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Introduction - Main motivation

The talk discusses the approximation of solution of a controllability problem for
(nonlinear) PDEs through least-squares method.

For instance, for the Navier-Stokes system: Given Q € RY, T > 0, find a sequence
{¥k:s Pk, Vk } k>0 converging (strongly) toward to a solution (y, p, v) of

Vi—vAy+(y-V)y+Vp=0, V.y=0 Qx(0,T),
y=v, o x (0, T), (1)
y(0) = yo, Q x {0}

satisfying y(T) = uy, a trajectory (control of flows).

e Largely open question in the context of nonlinear PDEs

o Not straightforward issue, mainly because the fixed point operator (used to prove
controllability result) is not a contraction !
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Part 1— Direct Problem for Steady NS - find a sequence (y«, px k>0 converging
strongly to a pair (y, p) solution of

ay —vAy+(y-V)y+Vp=f+ag, V-y=0 Q
y=0, 0.

(useful to solve Implicit time schemes for Unsteady NS ....)
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Part 1— Direct Problem for Steady NS - find a sequence (y«, px k>0 converging
strongly to a pair (y, p) solution of

ay —vAy+(y-V)y+Vp=f+ag, V-y=0 Q @)
y=0, 9.
(useful to solve Implicit time schemes for Unsteady NS ....)
Part 2— Direct problem for Unsteady NS - find a sequence (yx, Px)k>0 converging
strongly to a pair (y, p) solution of
Vi—vAy+(y -V)y+Vp=£fVv.-y=0 Qx(0,T),
y=0, 00 x (0, T), @)

y(0) = yo, Q x {0}

Least-Squares methods to solve direct and control problems



Part 1— Direct Problem for Steady NS - find a sequence (y«, px k>0 converging
strongly to a pair (y, p) solution of

ay —vAy+(y-V)y+Vp=f+ag, V-y=0 Q
y=0, 0.

(useful to solve Implicit time schemes for Unsteady NS ....)
Part 2— Direct problem for Unsteady NS - find a sequence (yx, Px)k>0 converging

strongly to a pair (y, p) solution of
Vi—vAy+(y-V)y+Vp=£fV.y=0 Qx(0,T),
y=0, 00 x (0, T), 3)
y(0) = yo, Q x {0}

Part 3— Controllability problem for a sub-linear (controllable) heat equation: find a
sequence (y, Vk)k>o0 converging strongly to a pair (y, v) solution of

yi—vAy+g(y)=vie,, Qx(0,7),
y=0, 99 x (0, 7), ()
¥(0) = yo, Q x {0}

suchthat y(-, ) = 0.
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Part 1 - Direct Problem for steady NS

Part 1— Direct Problem for Steady NS -

Let Q C RY, d € {2,3} be a bounded connected open set with boundary 99 Lipschitz.
V = {ve D) V- v=0}, Hthe closure of V in L2(2)? and V the closure of V in
H'(Q).

Find a sequence (yk, Px)k>o converging strongly to a pair (y, p) solution of

ay —vAy+(y-V)y+Vp=f+ag, V-y=0 Q,
y=0, 9.

feH(Q) ge 3(Q)¥and a € RY.
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Part 1- Weak formulation

Letf € H=1(Q)9, g € L?(Q)9 and a € R%. The weak formulation of (5) reads as
follows: find y € V solution of

a AW-H//V'VW-F/ Vyw=<fiw>,_ +a/ w, VYweV.
/Qy Q d ny Y @) H (@ Qg (6)
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Part 1- Weak formulation

Letf € H=1(Q)9, g € L?(Q)9 and a € R%. The weak formulation of (5) reads as
follows: find y € V solution of

a AW-H//V'VW-F/ Vyw=<fiw>,_ +a/ w, VYweV.
/Qy Q d ny Y @) H (@ Qg (6)

Proposition

Assume Q C RY is bounded and Lipschitz. There exists a least one solution y of (6)
satisfying
c(Q
a1+ vIvy1E < CRZ o + ol ™
for some constant c(2) > 0. If moreover, Q is C? and f € L?(Q)9, then
yeH(Q)INV.

Remark- If

1 1 X
(198 + B g ). it =2

Qg,f,a,v) = 1/2

(e} .
o572 (1918 + 1113 s ). it d=3.

is small enough, then the solution of (6) is unique.
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V'’ -Least-squares method

e We introduce the least-squares problem with E : V — R™T as follows
infycyE(y) =+ 24 |vv)? 8
infyevE(y) = 3 Q(aIVI +Vv[%) 8
where the corrector v € V is the unique solution of

a/v~w+/Vv~Vw:—a/y-w—u/Vy~Vw—/y~Vy-w
Q Q Q Q Q

T <hW >t (@) H (@) +CY/ g-w, wwelv.
0 Q
9
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V'’ -Least-squares method

e We introduce the least-squares problem with E : V — R™T as follows
infycyE(y) =+ 24 |vv)? 8
infyevE(y) = 3 Q(aIVI +1VvI) 8

where the corrector v € V is the unique solution of

a/v~w+/Vv~Vw:—a/y-w—u/Vy~Vw—/y~Vy-w
Q Q Q Q Q

T <hW >t (@) H (@) +CY/ g-w, wwelv.
Q
9

e inf,cy E(y) = 0 reached by a solution of (6). In this sense, the functional E is a
so-called error functional which measures, through the corrector variable v, the
deviation of the pair y from being a solution of (6).

