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Introduction - The advection-diffusion equation

Let T>0,MeR,e>0and Qr :=(0,1) x (0, T).

Ley* =y —eVu+Myx =0 Qr,
yE(Ov'): Vs(t)r y5(17):0 (07 T): (1)
yi(vo):yg (071)7

e Well-poseddness:

Vys € H7'(0,1),ve € L3(0, T), 3ty® € L3(Qr)nc([o, T; H'(0,1))

e Null control property: From (Russel'78),
VT >0,y0 € H'(0,1),3v¢ € L2(0, T) such that
ye(,T)=0 inH='(0,1).

e Main concern: Behavior of the controls v ase — 0

@ Controllability of conservation law system;
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e Well-poseddness:

Vys € H7'(0,1),ve € L3(0, T), 3ty® € L3(Qr)nc([o, T; H'(0,1))

e Null control property: From (Russel'78),
VT >0,y0 € H'(0,1),3v¢ € L2(0, T) such that
ye(,T)=0 inH='(0,1).

e Main concern: Behavior of the controls v ase — 0

@ Controllability of conservation law system;
@ Toy model for fluids when Navier-Stokes — Euler.

About the controllability of y;



Cost of control

e We note the non empty set of null controls by
C(Yo, T,e, M) := {v € [3(0,T); ¥ = y(v) solves (5) and satisfies y(-, T) = 0}

For any € > 0, we define the cost of control by the following quantity :

K(e, T,M) := sup { min lull 20,7 } .
10l 210.5y=1 LHECOR T2 M) 1 OT)
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Cost of control

e We note the non empty set of null controls by
C(yo, T,e, M) := {v € L2(0, T); y = y(v) solves (5) and satisfies y(-, T) = 0}

For any € > 0, we define the cost of control by the following quantity :

K(e, T,M) := sup { min lullzo.7 }
I¥oll 20.4y=1 LUECWO,ToesM) (.7)

e We denote by Ty, the minimal time for which the cost K(e, T, M) is uniformly
bounded with respect to . In other words, (5) is uniformly controllable with respect to e
ifandonly if T > Ty.

About the controllability of y;



Let v¢ the control of minimal L?-norm for the initial data y§ - then

Iv¥llz, ) < K(e, T, M)IIys Il 20,1y

Thus, K(e, T, M) is the norm of the (linear) operator y§ — vyum where vyyy is the
control of minimal L2-norm.
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Let v¢ the control of minimal L?-norm for the initial data y§ - then

Iv¥llz, ) < K(e, T, M)IIys Il 20,1y

Thus, K(e, T, M) is the norm of the (linear) operator y§ — vyum where vyyy is the
control of minimal L2-norm.

Remark
By duality, the controllability property is related to the existence of C > 0 such that

le(-s0)lli2(0,1y < Cllewx (0, )llizo,7y,  Veor € H3(0,1) N H?(0,1) @)

The quantity

lle(- 0)l 20,1y

Cops(e, T,M) = .
e orer(0,1) lewx(0, )l 20,7y

is the smallest constant for which (2) holds true and K(e, T, M) = Cops(e, T, M).

About the controllability of y;



The case M =0

,VIE - E,fo =0 Qr,
ye(oz') = va(t)v y€(17) =0 (07 T)»
y€(7o):yg (071)»

Making the change of variable T = <t, we easily have

VT >0,e >0, K(e T,0)=e"12K(1,eT,0)




The case M =0

,VIE - E,V;ix =0 Qr,
yE(Oz') = va(t)» y€(17) =0 (07 T)»
y€(7o):yg (071)»

Making the change of variable T = <t, we easily have

VT >0,e >0, K(e T,0)=e"12K(1,eT,0)

Theorem (Miller, Lissy, Tenebaum-Tucsnak, ....)

K(1,T,0) ~7_or €7, k€ (1/2,3/4)
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M # 0O - Direct problem - Behavior of y° ase — 0

Theorem (Coron- Guerrero)

LetT >0, M € R*, yy € L?(0,1). Let (v¢)(c) be a sequence of functions in L2(0, T)
such that for some v € L?(0, T)

ve = v in [?(0,T), £—0".

Fore > 0, let us denote by y= € C([0, T]; H=1(0, 1)) the weak solution of

Vi — eVt My =0 Qr,
ys(ov') = Va(t)v y6(17) =0 (07 T)? (3)
ye('vo) =)o (071)7

Lety € C([0, T]; L2(0, 1)) be the weak solution of

Yi+Myx =0 Qr,
y(0,)=v(t) if M>0 (0,T),
y(1,)=0 if M<O (0, 7),
y(,0) = yo (0,1),

Then,yc —y in [?(Qr) as e— 0%,

About the controllability of y;



First consequence

IfT < HW\ lim. .o K(s, T, M) — oco. Consequently, Ty > |17\

PROOF. Assume that K(e, T, M) /> +oo. There exists (en)(nen) positive tending to 0
such that (K(en, T, M))(nen) is bounded.

