(0)\mathcal{O}(\varepsilon^{1/2}) + (\overline{v}^0)^{(1)}(0)\mathcal{O}(\varepsilon^{3/2}).$$

$\|L_{\varepsilon}y_m^{\varepsilon}\|_{C([0,T],L^2(0,1))}$

Figure: $(0,1) \times (0,T) = D_{\beta}^+ \cup (D_{\beta}^- \cap C_{\alpha}^-) \cup (D_{\beta}^- \cap C_{\alpha}^+)$

$$L_{\varepsilon}y_{m}^{\varepsilon}(x,t)=e^{\frac{M\alpha}{2\varepsilon}\left(x-\frac{(2-\alpha)Mt}{2}\right)}L_{\varepsilon,\alpha}Z_{m}^{\varepsilon}(x,t)$$

$$\ln {\color{red} D^-_{\beta}} \cap {\color{red} C^+_{\alpha}}, \, L_{\varepsilon,\alpha} z^{\varepsilon}_m(x,t) = -\varepsilon^{m+1} z^m_{xx}(x,t)$$

$$\begin{split} L_{\varepsilon}y_{0}^{\varepsilon}(x,t) &= -\frac{\varepsilon}{M_{\alpha}^{2}}e^{\frac{M_{\alpha}}{2\varepsilon}\left(x - \frac{(2-\alpha)Mt}{2}\right)}(\overline{v}^{0})^{(2)}\left(t - \frac{x}{M_{\alpha}}\right), \\ &= -\frac{\varepsilon}{M_{\alpha}^{2}}e^{-\frac{M_{\alpha}^{2}x}{4\varepsilon(1-\alpha)}}e^{\frac{\alpha(2-\alpha)M^{2}}{4\varepsilon}\left(\frac{x}{M_{\alpha}} - t\right)}(\overline{v}^{0})^{(2)}\left(t - \frac{x}{M_{\alpha}}\right) \end{split}$$

$$\begin{cases} (\overline{v}^{0})^{(2)}(t) = (C_{1} + C_{2}t)e^{\frac{-\eta + \alpha(2-\alpha)M^{2}}{4\varepsilon}t}, & t \in [0, \beta], \\ \overline{v}^{0}(0) = z_{0}^{\varepsilon}(0), & \overline{v}^{0}(\beta) = 0, \\ (\overline{v}^{0})^{(1)}(0)) = -M_{\alpha}(z_{0}^{\varepsilon})'(0), & (\overline{v}^{0})^{(1)}(\beta) = 0, \end{cases}$$

$$\|L_{\varepsilon}(y_0^{\varepsilon})\|_{L^1(L^2(D_a^-\cap C_{\alpha}^+))} \approx (\overline{v}^0)(0)\mathcal{O}(\varepsilon^{1/2}) + (\overline{v}^0)^{(1)}(0)\mathcal{O}(\varepsilon^{3/2}).$$

$\|L_{\varepsilon}y_m^{\varepsilon}\|_{C([0,T],L^2(0,1))}$

Figure: $(0,1) \times (0,T) = D_{\beta}^+ \cup (D_{\beta}^- \cap C_{\alpha}^-) \cup (D_{\beta}^- \cap C_{\alpha}^+)$

$$L_{\varepsilon}y_{m}^{\varepsilon}(x,t)=e^{\frac{M\alpha}{2\varepsilon}\left(x-\frac{(2-\alpha)Mt}{2}\right)}L_{\varepsilon,\alpha}Z_{m}^{\varepsilon}(x,t)$$

$$\ln {\color{red} D^-_{\beta}} \cap {\color{red} C^+_{\alpha}}, \, L_{\varepsilon,\alpha} z^{\varepsilon}_m(x,t) = -\varepsilon^{m+1} z^m_{xx}(x,t)$$

$$\begin{split} L_{\varepsilon}y_{0}^{\varepsilon}(x,t) &= -\frac{\varepsilon}{M_{\alpha}^{2}}e^{\frac{M_{\alpha}}{2\varepsilon}\left(x - \frac{(2-\alpha)Mt}{2}\right)}(\overline{v}^{0})^{(2)}\left(t - \frac{x}{M_{\alpha}}\right), \\ &= -\frac{\varepsilon}{M_{\alpha}^{2}}e^{-\frac{M_{\alpha}^{2}x}{4\varepsilon(1-\alpha)}}e^{\frac{\alpha(2-\alpha)M^{2}}{4\varepsilon}\left(\frac{x}{M_{\alpha}} - t\right)}(\overline{v}^{0})^{(2)}\left(t - \frac{x}{M_{\alpha}}\right) \end{split}$$