Remark- 1 )
E(y) ~ 3 llay +vBi W) +By,y)—f+agly,

(Bi(y), ) == (Vy, VW), (B(y,2), / YWz w, y.zweV

considered in ! with experiments but without mathematical justification !

! M. O. Bristeau, O. Pironneau, R. Glowinski, J. Periaux, and P. Perrier, On the numerical solution of nonlinear
problems in fluid dynamics by least squares and finite element methods. CMAME(1979)
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Analysis of the LS method (2)

Proposition

2(d-1) o c}, d € {2,3}, ¢ > 0 There exists a positive

LetBo = {y € V : ;L ||vy]
constant C such that

1
14
E(y) < 72||EI(Y)HV'1 Vy € Be (10)
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Analysis of the LS method (2)

Proposition

2(d-1) o c}, d € {2,3}, ¢ > 0 There exists a positive

LetBo = {y € V : ;L ||vy]
constant C such that

1
14
E(y) < 72||EI(Y)HV'1 Vy € Be (10)
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Analysis of the LS method (2)

Proposition

2(d-1) o c}, d € {2,3}, ¢ > 0 There exists a positive

LetBo = {y € V : ;L ||vy]
constant C such that

=i
v /
E(y) < A IE'W)llys, Yy €Be (10)

PROOF- e For any y € B, there exists a unique element Y; € V solution of

a/ Y1~W+V/ VY1~VW+/(y~VY1+Y1-Vy)~W: —a/ v-w—/ Vv-Vw,Vw € V
Q Q Q Q Q

where v € V is the corrector associated to y.

e Y; enjoys the following properties: There exists ¢ > 0 such that

E'(y)-Yi=2E(y), and |Villv <V20T'VE([y), VyeBe
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Use of the element Y; as descent direction for E

Yev,
Yk+1 =Yk — Y1k, k>0, (11)
Ak = argminy cp+ E(yk — A Yy x)

where Y; x solves the formulation, for all w € V

a/ Y17k~W+l// VY1,k-VW+/ (yk-VY17k+Y17k-Vyk)~W:704/‘ V;(W*/ Vvg-Vw,
Q Q Q Q Q

leading to E'(yx) - Y4k = 2E(yk).

Least-Squares methods to solve direct and control problems



Use of the element Y; as descent direction for E

Yev,
Yk+1 =Yk — Y1k, k>0, (11)
Ak = argminy cp+ E(yk — A Yy x)

where Y; x solves the formulation, for all w € V

a/ Y17k~W+l// VY1,k-VW+/ (yk-VY17k+Y17k-Vyk)~W:704/‘ V;(W*/ Vvg-Vw,
Q Q Q Q Q

leading to E'(yx) - Y4k = 2E(yk).

Assume that y, € V satisfies E(yy) < O(v2(av)V/(@=1). Then, yx — y strongly in V
as k — oo where y is a solution of the a.-NS equation.
The convergence is quadratic after a finite number of iterate.

Sketch of the proof (d = 2): We develop E(yx — AYj k) - polynomial of order 4 w.r.t. A
and find that

VEG =0 < (11 =2+ X2 /E ) ) VEGR. e = o@) Smax(1. 2) = 0(-2)
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Convergence of E(yx)

=p(X)

JEGr — AV < (|1 VIS E(yk)) VEGR), 6 =0(?)

e lf c,\/E(yx) > 1, p reaches a unique minimum for Ay = 1/(2c.\/E(yx)) € (0,1/2)
for which p(Ax) = 1 — % € (0, 1) leading to

6o/ Eie) < POV /ER) = (1 - ) e VED).

|
4cu/E(¥k)
€(0,1)

and then to

o
Cvr/ E(Ykip) < (1 — 40171:_(”()) cVE(K) —0 as p— oo

v
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Convergence of E(yx)

=p(X)

JEGr — AV < (|1 VIS E(yk)) VEGR), 6 =0(?)

e lf c,\/E(yx) > 1, p reaches a unique minimum for Ay = 1/(2c.\/E(yx)) € (0,1/2)
for which p(Ax) = 1 — % € (0, 1) leading to

1
o /Ehn) < pOvJeo/E) = (1- m) 6 VEDR).
€(0,1)
and then to
1 P
Cuy/ E(Wisp) < (1 - m) cVE(K) —0 as p— oco.

e lf c,\/E(yx) < 1for some k > m. Then,

\ EWk+1) < PNV E(Wk) < p(1)V E(Yk) = cvE(yk)
so that

coy/EGin) < (eoVEGR), k> m

The sequence {cv+/E(ym)}(m>k) decreases to zero with a quadratic rate. In
particular, if ¢, v/ E(yo) < 1 and if we fixe Ay = 1 for all kK > 0.
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Convergence of yy

o We write that yi 1 = yo — .5 _o Am Y4 m; using that Am € (0,1) and
I Yi.mllv <v='\/E(ym), we get

k

> PalllYimlv <vo 12 E(ym) <v™ 1Zp(>‘m 1)y E(Ym-1)

m=1
v Z P(Xo)y/ E(Ym—1) < v Z P(X0)™VE(¥0)
m=1 m=1

-
< mv E(yo)