Let ven the optimal control driving y to 0 at time T and y*©» the corresponding solution.
Let Ty € (T,1/|M]). We extend y=n and ven by 0 on (T, Ty). From the inequality

Vel 20,75y = V"l 20,7y < K" T, M)iyolli2(0,1ys

we deduce that (v*")(neny is bounded in L2(0, Ty), so we extract a subsequence
(V") (new) Such that ven — vin L2(0, Tp). We deduce that y°n — y in L2(Qy, ) solution
of the transport equation. Necessarily, y = 0 on (0,1) x (T, Tp). Contradiction.

About the controllability of y;



M # 0 - Direct problem - Behavior of ||y=(-, T)||;20,1) @s € — 0 for T > 1/|M|

The uncontrolled solution (v = 0) satisfies

Y2 Dllizon < 1V5C Oz e E 7, wes L
) L2(0,1) = ’ L2(0,1) M
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M # 0 - Direct problem - Behavior of ||y=(-, T)||;20,1) @s € — 0 for T > 1/|M|

The uncontrolled solution (v = 0) satisfies

M 1
Iy C Ollz,1y < IyEC,0)ll2(0,1)8 % =", vt > i
PROOF. Let o > 0. We check z°(x, t) = e 2" ye(x,t) solves
zF — ez + M(1 —a)z5 — (a2 —20)22 =0 in Oy,
z¢(0,-)=z(1,) =0 on (0,7), (5)
in  (0,L),

2(,0) = e 2y

Consequently
_ Max _ Max M2 (2 o0,
le™"2 y= (-, lliz(o.1) < ll€™ 2 y=(-,0)ll2(0,1y8 % (@ 2N

Max _ Max
||,V€(.,t)HL2(O,1) S He+ 2e |‘L°°(0,1)I|e e ys(.7t)||L2(0’1)
Max _ Max M, o2
< |let 2 llLoo(0,1)ll€™ 22 ys(.70)||L2(071)e45 (a?—2a)t
Mo Mo
< Hys(',0)||L2(071)e?(17M1+T)

and the result with o = t — ; > 0.
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Lower bounds for Ty,

ﬁ and that lim._,o K(e, T, M) = 0T because the transport eq. is
null controlled at time T > - with v =0 | But,

We expect Ty, =
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Lower bounds for Ty,

ﬁ and that lim. o K(e, T, M) = 0" because the transport eq. is
null controlled at time T > - with v =0 | But,

We expect Ty, =

Theorem (Coron-Guerrero’2006)

e IfM >0, then K(¢, T,M) > Ce®/<, ¢,C >0, whene — 0 for T < .

e IfM < 0, then K(e, T,M) > Ce®/<,c,C >0, whene — 0 for T < 20
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Lower bounds for Ty,

ﬁ and that lim. o K(e, T, M) = 0" because the transport eq. is
null controlled at time T > - with v =0 | But,

We expect Ty, =

Theorem (Coron-Guerrero’2006)

e IfM >0, then K(¢, T,M) > Ce®/<, ¢,C >0, whene — 0 for T < .
e IfM < 0, then K(e, T,M) > Ce®/<,c,C >0, whene — 0 for T < 20

More precisely, the lower bound are obtained using specific initial condition:
Mx —
Yo(x) = Kee™ 2= sin(nx), (K- = O(c™%/2) st yoll 201y = 1)

leading, for M > 0, to

e—3/2T7-1/2p42 M
K, T,M)>Ci— —(1=TM) —n%eT
(o.M > €S onp( (1= T — e

and for M < 0, to
=8/27-1/2\p2
K(Ev T7M)ZC1€ (|M|

EEnT=n 2—T™) — w25T>

£
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Upper bounds for Ty

Theorem (Coron-Guerrero’2006)

o IfM > 0, then K(¢, T, M) < Ce=°/¢ whene — 0 for T >
e IfM < 0, then K(e, T,M) < Ce—°/¢ whene — 0 for T > 5—

About the controllability of y;



Estimates for Ty

Theorem (Coron-Guerrero’2006)

1 1
3— if M 2,5721— if M<O.
TM€[1743]M lf >07 [75 ]|M| lf <




Estimates for Ty

Theorem (Coron-Guerrero’2006)

1 1
T 1,43]— if M 2,5721— if M .
M€[7 3]M lf >07 [75 ]|M| lf <0

A\

Theorem (Glass’2009)

1 1
T 1,42]— if M>0, 2,6.1]— if M<O.
el a2y i M>0, el i M<




Estimates for Ty
Theorem (Coron-Guerrero’2006)

1 1
43]— if M 2,5721— if M .
TM€[17 3]M lf >07 [75 ]|M| lf <0

v

Theorem (Glass’2009)

1 1
Twe[l,42— if M>0, [2,61]— if M<O.

