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Introduction

Ω ⊂ RN ; QT = Ω× (0,T ); qT = ω × (0,T )8<: yt −∇ · (c(x)∇y) + d(x , t)y = v 1ω , in QT ,
y = 0, in ΣT ,
y(x , 0) = y0(x), in Ω.

(1)

c := (ci,j ) ∈ C1(Ω;MN (R)); (c(x)ξ, ξ) ≥ c0|ξ|2 in Ω (c0 > 0),

d ∈ L∞(QT ), y0 ∈ L2(Ω);

v = v(x , t) is the control y = y(x , t) is the associated state.

We introduce the linear manifold

C(y0,T ) = { (y , v) : v ∈ L2(qT ), y solves (1) and satisfies y(T , ·) = 0 }.

non empty (see FURSIKOV-IMANUVILOV’96, ROBBIANO-LEBEAU’95)).

NOTATIONS -
Ly := yt −∇ · (c(x)∇y) + d(x , t)y ; L?ϕ := −ϕt −∇ · (c(x)∇ϕ) + d(x , t)ϕ
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PART I
Control of minimal L2(qT )-norm

(P) inf
(y ,v)∈C(y0,T )

J(v , y) =
1
2
‖v‖2L2(qT )



N = 1 - L2(qT )-norm of the HUM control with respect to time
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Figure: y0(x) = sin(πx) - T = 1 - ω = (0.2, 0.8) - t → ‖v(·, t)‖L2(0,1) in [0,T ]



N = 1 - L2-norm of the HUM control with respect to time: Zoom near T
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Figure: y0(x) = sin(πx) - T = 1 - ω = (0.2, 0.8) - t → ‖v(·, t)‖L2(0,1) in [0.92T ,T ]



Minimal L2 norm control
Since it is difficult to construct pairs (v , y) ∈ C(y0,T ) (a fortiori minimizing sequences
for J ! ), it is standard to consider the corresponding dual :

inf
(y,v)∈C(y0,T )

J(y , v) = − inf
φT∈H

J?(φT ), J?(φT ) =
1
2

Z
qT

φ2dxdt +

Z
Ω
φ(0, ·)y0dx

where φ solves the backward system(
L?φ = 0 QT = (0,T )× Ω,

φ = 0 ΣT = (0,T )× ∂Ω, φ(T , ·) = φT Ω.

The Hilbert space H is defined as the completion of D(Ω) with respect to the norm

‖φT ‖H =

„Z
qT

φ2(t , x)dxdt
«1/2

.

From the observability inequality

C(T , ω)‖φ(0, ·)‖2
L2(Ω)

≤ ‖φT ‖2
H ∀φT ∈ L2(Ω),

J? is coercive on H. The HUM control is given by v = φXω on QT .
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Ill-posedness

- The completed space H is huge:

H−s ⊂ H ∀s > 0!

(H may also contain elements which are not distribution !!):
Micu 1 proved in 1D that

the set of initial data y0, for which the corresponding φT , minimizer of J?, does not
belong to any negative Sobolev spaces, is dense in L2(0, 1) !!!

-The dual variable φT is the Lagrange multiplier for the constraint y(·,T ) = 0 may
belong to a "large" dual space, much larger than L2(Ω):

< y(·,T ), φT >= 0

-Ill-posedness here is therefore related to the hugeness of H, poorly approximated
numerically.

-This phenomenon is unavoidable (unless ω = Ω !) and is independent of the choice of
the norm !

1S. Micu, Regularity issues for the null-controllability of the linear 1-d heat equation,
2011



Optimal backward solution φ on ∂ω × [0,T ]

T = 1, y0(x) = sin(πx), a(x) = a0 = 1/10, ω = (0.2, 0.8)
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Figure: T = 1 - ω = (0.2, 0.8) - φN (·, 0.8) for N = 80 on [0,T ] (Left) and on
[0.92T ,T ] (Right).

[Carthel-Glowinski-Lions’94, JOTA], [AM-Zuazua’11, Inverse Problems]



Regularization
For any ε > 0, consider Jε(y , v) = J(y , v) + ε−1

2 ‖y(T )‖2
H−s(0,1)

and

inf
φT ,ε∈L2(0,1)

J?ε (φT ,ε), J?ε (φT ,ε) =
1
2

Z
qT

φ2dxdt +

Z
Ω
φ(0, ·)y0dx +

ε

2
‖φT ,ε‖2

Hs(0,1)

and minimize in L2 the quadratic and strictly convex function J?ε by a conjugate gradient
algorithm as initially proposed in Carthel-Glowinski-Lions’94 2.

φT (x) =
X
k≥1

ak sin(kπx)⇐⇒ yT (x) =
X
p≥1

bp sin(pπx), x ∈ Ω

and taking y0 = 0 (for simplicity), we obtain the relation

bp =
X
k≥1

„
cp,k (ω)gp,k (T ) + ε(kπ)2sδp,k

«
ak,ε, s = 0, 1.

cp,k (ω) = 2
Z
ω

sin(kπx) sin(pπx)dx , gp,k (T ) =
1− e−c(λp+λk )T

λk + λp
, λk = (kπ)2

3 4.
2Carthel-Glowinski-Lions, On exact and approximate boundary controllabilities for

the heat equation: a numerical approach, JOTA (1994)
3S. Kindermann, Convergence rates of the Hilbert uniqueness method via Tikhonov

regularization, J. Optim. Theory Appl., (1999)
4F. Ben Belgacem and S. M. Kaber, On the Dirichlet boundary controllability of the

one-dimensional heat equation: semi-analytical calculations and ill-posedness degree,
Inverse Problems, 2011
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Lack of uniform observability vs. ill-posedness
Discrete observability inequalities : Behavior of Cobs,h w.r.t. h ?

‖φh(0)‖2
L2(Ω)

≤ Cobs,h

Z T

0

Z
ω
φ2

h(t , x)dxdt , ∀φTh ∈ L2(Ω)

Labbe-Trelat 5, Boyer 6 analyzed the case ε = hα and proposes some schemes
leading to

‖φh(0)‖2
L2(Ω)

≤ Cobs

„Z T

0

Z
ω
φ2

h(t , x)dxdt + ε‖φTh‖2
L2(Ω)

«
, ∀φTh ∈ L2(Ω)

Remark- The condition number of the discrete HUM operator : Λh : φTh → yTh
is estimated by

cond(Λh) ≤ Cobs,hC2hh−2

where Z T

0

Z
ω
φ2

h(t , x)dxdt ≤ C2h‖φh(0)‖2
L2(Ω)

, ∀φTh ∈ L2(Ω)

We have that
C2h →∞ h→ 0

5S.Labbe, E. Trelat, Uniform controllability of semidiscrete approximations of
parabolic control systems. (2006)

6F. Boyer, On the penalized HUM approach and its applications to the numerical
approximation of null-controls for parabolic problems (2013)
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Regular and singular perturbation of the controllability problem

Other regularization / perturbation are considered in [AM-Zuazua’10] 7

1- Replace the heat equation by the hyperbolic equation

yε,t − c∆yε + εyε,tt = vε1ω , in QT ,

2- Singular (non uniformly controllable w.r.t. ε) perturbation

yε,t − c∆yε − ε∂t∆yε = vε1ω in QT .

