On the use of the damped Newton method to solve direct and controllability problems for parabolic PDEs

ARNAUD MÜNCH

Laboratoire de mathématiques Blaise Pascal - Clermont-Ferrand - France

RICAM- Linz - October 2019

ongoing works with Jérome Lemoine (Clermont-Ferrand) and Irene Gayte (Sevilla)

The talk discusses the approximation of solution of a controllability problem for (nonlinear) PDEs through least-squares method.

For instance, for the Navier-Stokes system: Given $\Omega \in \mathbb{R}^d$, T > 0, find a sequence $\{y_k, p_k, v_k\}_{k>0}$ converging (strongly) toward to a solution (y, p, v) of

$$\begin{cases} y_t - \nu \Delta y + (y \cdot \nabla)y + \nabla p = 0, & \nabla \cdot y = 0 \\ y = v, & \partial \Omega \times (0, T), \\ y(0) = y_0, & \Omega \times \{0\} \end{cases}$$
 (1)

satisfying $y(T) = u_d$, a trajectory (control of flows).

- Largely open question in the context of nonlinear PDEs
- Not straightforward issue, mainly because the fixed point operator (used to prove controllability result) is not a contraction!

Part 1 — Direct Problem for Steady NS - find a sequence $(y_k, p_k)_{k>0}$ converging strongly to a pair (y, p) solution of

$$\begin{cases} \alpha y - \nu \Delta y + (y \cdot \nabla)y + \nabla p = f + \alpha g, & \nabla \cdot y = 0 & \Omega, \\ y = 0, & \partial \Omega. \end{cases}$$
 (2)

(useful to solve Implicit time schemes for Unsteady NS)

Part 2— Direct problem for Unsteady NS - find a sequence $(y_k, p_k)_{k>0}$ converging strongly to a pair (y, p) solution of

$$\begin{cases} y_t - \nu \Delta y + (y \cdot \nabla)y + \nabla p = f, \nabla \cdot y = 0 & \Omega \times (0, T), \\ y = 0, & \partial \Omega \times (0, T), \\ y(0) = y_0, & \Omega \times \{0\} \end{cases}$$
(3)

Part 3— Controllability problem for a sub-linear (controllable) heat equation: find a sequence $(y_k, v_k)_{k>0}$ converging strongly to a pair (y, v) solution of

$$\begin{cases} y_t - \nu \Delta y + g(y) = v \, \mathbf{1}_{\omega}, & \Omega \times (0, T), \\ y = 0, & \partial \Omega \times (0, T), \\ y(0) = y_0, & \Omega \times \{0\} \end{cases} \tag{4}$$

Part 1 — Direct Problem for Steady NS - find a sequence $(y_k, p_k)_{k>0}$ converging strongly to a pair (y, p) solution of

$$\begin{cases} \alpha y - \nu \Delta y + (y \cdot \nabla)y + \nabla p = f + \alpha g, & \nabla \cdot y = 0 \\ y = 0, & \partial \Omega. \end{cases}$$
 (2)

(useful to solve Implicit time schemes for Unsteady NS)

Part 2— Direct problem for Unsteady NS - find a sequence $(y_k, p_k)_{k>0}$ converging strongly to a pair (y, p) solution of

$$\begin{cases} y_t - \nu \Delta y + (y \cdot \nabla)y + \nabla p = f, \nabla \cdot y = 0 & \Omega \times (0, T), \\ y = 0, & \partial \Omega \times (0, T), \\ y(0) = y_0, & \Omega \times \{0\} \end{cases}$$
 (3)

Part 3— Controllability problem for a sub-linear (controllable) heat equation: find a sequence $(y_k, v_k)_{k>0}$ converging strongly to a pair (y, v) solution of

$$\begin{cases} y_t - \nu \Delta y + g(y) = v \, \mathbf{1}_{\omega}, & \Omega \times (0, T), \\ y = 0, & \partial \Omega \times (0, T), \\ y(0) = y_0, & \Omega \times \{0\} \end{cases} \tag{4}$$

Part 1 — Direct Problem for Steady NS - find a sequence $(y_k, p_k)_{k>0}$ converging strongly to a pair (y, p) solution of

$$\begin{cases} \alpha y - \nu \Delta y + (y \cdot \nabla)y + \nabla p = f + \alpha g, & \nabla \cdot y = 0 \\ y = 0, & \partial \Omega. \end{cases}$$
 (2)

(useful to solve Implicit time schemes for Unsteady NS)

Part 2— Direct problem for Unsteady NS - find a sequence $(y_k, p_k)_{k>0}$ converging strongly to a pair (y, p) solution of

$$\begin{cases} y_t - \nu \Delta y + (y \cdot \nabla)y + \nabla p = f, \nabla \cdot y = 0 & \Omega \times (0, T), \\ y = 0, & \partial \Omega \times (0, T), \\ y(0) = y_0, & \Omega \times \{0\} \end{cases}$$
 (3)

Part 3— Controllability problem for a sub-linear (controllable) heat equation: find a sequence $(y_k, v_k)_{k>0}$ converging strongly to a pair (y, v) solution of

$$\begin{cases} y_t - \nu \Delta y + g(y) = v \, \mathbf{1}_{\omega}, & \Omega \times (0, T), \\ y = 0, & \partial \Omega \times (0, T), \\ y(0) = y_0, & \Omega \times \{0\} \end{cases} \tag{4}$$

such that $y(\cdot, T) = 0$.

Part 1 - Direct Problem for steady NS

Part 1 - Direct Problem for Steady NS -

Let $\Omega \subset \mathbb{R}^d$, $d \in \{2,3\}$ be a bounded connected open set with boundary $\partial \Omega$ Lipschitz. $\boldsymbol{\mathcal{V}} = \{\boldsymbol{v} \in \mathcal{D}(\Omega)^d, \nabla \cdot \boldsymbol{v} = 0\}$, $\boldsymbol{\mathcal{H}}$ the closure of $\boldsymbol{\mathcal{V}}$ in $L^2(\Omega)^d$ and $\boldsymbol{\mathcal{V}}$ the closure of $\boldsymbol{\mathcal{V}}$ in $H^1(\Omega)^d$.

Find a sequence $(y_k, p_k)_{k>0}$ converging strongly to a pair (y, p) solution of

$$\begin{cases} \alpha y - \nu \Delta y + (y \cdot \nabla)y + \nabla p = f + \alpha g, & \nabla \cdot y = 0 \\ y = 0, & \partial \Omega. \end{cases}$$
 (5)

$$f \in H^{-1}(\Omega)^d, g \in L^2(\Omega)^d \text{ and } \alpha \in \mathbb{R}_+^{\star}.$$

Part 1- Weak formulation

Let $f \in H^{-1}(\Omega)^d$, $g \in L^2(\Omega)^d$ and $\alpha \in \mathbb{R}_+^*$. The weak formulation of (5) reads as follows: find $y \in \mathbf{V}$ solution of

$$\alpha \int_{\Omega} y \cdot w + \nu \int_{\Omega} \nabla y \cdot \nabla w + \int_{\Omega} y \cdot \nabla y \cdot w = \langle f, w \rangle_{H^{-1}(\Omega)^d \times H^1_0(\Omega)^d} + \alpha \int_{\Omega} g \cdot w, \quad \forall w \in \mathbf{V}.$$
(6)

Assume $\Omega\subset\mathbb{R}^n$ is bounded and Lipschitz. There exists a least one solution y of (6) satisfying

$$\alpha \|y\|_2^2 + \nu \|\nabla y\|_2^2 \le \frac{c(\Omega)}{\nu} \|f\|_{H^{-1}(\Omega)^{\vec{\sigma}}}^2 + \alpha \|g\|_2^2$$
 (7)

for some constant $c(\Omega)>0$. If moreover, Ω is C^2 and $f\in L^2(\Omega)^d$, then $r\in H^2(\Omega)^d\cap V$.

Remark- If

$$Q(g,f,\alpha,\nu) := \begin{cases} \frac{1}{\nu^2} \left(\|g\|_2^2 + \frac{1}{\alpha\nu} \|f\|_{H^{-1}(\Omega)^d}^2 \right), & \text{if} \quad d = 2, \\ \frac{\alpha^{1/2}}{\nu^{5/2}} \left(\|g\|_2^2 + \frac{1}{\alpha\nu} \|f\|_{H^{-1}(\Omega)^d}^2 \right), & \text{if} \quad d = 3. \end{cases}$$

is small enough, then the solution of (6) is unique

Part 1- Weak formulation

Let $f \in H^{-1}(\Omega)^d$, $g \in L^2(\Omega)^d$ and $\alpha \in \mathbb{R}_+^*$. The weak formulation of (5) reads as follows: find $y \in \mathbf{V}$ solution of

$$\alpha \int_{\Omega} y \cdot w + \nu \int_{\Omega} \nabla y \cdot \nabla w + \int_{\Omega} y \cdot \nabla y \cdot w = \langle f, w \rangle_{H^{-1}(\Omega)^d \times H^1_0(\Omega)^d} + \alpha \int_{\Omega} g \cdot w, \quad \forall w \in \mathbf{V}.$$
 (6)

Proposition

Assume $\Omega\subset\mathbb{R}^d$ is bounded and Lipschitz. There exists a least one solution y of (6) satisfying

$$\alpha \|y\|_{2}^{2} + \nu \|\nabla y\|_{2}^{2} \le \frac{c(\Omega)}{\nu} \|f\|_{H^{-1}(\Omega)^{d}}^{2} + \alpha \|g\|_{2}^{2}$$
 (7)

for some constant $c(\Omega) > 0$. If moreover, Ω is C^2 and $f \in L^2(\Omega)^d$, then $y \in H^2(\Omega)^d \cap V$.

Remark- If

$$Q(g,f,\alpha,\nu) := \begin{cases} \frac{1}{\nu^2} \bigg(\|g\|_2^2 + \frac{1}{\alpha\nu} \|f\|_{H^{-1}(\Omega)^d}^2 \bigg), & \text{if} \quad d=2, \\ \frac{\alpha^{1/2}}{\nu^{5/2}} \bigg(\|g\|_2^2 + \frac{1}{\alpha\nu} \|f\|_{H^{-1}(\Omega)^d}^2 \bigg), & \text{if} \quad d=3. \end{cases}$$

is small enough, then the solution of (6) is unique.

ullet We introduce the least-squares problem with $E: V \to \mathbb{R}^+$ as follows

$$inf_{y \in V}E(y) := \frac{1}{2} \int_{\Omega} (\alpha |v|^2 + |\nabla v|^2)$$
(8)

where the corrector $v \in V$ is the unique solution of

$$\alpha \int_{\Omega} \mathbf{v} \cdot \mathbf{w} + \int_{\Omega} \nabla \mathbf{v} \cdot \nabla \mathbf{w} = -\alpha \int_{\Omega} \mathbf{y} \cdot \mathbf{w} - \nu \int_{\Omega} \nabla \mathbf{y} \cdot \nabla \mathbf{w} - \int_{\Omega} \mathbf{y} \cdot \nabla \mathbf{y} \cdot \mathbf{w} + \langle f, \mathbf{w} \rangle_{H^{-1}(\Omega)^d \times H^1_0(\Omega)^d} + \alpha \int_{\Omega} \mathbf{g} \cdot \mathbf{w}, \quad \forall \mathbf{w} \in \mathbf{V}.$$
(9)

• $inf_{y \in V}E(y) = 0$ reached by a solution of (6). In this sense, the functional E is a so-called error functional which measures, through the corrector variable v, the deviation of the pair y from being a solution of (6).