’

Theorem (Lissy’2015)

TMe[1,2\/§],:7, if M>0, [Né,z(w\@)]ﬁ if M<o.

(2v/3 ~ 3.46)
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Estimates for Ty,

Theorem (Coron-Guerrero’2006)

1 1
43]— if M 2,5721— if M .
TM€[17 3]M lf >07 [75 ]|M| lf <0

A

Theorem (Glass’2009)

1 1
Twe[l,42— if M>0, [2,61]— if M<O.

N

Theorem (Lissy’2015)

TMe[1,2\/§],:7, if M>0, [Né,z(w\@)]ﬁ if M<o.

(2v/3 ~ 3.46)

A\

Theorem (Darde-Ervedoza’2017)

TMe[1,K]1M if M>0,K~3.34

\
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Objective:

estimate the uniform minimal control time Ty, !1??

We can try the following two approaches :

@ Numerical estimation of K(e, T, M) with respect to £ and
T > 1 (for M > 0 and M < 0)
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Objective:

estimate the uniform minimal control time Ty, !1??

We can try the following two approaches :

@ Numerical estimation of K(e, T, M) with respect to £ and
T > 1 (for M > 0 and M < 0)

@ Asymptotic analysis with respect to the parameter ¢ of the
corresponding optimality system.
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Attempt 1 : Numerical estimation of K(s, T, M)




Reformulation of the cost of control

Aeyo,
K3(e, T,M)= sup Hsko. o)izo.n)
wetzo,1) (Yo, ¥0)2(0,1

where A, : L2(0,1) — L?(0, 1) is the control operator defined by A,y := —¢(0)
where ¢ solves the adjoint system

—pt —epxx —Mpx =0 in  Qr,
90(07 ) = 50(17 ) =0 on (01 T)7 (6)
W('vT):‘PT in (071)7

associated to the initial condition w1 € H{ (0, 1), solution of the extremal problem

inf S / (0x(0, )20t + (40, (-, 0)) 120, 7-
prEH}(0.L)

REFORMULATION - K(g, T, M) is solution of the generalized eigenvalue problem :

sup{ﬁ eR:3yy e ?(0,1),y0#0, st. Acyo = Ay in L2(0, 1)}.




The generalized eigenvalue problem by the power iterated method

In order to get the largest eigenvalue of the operator A, we may employ the power
iterate method (Chatelain’89):

¥d € L?(0,1) given such that ||y8||L2(011) =1,
.}7(;(+1 :Afy(l)(v kZOa

~k+1
k+1 _ Yo

YW'o=om—— k=0
I Nz

The real sequence {|W(;)(||L2(0,1)}k>0 converges to the eigenvalue with largest module

of the operator A.:
||%(HL2(0,1) —K(, T,M) as k— oo. (8)

The L? sequence { y(’j }« then converges toward the corresponding eigenvector.

The first step requires to compute the image of A.: this is done by determining the
control of minimal L2 norm by minimizing J* with y(‘)‘ as initial condition for (5).

About the controllability of y;



Computation of the control of minimal L2-norm

For a fixed initial data y° € L?(0, 1) and & small, the numerical approximation of
controls of minimal L?-norm is a serious challenge :

@ the minimization of J* is ill-posed : the infimum 7 lives in a huge dual space !!!
this implies that the minimizer o7 is highly oscillating at time T leading to highly
oscillation of the control ey x.
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Computation of the control of minimal L2-norm

For a fixed initial data y° € L?(0, 1) and & small, the numerical approximation of
controls of minimal L?-norm is a serious challenge :

@ the minimization of J* is ill-posed : the infimum 7 lives in a huge dual space !!!
this implies that the minimizer o7 is highly oscillating at time T leading to highly
oscillation of the control ey x.

@ Tychonoff like regularization

inf  Jj =J* + ¢ Dllg- < 9
WTEH&(OJ) ﬁ(‘PT) (‘PT) ﬂ”‘PTHHS(oJ) — |y ( )”H 1(0,1) <B 9

is meaningless here for T > 1/|M| because the uncontrolled solution y=(-, T)
goes to zero with e.
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@ Boundary layers occurs for y© and ¢° on the boundary and requires fine
discretization.
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Computation of the control of minimal L2-norm

For a fixed initial data y° € L?(0, 1) and & small, the numerical approximation of
controls of minimal L?-norm is a serious challenge :

@ the minimization of J* is ill-posed : the infimum 7 lives in a huge dual space !!!
this implies that the minimizer o7 is highly oscillating at time T leading to highly
oscillation of the control ey x.