$$\begin{cases} (\overline{v}^0)^{(2)}(t) = (C_1 + C_2 t) e^{\frac{-\eta + \alpha(2 - \alpha)M^2}{4\varepsilon}t}, & t \in [0, \beta], \\ \overline{v}^0(0) = z_0^{\varepsilon}(0), & \overline{v}^0(\beta) = 0, \\ (\overline{v}^0)^{(1)}(0)) = -M_{\alpha}(z_0^{\varepsilon})'(0), & (\overline{v}^0)^{(1)}(\beta) = 0, \end{cases}$$

for some constants C_1 and C_2 and $\eta > 0$.

$$\|L_\varepsilon(y_0^\varepsilon)\|_{L^1(L^2(D_\beta^-\cap C_\alpha^+))}\approx (\overline{v}^0)(0)\mathcal{O}(\varepsilon^{1/2})+(\overline{v}^0)^{(1)}(0)\mathcal{O}(\varepsilon^{3/2}).$$

(ロ) (리) (본) (본) (본 (의익()

$||L_{\varepsilon}y_m^{\varepsilon}||_{C([0,T],L^2(0,1))}$

Thus, the corresponding control is given

$$\begin{cases} v^{0}(t) = e^{-\frac{\gamma M^{2}t}{4\varepsilon}} \overline{v}^{0}(t) \mathbf{1}_{[0,\beta]}(t), & \gamma = \alpha(2-\alpha), \\ \overline{v}^{0}(t) = \frac{kC_{1} - 2C_{2} + kC_{2}t}{k^{3}} e^{kt} + C_{3}t + C_{4}, & k := \frac{-\eta + \alpha(2-\alpha)t}{4\varepsilon} \end{cases}$$
(34)

Figure: $(0,1) \times (0,T) = D_{\beta}^+ \cup (D_{\beta}^- \cap C_{\alpha}^-) \cup (D_{\beta}^- \cap C_{\alpha}^+)$. Figure: Control $v^0(t)$ for $\varepsilon = 10^{-2}$ and $\varepsilon = 10^{-3}$ associated to $y_0^{\varepsilon}(x) = e^{\frac{-Mx}{2\varepsilon}} \sin(\pi x)$.

Optimality condition

For any $\varepsilon>0$ and $\beta>0$, the optimality system associated to the extremal problem

$$\min_{v^{\varepsilon} \in L^{2}(0,T)} \|v^{\varepsilon}\|_{L^{2}(0,T)}^{2} + \beta^{-1} \|y^{\varepsilon}(\cdot,T)\|_{L^{2}(0,1)}^{2}$$
(35)

where the pair $(v^{\varepsilon}, y^{\varepsilon})$ solves (5) is given by

$$\begin{cases}
L_{\varepsilon}y^{\varepsilon} = 0, & L_{\varepsilon}^{\star}\varphi^{\varepsilon} = 0, \\
y^{\varepsilon}(\cdot,0) = y_{0}^{\varepsilon}, & x \in (0,1), \\
v^{\varepsilon}(t) = y^{\varepsilon}(0,t) = \varepsilon\varphi_{X}^{\varepsilon}(0,t), & t \in (0,T), \\
y^{\varepsilon}(1,t) = 0, & \varphi^{\varepsilon}(0,t) = \varphi^{\varepsilon}(1,t) = 0, & t \in (0,T), \\
-\beta\varphi_{XX}^{\varepsilon}(\cdot,T) + y^{\varepsilon}(\cdot,T) = 0, & x \in (0,1).
\end{cases}$$
(36)

$$v^0(t) + \varepsilon v^1(t) + \cdots = \Phi_z^0(0,t) + \varepsilon \Phi_z^1(0,t) + \cdots, \quad \forall t \in (0,T).$$

At the zero order, we get therefore $v^0(t) = \Phi_z^0(0, t)$ leading simultaneously, to

$$v^{0}(t) = M\varphi^{0}(0, t) = \begin{cases} M\varphi^{0}_{T}(M(T - t)), & t \in]T - 1/M, T], \\ 0, & t \in [0, T - 1/M] \end{cases}$$

The last equality contradicts the matching conditions (17).