Remark

$$E(y) \approx \frac{1}{2} \|\alpha y + \nu B_1(y) + B(y, y) - f + \alpha g\|_{V'}^2,$$

$$(B_1(y), w) := (\nabla y, \nabla w)_2, \quad (B(y, z), w) := \int_{\Omega} y \nabla z \cdot w, \quad y, z, w \in V$$

considered in ¹ with experiments but without mathematical justification !

¹M. O. Bristeau, O. Pironneau, R. Glowinski, J. Periaux, and P. Perrier, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. CMAMEd1979) 🗗 ➤ 🔻 📜

V' -Least-squares method

ullet We introduce the least-squares problem with $E: V \to \mathbb{R}^+$ as follows

$$inf_{y \in V}E(y) := \frac{1}{2} \int_{\Omega} (\alpha |v|^2 + |\nabla v|^2)$$
(8)

where the corrector $v \in V$ is the unique solution of

$$\alpha \int_{\Omega} \mathbf{v} \cdot \mathbf{w} + \int_{\Omega} \nabla \mathbf{v} \cdot \nabla \mathbf{w} = -\alpha \int_{\Omega} \mathbf{y} \cdot \mathbf{w} - \nu \int_{\Omega} \nabla \mathbf{y} \cdot \nabla \mathbf{w} - \int_{\Omega} \mathbf{y} \cdot \nabla \mathbf{y} \cdot \mathbf{w} + \langle f, \mathbf{w} \rangle_{H^{-1}(\Omega)^{d} \times H^{1}_{0}(\Omega)^{d}} + \alpha \int_{\Omega} \mathbf{g} \cdot \mathbf{w}, \quad \forall \mathbf{w} \in \mathbf{V}.$$
(9)

• $\inf_{y \in V} E(y) = 0$ reached by a solution of (6). In this sense, the functional E is a so-called error functional which measures, through the corrector variable v, the deviation of the pair y from being a solution of (6).

Remark-

$$\frac{1}{E}(y) \approx \frac{1}{2} \|\alpha y + \nu B_1(y) + B(y, y) - f + \alpha g\|_{V'}^2,
(B_1(y), w) := (\nabla y, \nabla w)_2, \quad (B(y, z), w) := \int_{\Omega} y \nabla z \cdot w, \quad y, z, w \in V$$

considered in ¹ with experiments but without mathematical justification!

¹M. O. Bristeau, O. Pironneau, R. Glowinski, J. Periaux, and P. Perrier, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. CMAME:(1979)

Analysis of the LS method (2)

Proposition

Let $\mathbb{B}_c=\{y\in \mathbf{V}: \frac{1}{\nu\alpha}\|\nabla y\|_2^{2(d-1)}< c\},\, d\in\{2,3\},\, c>0$ There exists a positive constant C such that

$$\sqrt{E(y)} \le \frac{\nu^{-1}}{\sqrt{2}} \|E'(y)\|_{V'}, \quad \forall y \in \mathbb{B}_C$$
 (10)

PROOF- • For any $y \in \mathbb{B}_c$, there exists a unique element $Y_1 \in V$ solution of

$$\alpha \int_{\Omega} Y_1 \cdot w + \nu \int_{\Omega} \nabla Y_1 \cdot \nabla w + \int_{\Omega} (y \cdot \nabla Y_1 + Y_1 \cdot \nabla y) \cdot w = -\alpha \int_{\Omega} v \cdot w - \int_{\Omega} \nabla v \cdot \nabla w, \forall w \in \textbf{V}$$

where $v \in V$ is the corrector associated to v.

• Y_1 enjoys the following properties: There exists c > 0 such that

$$E'(y) \cdot Y_1 = 2E(y)$$
, and $||Y_1||_V \le \sqrt{2}\nu^{-1}\sqrt{E(y)}$, $\forall y \in \mathbb{B}_c$

Analysis of the LS method (2)

Proposition

Let $\mathbb{B}_c=\{y\in \mathbf{V}: \frac{1}{\nu\alpha}\|\nabla y\|_2^{2(d-1)}< c\},\, d\in\{2,3\},\, c>0$ There exists a positive constant C such that

$$\sqrt{E(y)} \le \frac{\nu^{-1}}{\sqrt{2}} \|E'(y)\|_{V'}, \quad \forall y \in \mathbb{B}_C$$
 (10)

PROOF- • For any $y \in \mathbb{B}_c$, there exists a unique element $Y_1 \in V$ solution of

$$\alpha \int_{\Omega} Y_1 \cdot w + \nu \int_{\Omega} \nabla Y_1 \cdot \nabla w + \int_{\Omega} (y \cdot \nabla Y_1 + Y_1 \cdot \nabla y) \cdot w = -\alpha \int_{\Omega} v \cdot w - \int_{\Omega} \nabla v \cdot \nabla w, \forall w \in \textbf{V}$$

where $v \in V$ is the corrector associated to v.

• Y_1 enjoys the following properties: There exists c > 0 such that

$$E'(y) \cdot Y_1 = 2E(y)$$
, and $||Y_1||_V \le \sqrt{2}\nu^{-1}\sqrt{E(y)}$, $\forall y \in \mathbb{B}_c$

Analysis of the LS method (2)

Proposition

Let $\mathbb{B}_c=\{y\in \mathbf{V}: \frac{1}{\nu\alpha}\|\nabla y\|_2^{2(d-1)}< c\},\, d\in\{2,3\},\, c>0$ There exists a positive constant C such that

$$\sqrt{E(y)} \le \frac{\nu^{-1}}{\sqrt{2}} \|E'(y)\|_{\boldsymbol{V'}}, \quad \forall y \in \mathbb{B}_{C}$$
 (10)

PROOF- • For any $y \in \mathbb{B}_c$, there exists a unique element $Y_1 \in V$ solution of

$$\alpha \int_{\Omega} Y_1 \cdot w + \nu \int_{\Omega} \nabla Y_1 \cdot \nabla w + \int_{\Omega} (y \cdot \nabla Y_1 + Y_1 \cdot \nabla y) \cdot w = -\alpha \int_{\Omega} v \cdot w - \int_{\Omega} \nabla v \cdot \nabla w, \forall w \in \mathbf{V}$$

where $v \in V$ is the corrector associated to y.

ullet Y_1 enjoys the following properties: There exists c>0 such that

$$E'(y) \cdot Y_1 = 2E(y)$$
, and $||Y_1||_V < \sqrt{2}\nu^{-1}\sqrt{E(y)}$, $\forall y \in \mathbb{B}_C$

Use of the element Y_1 as descent direction for E

$$\begin{cases} y_0 \in \mathbf{V}, \\ y_{k+1} = y_k - \lambda_k Y_{1,k}, & k > 0, \\ \lambda_k = \operatorname{argmin}_{\lambda \in \mathbb{R}^+} E(y_k - \lambda Y_{1,k}) \end{cases}$$
 (11)

where $Y_{1,k}$ solves the formulation, for all $w \in V$

$$\alpha \int_{\Omega} Y_{1,k} \cdot w + \nu \int_{\Omega} \nabla Y_{1,k} \cdot \nabla w + \int_{\Omega} (y_k \cdot \nabla Y_{1,k} + Y_{1,k} \cdot \nabla y_k) \cdot w = -\alpha \int_{\Omega} v_k \cdot w - \int_{\Omega} \nabla v_k \cdot \nabla w,$$
 leading to $E'(y_k) \cdot Y_{1,k} = 2E(y_k)$.

Assume that $y_0 \in V$ satisfies $E(y_0) \le \mathcal{O}(\nu^2(\alpha\nu)^{1/(d-1)})$. Then, $y_k \to y$ strongly in V as $k \to \infty$ where v is a solution of the α -NS equation.

The convergence is quadratic after a finite number of iterate.

Sketch of the proof (d=2): We develop $E(y_k - \lambda Y_{1,k})$ - polynomial of order 4 w.r.t. λ and find that

$$\sqrt{E(y_k - \lambda Y_{1,k})} \leq \underbrace{\left(|1 - \lambda| + \lambda^2 c_\nu \sqrt{E(y_k)}\right)}_{:=\rho(\lambda)} \sqrt{E(y_k)}, \quad c_\nu = c(\Omega) \frac{2}{\nu} \max(1, \frac{2}{\nu}) = \mathcal{O}(\nu^{-2})$$

Use of the element Y_1 as descent direction for E

$$\begin{cases} y_0 \in \mathbf{V}, \\ y_{k+1} = y_k - \lambda_k Y_{1,k}, & k > 0, \\ \lambda_k = \operatorname{argmin}_{\lambda \in \mathbb{R}^+} E(y_k - \lambda Y_{1,k}) \end{cases}$$

$$(11)$$

where $Y_{1,k}$ solves the formulation, for all $w \in V$

$$\alpha \int_{\Omega} Y_{1,k} \cdot w + \nu \int_{\Omega} \nabla Y_{1,k} \cdot \nabla w + \int_{\Omega} (y_k \cdot \nabla Y_{1,k} + Y_{1,k} \cdot \nabla y_k) \cdot w = -\alpha \int_{\Omega} v_k \cdot w - \int_{\Omega} \nabla v_k \cdot \nabla w,$$
 leading to $E'(y_k) \cdot Y_{1,k} = 2E(y_k)$.

Theorem

Assume that $y_0 \in V$ satisfies $E(y_0) \le \mathcal{O}(\nu^2(\alpha \nu)^{1/(d-1)})$. Then, $y_k \to y$ strongly in V as $k \to \infty$ where y is a solution of the α -NS equation. The convergence is quadratic after a finite number of iterate.