@ Tychonoff like regularization

inf  Jj = J*(o1) + G Dy~ =B ©
cremion 5(o7) (o) +Blerloy — G Dly-101y <8 O

is meaningless here for T > 1/|M| because the uncontrolled solution y=(-, T)
goes to zero with e.

@ Boundary layers occurs for y© and ¢° on the boundary and requires fine
discretization.

We use the variational approach developed in [Fernandez-Cara-Munch, 2013], [De
Souza-Munch, 2015] leading to convergent approximation with respect to the
discretization parameter (e being fixed).
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Picture of controls with respect to ¢, yy fixed

Yo(x) =sin(zx); T=1, M=A1

o
0.4 5| 2
0|
02|
0
-2
0|
-5 4|
-02|
-8
10
-04] "
-15
0.6| 10
) 02 04 06 08 10 02 04 06 08 i % 02 04 06 08 1
t t t

Control of minimal L2(0, T)-norm v&(t) € [0, T] fore =10~',1072 and 103
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Picture of controls with respect to ¢, yy fixed

0| 3000| 200
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-3000 200
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Control of minimal L2(0, T)-norm v&(t) € [0, T] fore =10~',1072 and 103
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Cost of control K(e, T, M) w.rt. e - M =1

0
200 5|
15
150 4
10 3|
100
2|
50) 5
1
0
0 002 004 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

Cost of control w.rt. e for T = 0954, T = ; and T = 1.057;

In agreement with Coron-Guerrero’2006,

e=3/2T7-1/2)2

KT M 2 G mes

exp<2—,\Z(1 - TM)—7r25T) (10)
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Corresponding worst initial condition

5
R
4t ]
T
i
3, l
e
O :’,‘-"
2t e * i
.
H
1 o ]
|
"
‘/ ...
0 i —— ——
0 0.2 0.4 0.6 0.8 1
X

Figure: T =1-M =1 - The optimal initial condition yy in (0, 1) fore = 10~ (full
line), e = 10—2 (dashed line) and ¢ = 10—3 (dashed-dotted line).

. _Mx _Mx
= Yo is close to e~ 2= sin(mx)/[le” 2= sin(mx)|| 2(0,1)
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Cost of control K(e, T, M) w.rt. e - M = —1

4 x 10
8X 10 3
7 2
6
1

5
4 or
3 -1
2

-2
1
00 0.02 0.04 0.06 0.08 0.1 095 0.96 0.97 t 098 0.99

Left: Cost of control w.r.t. e for T = I1WI; Right: Corresponding control v in the
neighborhood of T fore = 10—3
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Corresponding worst initial condition for M = —1

6
4r
3l
ol
1k
0 e P AN
0 012 0:4 . 016 018 1

Figure: T =1 - M = —1 - The optimal initial condition yg in (0, 1) for
e =10"" (full line), ¢ = 102 (dashed line) and ¢ = 103
dashed-dotted line).
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Attempt 2 : Asymptotic analysis w.r.t. ¢

We take M > 0.




Attempt 2 : Asymptotic analysis w.r.t. ¢
We take M > 0.

Optimality system :

Ly =0, Lrpf =0, (x,1) € Qr,
ye(»0) =5, x €(0,1),
ve(t) = y=(0,1) = ep5(0,1),  t€(0,T),
ye(1,0 =0,. te(0,T),
©5(0,1) = o°(1,1) = 0, te(0,T),
=B T)+y°(,T)=0, x€(0,1).

8 > 0- Regularization parameter

(1)

About the controllability of y;



Direct problem - Asymptotic expansion

Vi =¥+ Myg =0, (x,1) €(0,1) x (0, T),
yE(0,1) = ve(t), te(0,7), 12)
yE(1,0) =0, te(0,7),
y=(x,0) = yo(x), x €(0,1),

Yo and ve are given functions.

We assume that

ekvk,

m
Ve =
k=0
the functions v0, v', .. | v™ being known.

We construct an asymptotic approximation of the solution y© of (12) by using the
matched asymptotic expansion method.
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Direct problem - Asymptotic expansion

Let us consider two formal asymptotic expansions of y<:

—the outer expansion
m

DoV, (x1)e(o,T),

k=0

—the inner expansion

m
Sekvh(z ), z= 1=x ¢ (0,7, te (0, T).
k=0 €

About the controllability of y;



Direct problem - Outer expansion

Putting Z € x t) into equation (12)4, the identification of the powers of ¢ yields

My =0,

et y{‘+My)’(‘:y)’(‘;17 forany 1 < k < m.