$$J_{\varepsilon}^{\star}(\varphi_{T}^{\varepsilon}) = \frac{1}{2} \int_{0}^{T} (\varepsilon \varphi_{X}^{\varepsilon}(0, \cdot))^{2} dt + (y_{0}, \varphi^{\varepsilon}(\cdot, 0))_{L^{2}(0, 1)},$$

$$= \frac{1}{2} \int_{0}^{T} (\Phi_{Z}^{0}(0, t))^{2} dt + (y_{0}, \varphi^{0}(\cdot, 0)) + \varepsilon \dots,$$

$$= \frac{M^{2}}{2} \int_{T-1/M}^{T} (\varphi_{T}^{0}(M(T-t)))^{2} dt + \varepsilon \dots$$

$$v^0(t) + \varepsilon v^1(t) + \cdots = \Phi_z^0(0,t) + \varepsilon \Phi_z^1(0,t) + \cdots, \quad \forall t \in (0,T).$$

At the zero order, we get therefore $v^0(t) = \Phi_z^0(0,t)$ leading simultaneously, to

$$v^{0}(t) = M\varphi^{0}(0, t) = \begin{cases} M\varphi^{0}_{T}(M(T - t)), & t \in]T - 1/M, T], \\ 0, & t \in [0, T - 1/M] \end{cases}$$

The last equality contradicts the matching conditions (17).

$$\begin{split} J_{\varepsilon}^{\star}(\varphi_{T}^{\varepsilon}) &= \frac{1}{2} \int_{0}^{T} (\varepsilon \varphi_{X}^{\varepsilon}(0,\cdot))^{2} dt + (y_{0}, \varphi^{\varepsilon}(\cdot,0))_{L^{2}(0,1)}, \\ &= \frac{1}{2} \int_{0}^{T} (\Phi_{Z}^{0}(0,t))^{2} dt + (y_{0}, \varphi^{0}(\cdot,0)) + \varepsilon \dots, \\ &= \frac{M^{2}}{2} \int_{T-1/M}^{T} \left(\varphi_{T}^{0}(M(T-t)) \right)^{2} dt + \varepsilon \dots \end{split}$$

Final remarks

- Instead of imposing regularity assumptions and matching conditions, we may introduce an additional C^2 cut-off $\mathcal X$ function to take into account the discontinuity of the solutions y^k on the characteristic line. This allows to deal with the initial optimality system.
- The negative case is very similar except that the control v_ε lives in the boundary layer. (still in progress!)

Final remarks

- Instead of imposing regularity assumptions and matching conditions, we may introduce an additional C^2 cut-off $\mathcal X$ function to take into account the discontinuity of the solutions y^k on the characteristic line. This allows to deal with the initial optimality system.
- The negative case is very similar except that the control v_{ε} lives in the boundary layer. (still in progress!)

$$\begin{cases} y_{tt}^{\varepsilon} + \varepsilon \Delta^2 y^{\varepsilon} - \Delta y^{\varepsilon} = 0, & \text{in } Q_T, \\ y^{\varepsilon} = 0, & \partial_{\nu} y^{\varepsilon} = v^{\varepsilon} \mathbf{1}_{\Gamma_T}, & \text{on } \Sigma_T, \\ (y^{\varepsilon}(\cdot, 0), y_t^{\varepsilon}(\cdot, 0)) = (y_0, y_1), & \text{on } \Omega. \end{cases}$$

Theorem (Lions)

Assume $(y_0,y_1)\in L^2(\Omega)\times H^{-1}(\Omega)$. Assume that (Ω,Γ_T,T) satisfies a geometric control condition. For any $\varepsilon>0$, let v^ε be the control of minimal $L^2(\Gamma_T)$ for y^ε . Then,

$$(\sqrt{\varepsilon}v^{\varepsilon}, y^{\varepsilon}) \to (v, y)$$
 in $L^{2}(\Gamma_{T}) \times L^{\infty}(0, T; L^{2}(\Omega))$, as $\varepsilon \to 0$

where v is the control of minimal $L^2(\Gamma_T)$ -norm for y, solution in $C^0([0,T];L^2(\Omega))\times C^1([0,T];H^{-1}(\Omega))$ of :

$$\begin{cases} y_{tt} - \Delta y = 0, & \text{in } Q_T, \\ y = v \mathbf{1}_{\Gamma_T}, & \text{on } \Sigma_T, \\ (y(\cdot, 0), y_t(\cdot, 0)) = (y_0, y_1), & \text{in } \Omega. \end{cases}$$

- A. Münch: Numerical estimations of the cost of boundary controls for the equation $y_t \varepsilon y_{xx} + My_x = 0$ with respect to ε .
- ullet Y. Amirat, A. Münch: Asymptotic analysis of the equation $y_t \varepsilon y_{xx} + My_x = 0$ and controllability results.

MERCI DE VOTRE ATTENTION