This implies the strong convergence of yy toward y := yo — >~ <0 Am Y1, m-
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Convergence of yy

o We write that yi 1 = yo — .5 _o Am Y4 m; using that Am € (0,1) and
I Yi.mllv <v='\/E(ym), we get

k

> PalllYimlv <vo 12 E(ym) <v™ 1Zp(>‘m 1)y E(Ym-1)

m=1
v Z P(Xo)y/ E(Ym—1) < v Z P(X0)™VE(¥0)
m=1 m=1

L1
< mv E(yo)

This implies the strong convergence of yy toward y := yo — >~ <0 Am Y1, m-

e Using that E(yx) — 0 as kK — oo, the limit in the corrector eq. for vy,

a/vk-W+/Vvk-VW:foz/yk-sz//Vyk-wa/yk-Vyk-W
Q Q Q Q Q

+<hw>y g Q) x H} (@) +a/g w, VwelV.
Q

implies that y solves the a-NS steady equation.
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Convergence of yx (2)

e The quadratic convergence of the sequence {yx }«>o after a finite number of
iterations is due to the inequality

y=vllv=1 D> AmYimlv

m>k+1
< > Wimllv<v™ Y7 VE(m)
m>k+1 m>k+1
Sl’_1 Z p()‘m—1)\/E(,Vm—1)
m>k+1
<v 3 p(A)y/ E(Ym-1)
m>k+1
<v Y ()™ VE )
m>k+1

—1 P() —1_P(o)
<v 1TWVE(Yk)§V 1TWVE(Y!<)» vk >0

Rk- The limit y = yp — Zmzo AmY1,m is uniquely determined by the initial guess yj.
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The choice M\ = 1 converges under the condition that \/E(yo) < O(v?) corresponds
to the usual Newton method to solve the variational formulation : find y € V solution of
F(y,z)=0,vzeV,

F(y,Z)::/QayAZ—&-uVy-Vz-i-y-V}%z—<f,Z>V17V—o¢/Qg.Z

Yo S V7
O F(Yk,2) - Wkt — Vi) = —F(¥k,2),  vVzeV, Vk2>0,

Least-Squares methods to solve direct and control problems



The choice M\ = 1 converges under the condition that \/E(yo) < O(v?) corresponds
to the usual Newton method to solve the variational formulation : find y € V solution of
F(y,z)=0,vzeV,

F(y,z)::/aylz+uVy~Vz+y-Vy~z—<f,z>v,V—a/g~z
Q ’ Q

Yo € V7

FWk,2) - Ykt —¥) = —F(¥k, 2),  VzeV, Vk=>0,

Remark-

E(y) = 1( sup F(y’z))z,we V.

u
2 \zev,z20 |IZllv

The optimization of the A\, parameter leads to the so-called Damped Newton Method.
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Application : resolution of Implicit time scheme for Unsteady NS

Given a discretization {,},—o...n Of [0, T], the backward Euler scheme reads :

,Vn+1 - yn n+1 n+1 n+1 _ n

—— w4v [ VYT Vw4 [y Vy™w = (W), VN2> 0, VW €

Q ot Q Q
Y(,0)=uo, in Q
(13)

with 7 := ﬁ ft:”“ f(-, s)ds. The piecewise linear interpolation (in time) of {y"}nepo,m
weakly converges in L2(0, T, V) toward a solution of Unsteady NS as 6t — 0.

The previous study applied to determine y"*' from y”, solution of (13) taking o = Ol[
and g =y"™:

Assume that y§™' € V satisfies E(yJ ') < O(v?(vot=1)1/(@=1). Then, yJ™" — y+
strongly in V as k — oo where y™t1 solves (13).
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Application : resolution of Implicit time scheme for Unsteady NS

Given a discretization {,},—o...n Of [0, T], the backward Euler scheme reads :

yn+1_yn
/T~W+V/Vy"+‘ ~Vw+/y”+1 VY™ w = (1w y, YN >0, YW e
Q Q Q

Y(,0)=uo, in Q
(13)
with 7 := ﬁ ft:”“ f(-, s)ds. The piecewise linear interpolation (in time) of {y"}nepo,m
weakly converges in L2(0, T, V) toward a solution of Unsteady NS as 6t — 0.
The previous study applied to determine y"*' from y”, solution of (13) taking o = Ol[
and g =y"™:

Corollary

Assume that y§™' € V satisfies E(yJ ') < O(v?(vot=1)1/(@=1). Then, yJ™" — y+
strongly in V as k — oo where y™t1 solves (13).

Proposition

| \

Assume that Q € C?, that (f"), is a sequence in L2()? satisfies
a0 ||l < 4o, that Vy© € L2(Q)9. Then, the sequence (y™) satisfies

ly™" = y"ll2 = 0@t 2v=%/%), ¥n>0

A\
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Part 2 - Direct Problem for unsteady NS - case d = 2 - Space-time LS method

Part 2 — 1 Direct Problem for unsteady NS -
The weak formulation reads as follows : f € L2(0, T, V') and ug € H, find a weak
solution y € L2(0, T; V), yy € L?(0, T; V') of the system

d

—/y~w+u/ Vy~VW+/y-Vy~W:<f,W)V/Xv, Ywe V

at Jao Q Q

y(vo) = Uo, in Q.

(14)

LetA={ycl?0,T;V)NH'(0, T; V'), y(0) = uo}.