Sketch of the proof (d=2): We develop $E(y_k - \lambda Y_{1,k})$ - polynomial of order 4 w.r.t. λ and find that

$$\sqrt{E(y_k - \lambda Y_{1,k})} \leq \underbrace{\left(|1 - \lambda| + \lambda^2 c_\nu \sqrt{E(y_k)}\right)}_{:=p(\lambda)} \sqrt{E(y_k)}, \quad c_\nu = c(\Omega) \frac{2}{\nu} \max(1, \frac{2}{\nu}) = \mathcal{O}(\nu^{-2})$$

Convergence of $E(y_k)$

$$\sqrt{E(y_k - \lambda Y_{1,k})} \leq \overbrace{\left(|1 - \lambda| + \lambda^2 c_\nu \sqrt{E(y_k)}\right)}^{:=\rho(\lambda)} \sqrt{E(y_k)}, \quad c_\nu = \mathcal{O}(\nu^{-2})$$

• If $c_{\nu}\sqrt{E(y_k)} \ge 1$, p reaches a unique minimum for $\lambda_k = 1/(2c_{\nu}\sqrt{E(y_k)}) \in (0,1/2)$ for which $p(\lambda_k) = 1 - \frac{\lambda_k}{2} \in (0,1)$ leading to

$$c_{\nu}\sqrt{E(y_{k+1})} \leq p(\lambda_k)c_{\nu}\sqrt{E(y_k)} = \underbrace{\left(1 - \frac{1}{4c_{\nu}\sqrt{E(y_k)}}\right)}_{\in(0,1)}c_{\nu}\sqrt{E(y_k)}.$$

and then to

$$c_{\nu}\sqrt{E(y_{k+p})} \leq \left(1 - \frac{1}{4c_{\nu}\sqrt{E(y_k)}}\right)^p c_{\nu}\sqrt{E(y_k)} \to 0 \quad \text{as} \quad p \to \infty.$$

• If $c_{\nu}\sqrt{E(y_k)} < 1$ for some $k \geq m$. Then,

$$\sqrt{E(y_{k+1})} \le p(\lambda_k)\sqrt{E(y_k)} \le p(1)\sqrt{E(y_k)} = c_{\nu}E(y_k)$$

so that

$$c_{\nu}\sqrt{E(y_{k+1})} \le (c_{\nu}\sqrt{E(y_k)})^2, \quad \forall k \ge m$$

The sequence $\{c_{\nu}\sqrt{E(y_m)}\}_{(m\geq k)}$ decreases to zero with a quadratic rate. In particular, if $c_{\nu}\sqrt{E(y_0)}\leq 1$ and if we fixe $\lambda_k=1$ for all $k\geq 0$

Convergence of $E(y_k)$

$$\sqrt{E(y_k - \lambda Y_{1,k})} \leq \overbrace{\left(|1 - \lambda| + \lambda^2 c_\nu \sqrt{E(y_k)}\right)}^{:=\rho(\lambda)} \sqrt{E(y_k)}, \quad c_\nu = \mathcal{O}(\nu^{-2})$$

• If $c_{\nu}\sqrt{E(y_k)} \ge 1$, p reaches a unique minimum for $\lambda_k = 1/(2c_{\nu}\sqrt{E(y_k)}) \in (0, 1/2)$ for which $p(\lambda_k) = 1 - \frac{\lambda_k}{2} \in (0, 1)$ leading to

$$c_{\nu}\sqrt{E(y_{k+1})} \leq p(\lambda_k)c_{\nu}\sqrt{E(y_k)} = \underbrace{\left(1 - \frac{1}{4c_{\nu}\sqrt{E(y_k)}}\right)}_{\in(0,1)}c_{\nu}\sqrt{E(y_k)}.$$

and then to

$$c_{\nu}\sqrt{E(y_{k+p})} \leq \left(1 - \frac{1}{4c_{\nu}\sqrt{E(y_k)}}\right)^p c_{\nu}\sqrt{E(y_k)} \to 0 \quad \text{as} \quad p \to \infty.$$

• If $c_{\nu}\sqrt{E(y_k)} < 1$ for some $k \geq m$. Then,

$$\sqrt{E(y_{k+1})} \le p(\lambda_k)\sqrt{E(y_k)} \le p(1)\sqrt{E(y_k)} = c_{\nu}E(y_k)$$

so that

$$c_{\nu}\sqrt{E(y_{k+1})} \leq (c_{\nu}\sqrt{E(y_k)})^2, \quad \forall k \geq m$$

The sequence $\{c_{\nu}\sqrt{E(y_m)}\}_{(m\geq k)}$ decreases to zero with a quadratic rate. In particular, if $c_{\nu}\sqrt{E(y_0)}\leq 1$ and if we fixe $\lambda_k=1$ for all $k\geq 0$.

Convergence of y_k

• We write that $y_{k+1}=y_0-\sum_{m=0}^k\lambda_mY_{1,m}$; using that $\lambda_m\in(0,1)$ and $\|Y_{1,m}\|_{V}\leq \nu^{-1}\sqrt{E(y_m)}$, we get

$$\begin{split} \sum_{m=1}^{k} |\lambda_{m}| \|Y_{1,m}\|_{\mathbf{V}} &\leq \nu^{-1} \sum_{m=1}^{k} \sqrt{E(y_{m})} \leq \nu^{-1} \sum_{m=1}^{k} \rho(\lambda_{m-1}) \sqrt{E(y_{m-1})} \\ &\leq \nu^{-1} \sum_{m=1}^{k} \rho(\lambda_{0}) \sqrt{E(y_{m-1})} \leq \nu^{-1} \sum_{m=1}^{k} \rho(\lambda_{0})^{m} \sqrt{E(y_{0})} \\ &\leq \frac{\nu^{-1}}{1 - \rho(\lambda_{0})} \sqrt{E(y_{0})} \end{split}$$

This implies the strong convergence of y_k toward $y := y_0 - \sum_{m>0} \lambda_m Y_{1,m}$.

• Using that $E(y_k) \to 0$ as $k \to \infty$, the limit in the corrector eq. for v_k ,

$$\alpha \int_{\Omega} v_k \cdot w + \int_{\Omega} \nabla v_k \cdot \nabla w = -\alpha \int_{\Omega} y_k \cdot w - \nu \int_{\Omega} \nabla y_k \cdot \nabla w - \int_{\Omega} y_k \cdot \nabla y_k \cdot w + \langle f, w \rangle_{H^{-1}(\Omega)^d \times H^1_0(\Omega)^d} + \alpha \int_{\Omega} g \cdot w, \quad \forall w \in V.$$
(12)

implies that ν solves the α -NS steady equation.

Convergence of yk

• We write that $y_{k+1}=y_0-\sum_{m=0}^k\lambda_mY_{1,m}$; using that $\lambda_m\in(0,1)$ and $\|Y_{1,m}\|_{V}\leq \nu^{-1}\sqrt{E(y_m)}$, we get

$$\begin{split} \sum_{m=1}^{k} |\lambda_{m}| \|Y_{1,m}\|_{\mathbf{V}} &\leq \nu^{-1} \sum_{m=1}^{k} \sqrt{E(y_{m})} \leq \nu^{-1} \sum_{m=1}^{k} \rho(\lambda_{m-1}) \sqrt{E(y_{m-1})} \\ &\leq \nu^{-1} \sum_{m=1}^{k} \rho(\lambda_{0}) \sqrt{E(y_{m-1})} \leq \nu^{-1} \sum_{m=1}^{k} \rho(\lambda_{0})^{m} \sqrt{E(y_{0})} \\ &\leq \frac{\nu^{-1}}{1 - \rho(\lambda_{0})} \sqrt{E(y_{0})} \end{split}$$

This implies the strong convergence of y_k toward $y := y_0 - \sum_{m>0} \lambda_m Y_{1,m}$.

• Using that $E(y_k) \to 0$ as $k \to \infty$, the limit in the corrector eq. for v_k ,

$$\alpha \int_{\Omega} v_k \cdot w + \int_{\Omega} \nabla v_k \cdot \nabla w = -\alpha \int_{\Omega} y_k \cdot w - \nu \int_{\Omega} \nabla y_k \cdot \nabla w - \int_{\Omega} y_k \cdot \nabla y_k \cdot w + \langle f, w \rangle_{H^{-1}(\Omega)^d \times H^1_0(\Omega)^d} + \alpha \int_{\Omega} g \cdot w, \quad \forall w \in \mathbf{V}.$$
(12)

implies that y solves the α -NS steady equation.

Convergence of y_k (2)

ullet The quadratic convergence of the sequence $\{y_k\}_{k>0}$ after a finite number of iterations is due to the inequality

$$\begin{split} \| \mathbf{y} - \mathbf{y}_{k} \| \mathbf{v} &= \| \sum_{m \ge k+1} \lambda_{m} Y_{1,m} \| \mathbf{v} \\ &\leq \sum_{m \ge k+1} \| Y_{1,m} \| \mathbf{v} \le \nu^{-1} \sum_{m \ge k+1} \sqrt{E(y_{m})} \\ &\leq \nu^{-1} \sum_{m \ge k+1} p(\lambda_{m-1}) \sqrt{E(y_{m-1})} \\ &\leq \nu^{-1} \sum_{m \ge k+1} p(\lambda_{k}) \sqrt{E(y_{m-1})} \\ &\leq \nu^{-1} \sum_{m \ge k+1} p(\lambda_{k}) \sqrt{E(y_{m})} \\ &\leq \nu^{-1} \sum_{m \ge k+1} p(\lambda_{k}) \sqrt{E(y_{k})} \\ &\leq \nu^{-1} \frac{p(\lambda_{k})}{1 - p(\lambda_{k})} \sqrt{E(y_{k})} \le \nu^{-1} \frac{p(\lambda_{0})}{1 - p(\lambda_{0})} \sqrt{E(y_{k})}, \quad \forall k > 0 \end{split}$$

Rk- The limit $y = y_0 - \sum_{m \ge 0} \lambda_m Y_{1,m}$ is uniquely determined by the initial guess y_0 .

The choice $\lambda_k=1$ converges under the condition that $\sqrt{E(y_0)}\leq \mathcal{O}(\nu^2)$ corresponds to the usual Newton method to solve the variational formulation : find $y\in V$ solution of $F(y,z)=0, \, \forall z\in V$,

$$F(y,z) := \int_{\Omega} \alpha y \cdot z + \nu \nabla y \cdot \nabla z + y \cdot \nabla y \cdot z - \langle f, z \rangle_{\psi',\psi} - \alpha \int_{\Omega} g \cdot z$$

i.e.

$$\begin{cases} y_0 \in \mathbf{V}, \\ \partial_y F(y_k, z) \cdot (y_{k+1} - y_k) = -F(y_k, z), & \forall z \in \mathbf{V}, \quad \forall k \ge 0, \end{cases}$$

Remark

$$E(y) = \frac{1}{2} \left(\sup_{z \in V, z \neq 0} \frac{F(y, z)}{\|z\|_V} \right)^2, \forall y \in V.$$

The optimization of the λ_k parameter leads to the so-called Damped Newton Method.