Taking the initial and boundary conditions into account we define y° and y*

(1 < k < m) as functions satisfying the transport equations, respectively,
yz(‘)+My)9:07 (X,t)GQT,

Yo, =v(1), te(o,T) (13)
Y(x,0) =yo(x),  x€(0,1),

and k k k—1
Yt +MyX :yXX_ b (Xu t)G OT)
Y50, 1) = vK(1), te(0,7), (14)
y¥(x,0) =0, x € (0,1).
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Direct problem - Outer expansion

Yo(x — Mt) x > Mt,
y (X t) 0 X
v (t — M) , X< Mt
Using the method of characteristics we find that, forany 1 < k < m,
/yXX (x+ (s — )M, s)ds x> M,

yox. ) =

Ki(p_ X XM s X
% <t M>+/o Yex  (SM,t M—l—s)ds, X < Mt.

About the controllability of y;



Direct problem - Outer expansion
Yo(x — Mt) x > Mt,
t
PEOZ (= 2), xam

Using the method of characteristics we find that, forany 1 < k < m,

/yXX (x+ (s — )M, s)ds x> M,
k _
.y (X:t)_ . t x X/M 1 Mt X d Mt
v(—ﬂ>+/0 Yex (s,—M—i-s)s, x < Mt.
{ tyg (x — Mt), x> Mt,
Y(X t)* VO X
(tfﬁ)JrW( )”(nM), x < Mt,
t2
5 ¥ (x — mt), x> Mt,

y2(x, t) = V2 (t_i)_i_%(w)// (f—%)
2




Direct problem - Inner expansion

m
Now we turn back to the construction of the inner expansion. Putting >~ " Y*(z, 1)
k=0
into equation (12)4, the identification of the powers of ¢ yields

el Yh(z, )+ MY2(2,t) =0,
N YE(Z, )+ MYE(z,t) = YET(z,1), forany 1 <k <m.
We impose that Y*(0, t) = 0 for any 0 < k < m and use the asymptotic matching

conditions

Yoz, 1) ~ y°(1,1), asz— oo,
\4 (z,8) ~ y‘(1,t) —y,?(1,t)z, as z — +oo,

]
YE(z,0) ~ y2(1,0) = yx(1,0z + Sya(1, 025, as 2 — +oo,

_ 1 1
Y™z, 0) ~ Y"1, 0 =y T (102 + SyETR002 4+ — (07 (1.0(=2)",

as z — +oo.

About the controllability of y;



Direct problem - Inner expansion

Lemma

Yo(z,0) = y°(1,0) (1= &™), (2,0) € (0,400) x (0,T).

For any 1 < k < m, the solution of reads

Y&(z,t) = Q¥ (z,t) + e M2PX(2,1), (2,) € (0,+00) x (0, T), (15)

B} B k 18,‘yk,,' . . K f i k—i
P(zvt)__ZT 8X,' (171‘)27 O(zvt) Z

i=0 =0

(1,02,

il 6x’




Asymptotic approximation

Let X : R — [0, 1] denote a C? cut-off function satisfying

1, s§>2,
YO =10 s<1

0 1—2¢7 1 T

1—¢ev

Figure: The function A.

We define, for v € (0, 1), the function A (x) = X (L%X) , then introduce the function

m

VTR A) SE R REUREAE)) SERCY Gty L

k=0 k=0

defined to be an asymptotic approximation at order m of the solution y* of (12).

About the controllability of y;



Compatibility conditions - Regularity

Lemma

(i) Assume that y, € C?™+1[0,1], v0 € C?m+1[0, T] and the following C?™+'-matching
conditions are satisfied

MP(10)P(0) + (1P (v))P(0) =0, 0<p<2m+1. (17)
Then the function y° belongs to C>™+1([0, 1] x [0, T]).

(i) Additionally, assume that vk € CA(m=K)+1[0, T], and the following
c3m=k)+1_matching conditions are satisfied, respectively,

a yk 1
vk (@) i =
V)P (0) = ,+,§p 1( 1M =— T (0,0), 0<p<2(m—k)+1. (18)

Then the function y* belongs to CAmM=k)+1([0, 1] x [0, T]).