Proposition
There exists a unique y € A solution in D’ (0, T) of (14). This solution satisfies the
following estimates :

_ _ 1
191222 0,7ty + V1720 72y < 001+ 11220 7,y

— (o]
10:F 1l 20, vy < VoLl + 211Fl 20, 7ovry + ~5 (U0 liE + 112qq,7.yry)-

ve
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The least-squares problem

We introduce the LS functional £ : H'(0, T, V') n L2(0, T, V) — R* by putting

=g [ MR+ [ 1o,

where the corrector v € Ay = {y € L?(0, T; V) N H'(0, T; V'), y(0) = 0} is the
unique solution in D’(0, T) of

gt/v W+/Vv Vw+gt/y-w+u/QVy-Vw

+/y~ww:<f,w>v'xv, vwev (19
Q

v(0) = 0.
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The least-squares problem

We introduce the LS functional £ : H'(0, T, V') n L2(0, T, V) — R* by putting

e =1 [T+ ) [ 1o
=72 ), WMvTg f, 1oiv

where the corrector v € Ay = {y € L?(0, T; V) N H'(0, T; V'), y(0) = 0} is the
unique solution in D’(0, T) of

d d
E/ﬂv-W+/QVV-VW+E/S;}/-W+V/QV}/-VW

+/Qy~Vy~W:< f,w>yigy, YwevV
v(0) = 0.
Remark- Forall y € L2(0, T, V)N H'(0, T; V'),
E() ~ Iy +vBi(¥) + BU.y) = Mg 7
where Vu € L2°(0, T; H), v € [2(0, T; V),
(B(u(t), v(t)), w) = /Qu(t) SVv(t)-w  VweV,aeinte[0,T]
and vu € L2(0, T; V),

(By (u(t)), w) = /QVU(I) .Yw  VweV, aeintelo, Tl
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Uniform coercivity type property for E

Proposition

Lety € A be the solution of (14), M € R such that ||0:¥l| 2o, 7,v»y < M and
VUIVYll2(ge < Mandlety € A.

If||8tyHL2(O’T’V,) < M and ﬁ||Vy||L2(QT)4 < M, then there exists a constant c(M)
such that

1y = ¥lleoe 0,70y + VVIY = Vlli20, vy + 101y = 0¥ lli20,7,v1) < M)V E(Y).
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Construction of a convergent sequence yx € A

Letm > 1.
y0€A7

Ye+1 =Yk — Y1k, k20, (16)
E — A Y = in E — Y,
Yk — Ak Y1.k) i (Vk 1,k)

with Y4 x € Ag the solution of the formulation

i/. Y1,k-W+V/VY17k-VW+/yk-VY17k-W
dt Ja Q Q
+/Y1,k-Vyk-w:fﬁ vk-wf/Vvk-Vw, Yw eV
Q at Ja Q

Y1,k(0) =0,

where v, € Ay is the corrector (associated to y) solution of (15) leading to
E"(yk) - Y1,k = 2E(yk)-
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Construction of a convergent sequence yx € A

Let {yk }ken the sequence of A defined by (29). Then yx — y in
H'(0, T; V') N L2(0, T; V) where y € A is the unique solution of (14). Moreover, there
exists a ky € N such that the sequence {||yx — ¥l .a}«>k,) decays quadratically.

The key lemma is

PROOF -

)
E(vk — Mis) < E0i) (11 = A + 22— VEG e [ Inel)
v\/v v Jo

2
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Construction of a convergent sequence yx € A

Let {yk }ken the sequence of A defined by (29). Then yx — y in
H'(0, T; V') N L2(0, T; V) where y € A is the unique solution of (14). Moreover, there
exists a ky € N such that the sequence {||yx — ¥l .a}«>k,) decays quadratically.

The key lemma is

Let {yx}ken the sequence of A defined by (29). Then

VEGr) < E(yk)(nfA\Hzcn/E(yk)), wep.m.  (17)

where Cy = Vfﬁ exp(V%HuoH%, = ||f||L2 oyt +5 (yo)) does not depend on yy.

PROOF -

T 2
VEGIes(S [ Inl))

c
E(yk —\Y44) < E 1A+ 222
(e =M < ) (11 -0+ 225
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Experiment : The driven semi-disk

Case considered by Glowinski [2006] 2 for which a Hopf bifurcation phenomenon
occurs : for Re = v—1 > 6650, the unsteady solution does not converge toward the
steady solution.

Ty :y=(0,0)

<1/4,% <0}

Semi-disk geometry: Q = {(x1, x2) € R2,x2 + x2
For a = 0 (Pure steady NS) Initialized with the solution of the corresponding Stokes

problem,
@ Newton algorithm (A, = 1) converges up to Re ~ 500.

Continuation technic w.r.t. v is used for Re > 910.

2Glowinski, R. and Guidoboni, G. and Pan, T.-W., Wall-driven incompressible viscous flow in a two-dimensional
semi-circular cavity, J. Comput. Phys., 2006
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Experiment : The driven semi-disk

Case considered by Glowinski [2006] 2 for which a Hopf bifurcation phenomenon
occurs : for Re = v—1 > 6650, the unsteady solution does not converge toward the
steady solution.

Ty :y=(0,0)

<1/4,% <0}

Semi-disk geometry: Q = {(x1, x2) € R2,x2 + x2

For a = 0 (Pure steady NS) Initialized with the solution of the corresponding Stokes
problem,

@ Newton algorithm (A, = 1) converges up to Re ~ 500.
@ Damped Newton algorithm converges up to Re ~ 910.
Continuation technic w.r.t. v is used for Re > 910.

