Approximation of controllability and inverse problems for PDE

Arnaud Münch
Université Clermont Auvergne - Clermont-Ferrand
Laboratoire de Mathématiques Blaise Pascal
http://math.univ-bpclermont.fr/ munch/

CIMPA School - Marrakech - December 12-16, 2016

PART 1

Very general context and purposes

We discuss in this course the (numerical) approximation of control and inverse problem for mainly linear PDEs.

Problem 1: Controllability problem - Given a controllable PDE system

$$
\left\{\begin{align*}
\frac{d}{d t} y & =\mathcal{L}(y)+C u, t \in[0, T] \tag{1}\\
y(0) & =y_{0}
\end{align*}\right.
$$

find a convergent approximation $\left\{\boldsymbol{u}_{\boldsymbol{h}}\right\}_{h}$ of \boldsymbol{u} ?

Problem 2: Inverse problem - Given an observable PDE system

Very general context and purposes

We discuss in this course the (numerical) approximation of control and inverse problem for mainly linear PDEs.

Problem 1: Controllability problem - Given a controllable PDE system

$$
\left\{\begin{align*}
\frac{d}{d t} y & =\mathcal{L}(y)+C \boldsymbol{u}, t \in[0, T] \tag{1}\\
y(0) & =y_{0}
\end{align*}\right.
$$

find a convergent approximation $\left\{\boldsymbol{u}_{\boldsymbol{h}}\right\}_{h}$ of \boldsymbol{u} ?

Problem 2: Inverse problem - Given an observable PDE system

$$
\left\{\begin{array}{l}
\frac{d}{d t} y=\mathcal{L}(y), t \in[0, T] \tag{2}\\
y(0)=y_{0}
\end{array}\right.
$$

find a convergence approximation $\left\{y_{h}\right\}_{h}$ of y from a partial observation By of y ?

Very general context and purposes - 2

We discuss only hyperbolic equations and parabolic equations and emphasize space-time variational methods.

Part I-Controllability of the wave equation : BOUNDARY CASE

Continuous case

$\Omega \subset \mathbb{R}^{N}$ bounded domain with boundary Γ of class C^{2}

$$
\left\{\begin{array}{lr}
\varphi_{\text {tt }}-\Delta \varphi=0, & (x, t) \in Q_{T}:=\Omega \times(0, T) \\
\varphi=0, & (x, t) \in \Sigma_{T} \\
\left(\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)\right)=\left(\varphi_{0}, \varphi_{1}\right), & x \in \Omega
\end{array}\right.
$$

$\left(\varphi_{0}, \varphi_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$

Conservative system with "energy" :

$$
E(t):=\frac{1}{2}\left\|\varphi(\cdot, t), \varphi_{t}(\cdot, t)\right\|_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2}
$$

The wave equation with initial data in $L^{2} \times H^{-1}$

$$
\left\{\begin{array}{lc}
y_{t t}-\Delta y=0, & Q_{T} \tag{4}\\
y=v 1_{\Gamma_{0}}(x), & \Sigma_{T} \\
\left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right), & \Omega
\end{array}\right.
$$

$v=v(t)$ - control function in $L^{2}\left(\Sigma_{T}\right) . \Gamma_{0} \subset \partial \Omega . \Gamma_{T}:=\Gamma_{0} \times(0, T)$.

Existence - Uniqueness

$\forall\left(y_{0}, y_{1}\right) \in \boldsymbol{H}:=L^{2}(\Omega) \times H^{-1}(\Omega)$ and $\forall v \in L^{2}\left(\Sigma_{T}\right)$, \exists ! solution y to (68), and (see Lions'88):

$$
\begin{equation*}
y=y(v) \in C^{0}\left([0, T] ; L^{2}(\Omega)\right) \cap C^{1}\left([0, T] ; H^{-1}(\Omega)\right) \tag{5}
\end{equation*}
$$

and

$$
\|y\|_{L^{\infty}\left(0, T_{;} L^{2}(\Omega)\right)} \leq C\left(\left\|y_{0}, y_{1}\right\|_{L^{2}(\Omega) \times H^{-1}(\Omega)}+\|v\|_{L^{2}\left(\Sigma_{T}\right)}\right)
$$

The controllability of the wave equation

EXACT CONTROLLABILITY-

The system (68) is exactly controllable at time T if and only if for each $\left(y_{0}, y_{1}\right) \in \boldsymbol{Y}$ and $\left(z_{0}, z_{1}\right) \in \boldsymbol{Y}$, there exists $v \in L^{2}(0, T)$ such that

$$
\begin{equation*}
\left(y_{v}(\cdot, T),\left(y_{v}\right)_{t}(\cdot, T)\right)=\left(z_{0}, z_{1}\right), \quad \text { in } \Omega . \tag{6}
\end{equation*}
$$