Question:

∂αyα
∂tα

−∆yα = vα1ω in QT , α < 1???

7AM, E. Zuazua, Numerical approximation of null controls for the heat equation :
ill-posedness and remedies. Inverse Problems, (2010)



PART II
Transmutation method 8

8L. Miller, The control transmutation method and the cost of fast controls
2006



The control transmutation method
Let L > 0 and y0 ∈ H1

0 (Ω). IF f ∈ L2([0, L]× ω) is a null-control for w , solution of the
wave equation8><>:

wss − wxx = f 1ω (s, x) ∈ (0, L)× Ω,

w = 0 (0, L)× ∂Ω,

(w(0),ws(0)) = (y0, 0) =⇒ (w(L),ws(L)) = (0, 0)

AND if H ∈ C0([0,T ],M(]− L, L[) is a fundamental controlled solution for the heat
equation (

∂t H − ∂2
s H = 0 in D′(]0,T [×]− L, L[),

H(t = 0) = δ, H(t = T ) = 0

THEN the fonction

v(t , x) = 2
Z L

0
H(t , s)f (s, x)ds 1ω(x), (0,T )× Ω

is a null control in L2(qT ) for y(t , x) = 2
R L

0 H(t , s)w(s, x)ds solution of the heat
equation 8><>:

yt − yxx = v 1ω (0,T )× Ω,

y = 0 (0,T )× ∂Ω,

y(0) = y0
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Computation of the fundamental solution for the heat equation

Jones 9, Rouchon 10. Let δ ∈ (0, T ). For t ∈ (0, δ), H is taken as the Gaussian :

H(t, s) =
1
√

4πt
e−

s2
4t , (t, s) ∈ (0, δ)× R.

so that it remains to join H(δ, s) to 0 at time T . For any a > 0 and any α ≥ 1, we consider the bump function

h(n) = exp
„
−

a

((n − δ)(T − n))α

«
, n ∈ (δ, T )

and then the function

p(t) =
1
√

4πt

8>><>>:
1 t ∈ (0, δ)R T

t h(n)dnR T
δ h(n)dn

t ∈ (δ, T )

so that p(T ) = 0. h ∈ C∞c ([δ, T ]) and p ∈ C∞([0, T ]). h and p are both Gevrey functions of order
1 + 1/α ∈ (1, 2] so that the serie

H(t, s) =
X
k≥0

p(k)(t)
s2k

(2k)!
(2)

is convergent. (2) defines a solution of the heat equation and satisfies H(T , s) = 0 for all s ∈ R and

limt→0+ H(t, s) = δs=0.

9
B. Jones, A fundamental solution for the heat equation which is supported in a strip, J. Math. Anal. Appl. 1977

10
B. Laroche, P. Martin and P. Rouchon, Motion planning for the heat equation, Int. Journal of Robust and

Nonlinear Control, (2000)
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Fundamental solution for the heat equation: example

a0 = 1 by the change of variable (x̃ , t̃) = (a0t , x)
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Figure: L = 0.5 - T = 0.1 - (a, α, δ) = (10−2, 1,T/5) - Left: fundamental solution H
on (0,T )× (0, L) - Right: H(t , L) vs. t ∈ (0,T ).
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Control by the transmutation method
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Figure: y0(x) = sin(πx), L = 0.5 - Controlled wave solution w (Left) and
corresponding HUM control f (Right) on (0, L)× Ω.
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Figure: y0(x) = sin(πx),T = 1, a0 = 1/10, (δ, α) = (T/5, 1) - Controlled heat
solution y (Left) and corresponding transmutted control v (Right) on (0,T )× Ω.



Control by the transmutation method
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Figure: L2(ω) norm of the control v vs t ∈ [0,T ] for
(y0(x),T , a0) = (sin(πx), 1, 1/10)



Transmutation to HUM ?
‖v‖L2(qT ) ≤ 2‖f‖L2((0,L)×ω)‖H‖L2((0,T )×(0,L)

‖H‖L2((0,T )×(0,L) is reduced if δ is small (reduce the time period where the dissipation
is governed by the gaussian), and α1 > 1 (allows to take δ small) and α2 < 1 (increase
the magnitude of the control near T ).

h(s) = exp
„
−

a
(s − δ)α1 (T − s)α2
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Figure: (y0(x), a0) = (sin(πx), 1/10) - Heat fundamental solution H(t , L) vs.
t ∈ [0, T̃ ] (Left) and L2(Ω)-norm of corresponding control v (Right).
α1 = 1.1, α2 = 0.7 ‖g‖L2(QT ) ≈ 5.67× 10−1



-The transmuted control vh = (v)h>0 ensures that ‖yh(T , ·)‖L2(Ω) ≈ 10−5

-Once a solution H in the one dimensional is constructed, we can take

Hn(t , x1, x2, · · · , xn) = H(t , x1)× H(t , x2)× · · · × H(t , xn)

as a fundamental control solution for (t , x) ∈ (0,T )× [−L, L]n. Consequently, the
transmutation provides also a control in any dimension, provided some geometric
condition on the support ω.

-The transmutation method provides uniformly bounded discrete control {vh}
discretization of

v(t , x) = 2
X
k≥0

p(k)(t)
Z L

0

s2k

(2k)!
f (s, x)ds 1ω(x)

- The main difficulty is the robust evaluation of p(k).
11

11P. Martin, P. Rouchon, L. Rosier, Null controllability of one-dimensional parabolic
equations by the flatness approach (2016)



PART III
Change of the norm : framework of Fursikov-Imanuvilov’96 128><>: Minimize J(y , v) =

1
2

ZZ
QT

ρ2|y |2 dx dt +
1
2

ZZ
qT

ρ2
0|v |

2 dx dt

Subject to (y , v) ∈ C(y0,T ).

(3)

where ρ, ρ0 are non-negative continuous weights functions such that
ρ, ρ0 ∈ L∞(QT−δ) ∀δ > 0.

12A.V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture
Notes Series, number 34. Seoul National University, Korea, (1996) 1–163.



Primal (direct) approach

Following Fursikov-Imanuvilov’96, we assume Carleman type weights :

8>><>>:
ρ(x , t) = exp

„
β(x)

T − t

«
, ρ0(x , t) = (T − t)3/2ρ(x , t), β(x) = K1

“
eK2 − eβ0(x)

”
where the Ki are sufficiently large positive constants (depending on T , c0 and ‖c‖C1 )

and β0 ∈ C∞(Ω), β0 > 0 in Ω, (β0)|∂Ω = 0, |∇β0| > 0 outside ω.
(4)

We introduce
P0 = { q ∈ C2(QT ) : q = 0 on ΣT }.

In this linear space, the bilinear form

(p, q)P :=

ZZ
QT

ρ−2L∗p L∗q dx dt +

ZZ
qT

ρ−2
0 p q dx dt

is a scalar product (unique continuation property).