2Glowinski, R. and Guidoboni, G. and Pan, T.-W., Wall-driven incompressible viscous flow in a two-dimensional
semi-circular cavity, J. Comput. Phys., 2006
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Experiment : The driven semi-disk

Streamlines of the steady state solution for
Re = 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000 and Re = 8000.
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Experiment: Damped

wton Method vs. Newton method; T

Initialization y, (independent of v) with the Stokes solutions associated to v = 1.

Myk—Yk—1T,2 Myk—yk—1Tl,2

fiterate k W@Evﬁv} 2E() Ak W@iv()w «=1 | V2EUK) Ok = 1)
0 — 2.690 x 10-2 | 0.8112 — 2.690 x 10~ 2
1 4.540 x 10! 1.077 x 1072 | 0.7758 5.597 x 10! 1.254 x 1072
2 1.836 x 10~ 3.653 x 1073 | 0.8749 2.236 x 10! 5.174 x 1073
3 7.503 x 102 7.794 x 1074 | 0.9919 7.830 x 1072 6.133 x 1074
4 1.437 x 1072 2.564 x 1075 | 1.0006 9.403 x 10~3 1.253 x 102
5 4.296 x 104 3.180 x 1078 1. 1.681 x 10~ 4.424 x 107°
6 5.630 x 10~/ 6.384 x 10" — — —

Re = v~ =500
Mk—Yk—1T,2 Yk—Yk—1T,2
titerate k WL;VE") 2EWK) Ak W@tv;") O =1) 2EWK) Ak = 1)

0 — 2,690 x 10-2 | 0.6344 — 2.690 x 102

1 5.138 x 10! 1.493 x 102 | 0.5803 8.101 x 10~ 2.234 x 1072

2 2.534 x 10! 7.608 x 103 | 0.349 4.451 x 101 2.918 x 1072

3 1.345 x 10" 5.477 x 103 | 0.4025 5717 x 10~ 5.684 x 102

4 1.105 x 10! 3.814 x 1073 | 0.5614 3.683 x 10~ 2.625 x 1072

5 8.951 x 102 2.295 x 1073 | 0.8680 2.864 x 10~ 1.828 x 1072

6 6.394 x 102 8.679 x 10~* | 1.0366 1.423 x 10~ 4.307 x 10~2

7 1.788 x 102 4.153 x 107° | 0.9994 6.059 x 102 9.600 x 104

8 7.982 x 10~ 9.931 x 108 | 0.9999 1.484 x 102 5.669 x 10~°

9 2.256 x 10~ 4.000 x 10— - 9.741 x 104 3.020 x 10~7

10 — — — 4.267 x 108 3.846 x 10"




Streamlines of the unsteady state solution for Re = 1000 attime t =i/,i=0,---,7s.
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Experiments: divergence of the Newton method

titerate k w 2E() Ak D Tew oy | yzem o = 1)
Yk—1 HLZ(V) IYk—1 HL2(V>
0 — 2.691 x 10-2 | 0.6145 — 2.691 x 10~ 2
1 5.241 x 10~ 1.530 x 1072 | 0.5666 8.528 x 10! 2.385 x 102
2 2.644 x 10~ 8.025 x 10~% | 0.3233 4.893 x 10! 3.555 x 102
3 1.380 x 10~ 5.982 x 1072 | 0.3302 7.171 x 107! 8.706 x 102
4 1.115 x 10! 4.543 x 103 | 0.4204 4.849 x 10! 3.531 x 102
5 9.429 x 102 3.221 x 10~3 | 0.5875 1.125 x 100 3.905 x 10~
6 7.664 x 102 1.944 x 1073 | 0.9720 — 1.337 x 10%
7 5.688 x 102 5.937 x 104 1.022 - 8.091 x 10%7
8 1.009 x 10~2 1.081 x 10~% | 0.9998 — —
9 2.830 x 1074 1.332 x 108 1. - -
10 2.893 x 10~ 4.611 x 10~ — — —

Table: Re = 1100: Damped Newton method vs. Newton method.
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Experiments: driven semi-disk; v = 1/2000

titerate k Ww 2E(yk) Ak
yk*‘”Lz(V)
0 — 2.691 x 102 | 0.5215
1 6.003 x 10! 1.666 x 1072 | 0.4919
2 3.292 x 10~ 9.800 x 10~2 | 0.1566
3 1.375 x 10" 8.753 x 10~2 | 0.1467
4 1.346 x 10! 7.851 x 10~% | 0.0337 L2
5 5.851 x 10~2 7.688 x 10~3 | 0.0591
6 7.006 x 1072 7.417 x 1073 | 0.1196 '
7 9.691 x 102 6.864 x 103 | 0.0977 08
8 8.093 x 1072 6.465 x 103 | 0.0759
9 6.400 x 1072 6.182 x 107° | 0.0968 062
10 6.723 x 1072 5.805 x 103 | 0.1184 \
11 6.919 x 1072 5.371 x 1073 | 0.1630 04
12 7.414 x 1072 4.825 x 1073 | 0.2479
13 8.228 x 102 4.083 x 1073 | 0.3517 02
14 8.146 x 102 3.164 x 103 | 0.4746
15 7.349 x 10~2 2.207 x 1073 | 0.7294 0
16 6.683 x 102 1.174 x 1073 | 1.0674 0 5 10 15 20
_2 4 Iterate k
17 3.846 x 10 2.191 x 10 1.0039
18 5.850 x 102 4.674 x 107° | 0.9998
19 1.573 x 10~* 5.843 x 10~° —
Re = 2000

Re = 3000: 39 iterations ; Re = 4000: 75 iterations.