A remark

The choice $\lambda_k=1$ converges under the condition that $\sqrt{E(y_0)}\leq \mathcal{O}(\nu^2)$ corresponds to the usual Newton method to solve the variational formulation : find $y\in V$ solution of $F(y,z)=0, \, \forall z\in V$,

$$F(y,z) := \int_{\Omega} \alpha y \cdot z + \nu \nabla y \cdot \nabla z + y \cdot \nabla y \cdot z - \langle f, z \rangle_{\psi',\psi} - \alpha \int_{\Omega} g \cdot z$$

i.e.

$$\begin{cases} y_0 \in \mathbf{V}, \\ \partial_y F(y_k, z) \cdot (y_{k+1} - y_k) = -F(y_k, z), & \forall z \in \mathbf{V}, \quad \forall k \ge 0, \end{cases}$$

Remark-

$$E(y) = \frac{1}{2} \left(\sup_{z \in \mathbf{V}, z \neq 0} \frac{F(y, z)}{\|z\|_{V}} \right)^{2}, \forall y \in \mathbf{V}.$$

The optimization of the λ_k parameter leads to the so-called Damped Newton Method.

Application: resolution of Implicit time scheme for Unsteady NS

Given a discretization $\{t_n\}_{n=0...N}$ of [0, T], the backward Euler scheme reads :

$$\begin{cases}
\int_{\Omega} \frac{y^{n+1} - y^n}{\delta t} \cdot w + \nu \int_{\Omega} \nabla y^{n+1} \cdot \nabla w + \int_{\Omega} y^{n+1} \cdot \nabla y^{n+1} \cdot w = \langle f^n, w \rangle_{V' \times V}, \, \forall n \geq 0, \, \forall w \in V' \\
y^0(\cdot, 0) = u_0, \quad \text{in} \quad \Omega
\end{cases}$$
(13)

with $f^n:=\frac{1}{\delta t}\int_{t_n}^{t_{n+1}}f(\cdot,s)ds$. The piecewise linear interpolation (in time) of $\{y^n\}_{n\in[0,N]}$ weakly converges in $L^2(0,T,\textbf{V})$ toward a solution of Unsteady NS as $\delta t\to 0^+$. The previous study applied to determine y^{n+1} from y^n , solution of (13) taking $\alpha=\frac{1}{\delta t}$ and $g=y^n$:

Corollary

Assume that $y_0^{n+1} \in V$ satisfies $E(y_0^{n+1}) \le \mathcal{O}(\nu^2(\nu\delta t^{-1})^{1/(d-1)})$. Then, $y_k^{n+1} \to y^{n+1}$ strongly in V as $k \to \infty$ where y^{n+1} solves (13).

Proposition

Assume that $\Omega \in C^2$, that $(f^n)_n$ is a sequence in $L^2(\Omega)^d$ satisfies $\alpha^{-1} \sum_{k=0}^{+\infty} \|f^k\|_2 < +\infty$, that $\nabla y^0 \in L^2(\Omega)^d$. Then, the sequence $(y^n)_n$ satisfies

$$||y^{n+1} - y^n||_2 = \mathcal{O}(\delta t^{1/2} \nu^{-3/4}), \quad \forall n \ge 0$$

Application: resolution of Implicit time scheme for Unsteady NS

Given a discretization $\{t_n\}_{n=0...N}$ of [0,T], the backward Euler scheme reads :

$$\begin{cases}
\int_{\Omega} \frac{y^{n+1} - y^n}{\delta t} \cdot w + \nu \int_{\Omega} \nabla y^{n+1} \cdot \nabla w + \int_{\Omega} y^{n+1} \cdot \nabla y^{n+1} \cdot w = \langle f^n, w \rangle_{V' \times V}, \, \forall n \geq 0, \, \forall w \in V' \\
y^0(\cdot, 0) = u_0, \quad \text{in} \quad \Omega
\end{cases}$$
(13)

with $f^n := \frac{1}{\delta t} \int_{t_n}^{t_{n+1}} f(\cdot, s) ds$. The piecewise linear interpolation (in time) of $\{y^n\}_{n \in [0, N]}$ weakly converges in $L^2(0, T, V)$ toward a solution of Unsteady NS as $\delta t \to 0^+$.

The previous study applied to determine y^{n+1} from y^n solution of (13) taking $\alpha = \frac{1}{2}$.

The previous study applied to determine y^{n+1} from y^n , solution of (13) taking $\alpha = \frac{1}{\delta t}$ and $g = y^n$:

Corollary

Assume that $y_0^{n+1} \in V$ satisfies $E(y_0^{n+1}) \le \mathcal{O}(\nu^2(\nu\delta t^{-1})^{1/(d-1)})$. Then, $y_k^{n+1} \to y^{n+1}$ strongly in V as $k \to \infty$ where y^{n+1} solves (13).

Proposition

Assume that $\Omega \in C^2$, that $(f^n)_n$ is a sequence in $L^2(\Omega)^d$ satisfies $\alpha^{-1} \sum_{k=0}^{+\infty} \|f^k\|_2 < +\infty$, that $\nabla y^0 \in L^2(\Omega)^d$. Then, the sequence $(y^n)_n$ satisfies

$$||y^{n+1} - y^n||_2 = \mathcal{O}(\delta t^{1/2} \nu^{-3/4}), \quad \forall n \ge 0$$

Part 2 - Direct Problem for unsteady NS - case d = 2 - Space-time LS method

Part 2 - 1 Direct Problem for unsteady NS -

The weak formulation reads as follows: $f \in L^2(0, T, V')$ and $u_0 \in H$, find a weak solution $y \in L^2(0, T; V)$, $\partial_t y \in L^2(0, T; V')$ of the system

$$\begin{cases}
\frac{d}{dt} \int_{\Omega} y \cdot w + \nu \int_{\Omega} \nabla y \cdot \nabla w + \int_{\Omega} y \cdot \nabla y \cdot w = \langle f, w \rangle_{V' \times V}, & \forall w \in V \\
y(\cdot, 0) = u_0, & \text{in } \Omega.
\end{cases}$$
(14)

Let $A = \{ y \in L^2(0, T; \mathbf{V}) \cap H^1(0, T; \mathbf{V}'), \ y(0) = u_0 \}.$

Proposition

There exists a unique $\bar{y} \in A$ solution in $\mathcal{D}'(0,T)$ of (14). This solution satisfies the following estimates :

$$\|\bar{y}\|_{L^{\infty}(0,T;\boldsymbol{H})}^{2} + \nu \|\bar{y}\|_{L^{2}(0,T;\boldsymbol{V})}^{2} \leq \|u_{0}\|_{\boldsymbol{H}}^{2} + \frac{1}{\nu} \|f\|_{L^{2}(0,T;\boldsymbol{V}')}^{2},$$

$$\|\partial_t \bar{y}\|_{L^2(0,T;\boldsymbol{V'})} \leq \sqrt{\nu} \|u_0\|_{\boldsymbol{H}} + 2\|f\|_{L^2(0,T;\boldsymbol{V'})} + \frac{c}{\frac{3}{2}} (\nu \|u_0\|_{\boldsymbol{H}}^2 + \|f\|_{L^2(0,T;\boldsymbol{V'})}^2).$$

The least-squares problem

We introduce the LS functional $E: H^1(0, T, V') \cap L^2(0, T, V) \to \mathbb{R}^+$ by putting

$$E(y) = \frac{1}{2} \int_0^T \|v\|_{V}^2 + \frac{1}{2} \int_0^T \|\partial_t v\|_{V'}^2$$

where the corrector $v \in \mathcal{A}_0 = \{y \in L^2(0,T; \textbf{V}) \cap H^1(0,T; \textbf{V}'), \ y(0) = 0\}$ is the unique solution in $\mathcal{D}'(0,T)$ of

$$\begin{cases}
\frac{d}{dt} \int_{\Omega} \mathbf{v} \cdot \mathbf{w} + \int_{\Omega} \nabla \mathbf{v} \cdot \nabla \mathbf{w} + \frac{d}{dt} \int_{\Omega} \mathbf{y} \cdot \mathbf{w} + \nu \int_{\Omega} \nabla \mathbf{y} \cdot \nabla \mathbf{w} \\
+ \int_{\Omega} \mathbf{y} \cdot \nabla \mathbf{y} \cdot \mathbf{w} = \langle f, \mathbf{w} \rangle_{\mathbf{V}' \times \mathbf{V}}, \quad \forall \mathbf{w} \in \mathbf{V}
\end{cases}$$

$$(15)$$

$$\mathbf{v}(0) = 0.$$

Remark- For all $y \in L^2(0, T, V) \cap H^1(0, T; V')$

$$E(y) \approx \|y_t + \nu B_1(y) + B(y, y) - f\|_{L^2(0, T; V')}^2$$

where $\forall u \in L^{\infty}(0, T; \mathbf{H}), v \in L^{2}(0, T; \mathbf{V})$

$$B(u(t),v(t)),w\rangle=\int_{\Omega}u(t)\cdot\nabla v(t)\cdot w \qquad \forall w\in V, \text{ a.e in }t\in[0,T]$$

and $\forall u \in L^2(0, T; \mathbf{V})$

$$\langle B_1(\textit{u}(\textit{t})), \textit{w} \rangle = \int_{\Omega} \nabla \textit{u}(\textit{t}) \cdot \nabla \textit{w} \qquad \forall \textit{w} \in \textit{V}, \text{ a.e in } \textit{t} \in [0, \textit{T}]$$

The least-squares problem

We introduce the LS functional $E: H^1(0, T, V') \cap L^2(0, T, V) \to \mathbb{R}^+$ by putting

$$E(y) = \frac{1}{2} \int_0^T \|v\|_{\mathbf{V}}^2 + \frac{1}{2} \int_0^T \|\partial_t v\|_{\mathbf{V}'}^2$$

where the corrector $v \in \mathcal{A}_0 = \{y \in L^2(0,T; \textbf{\textit{V}}) \cap H^1(0,T; \textbf{\textit{V}}'), \ y(0) = 0\}$ is the unique solution in $\mathcal{D}'(0,T)$ of

$$\begin{cases}
\frac{d}{dt} \int_{\Omega} \mathbf{v} \cdot \mathbf{w} + \int_{\Omega} \nabla \mathbf{v} \cdot \nabla \mathbf{w} + \frac{d}{dt} \int_{\Omega} \mathbf{y} \cdot \mathbf{w} + \nu \int_{\Omega} \nabla \mathbf{y} \cdot \nabla \mathbf{w} \\
+ \int_{\Omega} \mathbf{y} \cdot \nabla \mathbf{y} \cdot \mathbf{w} = \langle f, \mathbf{w} \rangle_{\mathbf{V}' \times \mathbf{V}}, \quad \forall \mathbf{w} \in \mathbf{V}
\end{cases}$$

$$(15)$$

$$\mathbf{v}(0) = 0.$$

Remark- For all $y \in L^2(0, T, V) \cap H^1(0, T; V')$,

$$E(y) \approx ||y_t + \nu B_1(y) + B(y, y) - f||_{L^2(0, T; V')}^2$$

where $\forall u \in L^{\infty}(0, T; \mathbf{H}), v \in L^{2}(0, T; \mathbf{V}),$

$$\langle \mathcal{B}(u(t), v(t)), w \rangle = \int_{\Omega} u(t) \cdot \nabla v(t) \cdot w \qquad \forall w \in \mathbf{V}, \text{ a.e in } t \in [0, T]$$

and $\forall u \in L^2(0, T; \mathbf{V}),$

$$\langle B_1(u(t)), w \rangle = \int_{\Omega} \nabla u(t) \cdot \nabla w \quad \forall w \in V, \text{ a.e in } t \in [0, T]$$

Uniform coercivity type property for E

Proposition

Let $\bar{y} \in \mathcal{A}$ be the solution of (14), $M \in \mathbb{R}$ such that $\|\partial_t \bar{y}\|_{L^2(0,T,V')} \leq M$ and $\sqrt{\nu} \|\nabla \bar{y}\|_{L^2(Q_T)^4} \leq M$ and let $y \in \mathcal{A}$.