Let P be the completion of P0 for this scalar product.
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Carleman estimates

Lemma (Fursikov-Imanuvilov’96)
Let ρ and ρ0 be given by (4) and let (ρ1, ρ2) = ((T − t)1/2, (T − t)−1/2)ρ. Then
there exists C > 0, only depending on ω, T , c0 and ‖c‖C1 , such that

8>>><>>>:

ZZ
QT

h
ρ−2

2

“
|qt |2 + |∆q|2

”
+ ρ−2

1 |∇q|2 + ρ−2
0 |q|

2
i

dx dt

≤ C

 ZZ
QT

ρ−2|L∗q|2 dx dt +

ZZ
qT

ρ−2
0 |q|

2 dx dt

!
, ∀q ∈ P.

(5)

Lemma (Fursikov-Imanuvilov’96, Fernández-Cara-Guerrero’06)
Under the same assumptions, for any δ > 0, one has

P ↪→ C0([0,T − δ]; H1
0 (Ω)),

where the embedding is continuous. In particular, there exists C > 0, only
depending on ω, T , a0 and ‖a‖C1 , such that, for all q ∈ P,

‖q(· , 0)‖2
H1

0 (Ω)
≤ C

 ZZ
QT

ρ−2|L∗q|2 dx dt +

ZZ
qT

ρ−2
0 |q|

2 dx dt

!
. (6)
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Primal (direct) approach

Proposition
Let ρ and ρ0 be given by (4). Let (y , v) be the corresponding optimal pair for J.
Then there exists p ∈ P such that

y = ρ−2L∗p, v = −ρ−2
0 p|qT . (7)

The function p is the unique solution in P of

ZZ
QT

ρ−2L∗p L∗q dx dt +

ZZ
qT

ρ−2
0 p q dx dt =

Z 1

0
y0(x) q(x , 0) dx , ∀q ∈ P

(8)

Remark
p solves, at least in D′, the following differential problem, that is second order in time
and fourth order in space:8>><>>:

L(ρ−2L∗p) + ρ−2
0 p 1ω = 0, (x , t) ∈ (0, 1)× (0,T )

p(x , t) = 0, (−ρ−2L∗p)(x , t) = 0 (x , t) ∈ {0, 1} × (0,T )

(−ρ−2L∗p)(x , 0) = y0(x), (−ρ−2L∗p)(x ,T ) = 0, x ∈ (0, 1).

(9)
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Conformal approximation

For large integers Nx and Nt , we set ∆x = 1/Nx , ∆t = T/Nt and h = (∆x ,∆t). Let
us introduce the associated uniform triangulation Th , with

QT =
[

K∈Th

K .

The following (conformal) finite element approximations of the space P are introduced:

Ph = { qh ∈ C1,0
x,t (QT ) : qh|K ∈ (P3,x ⊗ P1,t )(K ) ∀K ∈ Th , qh|ΣT ≡ 0 },

where C1,0
x,t (QT ) is the space of the functions in C0(QT ) that are continuously

differentiable with respect to x in QT .
The variational equality (28) is approximated as follows:

8><>:
ZZ

QT

ρ−2L∗ph L∗qh dx dt +

ZZ
qT

ρ−2
0 ph qh dx dt =

Z 1

0
y0(x) qh(x , 0) dx

∀qh ∈ Ph ; ph ∈ Ph .
(10)
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Conformal approximation

Theorem (Fernandez-Cara, AM)
Let ph ∈ Ph be the unique solution to (11). Let us set

yh := ρ−2L?ph, vh := −ρ−2
0 ph 1qT .

Then one has

‖y − yh‖L2(QT ) → 0 and ‖v − vh‖L2(qT ) → 0, as h→ 0

where (y , v) is the minimizer of J.

In practice, we introduce the variable
mh := ρ−1

0 ph ∈ ρ−1
0 Ph ⊂ ρ−1

0 P ⊂ C([0,T ],H1
0 (Ω)) and we solve

8><>:
ZZ

QT

ρ−2L∗(ρ0mh) L∗(ρ0mh) dx dt +

ZZ
qT

mh mh dx dt =

Z 1

0
y0 ρ0(·, 0)mh(·, 0) dx

∀mh ∈ ρ−1
0 Ph ; mh ∈ ρ−1

0 Ph .
(11)
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Experiment with ω = (0.2,0.8)

∆x = ∆t 1/20 1/40 1/80 1/160 1/320
conditioning 1.33× 1014 1.76× 1022 7.86× 1032 2.17× 1044 2.30× 1054

‖ph(· , T )‖L2(0,1)
2.85× 101 2.04× 102 1.59× 103 4.70× 104 6.12× 106

‖yh(· , T )‖L2(0,1)
4.37× 10−2 2.18× 10−2 1.09× 10−2 5.44× 10−3 2.71× 10−3

‖vh‖L2(qT )
1.228 1.251 1.269 1.281 1.288

Table: T = 1/2, y0(x) ≡ sin(πx), a(x) ≡ 10−1. ‖yh(· ,T )‖L2(0,1) = O(h).
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Figure: ω = (0.2, 0.8). The adjoint state ph and its restriction to (0, 1)× {T}.



Experiments with ω = (0.2,0.8)

T = 1/2, y0(x) ≡ sin(πx), a(x) ≡ 10−1.
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Figure: ω = (0.2, 0.8). The state yh (Left) and the control vh (Right).



Experiments with ω = (0.3,0.4)

∆x = ∆t 1/20 1/40 1/80 1/160 1/320
conditioning 3.06× 1014 5.24× 1022 2.13× 1033 5.11× 1044 4.03× 1054

‖ph(· , T )‖L2(0,1)
1.37× 103 5.51× 103 5.12× 104 2.16× 106 3.90× 106

‖yh(· , T )‖L2(0,1)
1.55× 10−1 9.46× 10−2 6.12× 10−2 3.91× 10−2 2.41× 10−2

‖vh‖L2(qT )
5.813 8.203 10.68 13.20 15.81

Table: T = 1/2, y0(x) ≡ sin(πx), a(x) ≡ 10−1. ‖yh(· ,T )‖L2(0,1) = O(h0.66).
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Figure: ω = (0.3, 0.4). The adjoint state ph in QT (Left) and its restriction to
(0, 1)× {T} (Right).



Experiments with ω = (0.3,0.4)
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Figure: ω = (0.3, 0.4). The state yh (Left) and the control vh (Right).
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PART III 8><>: Minimize J(y , v) =
1
2

ZZ
qT

ρ2
0|v |

2 dx dt

Subject to (y , v) ∈ C(y0,T ).