Part 2 - 2 The 3d case - Regular solution

Part 2 — 2 Direct Problem for unsteady NS -

Let Q C RS be a bounded connected open set whose boundary 9Q is C?

For f € L?(Q7)% and uy € V, there exists T* = T*(Q, v, Up, f) > 0 and a unique
solution y € L>(0, T*; V) N L2(0, T*; H3(Q)3), 1y € L2(0, T*; H) of the equation

i)
— y-w+z//Vy-VW+/y~Vy~w:/f-w, yweV
at Jo Q Q Q (18)

y(-,0) =1y, in Q.
Forany t > 0, let
A(t) = {y € L2(0,t; H*(Q)° N V) N H' (0, t; H), y(0) = o}

and
Ao(t) = {y € L3(0,t; H*(Q)° n V) n H'(0, t; H), y(0) = 0}.

Endowed with the scalar product (y, z) 4,1y = fé(P(Ay), P(AZz))yy + (Oty,0:Z)y and
the norm ||y[l.a,(ty =< ¥, ¥ >.44(p) is @ Hilbert space.

P is the orthogonal projector in L?(22)3 onto H
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Part 2 -2 The 3d case - Regular solution

We introduce our least-squares functional E : A(T*) — RT by putting

107 s 1 /T P
E(y)= E/o [IP(AV)IIE + 5/0 10Vl = §||VH.A0(T*) (19)

Proposition

Lety € A(T*) be the solution of (18), M € R such that ||0;¥ || 2(q,.ys < M and
VUIP(AY)2(qp. 3 < M andlety € A(T). If |0yl 2(q,. )3 < M and
N ||P(Ay)||L2 j8 < M, then there exists a constant c(M) such that

1Y =T llioe 0,75y + VI P(BY) ~P(BF) | 2(ay. o) H1OY 07 20y ) < S(M)VED).
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Part 2-2 Direct Problem for unsteady NS - The 3d case.

Therefore, we can define, for any m > 1, a minimizing sequence yj as follows:

Yo € A(T*)v
Ye+1 =Yk — Y1k, k20, (20)
E(yk — Y1 k) = min E(yx — AYq k)

Aeglo,m]

where Y7 x in Ag(T*) solves the formulation

g/Y1k~W+Z//VY1k~VW+/yk~VY1k'W
at Q s Q s s
/Y1k Vyk - W——dg -W—‘/VVK~VW7 yweV
Q
Y1,,(0) =0,

and vk in Ap(T*) is the corrector (associated to yx) leading to E'(yx) - Y1 x = 2E(yk)-
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Part 2 - Direct Problem for unsteady NS - case d = 3 - Space-time

least-squares method

Proposition

Let {yx}ken the sequence of A(T*) defined by (20). Then yx — y in
H'(0, T*; H) N L2(0, T*; H3(Q)° N V) where y € A(T*) is the unique solution of (14).

based on the estimate

E(inn) < \/E<yk>(|1fx|+xzc1 E(yk)), VA € Ry

- C Cg Cg 2))
C1—y5/4exp(C(V2 +(1/2) )

16
Co = lluoll¥ + ||f||L2 @+, E0o)

where

(21)

does not depend on yi, k € N*.
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Part 3: Approximation of controls for the a sub-linear heat equation

Part 3— Controllability problem for a sub-linear (controllable) heat equation: find a
sequence (¥, Vk)k>o0 converging strongly to a pair (y, v) solution of

yi—vAy+g(y)=fl, in Qr, (22)
y=0onXr, y(,0)=upingQ,’
suchthat y(-, 7) = 0.
e Uy € L2(Q), f € L>°(g7) is a control function.
e g : R — Ris locally Lipschitz-continuous and satisfies
Ig'(s)| < C(1+1s|™) ae,with 1 <m<1+4/d. (23)

so that (22) possesses exactly one local in time solution.
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Part 3: Main known controllability result for the sub-linear heat equation

If g is “not too super-linear" at infinity, then the control can compensate the blow-up
phenomena occurring in Q\w.

Theorem (Fernandez-Cara,Zuazua (2000), Barbu (2000))

Let T > 0 be given. Assume that g(0) = 0 and that g : R — R is locally
Lipschitz-continuous and satisfies (23) and

9(s) -0

_— as |s| — oo. 24
|s|log3/2(1 + |s]) . (&4

Then (22) is null-controllable at time T.