If $\|\partial_t y\|_{L^2(0,T,V')} \le M$ and $\sqrt{\nu} \|\nabla y\|_{L^2(Q_T)^4} \le M$, then there exists a constant c(M) such that

$$\|y - \bar{y}\|_{L^{\infty}(0,T;\textbf{\textit{H}})} + \sqrt{\nu}\|y - \bar{y}\|_{L^{2}(0,T;\textbf{\textit{V}})} + \|\partial_{t}y - \partial_{t}\bar{y}\|_{L^{2}(0,T,\textbf{\textit{V}}')} \leq c(\textbf{\textit{M}})\sqrt{E(y)}.$$

Let m > 1.

$$\begin{cases} y_{0} \in \mathcal{A}, \\ y_{k+1} = y_{k} - \lambda_{k} Y_{1,k}, & k \ge 0, \\ E(y_{k} - \lambda_{k} Y_{1,k}) = \min_{\lambda \in [0,m]} E(y_{k} - \lambda Y_{1,k}) \end{cases}$$
 (16)

with $Y_{1,k} \in \mathcal{A}_0$ the solution of the formulation

$$\begin{cases} \frac{d}{dt} \int_{\Omega} Y_{1,k} \cdot w + \nu \int_{\Omega} \nabla Y_{1,k} \cdot \nabla w + \int_{\Omega} y_k \cdot \nabla Y_{1,k} \cdot w \\ + \int_{\Omega} Y_{1,k} \cdot \nabla y_k \cdot w = -\frac{d}{dt} \int_{\Omega} v_k \cdot w - \int_{\Omega} \nabla v_k \cdot \nabla w, \quad \forall w \in \mathbf{V} \\ Y_{1,k}(0) = 0, \end{cases}$$

where $v_k \in \mathcal{A}_0$ is the corrector (associated to y_k) solution of (15) leading to $E'(y_k) \cdot Y_{1,k} = 2E(y_k)$.

Construction of a convergent sequence $y_k \in A$

Theorem

Let $\{y_k\}_{k\in\mathbb{N}}$ the sequence of \mathcal{A} defined by (29). Then $y_k\to \bar{y}$ in $H^1(0,T;\boldsymbol{V}')\cap L^2(0,T;\boldsymbol{V})$ where $\bar{y}\in\mathcal{A}$ is the unique solution of (14). Moreover, there exists a $k_0\in\mathbb{N}$ such that the sequence $\{\|y_k-\bar{y}\|_{\mathcal{A}}\}_{(k>k_0)}$ decays quadratically.

The key lemma is

Lemma

Let $\{y_k\}_{k\in\mathbb{N}}$ the sequence of \mathcal{A} defined by (29). Then

$$\sqrt{E(y_{k+1})} \le \sqrt{E(y_k)} \left(|1 - \lambda| + \lambda^2 C_1 \sqrt{E(y_k)} \right), \quad \forall \lambda \in [0, m].$$
 (17)

where
$$C_1 = \frac{c}{\nu \sqrt{\nu}} \exp \left(\frac{c}{\nu^2} \|u_0\|_H^2 + \frac{c}{\nu^3} \|f\|_{L^2(0,T;V')}^2 + \frac{c}{\nu^3} E(y_0) \right)$$
 does not depend on y_k

PROOF -

$$E(y_k - \lambda Y_{1,k}) \leq E(y_k) \left(|1 - \lambda| + \lambda^2 \frac{c}{\nu \sqrt{\nu}} \sqrt{E(y_k)} \exp(\frac{c}{\nu} \int_0^T \|y_k\|_V^2) \right)^2.$$

Construction of a convergent sequence $y_k \in A$

Theorem

Let $\{y_k\}_{k\in\mathbb{N}}$ the sequence of \mathcal{A} defined by (29). Then $y_k\to \bar{y}$ in $H^1(0,T;\boldsymbol{V}')\cap L^2(0,T;\boldsymbol{V})$ where $\bar{y}\in\mathcal{A}$ is the unique solution of (14). Moreover, there exists a $k_0\in\mathbb{N}$ such that the sequence $\{\|y_k-\bar{y}\|_{\mathcal{A}}\}_{(k>k_0)}$ decays quadratically.

The key lemma is

Lemma

Let $\{y_k\}_{k\in\mathbb{N}}$ the sequence of \mathcal{A} defined by (29). Then

$$\sqrt{E(y_{k+1})} \le \sqrt{E(y_k)} \left(|1 - \lambda| + \lambda^2 C_1 \sqrt{E(y_k)} \right), \quad \forall \lambda \in [0, m].$$
 (17)

where
$$C_1 = \frac{c}{\nu \sqrt{\nu}} \exp \left(\frac{c}{\nu^2} \|u_0\|_{H}^2 + \frac{c}{\nu^3} \|f\|_{L^2(0,T;V')}^2 + \frac{c}{\nu^3} E(y_0) \right)$$
 does not depend on y_k .

PROOF -

$$E(y_k - \lambda Y_{1,k}) \leq E(y_k) \bigg(|1 - \lambda| + \lambda^2 \frac{c}{\nu \sqrt{\nu}} \sqrt{E(y_k)} \exp(\frac{c}{\nu} \int_0^T \|y_k\|_V^2) \bigg)^2.$$

Experiment: The driven semi-disk

Case considered by Glowinski [2006] 2 for which a Hopf bifurcation phenomenon occurs : for $Re=\nu^{-1}\geq 6650$, the unsteady solution does not converge toward the steady solution.

For $\alpha=0$ (Pure steady NS) Initialized with the solution of the corresponding Stokes problem,

- Newton algorithm ($\lambda_k = 1$) converges up to $Re \approx 500$.
- Damped Newton algorithm converges up to $Re \approx 910$.

Continuation technic w.r.t. ν is used for Re > 910.

Experiment: The driven semi-disk

Case considered by Glowinski [2006] 2 for which a Hopf bifurcation phenomenon occurs : for $Re=\nu^{-1}\geq 6650$, the unsteady solution does not converge toward the steady solution.

For $\alpha=0$ (Pure steady NS) Initialized with the solution of the corresponding Stokes problem,

- Newton algorithm ($\lambda_k = 1$) converges up to $Re \approx 500$.
- Damped Newton algorithm converges up to $Re \approx 910$.

Continuation technic w.r.t. ν is used for Re > 910.

² Glowinski, R. and Guidoboni, G. and Pan, T.-W., Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity, J. Comput. Phys., 2006

□ ▶ ← □ □ ▶ ←

Experiment: The driven semi-disk

Streamlines of the steady state solution for Re=500,1000,2000,3000,4000,5000,6000,7000 and Re=8000.

Experiment: Damped Newton Method vs. Newton method; T = 10

Initialization y_0 (independent of ν) with the Stokes solutions associated to $\nu=1$.

♯iterate k	$\frac{\ y_k - y_{k-1}\ _{L^2(\mathbf{V})}}{\ y_{k-1}\ _{L^2(\mathbf{V})}}$	$\sqrt{2E(y_k)}$	λ_k	$\frac{\ y_k - y_{k-1}\ _{L^2(\mathbf{V})}}{\ y_{k-1}\ _{L^2(\mathbf{V})}} (\lambda_k = 1)$	
0	-	2.690×10^{-2}	0.8112	_	2.690×10^{-2}
1	4.540×10^{-1}	1.077×10^{-2}	0.7758	5.597×10^{-1}	1.254×10^{-2}
2	1.836×10^{-1}	3.653×10^{-3}	0.8749	2.236×10^{-1}	5.174×10^{-3}
3	7.503×10^{-2}	7.794×10^{-4}	0.9919	7.830×10^{-2}	6.133×10^{-4}
4	1.437×10^{-2}	2.564×10^{-5}	1.0006	9.403×10^{-3}	1.253×10^{-5}
5	4.296×10^{-4}	3.180×10^{-8}	1.	1.681×10^{-4}	4.424×10^{-9}
6	5.630×10^{-7}	6.384×10^{-11}	_	_	_

$$Re = \nu^{-1} = 500$$

♯iterate k	$\frac{\ y_k - y_{k-1}\ _{L^2(\mathbf{V})}}{\ y_{k-1}\ _{L^2(\mathbf{V})}}$	$\sqrt{2E(y_k)}$	λ_k	$\frac{\ y_k - y_{k-1}\ _{L^2(\mathbf{V})}}{\ y_{k-1}\ _{L^2(\mathbf{V})}} (\lambda_k = 1)$	$\sqrt{2E(y_k)}(\lambda_k=1)$		
0	_	2.690×10^{-2}	0.6344	_	2.690×10^{-2}		
1	5.138×10^{-1}	1.493×10^{-2}	0.5803	8.101×10^{-1}	2.234×10^{-2}		
2	2.534×10^{-1}	7.608×10^{-3}	0.3496	4.451×10^{-1}	2.918×10^{-2}		
3	1.345×10^{-1}	5.477×10^{-3}	0.4025	5.717×10^{-1}	5.684×10^{-2}		
4	1.105×10^{-1}	3.814×10^{-3}	0.5614	3.683×10^{-1}	2.625×10^{-2}		
5	8.951×10^{-2}	2.295×10^{-3}	0.8680	2.864×10^{-1}	1.828×10^{-2}		
6	6.394×10^{-2}	8.679×10^{-4}	1.0366	1.423×10^{-1}	4.307×10^{-3}		
7	1.788×10^{-2}	4.153×10^{-5}	0.9994	6.059×10^{-2}	9.600×10^{-4}		
8	7.982×10^{-4}	9.931×10^{-8}	0.9999	1.484×10^{-2}	5.669×10^{-5}		
9	2.256×10^{-6}	4.000×10^{-11}	_	9.741×10^{-4}	3.020×10^{-7}		
10	_	_	-	4.267×10^{-6}	3.846×10^{-11}		
$Re = \nu^{-1} = 1000$							

Experiments

Streamlines of the unsteady state solution for Re = 1000 at time $t = i, i = 0, \cdots, 7s$.