(12)

where ρ0 are non-negative continuous weights functions such that
ρ, ρ0 ∈ L∞(QT−δ) ∀δ > 0.

min
ϕ∈ eWρ0,ρ

Ĵ?(ϕ) =
1
2

ZZ
qT

ρ−2
0 |ϕ(x , t)|2dx dt + (y0, ϕ(·, 0))L2(Ω). (13)

fWρ0,ρ = {ϕ ∈ eΦρ0,ρ : ρ−1L?ϕ = 0 in L2(QT )}

13

13D. Araujo de Souza, AM, A mixed formulation for the direct approximation of the
control of minimal L2-weighted norm for the linear heat equation. Advances in
Computational Mathematics, (2016)
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PART IV
Semi-linear case

E. Fernández-Cara and A. Münch,
Numerical null controllability of a semi-linear 1D heat equation via a least squares
reformulation,
C.R. Acad. Sci. Paris, Série. I, 349, 867-871 (2011)

E. Fernández-Cara and A. Münch,
Numerical null controllability of semi-linear 1D heat equations : fixed point, least
squares and Newton methods,
Mathematical Control and Related Fields, 3(2), 217-246 (2012)



Framework

ω ⊂ Ω, a ∈ C1(Ω,R+
∗ ), y0 ∈ L2(Ω), QT = Ω× (0,T ), qT = ω × (0,T ), v ∈ L∞(qT )8><>:

yt − (c(x)yx )x + f (y) = v1ω , (x , t) ∈ QT

y(x , t) = 0, (x , t) ∈ ∂Ω× (0,T )

y(x , 0) = y0(x), x ∈ (0, 1).

(14)

f : R→ R is, at least, locally Lipschitz-continuous.

|f ′(s)| ≤ C(1 + |s|p) a.e., with p ≤ 5. (15)

Under this condition, (14) possesses exactly one local in time solution.
Under the growth condition [Cazenave-Haraux’89]

|f (s)| ≤ C(1 + |s| log(1 + |s|)) ∀s ∈ R, (16)

the solutions to (14) are globally defined in [0,T ] and one has

y ∈ C0([0,T ]; L2(0, 1)) ∩ L2(0,T ; H1
0 (0, 1)). (17)
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0 (0, 1)). (17)



Statement

The goal is to analyze numerically the null controllability properties of (14), in particular
when blow-up occurs.
Without a growth condition of the kind (16), the solutions to (14) can blow up before
t = T ; in general, the blow-up time depends on the sizes of ‖y0‖L2(Ω) and ‖c‖L∞ .

Assume f (0) = 0. The system (14) is said to be "null-controllable" at time T if, for any
y0 ∈ L2(Ω), there exist controls v ∈ L∞(qT ) and associated states y that are again
globally defined in [0,T ] and satisfy (17) and

y(x ,T ) = 0, x ∈ (0, 1). (18)



Controllability results
The first one states that, if f is “too super-linear” at infinity, then the control cannot
compensate the blow-up phenomena occurring in (0, 1)\ω:

Theorem (Fernandez-Cara and Zuazua’00)
There exist locally Lipschitz-continuous functions f with f (0) = 0 and

|f (s)| ∼ |s| logp(1 + |s|) as |s| → ∞, p > 2, (19)

such that (14) fails to be null-controllable for all T > 0.

The second result provides conditions under which (14) is null-controllable:

Theorem (Fernandez-Cara and Zuazua’00, Barbu’00)
Let T > 0 be given. Assume that f : R→ R is locally Lipschitz-continuous and
satisfies (15) and

f (s)

|s| log3/2(1 + |s|)
→ 0 as |s| → ∞. (20)

Then (14) is null-controllable at time T .



Controllability results
The first one states that, if f is “too super-linear” at infinity, then the control cannot
compensate the blow-up phenomena occurring in (0, 1)\ω:

Theorem (Fernandez-Cara and Zuazua’00)
There exist locally Lipschitz-continuous functions f with f (0) = 0 and

|f (s)| ∼ |s| logp(1 + |s|) as |s| → ∞, p > 2, (19)

such that (14) fails to be null-controllable for all T > 0.

The second result provides conditions under which (14) is null-controllable:

Theorem (Fernandez-Cara and Zuazua’00, Barbu’00)
Let T > 0 be given. Assume that f : R→ R is locally Lipschitz-continuous and
satisfies (15) and

f (s)

|s| log3/2(1 + |s|)
→ 0 as |s| → ∞. (20)

Then (14) is null-controllable at time T .



The proof in [Fernandez-Cara & Zuazua, 2000] is based on

I a linearization of the eq.

yt − (c(x)yx )x + g(z)y = v 1ω , QT (21)

with

g(z) =
f (z)

z
(22)

I a fixed point argument : it is shown that the operator Λ0 : z → y is continuous
compact from L2(QT ) to L2(QT ) and maps the closed ball B(0,M) ⊂ L2(QT )
into itself. Then, Schauder Theorem provides the existence of at least one fixed
point for Λ0.
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Step 1: A linear control problem

First, we deal with the controllability properties of the following linear system8><>:
LAy := yt − (c(x)yx )x + A(x , t)y = v 1ω + B(x , t), (x , t) ∈ QT

y(x , t) = 0, (x , t) ∈ ΣT

y(x , 0) = y0(x), x ∈ (0, 1)

(23)

that arises naturally after linearization of (14). From Lebeau-Robbiano’95 and
Fursikov-Imanuvilov’96, (23) is null-controllable.
We give some numerical methods to address the extremal problem8><>: Minimize J(y , v) =

1
2

ZZ
QT

ρ2|y |2 dx dt +
1
2

ZZ
qT

ρ2
0|v |

2 dx dt

Subject to (y , v) ∈ Clin(y0,T )

(24)

where Clin(y0,T ) is the linear manifold

Clin(y0,T ) = { (y , v) : v ∈ L2(qT ), y solves (23) and satisfies y(T ) = 0 }.

We assume that A ∈ L∞(QT ) and B ∈ L2(QT ) and, also, that B vanishes at t = T in

an appropriate sense (i.e.
ZZ

QT

ρ2
0|B|

2 dx dt < +∞).
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Numerical solution via a dual method [Fernandez-Cara, AM-2010]

8>>>>>><>>>>>>:

Minimize J?(µ, ϕT ) =
1
2

 ZZ
QT

ρ−2|µ|2 dx dt +

ZZ
qT

ρ−2
0 |ϕ|

2 dx dt

!

+

ZZ
QT

B(x , t)ϕ dx dt +

Z 1

0
y0(x)ϕ(x , 0) dx

Subject to (µ, ϕT ) ∈ V

(25)

where V is defined as the completion of D(QT )×D(0, 1) with respect to the norm

(µ, ϕT )→
 ZZ

QT

ρ−2|µ|2 dx dt +

ZZ
qT

ρ−2
0 |ϕ|

2 dx dt

!1/2

.

where ψ solves

L?Aϕ = µ QT , ϕ = 0 ΣT , ϕ(·,T ) = ϕT (0, 1). (26)



Primal (direct) approach

Proposition
Let ρ and ρ0 be given by (4). Let (y , v) be the corresponding optimal pair for J. Then
there exists p ∈ P such that

y = ρ−2L∗Ap, v = −ρ−2
0 p|qT . (27)

The function p is the unique solution in P of

(p, q)P =

Z 1

0
y0(x) q(x , 0) dx +

ZZ
QT

Bq dx dt , ∀q ∈ P (28)

Remark
p solves, at least in D′, the following differential problem, that is second order in time
and fourth order in space:8>><>>:

LA(ρ−2L∗Ap) + ρ−2
0 p 1ω = B, (x , t) ∈ (0, 1)× (0,T )

p(x , t) = 0, (ρ−2L∗p)(x , t) = 0 (x , t) ∈ {0, 1} × (0,T )

(ρ−2L∗Ap)(x , 0) = y0(x), (ρ−2L∗Ap)(x ,T ) = 0, x ∈ (0, 1).