The proof is based on a fixed point method. Precisely, it is shown that the operator
A: [2(Q7) — L?(Qr), where y; := Az is a null controlled solution of the linear
boundary value problem

Yot —VvAYz +¥23(2) = 10, in Qr 5(s) = g(s)/s s#0,
ye=0onxr, y(0)=w n @ IV T Vg0 s=o0

maps the closed ball B(0, M) C L?(Qy) into itself, for some M > 0. The Kakutani’s
theorem provides the existence of at least one fixed point for A, which is also a
controlled solution for (22).
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Part 3: a least-square approach

We define the convex space

A= {(y, ) : py €L2(Qr), p1 Yy € L2(Qr), pof € L2(qr),
polyi — Ay) € L2(0, T;H1(9)), (-, 0) = yoinQ,y = Oonzr}.

where p, p1 and pg defines Carleman type weights, continuous, > p. > 0in Q7 and
blowingupast — T—. p; = exp(B(x)/(T — t)) then the least-squares problem, with
E:A—Ras

2
(25)

o (}/t —vAy +9(y) - f1w)

1
inf E(y,f)= =
(y,fleA (y ) 2’ L2(0,T;H_1(Q)
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Part 3: a least-square approach

We define the convex space

A= {(y, ) : py €L2(Qr), p1 Yy € L2(Qr), pof € L2(qr),
polyi — Ay) € L2(0, T;H1(9)), (-, 0) = yoinQ,y = Oonzr}.

where p, p1 and pg defines Carleman type weights, continuous, > p. > 0in Q7 and
blowingupast — T—. p; = exp(B(x)/(T — t)) then the least-squares problem, with
E:A—Ras

2

1
inf E(y,f)=— 2
it E(.D) 2] (25)

( po(y:vaerg(y)ffM)

[2(0,T;:H=1(Q)

Actually, for any (¥, 0) € A, we consider the extremal problem inf(y,,)er E(y + y, f) where Ay is the Hilbert
space

Ag = {(y, N py € 13(Qr), 1 Vy € L2(Q7), pof € L2(ar),

pol¥t — A) € 20, Ti (@), 4(-,0) = 0in @y = Oon 7 }.
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Part 3: a least-square approach

For any (y, f) € A, we now look for a pair (Y', F') € Aq solution of

{YI1AY1+g/(y)-Y1 =Fy+ (W —Ay+gy)—fl,), in Qr (26)

Y'=0onX7, Y'(,0)=0inQ.

(Y',F') € Aq so that F' is a null control for Y1,

Proposition

Assume that g is differentiable. Then, E((¥, f) + -) is differentiable over Ajy.
Let(y,f) € Aandlet(Y',F') € Aq be a solution of (26). Then the derivative of E at
the point (y, f) € A along the direction (Y, F') satisfies

E'(y,f)-(Y',F')y = 2E(y, f).
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Part 3: a least-square approach

For any (y, f) € A, we now look for a pair (Y, F') € A solution of

{YJ—AY1+g/(y)~Y‘=F1m+(yr—Ay+g(y)—f1w), in Qr )

Y'=0onX7, Y'(,0)=0inQ.
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Part 3: a least-square approach
For any (y, f) € A, we now look for a pair (Y, F') € A solution of

{Yf1—AY1+g/(y)~Y‘=F1m+(yr—Ay+g(y)—f1w), in Qr )

Y'=0onX7, Y'(,0)=0inQ.

Proposition

Assume that g € W':>°(R). For any (y, f) € A, we define the unique pair (Y', F')
solution of (27), which minimizes the functional J : L?(pg, q7) % L?(p, Q7) — Rt
defined by ) )

J(u, 2) == |lpo U”LZ(qT) + HPZHLZ(QT)'
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Part 3: a least-square approach
For any (y, f) € A, we now look for a pair (Y, F') € A solution of

{Yf1—AY1+g/(y)~Y‘=F1m+(yr—Ay+g(y)—f1w), in Qr )

Y'=0onX7, Y'(,0)=0inQ.

Proposition

Assume that g € W':>°(R). For any (y, f) € A, we define the unique pair (Y', F')
solution of (27), which minimizes the functional J : L?(pg, q7) % L?(p, Q7) — Rt
defined by ) )

J(u, 2) == |lpo U”LZ(qT) + HPZHLZ(QT)'
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Part 3: a least-square approach

For any (y, f) € A, we now look for a pair (Y, F') € A solution of

{Yt1_AY1+g/(y).Y1 =Fy+ (W —Ay+g(y)—fl,), in Qr @

Y'=0onX7, Y'(,0)=0inQ.

Proposition

Assume that g € W':>°(R). For any (y, f) € A, we define the unique pair (Y', F')
solution of (27), which minimizes the functional J : L?(pg, q7) % L?(p, Q7) — Rt
defined by

J(u, 2) := llpo UlZ2 gy + 020122 0. -
(ar) (Qr)

(Y',F") € Ay satisfies

lp(T — t)VY1 HL2(qT) + HPOF1 HLZ(qT) +llp Y'! HL2(O7—) < CVE(y,f) (28)

for some C = C(T,, |9’ (¥)|lLo (ay)) > O of the form

c c(m(1+T*1+T+(T‘/2+T)ng’(y)HLoo(or>+||g’(y>||iéimr))
=@ .
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Part 3: a least-square approach - Minimizing sequence

Therefore, we can define a minimizing sequence {yx, fx } k>0 as follows:
(Yo, o) € A,
Wit fier1) = Wi fie) = Me( Ve, Fr), k>0, (29)
M = argminy g+ E((yk, i) — MYR, FY))

where (Y}, F}) € Ag is such that F is a null control for Y}, solution of

)

Vi —AYE+ 0 ) Vi = Fito — Wkt — Ayk + 9) — fidw), in Qr
Yi=0onTr, Y}(,0)=0inQ,

and minimizes the functional J.