Experiments: divergence of the Newton method

♯iterate k	$\frac{\ y_k - y_{k-1}\ _{L^2(\mathbf{V})}}{\ y_{k-1}\ _{L^2(\mathbf{V})}}$	$\sqrt{2E(y_k)}$	λ_k	$\frac{\ y_k - y_{k-1}\ _{L^2(\mathbf{V})}}{\ y_{k-1}\ _{L^2(\mathbf{V})}} (\lambda_k = 1)$	$\sqrt{2E(y_k)}(\lambda_k=1)$
0	_	2.691×10^{-2}	0.6145	_	2.691×10^{-2}
1	5.241×10^{-1}	1.530×10^{-2}	0.5666	8.528×10^{-1}	2.385×10^{-2}
2	2.644×10^{-1}	8.025×10^{-3}	0.3233	4.893×10^{-1}	3.555×10^{-2}
3	1.380×10^{-1}	5.982×10^{-3}	0.3302	7.171×10^{-1}	8.706×10^{-2}
4	1.115×10^{-1}	4.543×10^{-3}	0.4204	4.849×10^{-1}	3.531×10^{-2}
5	9.429×10^{-2}	3.221×10^{-3}	0.5875	1.125×10^{0}	3.905×10^{-1}
6	7.664×10^{-2}	1.944×10^{-3}	0.9720	_	1.337×10^4
7	5.688×10^{-2}	5.937×10^{-4}	1.022	_	8.091×10^{27}
8	1.009×10^{-2}	1.081×10^{-5}	0.9998	_	_
9	2.830×10^{-4}	1.332×10^{-8}	1.	_	_
10	2.893×10^{-7}	4.611×10^{-11}	_	_	_

Table: Re = 1100: Damped Newton method vs. Newton method.

Experiments: driven semi-disk; $\nu = 1/2000$

♯iterate <i>k</i>	$\frac{\ y_k - y_{k-1}\ _{L^2(\mathbf{V})}}{\ y_{k-1}\ _{L^2(\mathbf{V})}}$	$\sqrt{2E(y_k)}$	λ_k
0	-	2.691×10^{-2}	0.5215
1	6.003×10^{-1}	1.666×10^{-2}	0.4919
2	3.292×10^{-1}	9.800×10^{-3}	0.1566
3	1.375×10^{-1}	8.753×10^{-3}	0.1467
4	1.346×10^{-1}	7.851×10^{-3}	0.0337
5	5.851×10^{-2}	7.688×10^{-3}	0.0591
6	7.006×10^{-2}	7.417×10^{-3}	0.1196
7	9.691×10^{-2}	6.864×10^{-3}	0.0977
8	8.093×10^{-2}	6.465×10^{-3}	0.0759
9	6.400×10^{-2}	6.182×10^{-3}	0.0968
10	6.723×10^{-2}	5.805×10^{-3}	0.1184
11	6.919×10^{-2}	5.371×10^{-3}	0.1630
12	7.414×10^{-2}	4.825×10^{-3}	0.2479
13	8.228×10^{-2}	4.083×10^{-3}	0.3517
14	8.146×10^{-2}	3.164×10^{-3}	0.4746
15	7.349×10^{-2}	2.207×10^{-3}	0.7294
16	6.683×10^{-2}	1.174×10^{-3}	1.0674
17	3.846×10^{-2}	2.191×10^{-4}	1.0039
18	5.850×10^{-3}	4.674×10^{-5}	0.9998
19	1.573×10^{-4}	5.843×10^{-9}	_

Re = 2000

Re = 3000: 39 iterations; Re = 4000: 75 iterations.

Part 2 - 2 The 3d case - Regular solution

Part 2 - 2 Direct Problem for unsteady NS -

Let $\Omega \subset \mathbb{R}^3$ be a bounded connected open set whose boundary $\partial \Omega$ is \mathcal{C}^2 . For $f \in L^2(Q_T)^3$ and $u_0 \in \textbf{\textit{V}}$, there exists $T^* = T^*(\Omega, \nu, u_0, f) > 0$ and a unique solution $\overline{y} \in L^\infty(0, T^*; \textbf{\textit{V}}) \cap L^2(0, T^*; H^2(\Omega)^3)$, $\partial_t \overline{y} \in L^2(0, T^*; \textbf{\textit{H}})$ of the equation

$$\begin{cases} \frac{d}{dt} \int_{\Omega} y \cdot w + \nu \int_{\Omega} \nabla y \cdot \nabla w + \int_{\Omega} y \cdot \nabla y \cdot w = \int_{\Omega} f \cdot w, & \forall w \in \mathbf{V} \\ y(\cdot, 0) = u_0, & \text{in } \Omega. \end{cases}$$
(18)

For any t > 0, let

$$\mathcal{A}(t) = \{ y \in L^2(0, t; H^2(\Omega)^3 \cap \mathbf{V}) \cap H^1(0, t; \mathbf{H}), \ y(0) = u_0 \}$$

and

$$A_0(t) = \{ y \in L^2(0, t; H^2(\Omega)^3 \cap \mathbf{V}) \cap H^1(0, t; \mathbf{H}), \ y(0) = 0 \}.$$

Endowed with the scalar product $\langle y,z\rangle_{\mathcal{A}_0(t)}=\int_0^t \langle P(\Delta y),P(\Delta z)\rangle_{\mathcal{H}}+\langle \partial_t y,\partial_t z\rangle_{\mathcal{H}}$ and the norm $\|y\|_{\mathcal{A}_0(t)}=\langle y,y\rangle_{\mathcal{A}_0(t)}$ is a Hilbert space.

P is the orthogonal projector in $L^2(\Omega)^3$ onto **H**

Part 2 -2 The 3d case - Regular solution

We introduce our least-squares functional $E: \mathcal{A}(T^*) \to \mathbb{R}^+$ by putting

$$E(y) = \frac{1}{2} \int_0^{T^*} \|P(\Delta v)\|_{\boldsymbol{H}}^2 + \frac{1}{2} \int_0^{T^*} \|\partial_t v\|_{\boldsymbol{H}}^2 = \frac{1}{2} \|v\|_{\mathcal{A}_0(T^*)}^2$$
 (19)

Proposition

Let $\bar{y} \in \mathcal{A}(T^*)$ be the solution of (18), $M \in \mathbb{R}$ such that $\|\partial_t \bar{y}\|_{L^2(Q_{T^*})^3} \leq M$ and $\sqrt{\nu} \|P(\Delta \bar{y})\|_{L^2(Q_{T^*})^3} \leq M$ and let $y \in \mathcal{A}(T^*)$. If $\|\partial_t y\|_{L^2(Q_{T^*})^3} \leq M$ and $\sqrt{\nu} \|P(\Delta y)\|_{L^2(Q_{T^*})^3} \leq M$, then there exists a constant c(M) such that

$$\|y - \bar{y}\|_{L^{\infty}(0,T^{*};V)} + \sqrt{\nu} \|P(\Delta y) - P(\Delta \bar{y})\|_{L^{2}(Q_{T^{*}})^{3})} + \|\partial_{t}y - \partial_{t}\bar{y}\|_{L^{2}(Q_{T^{*}})^{3})} \leq c(M)\sqrt{E(y)}.$$

Part 2-2 Direct Problem for unsteady NS - The 3*d* case.

Therefore, we can define, for any $m \ge 1$, a minimizing sequence y_k as follows:

$$\begin{cases} y_{0} \in \mathcal{A}(T^{*}), \\ y_{k+1} = y_{k} - \lambda_{k} Y_{1,k}, & k \geq 0, \\ E(y_{k} - \lambda_{k} Y_{1,k}) = \min_{\lambda \in [0,m]} E(y_{k} - \lambda Y_{1,k}) \end{cases}$$
(20)

where $Y_{1,k}$ in $A_0(T^*)$ solves the formulation

$$\begin{cases} \frac{d}{dt} \int_{\Omega} Y_{1,k} \cdot w + \nu \int_{\Omega} \nabla Y_{1,k} \cdot \nabla w + \int_{\Omega} y_k \cdot \nabla Y_{1,k} \cdot w \\ + \int_{\Omega} Y_{1,k} \cdot \nabla y_k \cdot w = -\frac{d}{dt} \int_{\Omega} v_k \cdot w - \int_{\Omega} \nabla v_k \cdot \nabla w, \quad \forall w \in \mathbf{V} \\ Y_{1,k}(0) = 0, \end{cases}$$

and v_k in $A_0(T^*)$ is the corrector (associated to y_k) leading to $E'(y_k) \cdot Y_{1,k} = 2E(y_k)$.

Part 2 - Direct Problem for unsteady NS - case d=3 - Space-time least-squares method

Proposition

Let $\{y_k\}_{k\in\mathbb{N}}$ the sequence of $\mathcal{A}(T^*)$ defined by (20). Then $y_k\to \bar{y}$ in $H^1(0,T^*;\boldsymbol{H})\cap L^2(0,T^*;H^2(\Omega)^3\cap \boldsymbol{V})$ where $\bar{y}\in\mathcal{A}(T^*)$ is the unique solution of (14).

based on the estimate

$$\sqrt{E(y_{k+1})} \leq \sqrt{E(y_k)} \bigg(|1 - \lambda| + \lambda^2 C_1 \sqrt{E(y_k)} \bigg), \quad \forall \lambda \in \mathbb{R}_+$$

where

$$\begin{cases} C_1 = \frac{c}{\nu^{5/4}} \exp\left(c\left(\frac{C_2}{\nu^2} + (\frac{C_2}{\nu^2})^2\right)\right), \\ C_2 = \|u_0\|_{\mathbf{V}}^2 + \frac{8}{\nu} \|f\|_{L^2(Q_{T^*})^3}^2 + \frac{16}{\nu} E(y_0) \end{cases}$$
(21)

does not depend on y_k , $k \in \mathbb{N}^*$.

Part 3: Approximation of controls for the a sub-linear heat equation

Part 3— Controllability problem for a sub-linear (controllable) heat equation: find a sequence $(y_k, v_k)_{k>0}$ converging strongly to a pair (y, v) solution of

$$\begin{cases} y_t - \nu \Delta y + g(y) = f \mathbf{1}_{\omega} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \quad y(\cdot, 0) = u_0 & \text{in } \Omega, \end{cases}$$
(22)

such that $y(\cdot, T) = 0$.

- $u_0 \in L^2(\Omega)$, $f \in L^{\infty}(q_T)$ is a *control* function.
- ullet $g:\mathbb{R}\mapsto\mathbb{R}$ is locally Lipschitz-continuous and satisfies

$$|g'(s)| \le C(1+|s|^m)$$
 a.e., with $1 \le m \le 1+4/d$. (23)

so that (22) possesses exactly one local in time solution.

Part 3: Main known controllability result for the sub-linear heat equation

If g is "not too super-linear" at infinity, then the control can compensate the blow-up phenomena occurring in $\Omega\backslash \overline{\omega}$.