(29)

The “boundary” conditions at t = 0 and t = T appear as Neumann conditions.
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Step 2: Fixed points



Step 2 : Back to the nonlinear problem
For simplicity, we will assume that y0 ∈ L∞(0, 1) and f ∈ C1(R) and is globally
Lipschitz-continuous. Let us introduce the function g, with

g(s) =
f (s)

s
if s 6= 0, g(0) = f ′(0) otherwise.

Then g ∈ C0
b (R) and f (s) = g(s) s for all s (recall that f (0) = 0). We will set

G0 = ‖g‖L∞(R).
For any z ∈ L1(QT ), let us introduce the bilinear form

m(z; p, q) =

ZZ
QT

ρ−2L∗g(z)p L∗g(z)q dx dt +

ZZ
qT

ρ−2
0 p q dx dt ∀p, q ∈ P0. (30)

Then m(z; · , ·) is a scalar product in P0 and can be used to construct a Hilbert space P
that, in principle, may depend on z. We will use the following result, which is a direct
consequence of the Carleman estimates :

Lemma
Under the previous conditions, if the constants Ki in (4) are large enough (depending
on ω, T , c0, ‖c‖C1 and G0), then there exist C1,C2 > 0 such that

C1 m(0; p, p) ≤ m(z; p, p) ≤ C2 m(0; p, p) ∀p ∈ P0 (31)

for all z ∈ L1(QT ).
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Back to the nonlinear problem

Accordingly, all the spaces P provided by the bilinear forms m(z; · , ·) are the same
and, in fact, (31) holds for all p ∈ P:

C1 m(0; p, p) ≤ m(z; p, p) ≤ C2 m(0; p, p) ∀p ∈ P. (32)

We will fix the following norm in P:

‖p‖P = m(0; p, p)1/2 ∀p ∈ P. (33)



The operator Λ0

Let us introduce the mapping Λ0 : L2(QT ) 7→ L2(QT ) where, for any z ∈ L2(QT ),
yz = Λ0(z) is, together with vz , the unique solution to the linear extremal problem

Minimize J(z; y , v) :=
1
2

ZZ
QT

ρ2|y |2 dx dt +
1
2

ZZ
qT

ρ2
0|v |

2 dx dt (34)

subject to v ∈ L2(qT ) and8><>:
yt − (a(x)yx )x + g(z) y = v 1ω (x , t) ∈ QT

y(x , t) = 0, (x , t) ∈ ΣT

y(x , 0) = y0(x), x ∈ (0, 1)

(35)

such that y(·,T ) = 0. Λ0 : L2(QT ) 7→ L2(QT ) is well defined. Furthermore, applying
proposition 2 with A = g(z) and B = 0, we obtain that yz and vz are characterized as
follows :

yz = Λ0(z) = ρ−2L∗g(z)pz , vz = −ρ−2
0 pz |qT , (36)

where pz ∈ P is the unique solution to the linear problem

m(z; pz , q) =

Z 1

0
y0(x) q(x , 0) dx ∀q ∈ P. (37)
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A fixed point method
In order to solve the null controllability problem for (14), it suffices to find a solution to
the fixed point equation

y = Λ0(y), y ∈ L2(QT ). (38)

ALG 1 (fixed point):

y0 ∈ L2(QT ), yn+1 = Λ0(yn), n ≥ 0 (39)

If (yn, vn) ⇀ (y , v) in L2(QT )× L2(qT ), then (y , v) solves the nonlinear null
controllability problem. Indeed, since the g(yn) are uniformly bounded in L∞(QT ),
after extraction of a subsequence it can be assumed that yn (resp. yn

t ) converges
weakly in L2(0,T ; H1

0 (0, 1)) (resp. L2(0,T ; H−1(0, 1))). Therefore, yn converges
strongly in L2(QT ) and a.e., g(yn) converges to g(y) weakly-∗ in L∞(QT ) and we can
take limits and deduce that y solves, together with v , the nonlinear system.

This fixed point formulation has been used in [Fernandez-Cara, Zuazua, 2000] to prove
Theorem 3. Precisely, it is shown there that Λ0 : L2(QT ) 7→ L2(QT ) is continuous and
compact and, also that there exists M > 0 such that Λ0 maps the whole space L2(QT )
inside the ball B(0; M). Then, Schauder’s Theorem provides the existence of at least
one fixed point for Λ0.

It is however important to note that this does not imply the convergence of the

sequence {yn} defined by yn+1 = Λ0(yn).
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A fixed point : a numerical application

f (s) = Cf s logp(1 + |s|) ∀s ∈ R. (40)

We consider the following data:

a(x) = 1/10, p = 1.4, Cf = −5, T = 1/2, y0(x) = α sin(πx)

In the uncontrolled situation, these data lead to the blow-up of the solution of (14) at
time tc ≈ 0.406, 0.367, 0.339, 0.318 for α = 10, 20, 40 and 80, respectively.

We first take ω = (0.2, 0.8) and initialize ALG 1 with

y0(x , t) = y0(x)(1− t/T )2.



A fixed point : a numerical application - Lack of convergence
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Figure: Fixed point method - h = (1/60, 1/60) - y0(x) = α sin(πx) - Evolution of
log10(‖Λ0(yn

h )− yn
h ‖L2(QT )/‖yn

h ‖L2(QT )) vs. n for α = 10, 20, 40 and 80.



A fixed point : a numerical application

‖vh‖L2(qT ) ‖vh‖L∞(qT ) ‖yh‖L2(QT ) ] iterates
α = 10 3.531× 101 2.542× 102 1.742 20
α = 40 2.142× 102 2.053× 103 6.654 14
α = 80 5.109× 102 7.021× 103 14.410 81

Table: Fixed point method - h = (1/60, 1/60) - y0(x) = α sin(πx) - Norms for
α = 10, 40 and α = 80.



A fixed point : a numerical application
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Figure: Fixed point method - h = (1/60, 1/60) - y0(x) = 40 sin(πx) - Control vh
(Left) and corresponding controlled solution yh (Right) in QT .



A fixed point : a numerical application : p ≥ 3/2
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Figure: Fixed point method - h = (1/60, 1/60) - y0(x) ≡ 40 sin(πx) - p = 1.4 -
Evolution of log10(‖Λ0(yn

h )− yn
h ‖L2(QT )/‖yn

h ‖L2(QT )) for p = 1.4, 1.5, 1.6 and p = 1.7.



Least squares reformulation

We now introduce the function ζ(t) = (T − t)−1/2 for all t in (0,T ) and the space
Z := L2(ζ2,QT ). We will denote by Λ the restriction to Z of the mapping Λ0. Obviously,
Λ(z) ∈ Z for all z ∈ Z .