Assume that g € W?>°(R). Then, for any (yo, fy) € A, the sequence {yx, fx }k>0
strongly converges to {y, f} € A as k — oco.
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Part 3: a least-square approach - Minimizing sequence

Therefore, we can define a minimizing sequence {yx, fx } k>0 as follows:
(Yo, o) € A,
Wit fier1) = Wi fie) = Me( Ve, Fr), k>0, (29)
M = argminy g+ E((yk, i) — MYR, FY))

where (Y}, F}) € Ag is such that F is a null control for Y}, solution of

)

Vi —AYE+ 0 ) Vi = Fito — Wkt — Ayk + 9) — fidw), in Qr
Yi=0onTr, Y}(,0)=0inQ,

and minimizes the functional J.

Theorem

Assume that g € W?>°(R). Then, for any (yo, fy) € A, the sequence {yx, fx }k>0
strongly converges to {y, f} € A as k — oco.

Theorem

| A

Assume that g € W°°(R) and that ell9' 00l | /E(yo, o) < €!/2. Then, the

I
sequence { yx, fk}k>ooc strongly converges to {y, f} € A as k — oo.

N
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One experiment

Take g(s) = —5slog'*(1 + |s]); g’ ¢ L(R) but g”’ € L>°(R) !

Ye—01yxx — 5leg14(1 + ‘yl) = f1(042,0.6)7 (X7 t) € (071) X (071/2)7
y(-,0) = 40 sin(mx), x € (0,1), (30)
y(0,)=y(1,1) =0, te(0,1/2)

The uncontrolled solution blows up at t; ~ 0.339. 8

At each iterates k, the pair (YQ , F,l ), minimizer of J is computed through a mixed
space-time variational formulation, well-suited for mesh adaptivity.

Conformal approximation in time and space leads to strong convergent approximation
(Y;F/l)h of (Y[J’F;l)s 4

3E. Fernandez-Cara, A. Munch, Numerical null controllability of semi-linear 1D heat equations : fixed point,
least squares and Newton methods, Mathematical Control and Related Fields (2012).

E. Fernandez-Cara, A. Munch, Strong convergent approximations of null controls for the heat equation,
SEMA, 2013
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Myk—Yk—
fiterate k W‘!i;i’ﬂ VZEGGR) | M| IVl

0 — 4617 0.3192 1252.5
1 3.767 38.96 0.4512 854.6
2 1.442 27.61 0.2120 449.60
3 7.034 x 10~1 16.904 0.3100 178.01
4 2.292 x 10~1 7.229 0.5040 67.56
5 7.987 x 102 3.107 0.6120 26.00
6 3.162 x 1072 1.240 0.3801 10.18
7 5.427 x 10~3 | 4.547 x 10—1 | 0.5321 4.080
8 2.458 x 10~3 | 1.489 x 10~' | 0.5823 1.684
9 1177 x 1073 | 4.515x 10~2 | 0.6203 0.720
10 5939 x 10~4 | 1.380 x 10—2 | 0.7831 0.3214
11 3.134 x 10~4 | 4.629 x 103 | 0.6932 0.1512
12 1.727 x 104 | 1.861 x 103 | 0.6512 0.07616
13 9.950 x 1075 | 9.659 x 104 | 0.7921 0.04182
14 6.018 x 10~5 | 4.840 x 104 | 0.8945 0.02553
15 3.845 x 10~5 | 3.933 x 10~ | 0.9230 0.01741
16 2.607 x 1075 | 3.268 x 104 | 0.9412 0.01306
17 1.876 x 1075 | 2.725 x 10— | 0.9582 0.01047
18 1.426 x 1075 | 2.262 x 10~ | 0.9356 0.00877
19 1.134 x 1075 | 1.862 x 10~ | 0.9844 0.0075
20 9.339 x 1078 | 9.515x 10~5 - -
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Experiments

IsoValue




Conclusion - Perspective

e Analysis of weak LS method/ damped Newton method for NS leading to globally
convergent approximation

o Theoretical justification of the H~'-LS introduced by Glowinski in 79.
e Can be efficient to solve exact controllability problems.
o Possibly useful at the numerical analysis since (coercivity type) inequality like

Wykn = Yllv < C\/E(Wk,n)s V¥kn € VhCV

remains true.

e The analysis can be extended to other "reasonable" nonlinearity (visco-elastic NS,
nonlinear hyperbolic PDEs, ...).

e Damped Newton method is possibly useful to solve (nonlinear) inverse problems.
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Details and experiments are available here:

Analysis of V’-Least-squares pb. (interior and exterior case) based on the gradient
(Conjugate gradient / Barzilai Borwein)

@ J. Lemoine, A.Miinch, P. Pedregal, Analysis of continuous
H’1—least—squares methods for the steady Navier-Stokes
system Applied. Math. Optimization 2020

Analysis of V/ and L?(V’)-Least-squares pb. based on the Newton-direction

@ J. Lemoine, A.Miinch, Resolution of the Implicit Euler scheme
for the Navier-Stokes equation through a least-squares
method. hal-01996429

@ J. Lemoine, A. Miinch, 2 fully space-time least-squares method
for the unsteady Navier-Stokes system arxiv.org/abs/1909.05034

@ J. Lemoine, |. Marin-Gayte, A. Miinch, Stong convergent approximation
of null controls for sublinear heat equation using a
least-squares approach. In preparation
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