NULL CONTROLLABILITY-
The system (68) is null cont ollable at time T if and only if for each $\left(y_{0}, y_{1}\right) \in Y$, there exists $v \in L^{2}(0, T)$ such that

$$
\begin{equation*}
\left(y_{v}(\cdot, T),\left(y_{v}\right)_{t}(\cdot, T)\right)=(0,0), \quad \text { in } \Omega . \tag{7}
\end{equation*}
$$

APPROXIMATE CONTROLLABILITY-
 The system (68) is approximatively controllable at time T if and only if, for any $\epsilon>0$ for each $\left(y_{0}, y_{1}\right) \in Y$, there exists $v \in L^{2}(0, T)$ such that

$$
\left.\| y_{v}(\cdot, T),\left(y_{V}\right)_{t}(\cdot, T)\right)-\left(z_{0}, z_{1}\right) \|_{L^{2} \times H^{-1}} \leq \epsilon .
$$

The controllability of the wave equation

EXACT CONTROLLABILITY-

The system (68) is exactly controllable at time T if and only if for each $\left(y_{0}, y_{1}\right) \in \boldsymbol{Y}$ and $\left(z_{0}, z_{1}\right) \in \boldsymbol{Y}$, there exists $v \in L^{2}(0, T)$ such that

$$
\begin{equation*}
\left(y_{v}(\cdot, T),\left(y_{v}\right)_{t}(\cdot, T)\right)=\left(z_{0}, z_{1}\right), \quad \text { in } \Omega . \tag{6}
\end{equation*}
$$

NuLL CONTROLLABILITY-
The system (68) is null controllable at time T if and only if for each $\left(y_{0}, y_{1}\right) \in \boldsymbol{Y}$, there exists $v \in L^{2}(0, T)$ such that

$$
\begin{equation*}
\left(y_{v}(\cdot, T),\left(y_{v}\right)_{t}(\cdot, T)\right)=(0,0), \quad \text { in } \Omega \tag{7}
\end{equation*}
$$

The controllability of the wave equation

EXACT CONTROLLABILITY-

The system (68) is exactly controllable at time T if and only if for each $\left(y_{0}, y_{1}\right) \in \boldsymbol{Y}$ and $\left(z_{0}, z_{1}\right) \in \boldsymbol{Y}$, there exists $v \in L^{2}(0, T)$ such that

$$
\begin{equation*}
\left(y_{v}(\cdot, T),\left(y_{v}\right)_{t}(\cdot, T)\right)=\left(z_{0}, z_{1}\right), \quad \text { in } \Omega \tag{6}
\end{equation*}
$$

NuLL CONTROLLABILITY-
The system (68) is null controllable at time T if and only if for each $\left(y_{0}, y_{1}\right) \in \boldsymbol{Y}$, there exists $v \in L^{2}(0, T)$ such that

$$
\begin{equation*}
\left(y_{v}(\cdot, T),\left(y_{v}\right)_{t}(\cdot, T)\right)=(0,0), \quad \text { in } \Omega \tag{7}
\end{equation*}
$$

APPROXIMATE CONTROLLABILITY-

The system (68) is approximatively controllable at time T if and only if, for any $\epsilon>0$ for each $\left(y_{0}, y_{1}\right) \in \boldsymbol{Y}$, there exists $v \in L^{2}(0, T)$ such that

$$
\begin{equation*}
\left.\| y_{v}(\cdot, T),\left(y_{v}\right)_{t}(\cdot, T)\right)-\left(z_{0}, z_{1}\right) \|_{L^{2} \times H^{-1}} \leq \epsilon . \tag{8}
\end{equation*}
$$

Link with the observability of the adjoint system

The controllability property of the wave equation (68) is related to the observability for the corresponding adjoint problem :

$$
\begin{cases}L^{\star} \varphi:=\varphi_{t t}-\Delta \varphi=0 & \text { in } Q_{T} \tag{9}\\ \varphi=0 & \text { on } \Sigma_{T} \\ \left(\varphi(\cdot, T), \varphi_{t}(\cdot, T)\right)=\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} & \text { in } \Omega\end{cases}
$$

$\boldsymbol{V}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

Definition (Observability inequality)

System (9) is observable in time T if there exists a positive constant $C_{\text {obs }}>0$ such that

$$
\begin{equation*}
\left\|\left(\varphi_{0}, \varphi_{1}\right)\right\|_{V}^{2} \leq C_{o b s} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} \tag{10}
\end{equation*}
$$