Let us consider the following least squares reformulation of (38):8<: Minimize R(z) :=
1
2
‖z − Λ(z)‖2

Z

Subject to z ∈ Z .
(41)

Any solution to (38) solves (41). Conversely, if y solves (41), we necessarily have
R(y) = 0 (because (14) is null controllable with control-states (y , v) such that
J(z; y , v) < +∞); hence, y also solves (38). This shows that (38) and (41) are, in the
present context, equivalent.



Least squares reformulation

Proposition
Let us assume that g ∈ C1

b (R). Then R ∈ C1(Z ). Moreover, for any z ∈ Z, the
gradient of R with respect to the inner product of Z is given by

DR(z) =
`
1− ρ−2g′(z)pz

´
(z − yz ) + ζ−2g′(z)

`
yzλz + pzµz

´
, (42)

where pz is the unique solution to (37), yz = ρ−2L∗g(z)
pz , λz is the unique solution

to the linear (adjoint) problem

m(z; q, λz ) = (z − yz , ρ
−2L∗g(z)q)Z ∀q ∈ P; λz ∈ P (43)

and, finally, µz = ρ−2L∗g(z)
λz .



Least squares reformulation

Proposition
Let the assumptions in proposition 3 be satisfied and let us introduce
G1 := ‖g′‖L∞(R). There exists a constant K that depends on ω, T , c0, ‖c‖C1 and
G0 but is independent of z and y0, such that the following holds for all z ∈ Z:

‖DR(z)‖Z ≥
`
1− K G1 ‖y0‖L2

´
‖z − Λ(z)‖Z . (44)



Least squares : Gradient method for R

ALG 2 (Least-squares):

z0 ∈ L2(QT ), (zn+1, h)Z = (zn, h)Z − η (DR(zn), h)Z , n ≥ 0



Least squares : a numerical application

fη(s) = Cf s logp(1 + |s|n) ∀s ∈ R, |s|η :=

q
s2 + η2 − η (45)

so that, for all η > 0, gη := Cf logp(1 + |s|η) belongs to C1
b (R). We have fη(0) = 0 and

Theorem applies for fη , since fη and f are equivalent at infinity. We take η = 10−1.
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Figure: Least squares method - h = (1/60, 1/60) - Evolution of
log10(‖Λ(zn

h )− zn
h‖L2(QT )/‖zn

h‖L2(QT )) - α = 10, 20, 40, 80 and algorithm ALG 2’.



Least squares reformulation : numerical application

fη(s) = Cf s logp(1 + |s|n) ∀s ∈ R, |s|η :=

q
s2 + η2 − η (46)

so that, for all η > 0, gη := Cf logp(1 + |s|η) belongs to C1
b (R). Moreover, we have

fη(0) = 0 and Theorem applies for fη , since fη and f are equivalent at infinity. We shall
take η = 10−1.

‖vh‖L2(qT ) ‖vh‖L∞(qT ) ‖zh‖L2(QT ) ‖R′(zh)‖L2(QT ) en

α = 10 3.507× 101 2.532× 102 1.753 1.27× 10−3 1.43× 10−3

α = 20 8.781× 101 7.323× 102 3.180 1.44× 10−3 1.54× 10−3

α = 40 2.137× 102 2.048× 103 6.651 5.42× 10−3 3.39× 10−3

α = 80 2.526× 102 3.299× 103 14.73 2.23× 10−1 7.89× 10−1

Table: Least squares method approach after 100 iterates - h = (1/60, 1/60) -
y0(x) ≡ α sin(πx) - p = 1.4 - Norms for α = 10, 20, 40, 80. Here,
en = ‖Λ(zn

h )− zn
h‖L2(QT )/‖zn

h‖L2(QT ).



Newton-Raphson Algorithm (a different way to linearize f (yn+1))

ALG 3’ (Newton):

1. Choose (y0, z0) ∈ Y .

2. Then, given n ≥ 0 and (yn, vn) ∈ Y , solve in (yn+1, vn+1) ∈ Y the linear
problem

F ′(yn, vn) · (yn+1 − yn, vn+1 − vn) = −F (yn, vn),

i.e. find yn+1 and vn+1 such that (yn+1, vn+1) ∈ Y and8>><>>:
yn+1

t − (c(x)yn+1
x )x + f ′(yn) yn+1 = vn+1 1ω + f ′(yn) yn − f (yn), QT

yn+1 = 0, ΣT

yn+1(·, 0) = y0, (0, 1).
(47)
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Figure: Fixed point method - h = (1/60, 1/60) - y0(x) ≡ 10 sin(πx) - p = 1.4 -
ω = (0.2, 0.5) - Control vh (Left) and corresponding controlled solution yh (Right) in QT .



Least-squares approach

PART IV
A variational least-squares approach
14

14AM, P. Pedregal, Numerical null controllability of the heat equation through a least
squares and variational approach. European Journal of Applied Mathematics, (2014).



Least-squares approach

We define the non-empty set

A =


(u, f ); u ∈ C([0,T ]; L2(Ω))∩L2(0,T ; H1

0 (Ω)); u′ ∈ L2(0,T ,H−1(Ω)),

u(·, 0) = u0, u(·,T ) = 0, f ∈ L2(qT )

ff
and find (u, f ) ∈ A solution of the heat eq. !

For any (u, f ) ∈ A, we define the "corrector" v = v(u, f ) ∈ H1(QT ) solution of the QT -
elliptic problem8><>:

− vtt −∇ · (c(x)∇v) + (Lu − f 1ω) = 0, (x , t) ∈ QT ,

vt = 0, x ∈ Ω, t ∈ {0,T}
v = 0, x ∈ ΣT .

(48)
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Least-squares approach (2)

Theorem
u is a controlled solution of the heat eq. by the control function f 1ω ∈ L2(qT ) if and
only if (u, f ) is a solution of the extremal problem

inf
(u,f )∈A

E(u, f ) :=
1
2

ZZ
QT

(|vt |2 + c(x)|∇v |2)dx dt . (49)

Proof.
⇐= From the null controllability of the heat eq., the extremal problem is well-posed in
the sense that the infimum, equal to zero, is reached by any controlled solution of the
heat eq. (the minimizer is not unique).

=⇒ Conversely, we check that any minimizer of E is a solution of the (controlled) heat
eq.:
We define the vector space

A0 =


(u, f ); u ∈ C([0,T ]; L2(Ω))∩L2(0,T ; H1

0 (Ω)); u′ ∈ L2(0,T ,H−1(Ω)),

u(·, 0) = u(·,T ) = 0, x ∈ Ω, f ∈ L2(qT )

ff
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Least-squares approach (2)
The first variation of E at (u, f ) in the admissible direction (U,F ) ∈ A0 defined by

< E ′(u, f ), (U,F ) >= lim
η→0

E((u, f ) + η(U,F ))− E(u, f )

η
(50)

exists and is given by

< E ′(u, f ), (U,F ) >=

ZZ
QT

(vt Vt + a(x)∇v · ∇V )dx dt , (51)

where the corrector V ∈ H1(QT ) associated to (U,F ) is the solution of8><>:
Ut − Vtt −∇ · (a(x)(∇U +∇V ))− F 1ω = 0, (x , t) ∈ QT ,

Vt (x , 0) = Vt (x ,T ) = 0, x ∈ Ω,

V (0, t) = V (1, t) = 0, t ∈ (0,T ).