Compatibility conditions - example with m = 2

Lemma

(i) Assume that y, € C°[0, 1], v° € C5[0, T] and the following C®-matching conditions
are satisfied
MP(y0)P(0) + (1) (v*)P(0) =0, 0<p<5. (19)

Then the function y° belongs to C5([0, 1] x [0, T]).
(ii) Additionally, assume that v € C3[0, T], v? € C'[0, T] and the following C® and
C'-matching conditions are satisfied, respectively,
V() =0, (vV)N(0) = M=2(+*)®(0) = y§(0),
(v')®(0) = 2M~2(v*))(0) = —2my{V(0), (20)
(vV')®(0) = 3M~2(v*))(0) = M2y (0),

v?(0) =0, (VM) =o. (21)

Then the function y' belongs to C3([0, 1] x [0, T]), and the function y? belongs to
C'([0,1] x [0, T]).




Estimate of L.wj,

Let wg, be the function defined by (16). Assume the previous regularity and
compatibility. Then there is a constant cm independent of  such that

2m+1)y

”LE(WS’I)”C([O,T];LZ(OJ)) < Cme 2 . (22)

Le(wg)(x, 1) = 3074 Ji(x, ),
J; (X7 t) = 75m+1y)?)7((xv t)XE(X)r
L(x, ) =M1 — X (x))Y{" <1;XJ ,

€
Bx,t) = MX’ (1 _X> e Xm:akyk (1 X t) -
£ ) &"Y k: € )

0

1—x i 1—x
4 _ 1-2 Kk yk
JE(X,t)fX”( - )5 "’(2 "y ( . ,t)

k=0




Asymptotic approximation- Convergence

Let y= be the solution of problem (12) and let wg, be the function defined by (16).
Assume that the assumptions of Lemma 6 hold true. Then there is a constant cm
independent of e such that

2m41
llye — W,%Hc([O‘T];Lz(OJ)) <cCme 2 7. (23)
Introduce the function z¢ = y* — wj,. It satisfies
L€(ZE) = _LE(Wr%L (X7 t) € (07 1) X (07 t)v
z5(0,t) = z°(1,t) =0, te(0,T), (24)
z°(x,0) = z5(x), x € (0,1),

Using the Gronwall Lemma it holds that

12012201y < (ILeWi) 2oy + 125 1220,0)) € VEE (O,T] (25)

We have

Z5(x) = (1 = X (x)) (Yo(x) Zs Y"( 0)>,

About the controllability of y;



Convergence with respect to m

Theorem

Let, forany m € N, y&, denote the solution of problem (12). We assume that the initial
condition yo belongs to C*°[0, 1] and there are ¢, b € R such that

ly§™llco. < €™, ¥m e N. (26)
We assume that (v*) k>0 IS a sequence of polynomials of degree < p — 1, p > 1,
uniformly bounded in CP=1[0, T]. We assume in addition that, for any k € N, for any
m € N, the functions v and y, satisfy the matching conditions. Let wg, be the function
defined by (16). Then, there is eqg > 0 such that, for any fixed 0 < € < g, we have
yfé;l_ Wfb)-"l_)O in C([O7 T]7L2(071))= asm— +oo,
consequently

im _ wh (3, 0) = X200 S0 5550, 1) 4 (1= (1) Y kv (11 t)
e k=0 = €

=y*(x,t) a.e. in(0,1) x (0, T),

where y© is the solution of problem (12) with y=(0,t) = 332, eKvk(¢), t€ (0, T).

About the controllability of y;



First approximate controllability result

LetmeN, T > anda€lo, T— 4.
Assume regularity and matching conditions
on the initial condition y, and functions v,
0 < k < m. Assume moreover that

vE(t) =0, 0<k<mVte][aT].

Then, the solution y¢ of problem (12)
satisfies the following property

(2m+1)~

lyeC Dllze,1y < cme 2, Yy €(0,1 L
’ t=T-1L

for some constant cm > 0 independent of

e. The function v¢ € C([0, T]) defined by 0

ve 1= YL, eXvK is an approximate null

control for (5).

About the controllability of y;



m — oo ?

Remark

Fore > 0 small enough, we can not pass to the limit as m — oo in order to get a
null-controllability result.

Let yo(x) = 1. The functions vk, k > 0 defined as follows
V() =x(t), vK{t)=0, k>0 (27)

with X = {f € C>°[0, T],f(0) = 1,f(a) = 0, fP)(0) = fP)(a) = 0,p € N*}, a € [0, T]
satisfy the matching conditions.

Ifa€lo, T —1/M[, then [[wg(-, T)ll20,7) = 0Vm € N.
@m+1)~y

Iflimm—oc Cme~ 2 = 0, then the function v¢ = 3", eXvk = V0 is a null control for
y© as time T. Contradiction.

About the controllability of y;



Yo =1, V() =x(), vH(1)=0, k>0 (28)
, with k > 0 so that XP(0)) =0 forallp < 2m+1. M =1, k = 10,

ktz m+2

X(t)=e"

T=1and m=2. Yy(z,t) = (1 — e~ %) independent of ¢ while Y; and Y> are
identically zero.