Theorem (Fernandez-Cara, Zuazua (2000), Barbu (2000))

Let T>0 be given. Assume that g(0)=0 and that $g:\mathbb{R}\mapsto\mathbb{R}$ is locally Lipschitz-continuous and satisfies (23) and

$$\frac{g(s)}{|s|\log^{3/2}(1+|s|)} \to 0 \quad as \quad |s| \to \infty.$$
 (24)

Then (22) is null-controllable at time T.

The proof is based on a fixed point method. Precisely, it is shown that the operator $\Lambda: L^2(Q_T) \to L^2(Q_T)$, where $y_z := \Lambda z$ is a null controlled solution of the linear boundary value problem

$$\begin{cases} y_{z,t} - \nu \Delta y_z + y_z \, \tilde{g}(z) = f_z \mathbf{1}_\omega, & \text{in } Q_T \\ y_z = 0 \text{ on } \Sigma_T, & y_z(\cdot, 0) = u_0 & \text{in } \Omega \end{cases}, \qquad \tilde{g}(s) := \begin{cases} g(s)/s & s \neq 0, \\ g'(0) & s = 0 \end{cases}$$

maps the closed ball $B(0,M) \subset L^2(Q_T)$ into itself, for some M>0. The Kakutani's theorem provides the existence of at least one fixed point for Λ , which is also a controlled solution for (22).

We define the convex space

$$\mathcal{A} = \left\{ (y, f) : \rho \, y \in L^2(Q_T), \, \rho_1 \, \nabla y \in L^2(Q_T), \, \rho_0 f \in L^2(q_T), \right.$$

$$\rho_0(y_t - \Delta y) \in L^2(0, T; H^{-1}(\Omega)), \, y(\cdot, 0) = y_0 \text{ in } \Omega, \, y = 0 \text{ on } \Sigma_T \right\}.$$

where ρ, ρ_1 and ρ_0 defines Carleman type weights, continuous, $\geq \rho_* > 0$ in Q_T and blowing up as $t \to T^-$. $\rho_i \approx \exp(\beta(x)/(T-t))$ then the least-squares problem, with $E: \mathcal{A} \to \mathbb{R}$ as

$$\inf_{(y,f)\in\mathcal{A}} E(y,f) = \frac{1}{2} \left\| \rho_0 \left(y_t - \nu \Delta y + g(y) - f \, \mathbf{1}_{\omega} \right) \right\|_{L^2(0,T;H^{-1}(\Omega))}^2$$
 (25)

Actually, for any $(\overline{y}, 0) \in \mathcal{A}$, we consider the extremal problem $\inf_{(y,t) \in \mathcal{A}_0} E(\overline{y} + y, t)$ where \mathcal{A}_0 is the Hilbert space

$$\begin{split} \mathcal{A}_0 &= \left\{ (y,f) : \rho \, y \in L^2(Q_T), \, \rho_1 \, \nabla y \in L^2(Q_T), \, \rho_0 f \in L^2(Q_T), \\ \rho_0(y_f - \Delta y) \in L^2(0,T; H^{-1}(\Omega)), \, y(\cdot,0) = 0 \text{ in } \Omega, \, y = 0 \text{ on } \Sigma_T \right\} \end{split}$$

We define the convex space

$$\begin{split} \mathcal{A} &= \bigg\{ (y,f) : \rho \, y \in L^2(Q_T), \, \rho_1 \, \nabla y \in L^2(Q_T), \, \rho_0 f \in L^2(q_T), \\ &\qquad \qquad \rho_0 (y_t - \Delta y) \in L^2(0,T;H^{-1}(\Omega)), y(\cdot,0) = y_0 \text{ in } \Omega, y = 0 \text{ on } \Sigma_T \bigg\}. \end{split}$$

where ρ, ρ_1 and ρ_0 defines Carleman type weights, continuous, $\geq \rho_* > 0$ in Q_T and blowing up as $t \to T^-$. $\rho_i \approx \exp(\beta(x)/(T-t))$ then the least-squares problem, with $E: \mathcal{A} \to \mathbb{R}$ as

$$\inf_{(y,f)\in\mathcal{A}} E(y,f) = \frac{1}{2} \left\| \rho_0 \left(y_t - \nu \Delta y + g(y) - f \, \mathbf{1}_{\omega} \right) \right\|_{L^2(0,T;H^{-1}(\Omega))}^2$$
 (25)

Actually, for any $(\overline{y},0) \in \mathcal{A}$, we consider the extremal problem $\inf_{(y,f) \in \mathcal{A}_0} E(\overline{y} + y,f)$ where \mathcal{A}_0 is the Hilbert space

$$\begin{split} \mathcal{A}_0 &= \bigg\{ (y,f) : \rho \, y \in L^2(Q_T), \, \rho_1 \, \nabla y \in L^2(Q_T), \, \, \rho_0 f \in L^2(q_T), \\ &\quad \, \rho_0 (y_f - \Delta y) \in L^2(0,T;H^{-1}(\Omega)), \, y(\cdot,0) = 0 \text{ in } \Omega, \, y = 0 \text{ on } \Sigma_T \bigg\}. \end{split}$$

For any $(y, f) \in \mathcal{A}$, we now look for a pair $(Y^1, F^1) \in \mathcal{A}_0$ solution of

$$\begin{cases} Y_t^1 - \Delta Y^1 + g'(y) \cdot Y^1 = F^1 \mathbf{1}_{\omega} + (y_t - \Delta y + g(y) - f \mathbf{1}_{\omega}), & \text{in } Q_T \\ Y^1 = 0 \text{ on } \Sigma_T, & Y^1(\cdot, 0) = 0 \text{ in } \Omega. \end{cases}$$
(26)

 $(Y^1, F^1) \in \mathcal{A}_0$ so that F^1 is a null control for Y^1 .

Proposition

Assume that g is differentiable. Then, $E((\overline{y},\overline{f})+\cdot)$ is differentiable over \mathcal{A}_0 . Let $(y,f)\in\mathcal{A}$ and let $(Y^1,F^1)\in\mathcal{A}_0$ be a solution of (26). Then the derivative of E at the point $(y,f)\in\mathcal{A}$ along the direction (Y^1,F^1) satisfies

$$E'(y, f) \cdot (Y^1, F^1) = 2E(y, f).$$

For any $(y, f) \in \mathcal{A}$, we now look for a pair $(Y^1, F^1) \in \mathcal{A}_0$ solution of

$$\begin{cases} Y_t^1 - \Delta Y^1 + g'(y) \cdot Y^1 = F^1 \mathbf{1}_{\omega} + (y_t - \Delta y + g(y) - f \mathbf{1}_{\omega}), & \text{in } Q_T \\ Y^1 = 0 \text{ on } \Sigma_T, & Y^1(\cdot, 0) = 0 \text{ in } \Omega. \end{cases}$$
(27)

Assume that $g \in W^{1,\infty}(\mathbb{R})$. For any $(y,f) \in \mathcal{A}$, we define the unique pair (Y^1,F^1) solution of (27), which minimizes the functional $J:L^2(\rho_0,q_T) \times L^2(\rho,Q_T) \to \mathbb{R}^+$ defined by

$$J(u,z) := \|\rho_0 u\|_{L^2(q_T)}^2 + \|\rho z\|_{L^2(Q_T)}^2.$$

 $(Y^1, F^1) \in A_0$ satisfies

$$\|\rho(T-t)\nabla Y^1\|_{L^2(Q_T)} + \|\rho_0 F^1\|_{L^2(Q_T)} + \|\rho Y^1\|_{L^2(Q_T)} \le C\sqrt{E(y, t)}$$
 (28)

for some $C = C(T, \Omega, \|g'(y)\|_{L^{\infty}(Q_T)}) > 0$ of the form

$$C = e^{c(\Omega) \left(1 + T^{-1} + T + (T^{1/2} + T) \|g'(y)\|_{L^{\infty}(Q_T)} + \|g'(y)\|_{L^{\infty}(Q_T)}^{2/3}\right)}$$

For any $(y, f) \in \mathcal{A}$, we now look for a pair $(Y^1, F^1) \in \mathcal{A}_0$ solution of

$$\begin{cases} Y_t^1 - \Delta Y^1 + g'(y) \cdot Y^1 = F^1 \mathbf{1}_{\omega} + (y_t - \Delta y + g(y) - f \mathbf{1}_{\omega}), & \text{in } Q_T \\ Y^1 = 0 \text{ on } \Sigma_T, & Y^1(\cdot, 0) = 0 \text{ in } \Omega. \end{cases}$$
(27)

Proposition

Assume that $g \in W^{1,\infty}(\mathbb{R})$. For any $(y,f) \in \mathcal{A}$, we define the unique pair (Y^1,F^1) solution of (27), which minimizes the functional $J:L^2(\rho_0,q_T)\times L^2(\rho,Q_T)\to \mathbb{R}^+$ defined by

$$J(u,z) := \|\rho_0 \, u\|_{L^2(q_T)}^2 + \|\rho \, z\|_{L^2(Q_T)}^2.$$

 $(Y^1, F^1) \in A_0$ satisfies

$$\|\rho(T-t)\nabla Y^1\|_{L^2(q_T)} + \|\rho_0 F^1\|_{L^2(q_T)} + \|\rho Y^1\|_{L^2(Q_T)} \le C\sqrt{E(y, f)}$$
 (28)

for some $C = C(\mathcal{T}, \Omega, \|g'(y)\|_{L^{\infty}(Q_{\mathcal{T}})}) > 0$ of the form

$$C = e^{c(\Omega) \left(1 + T^{-1} + T + (T^{1/2} + T) \| g'(y) \|_{L^{\infty}(Q_T)} + \| g'(y) \|_{L^{\infty}(Q_T)}^{2/3} \right)}$$

For any $(y, f) \in \mathcal{A}$, we now look for a pair $(Y^1, F^1) \in \mathcal{A}_0$ solution of

$$\begin{cases} Y_t^1 - \Delta Y^1 + g'(y) \cdot Y^1 = F^1 \mathbf{1}_{\omega} + (y_t - \Delta y + g(y) - f \mathbf{1}_{\omega}), & \text{in } Q_T \\ Y^1 = 0 \text{ on } \Sigma_T, & Y^1(\cdot, 0) = 0 \text{ in } \Omega. \end{cases}$$
(27)

Proposition

Assume that $g \in W^{1,\infty}(\mathbb{R})$. For any $(y,f) \in \mathcal{A}$, we define the unique pair (Y^1,F^1) solution of (27), which minimizes the functional $J:L^2(\rho_0,q_T)\times L^2(\rho,Q_T)\to \mathbb{R}^+$ defined by

$$J(u,z) := \|\rho_0 \, u\|_{L^2(q_T)}^2 + \|\rho \, z\|_{L^2(Q_T)}^2.$$

 $(Y^1, F^1) \in A_0$ satisfies

$$\|\rho(T-t)\nabla Y^1\|_{L^2(q_T)} + \|\rho_0 F^1\|_{L^2(q_T)} + \|\rho Y^1\|_{L^2(Q_T)} \le C\sqrt{E(y, f)}$$
 (28)

for some $C = C(\mathcal{T}, \Omega, \|g'(y)\|_{L^{\infty}(Q_{\mathcal{T}})}) > 0$ of the form

$$C = e^{c(\Omega) \left(1 + T^{-1} + T + (T^{1/2} + T) \| g'(y) \|_{L^{\infty}(Q_T)} + \| g'(y) \|_{L^{\infty}(Q_T)}^{2/3} \right)}$$