(52)

Using that

−
Z T

0
< Ut , v >H−1(Ω),H1(Ω) dt =

ZZ
QT

Uvt dx dt −
Z 1

0
[Uv ]T0 dx =

ZZ
QT

Uvt dx dt ,

we get that

< E ′(u, f ), (U,F ) >=

ZZ
QT

(Uvt − a(x)∇U · ∇v + Fv 1ω) dx dt , ∀(U,F ) ∈ A0



Least-squares approach (2)

Therefore, if (u, f ) minimizes E , the equality < E ′(u, f ), (U,F ) >= 0 for all (U,F ) ∈ A0
implies that the corrector v = v(u, f ) satisfies(

− vt −∇ · (c(x)∇v) + dv = 0, (x , t) ∈ QT ,

v = 0, (x , t) ∈ qT

in addition to the boundary conditions: v = 0 on ΣT and vt = 0 on Ω× {0,T}.
Unique continuation property implies that v = 0 in QT and so E(u, f ) = 0 and so
(u, f ) ∈ A solves the heat eq.

Remark The proposition educes the search of ONE control f distributed in ω to the
minimization of the functional E over A.

Remark Least squares terminology :

E(u, f ) :=
1
2
‖ut −∇ · (a(x)∇u) + d u − f1ω‖2

H−1(QT )
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A numerical application in 1D (inner controllability)

N = 1, Ω = (0, 1), ω = (0.2, 0.5), u0(x) = sin(πx), c(x) = c0 = 0.25, T = 1/2,
d := 0
Starting point of the algorithm: (u, f ) = (u0(x)(1− t/T )2, 0) ∈ A
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h‖A) (full line) vs. the iteration n of the CG algorithm.



A numerical application in 1D (inner controllability)
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A numerical application in 1D (inner controllability)
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PART V
Inverse problem - Reconstruction of y from yqT
15

15D. Araujo de Souza, AM, Inverse problems for linear parabolic equations using
mixed formulations - Part 1 : Theoretical analysis. Journal of Inverse and Ill posed
problems. (2016)



INVERSE PROBLEM - RECONSTRUCTION OF y FROM yqT

Ω ⊂ RN (N ≥ 1) - T > 0, c ∈ C1(Ω,R)), d ∈ L∞(QT ), y0 ∈ H8<: Ly := yt −∇ · (c∇y) + dy = f , QT := Ω× (0,T )
y = 0, ΣT := ∂Ω× (0,T )
y(·, 0) = y0, Ω.

(53)

I Inverse Problem : Distributed observation on qT = ω × (0,T ), ω ⊂ Ω(
X = L2(qT ),

Given (yobs, f ) ∈ (L2(qT ),X), find y s.t . {(53) and y − yobs = 0 on qT }

WELL-KNOWN DIFFICULTY:„
Ly ∈ L2(QT ), y ∈ L2(qT ), y|ΣT

= 0
«

=⇒ y ∈ C([δ,T ],H1
0 (Ω)), ∀δ > 0



Carleman ineq.

8>>><>>>:

ZZ
QT

ρ−2
0 |q|

2 dx dt

≤ C

 ZZ
QT

ρ−2|L∗q|2 dx dt +

ZZ
qT

ρ−2
0 |q|

2 dx dt

!
, ∀q ∈ P.

(54)
t =⇒ T − t

ρ̃(x , t) = ρ(x ,T − t), ρ̃0(x , t) = ρ0(x ,T − t)

8>>><>>>:

ZZ
QT

ρ̃−2
0 |y |

2 dx dt

≤ C

 ZZ
QT

ρ̃−2|Ly |2 dx dt +

ZZ
qT

ρ̃−2
0 |y |

2 dx dt

!
, ∀y ∈ Y .

(55)
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 ZZ
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t =⇒ T − t

ρ̃(x , t) = ρ(x ,T − t), ρ̃0(x , t) = ρ0(x ,T − t)

8>>><>>>:

ZZ
QT

ρ̃−2
0 |y |

2 dx dt

≤ C

 ZZ
QT

ρ̃−2|Ly |2 dx dt +

ZZ
qT

ρ̃−2
0 |y |

2 dx dt

!
, ∀y ∈ Y .

(55)



Second order mixed formulation .... as in the previous part

We then define the following extremal problem :

8>><>>:
Minimize J(y) :=

1
2

ZZ
qT

ρ−2
0 |y(x , t)− yobs(x , t)|2 dx dt + r

ZZ
QT

(ρ−1L y)2 dx dt

Subject to y ∈ W :=


y ∈ Y : ρ−1Ly = 0 in L2(QT )

ff
(P)

with ρ0, ρ ∈ R where (ρ? ∈ R+
? )

R := {w : w ∈ C(QT ); w ≥ ρ? > 0 in QT ; w ∈ L∞(Ω× (δ,T )) ∀δ > 0}

Let Y0 :=
n

y ∈ C2(QT ) : y = 0 on ΣT

o
and for η > 0, ρ ∈ R, the bilinear form by

(y , y)Y0 :=

ZZ
qT

ρ−2
0 y y dx dt + η

ZZ
QT

ρ−2L yL y dx dt , ∀y , y ∈ Y0.

Let Y be the completion of Y0 for this scalar product endowed with the norm

‖y‖2
Y := ‖ρ−1

0 y‖2
L2(qT )

+ η‖ρ−1L y‖2
L2(QT )

, ∀y ∈ Y.
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Mixed formulation

Find (y , λ) ∈ Y × L2(QT ) solution of

(
ar (y , y) + b(y , λ) = l(y) ∀y ∈ Y,

b(y , λ) = 0 ∀λ ∈ L2(QT ),
(56)

where

ar : Y × Y → R, a(y , y) :=

ZZ
qT

ρ−2
0 y y dx dt + r

ZZ
QT

ρ−2Ly Ly dx dt

b : Y × L2(QT )→ R, b(y , λ) :=

ZZ
QT

ρ−1Ly λ dx dt

l : Y → R, l(y) :=

ZZ
qT

ρ−2
0 y yobs dx dt .



Mixed formulation

Corollary
Let ρ0 ∈ R, ρ ∈ R ∩ L∞(QT ) and assume ∃K s.t.

ρ0 ≤ Kρc,0, ρ ≤ Kρc in QT .

If (y , λ) is the solution of the mixed formulation (56), then ∃C > 0 such that

‖ρ−1
c,0y‖L2(QT ) ≤ C‖y‖Y .



H1
0 − L2 first order formulation

First order formulation involving y and the flux p = c(x)∇y .

8<: I(y ,p) := yt −∇ · p + d y = f , J (y ,p) := c(x)∇y − p = 0 in QT ,
y = 0 on ΣT ,
y(x , 0) = y0(x) in Ω.