Thecase T =1/M

1—x

WE(x, T) = Xe(x)y%(x, T) + (1 — Xo(x)) Y°( 77), (x.0) € ar,
— X 00VO(T( = X)) + (1 = X=(x)) ¥(0) (1 _ e*@)

- L
T=qx

If supp(v°) C [0, Te"],

W5 (-, Tl 20,1y < I¥0(0)] €7/
and
Iy (> Dllizo,1y
< wg (5 Dllzo,1y 1065 = w5) G Dz,

< %(0)| 7/ + ellV0ll 20, 1) t=Ter
< 9(0)|(cs™M) +£772),




The case of initial condition y¢ of the form y5(x) = e~ f(x)

Let us consider the case of the C°°([0, 1]) initial data (with L = 1):
Ye(x) = Kesin(nx)e™ 2, K. = O(e~%2). (29)

Taking m = 0, the function L. (wg) involves the term —ey2 (x, )X (x). For points in
C— :={(x,t) € Qr,x > Mt}, we obtain yO(x, ) = ¥§ (x — Mt); this leads, to (writing
that X. =1 on (0,1 — 2¢7))

1-2e7 rx/M M(x—Mt) 2 1/2
aHy)?XXEHLz(c,) > eKe (/0 /0 ((sin(w(x — Mt))e™ = )XX) dtdx)

=eK.O(1) = 0(e71/2).

(30)




The case of initial condition y; of the form y5(x) = e~ 2

o (2— )Mt
Yoo ) = %8 O ) 22 ),

o (—a)Mt _ _ _
Loye(x, t) = e'%2 (= &) (z; —ezs 4 M(1 — u,)z;>

About the controllability of y;



The case of initial condition y; of the form y5(x) = e~ 2

o (2— )Mt
Yoo ) = %8 O ) 22 ),

N — )M (31)
Loy®(x, 1) = o8 (= E51) (zf —ezs 4+ M(1— u,)z;”>
We then define the approximations
m m 1—x
Z5 (X 1) = X (x) Y2 )+ (1 - X (x) Y ek ZK (— t) ,
k=0 k=0 € (32)

Mo (2—a)Mt
yo(x, 1) = o2 (=522 ¢ ()

About the controllability of y;



The case of initial condition y; of the form y5(x) = e~ 2

o (2—a)Mt
ye(ot) = e ) 2o,
Mo (y— =gt [ _ A (31)
L.ys(x,t) =e2s ¥~ 2 (z; —ezZgy + M1 — u,)z;>
We then define the approximations
m m 1—x
Z5 (X 1) = X (x) Y2 )+ (1 - X (x) Y ek ZK (— t) ,
k=0 k=0 € (32)

Mo (2—a)Mt
yo(x, 1) = o2 (=522 ¢ ()

The main issue is now to find control functions v satisfying the matching conditions
such that [|Le Y51l oo, 17, 12(0,1y) 90€S to zero with e.

About the controllability of y;



|l Le Yl e (o, 11,L2(0,1))

-
v
=~

o (2—a)Mt
Leyix, 1) = €% =520 L2 (1)

Figure: (0,1) x (0, T) =
D u U(Dy N CY).




|l Le Yl e (o, 11,L2(0,1))

-
v
=~

o (2—a)Mt
Leyix, 1) = €% =520 L2 (1)

L LesaZin(x, 1) = =M 25 (x, 1)

[eRl

InD; nC,

Figure: (0,1) x (0, T) =
D u U(Dy N CY).




|l Le Yl e (o, 11,L2(0,1))

-
v
=~

Figure: (0,1) x (0, T) =
D u

u(Dz N ch).

e (—a)Mt
Lys(xt)y = 32 0= E52) 22 i)

In D5 1 G, Leazi(x, 1) = —=m1 20 (x, )
. € Ma(y_ ooy _ X
Lst) == e LS ) @@ (12 20,

@

@—a)M? [
£ _ Ma?x QT (7M 71)
=——e %(-9¢ o 79 @ (tf
M2 () e
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|l Le Yl e (o, 11,L2(0,1))

-
v
=~

_ (2—?)MP)

Loy (x, 1) = o2 (x Le.aZi(x, 1)

In D5 N CL, Le,azi(x, t) = =™ 25 (x, 1)

[eRl

Ly t) = — e () 0@ (t, L) ,

@ MDt
€ Ma2x LZZS)MZ (ﬁ*t) X
@) (1) = (G + Cat)e 21 (e 1o, 4],
! ' v°(0) = z5(0), V°(B) =0,
Figure: (0,1) x (0,7) = () D(0)) = ~Ma(25)'(0), (V) V(B) =0,
D u U(Dy N CY). (33)

for some constants C; and C, and > 0.