For any $(y, f) \in \mathcal{A}$, we now look for a pair $(Y^1, F^1) \in \mathcal{A}_0$ solution of

$$\begin{cases} Y_t^1 - \Delta Y^1 + g'(y) \cdot Y^1 = F^1 \mathbf{1}_{\omega} + (y_t - \Delta y + g(y) - f \mathbf{1}_{\omega}), & \text{in } Q_T \\ Y^1 = 0 \text{ on } \Sigma_T, & Y^1(\cdot, 0) = 0 \text{ in } \Omega. \end{cases}$$
(27)

Proposition

Assume that $g \in W^{1,\infty}(\mathbb{R})$. For any $(y,f) \in \mathcal{A}$, we define the unique pair (Y^1,F^1) solution of (27), which minimizes the functional $J:L^2(\rho_0,q_T)\times L^2(\rho,Q_T)\to \mathbb{R}^+$ defined by

$$J(u,z) := \|\rho_0 u\|_{L^2(q_T)}^2 + \|\rho z\|_{L^2(Q_T)}^2.$$

 $(Y^1, F^1) \in \mathcal{A}_0$ satisfies

$$\|\rho(T-t)\nabla Y^1\|_{L^2(q_T)} + \|\rho_0 F^1\|_{L^2(q_T)} + \|\rho Y^1\|_{L^2(Q_T)} \le C\sqrt{E(y,f)}$$
 (28)

for some $C = C(T, \Omega, \|g'(y)\|_{L^{\infty}(Q_T)}) > 0$ of the form

$$C = e^{c(\Omega) \left(1 + T^{-1} + T + (T^{1/2} + T) \|g'(y)\|_{L^{\infty}(Q_T)} + \|g'(y)\|_{L^{\infty}(Q_T)}^{2/3}\right)}$$

Part 3: a least-square approach - Minimizing sequence

Therefore, we can define a minimizing sequence $\{y_k, f_k\}_{k>0}$ as follows:

$$\begin{cases} (y_0, f_0) \in \mathcal{A}, \\ (y_{k+1}, f_{k+1}) = (y_k, f_k) - \lambda_k(Y_k^1, F_k^1), \quad k > 0, \\ \lambda_k = \operatorname{argmin}_{\lambda \in \mathbb{R}^+} E((y_k, f_k) - \lambda(Y_k^1, F_k^1)) \end{cases}$$
 (29)

where $(Y_k^1, F_k^1) \in \mathcal{A}_0$ is such that F_k^1 is a null control for Y_k^1 , solution of

$$\begin{cases} Y_{k,t}^1 - \Delta Y_k^1 + g'(y_k) \cdot Y_k^1 = F_k^1 \mathbf{1}_{\omega} - (y_{k,t} - \Delta y_k + g(y_k) - f_k \mathbf{1}_{\omega}), & \text{in} \quad Q_T \\ Y_k^1 = 0 \text{ on } \Sigma_T, \quad Y_k^1(\cdot, 0) = 0 \text{ in } \Omega, \end{cases},$$

and minimizes the functional J.

Theorem

Assume that $g \in W^{2,\infty}(\mathbb{R})$. Then, for any $(y_0,f_0) \in \mathcal{A}$, the sequence $\{y_k,f_k\}_{k>0}$ strongly converges to $\{y,f\} \in \mathcal{A}$ as $k \to \infty$.

Theorem

Assume that $g \in W^{2,\infty}_{loc}(\mathbb{R})$ and that $e^{\|g'(y_0)\|_{L^{\infty}}} \sqrt{E(y_0,f_0)} < e^{1/2}$. Then, the sequence $\{y_k,f_k\}_{k>0}$ strongly converges to $\{y,f\} \in \mathcal{A}$ as $k \to \infty$.

Part 3: a least-square approach - Minimizing sequence

Therefore, we can define a minimizing sequence $\{y_k, f_k\}_{k>0}$ as follows:

$$\begin{cases} (y_0, f_0) \in \mathcal{A}, \\ (y_{k+1}, f_{k+1}) = (y_k, f_k) - \lambda_k(Y_k^1, F_k^1), \quad k > 0, \\ \lambda_k = \operatorname{argmin}_{\lambda \in \mathbb{R}^+} E((y_k, f_k) - \lambda(Y_k^1, F_k^1)) \end{cases}$$
(29)

where $(Y_k^1, F_k^1) \in \mathcal{A}_0$ is such that F_k^1 is a null control for Y_k^1 , solution of

$$\begin{cases} Y_{k,t}^1 - \Delta Y_k^1 + g'(y_k) \cdot Y_k^1 = F_k^1 \mathbf{1}_{\omega} - (y_{k,t} - \Delta y_k + g(y_k) - f_k \mathbf{1}_{\omega}), & \text{in} \quad Q_T \\ Y_k^1 = 0 \text{ on } \Sigma_T, \quad Y_k^1(\cdot, 0) = 0 \text{ in } \Omega, \end{cases}$$

and minimizes the functional J.

Theorem

Assume that $g \in W^{2,\infty}(\mathbb{R})$. Then, for any $(y_0,f_0) \in \mathcal{A}$, the sequence $\{y_k,f_k\}_{k>0}$ strongly converges to $\{y,f\} \in \mathcal{A}$ as $k \to \infty$.

Theorem

Assume that $g \in W^{2,\infty}_{loc}(\mathbb{R})$ and that $e^{\|g'(y_0)\|_{L^\infty}} \sqrt{E(y_0,f_0)} < e^{1/2}$. Then, the sequence $\{y_k,f_k\}_{k>0}$ strongly converges to $\{y,f\} \in \mathcal{A}$ as $k \to \infty$.

One experiment

Take
$$g(s) = -5 s \log^{1.4}(1 + |s|); g' \notin L^{\infty}(\mathbb{R})$$
 but $g'' \in L^{\infty}(\mathbb{R})$!
$$\begin{cases} y_t - 0.1y_{xx} - 5y \log^{1.4}(1 + |y|) = f 1_{(0.2, 0.6)}, & (x, t) \in (0, 1) \times (0, 1/2), \\ y(\cdot, 0) = 40 \sin(\pi x), & x \in (0, 1), \\ y(0, t) = y(1, t) = 0, & t \in (0, 1/2) \end{cases}$$
(30)

The uncontrolled solution blows up at $t_c \approx 0.339$. ³

At each iterates k, the pair (Y_k^1, F_k^1) , minimizer of J is computed through a mixed space-time variational formulation, well-suited for mesh adaptivity.

Conformal approximation in time and space leads to strong convergent approximation $(Y_k^1, F_k^1)_h$ of $(Y_k^1, F_k^1)_h^4$

⁴E. Fernandez-Cara, A. Munch, Strong convergent approximations of null controls for the heat equation, SEMA, 2013

³E. Fernandez-Cara, A. Munch, Numerical null controllability of semi-linear 1D heat equations : fixed point, least souares and Newton methods. Mathematical Control and Related Fields (2012).

♯iterate <i>k</i>	$\frac{\ y_k - y_{k-1}\ _{L^2(Q_T)}}{\ y_{k-1}\ _{L^2(Q_T)}}$	$\sqrt{2E(y_k,f_k)}$	λ_k	$ Y_k^1, F_k^1 _{\mathcal{A}_0}$
0	_	46.17	0.3192	1252.5
1	3.767	38.96	0.4512	854.6
2	1.442	27.61	0.2120	449.60
3	7.034×10^{-1}	16.904	0.3100	178.01
4	2.292×10^{-1}	7.229	0.5040	67.56
5	7.987×10^{-2}	3.107	0.6120	26.00
6	3.162×10^{-2}	1.240	0.3801	10.18
7	5.427×10^{-3}	4.547×10^{-1}	0.5321	4.080
8	2.458×10^{-3}	1.489×10^{-1}	0.5823	1.684
9	1.177×10^{-3}	4.515×10^{-2}	0.6203	0.720
10	5.939×10^{-4}	1.380×10^{-2}	0.7831	0.3214
11	3.134×10^{-4}	4.629×10^{-3}	0.6932	0.1512
12	1.727×10^{-4}	1.861×10^{-3}	0.6512	0.07616
13	9.950×10^{-5}	9.659×10^{-4}	0.7921	0.04182
14	6.018×10^{-5}	4.840×10^{-4}	0.8945	0.02553
15	3.845×10^{-5}	3.933×10^{-4}	0.9230	0.01741
16	2.607×10^{-5}	3.268×10^{-4}	0.9412	0.01306
17	1.876×10^{-5}	2.725×10^{-4}	0.9582	0.01047
18	1.426×10^{-5}	2.262×10^{-4}	0.9356	0.00877
19	1.134×10^{-5}	1.862×10^{-4}	0.9844	0.0075
20	9.339×10^{-6}	9.515×10^{-5}	-40	

Iso-values of the controlled solution in $(0,1) \times (0,0.5)$ and space-time adapted mesh.

Conclusion - Perspective

- Analysis of weak LS method/ damped Newton method for NS leading to globally convergent approximation
- Theoretical justification of the H^{-1} -LS introduced by Glowinski in 79.
- Can be efficient to solve exact controllability problems.
- Possibly useful at the numerical analysis since (coercivity type) inequality like

$$\|y_{k,h} - \overline{y}\|_{V} \le C\sqrt{E(y_{k,h})}, \quad \forall y_{k,h} \in V_h \subset V$$

remains true.

- The analysis can be extended to other "reasonable" nonlinearity (visco-elastic NS, nonlinear hyperbolic PDEs, ...).
- Damped Newton method is possibly useful to solve (nonlinear) inverse problems.

The end

Details and experiments are available here:

Analysis of V'-Least-squares pb. (interior and exterior case) based on the gradient (Conjugate gradient / Barzilai Borwein)

J. Lemoine, A.Münch, P. Pedregal, Analysis of continuous
 H⁻¹-least-squares methods for the steady Navier-Stokes
 system Applied. Math. Optimization 2020

Analysis of V' and $L^2(V')$ -Least-squares pb. based on the Newton-direction

- J. Lemoine, A.Münch, Resolution of the Implicit Euler scheme for the Navier-Stokes equation through a least-squares method. hal-01996429
- J. Lemoine, A. Münch, A fully space-time least-squares method for the unsteady Navier-Stokes system arxiv.org/abs/1909.05034
- J. Lemoine, I. Marin-Gayte, A. Münch, Stong convergent approximation of null controls for sublinear heat equation using a least-squares approach. In preparation

THANK YOU FOR YOUR ATTENTION