(57)

(y0, f ) ∈ L2(Ω)× L2(QT ) =⇒ p ∈ L2(QT ), y ∈ L2(0,T ,H1
0 (Ω)), yt ∈ L2(0,T ,H−1(Ω))

I Inverse Problem : Distributed observation on qT = ω × (0,T ), ω ⊂ Ω(
X = L2(qT ),

Given (yobs, f ) ∈ (L2(qT ),X), find (y ,p) s.t . {(57) and y − yobs = 0 on qT }



Parabolic case: H1
0 − L2 first order formulation of the parabolic

The extremal problem is then :

8>><>>:
Minimize J(y ,p) :=

1
2

ZZ
qT

ρ−2
0 |y(x , t)− yobs(x , t)|2 dx dt + r....

(y ,p) ∈ V :=


(y ,p) ∈ U : ρ−1

1 J (y ,p) = 0 in L2(QT ), ρ−1I(y ,p) = 0 in L2(QT )

ff

U - completion of U0 :=
n

(y ,p) ∈ C1(QT )× C1(QT ) : y = 0 on ΣT

o
for

((y ,p), (y ,p))U0 =

ZZ
qT

ρ−2
0 y y dx dt + η1

ZZ
QT

ρ−2
1 J (y ,p) · J (y ,p) dx dt

+ η2

ZZ
QT

ρ−2I(y ,p)I(y ,p) dx dt ∀(y ,p), (y ,p) ∈ U0.

for any η1, η2 > 0 and any ρ, ρ0, ρ1 ∈ R

‖(y ,p)‖2
U := ‖ρ−1

0 y‖2
L2(qT )

+ η1‖ρ−1
1 J (y ,p)‖2

L2(QT )
+ η2‖ρ−1I(y ,p)‖2

L2(QT )
.
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Parabolic case: H1
0 − L2 first order formulation - Mixed formulation

Precisely, we set X := L2(QT )× L2(QT ) and then we consider the following mixed
formulation : find ((y ,p), (λ,µ)) ∈ U × X solution of

(
ar ((y ,p), (y ,p)) + b((y ,p), (λ,µ)) = l(y ,p) ∀(y ,p) ∈ U ,

b((y ,p), (λ,µ)) = 0 ∀(λ,µ) ∈ X ,
(58)

where

ar : U × U → R, ar ((y ,p), (y ,p)) :=

ZZ
qT

ρ−2
0 y y dx dt

+ r1

ZZ
QT

ρ−2
1 J (y ,p) · J (y ,p) dx dt + r2

ZZ
QT

ρ−2I(y ,p)I(y ,p) dx dt

b : U × X → R, b((y ,p), (λ,µ)) :=

ZZ
QT

ρ−1
1 J (y ,p) · µ dx dt +

ZZ
QT

ρ−1I(y ,p)λ dx dt

l : U → R, l(y ,p) :=

ZZ
qT

ρ−2
0 y yobs dx dt .

∀r = (r1, r2) ∈ (R+)2



Parabolic case: H1
0 − L2 first order formulation - Global stability

Proposition (Imanuvilov-Puel-Yamamoto, 2010)

ρp(x , t) := exp
„
β(x)

t2

«
, β(x) := K1

“
eK2 − eβ0(x)

”
,

ρp,0(x , t) := tρp(x , t), ρp,1(x , t) := t−1ρp(x , t), ρp,2(x , t) := t−2ρp(x , t)

∃C = C(ω,T ) > 0 s.t.

‖ρ−1
p,0y‖2

L2(QT )
+‖ρ−1

p,1∇y‖2
L2(QT )

≤ C
“
‖ρ−1

p G‖2
L2(QT )

+ ‖ρ−1
p,2g‖2

L2(QT )
+ ‖ρ−1

p,0y‖2
L2(qT )

”
,

for any 8<: y ∈ K :=
n

y ∈ L2(0,T ; H1
0 (Ω)) : yt ∈ L2(0,T ; H−1(Ω))

o
,

Ly = g +∇ · G in QT , (g,G) ∈ L2(QT )× L2(QT ).

(
Ly = I(y ,p)−∇ · J (y ,p),

J (y ,p) := c(x)∇y − p, I(y ,p) := yt −∇ · p + dy



N = 1 - Heat eq. Comparison with the standard method

y0(x) = sin(πx)20, QT = (0, 1)× (0,T ), qT = (0.7, 0.8)× (0,T ), T = 1/2

min
y0h

„
Jh(y0h) +

h2

2
‖y0h‖2

L2(Ω)

«
vs. min

λh
J??(λh) over Λh (59)

‖y − yh‖L2(QT )

‖y‖L2(QT )

≈ 5.86× 10−2,
‖y − yh‖L2(QT )

‖y‖L2(QT )

≈ 7.70× 10−2



N = 1 - Comparison with the standard method

y0(x) = sin(πx)20, QT = (0, 1)× (0,T ), qT = (0.7, 0.8)× (0,T ), T = 1/2
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N = 1 - Comparison with the standard method
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Final comments

THE VARIATIONAL APPROACH CAN BE USED IN THE CONTEXT OF MANY OTHER
CONTROLLABLE SYSTEMS FOR WHICH APPROPRIATE CARLEMAN ESTIMATES ARE
AVAILABLE.

THE APPROXIMATION IS ROBUST (WE HAVE TO INVERSE SYMMETRIC DEFINITE
POSITIVE AND VERY SPARSE MATRICE WITH DIRECT LU AND CHOLESKY SOLVERS)

WITH CONFORMAL TIME-SPACE FINITE ELEMENTS APPROXIMATIONS, WE OBTAIN
STRONG CONVERGENCE RESULTS WITH RESPECT TO h = (∆x ,∆t).

THE PRICE TO PAY IS TO USED C1 FINITE ELEMENTS (AT LEAST IN SPACE) ..... BUT WE
MAY INTRODUCE LOWER ORDER SYSTEM.

IN THAT SPACE-TIME APPROACH, THE SUPPORT OF THE CONTROL MAY VARIES IN TIME
(WITHOUT ADDITIONAL DIFFICULTIES).

THIS APPROACH MAY BE APPLIED FOR INVERSE PROBLEMS, OBSERVATION PROBLEMS,
RECONSTRUCTION OF DATA, ....



Final comments - Application

I Approximation of observability constant

Cobs(T , ω) = sup
ϕT∈H1

0 (Ω)

‖ϕ(·, 0)‖2
L2(Ω)

‖ϕ‖2
L2(ω×(0,T ))

. (60)

Example : yt − εyxx + yx = 0, y(0, t) = vε, ε > 0

I Optimization of the support of the control

inf
ω⊂Ω,|ω|=L|Ω|

‖vω‖L2(ω×(0,T )), L ∈ (0, 1) (61)
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Cobs(T , ω) = sup
ϕT∈H1

0 (Ω)

‖ϕ(·, 0)‖2
L2(Ω)

‖ϕ‖2
L2(ω×(0,T ))

. (60)
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