|l Le Yl e (o, 11,L2(0,1))

-
v
=~

_ (2—?)MP)

Loy (x, 1) = o2 (x Le.aZi(x, 1)

In D5 N CL, Le,azi(x, t) = =™ 25 (x, 1)

[eRl

Ly t) = — e () 0@ (t, L) ,

@ MDt
€ Ma2x LZZS)MZ (ﬁ*t) X
@) (1) = (G + Cat)e 21 (e 1o, 4],
! ' v°(0) = z5(0), V°(B) =0,
Figure: (0,1) x (0,7) = () D(0)) = ~Ma(25)'(0), (V) V(B) =0,
D u U(Dy N CY). (33)

for some constants C; and C, and > 0.

IL0D)l342(0; oty ~ (PHOIOE D) +F) D (©QOE?).




|l Le Yl e (o, 11,L2(0,1))
Thus, the corresponding control is given

() =e" 4 PO 1a0, 7 =02 a),

kCi — 2G5 + k
V() = %*Cztkwcmc‘t, K=

R (34)

—n+a2-a)
4e

~0001

o2 ~0002

~0.003

0004

Figure: (0,1) x (0, T) =
Di U u(D; N CY). Figure: Control vO(t) fore = 10~2 and

—M
e = 1073 associated to y§ (x) = ez sin(nx).
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Optimality condition

Forany £ > 0 and 8 > 0, the optimality system associated to the extremal problem

i €112 —1ye(. 2
VEGTZI[:),T)”V HL2(0,T) +87y T)”L2(0,1) (35)

where the pair (v¢, y¢) solves (5) is given by

Ly =0, Lf¢f =0, (x.1) € Qr,
ys('vo):yg7 X€(0,1),
ve(t) = y°(0,1) = evk(0, 1), te(0,7), (36)

ye(1,0) =0, ¢°(0,0) = *(1,1) =0, t€(0,T),
_ﬁ@ix('vT)"—yg('vT):Ov X€(071)'




Optimality condition

V() +evi(t) + - = 920, 8) + e0L(0, 1) +---, V€ (0,T).

At the zero order, we get therefore vO(t) = 9(0, t) leading simultaneously, to

M3 (M(T — 1)), te]T —1/M,T],

0(4) — 0 =
v(t)MsO(Oaf){()’ tel0,T—1/M]

The last equality contradicts the matching conditions (17).
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Optimality condition

V() +evi(t) + - = 920, 8) + e0L(0, 1) +---, V€ (0,T).

At the zero order, we get therefore vO(t) = 9(0, t) leading simultaneously, to

M3 (M(T — 1)), te]T —1/M,T],

0(4) — 0 =
v(t)MsO(Oaf){()’ tel0,T—1/M]

The last equality contradicts the matching conditions (17).

* 1 T
o7 = 5 | o002+ 00,07 Oz

1 T
5 [ (@U0.0Rd+ 000D e

M?2 T
? T—1/M




Final remarks

@ Instead of imposing regularity assumptions and matching conditions, we may
introduce an additional C? cut-off X function to take into account the
discontinuity of the solutions y* on the characteristic line. This allows to deal
with the initial optimality system.
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Final remarks

@ Instead of imposing regularity assumptions and matching conditions, we may
introduce an additional C? cut-off X function to take into account the
discontinuity of the solutions y* on the characteristic line. This allows to deal
with the initial optimality system.

@ The negative case is very similar except that the control v, lives in the boundary
layer. (still in progress !')
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Easier case

Vi +el%y — Ay® =0, in Qr,
y€:07 8uy€:VE1|'T, on ZT,
(re(-0), ¥ (-,0)) = (yo, 1),  on Q.

Theorem (Lions)

Assume (yo, y1) € L?(Q) x H='(Q). Assume that (, T 7, T) satisfies a geometric
control condition. For any e > 0, let v be the control of minimal L?(T 1) for y¢. Then,

(Veve,y®) — (v,y) in L3(T7) x L=(0,T;L3(Q)), as —0

where v is the control of minimal L?(T )-norm for y, solution in
Co([0, T]; L3(Q)) x C'([0, T]; H='(Q)) of :

yit — Ay =0, in Qr,
y=vir,, on ¥,
(y(vo)’yf(vo)) = (.y()ay1)7 in Q.

About the controllability of y;




Fin

e A. Miinch : Numerical estimations of the cost of boundary controls for the equation
Yt — eyxx + Myx = 0 with respect to e.

e Y. Amirat, A. Miinch : Asymptotic analysis of the equation y; — eyxx + Myx = 0 and
controllability results.

MERCI DE VOTRE ATTENTION
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