Link with the observability of the adjoint system

The controllability property of the wave equation (68) is related to the observability for the corresponding adjoint problem :

$$
\begin{cases}L^{\star} \varphi:=\varphi_{t t}-\Delta \varphi=0 & \text { in } Q_{T} \tag{9}\\ \varphi=0 & \text { on } \Sigma_{T} \\ \left(\varphi(\cdot, T), \varphi_{t}(\cdot, T)\right)=\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} & \text { in } \Omega\end{cases}
$$

$\boldsymbol{V}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

Definition (Observability inequality)

System (9) is observable in time T if there exists a positive constant $C_{\text {obs }}>0$ such that

$$
\begin{equation*}
\left\|\left(\varphi_{0}, \varphi_{1}\right)\right\|_{V}^{2} \leq C_{o b s} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} \tag{10}
\end{equation*}
$$

Link with the observability of the adjoint system

The controllability property of the wave equation (68) is related to the observability for the corresponding adjoint problem :

$$
\begin{cases}L^{\star} \varphi:=\varphi_{t t}-\Delta \varphi=0 & \text { in } Q_{T} \tag{9}\\ \varphi=0 & \text { on } \Sigma_{T} \\ \left(\varphi(\cdot, T), \varphi_{t}(\cdot, T)\right)=\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} & \text { in } \Omega\end{cases}
$$

$\boldsymbol{V}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

Definition (Observability inequality)

System (9) is observable in time T if there exists a positive constant $C_{\text {obs }}>0$ such that

$$
\begin{equation*}
\left\|\left(\varphi_{0}, \varphi_{1}\right)\right\|_{V}^{2} \leq C_{o b s} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} \tag{10}
\end{equation*}
$$

Hidden regularity : If $\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V}$, then $\frac{\partial \varphi}{\partial \nu} \in L^{2}(\partial \Omega \times(0, T))$.

Characterization of the controls

Let φ the solution of the adjoint problem

$$
\begin{equation*}
L^{\star} \varphi:=0 \quad \text { in } \quad Q_{T}, \quad \varphi=0 \quad \text { on } \quad \Sigma_{T}, \quad\left(\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)\right)=\left(\varphi_{0}, \varphi_{1}\right) \tag{11}
\end{equation*}
$$

Notation $-<y_{1}, \varphi_{0}>_{H^{-1}, H_{0}^{1}}=\int_{\Omega} \nabla\left(-\Delta^{-1} y_{1}\right) \nabla \varphi_{0} d x$

Characterization of the controls

Let φ the solution of the adjoint problem

$$
\begin{equation*}
L^{\star} \varphi:=0 \quad \text { in } \quad Q_{T}, \quad \varphi=0 \quad \text { on } \quad \Sigma_{T}, \quad\left(\varphi(\cdot, 0), \varphi_{t}(\cdot, 0)\right)=\left(\varphi_{0}, \varphi_{1}\right) \tag{11}
\end{equation*}
$$

Lemma (Caracterization of the controls for (68))

The initial data $\left(y_{0}, y_{1}\right) \in \boldsymbol{H}$ is controllable to zero IFF there exists $v \in L^{2}\left(\Gamma_{0} \times(0, T)\right)$ such that

$$
\begin{equation*}
\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} v d \sigma d t+<y_{0}, \varphi_{1}>_{L^{2}, L^{2}}-<y_{1}, \varphi_{0}>_{H^{-1}, H_{0}^{1}}=0 \tag{12}
\end{equation*}
$$

for any $\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and the corresponding solution φ.

Notation $-<y_{1}, \varphi_{0}>_{H^{-1}, H_{0}^{1}}=\int_{\Omega} \nabla\left(-\Delta^{-1} y_{1}\right) \nabla \varphi_{0} d x$
Notation - $<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>:=<y_{0}, \varphi_{1}>_{L^{2}, L^{2}}-<y_{1}, \varphi_{0}>_{H^{-1}, H_{0}^{1}}$

Variational approach - Introduction of J^{\star}

The characterization of the controls leads to the introduction of the following functional $J^{\star}: V \rightarrow \mathbb{R}$ defined by

$$
J^{\star}\left(\varphi_{0}, \varphi_{1}\right):=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>
$$

Theorem
Let $\left(y_{0}, y_{1}\right) \in \boldsymbol{H}$. and suppose that $\left(\hat{\varphi_{0}}, \hat{\varphi_{1}}\right) \in \boldsymbol{V}$ is a minimizer of \boldsymbol{J}^{\star}. If $\hat{\varphi}$ is the corresponding adjoint solution, then $v=\frac{\partial \hat{\varphi}}{\partial \nu} 1_{\Gamma_{0}}$ is a null control for $\left(y_{0}, y_{1}\right)$

Variational approach - Introduction of J^{\star}

The characterization of the controls leads to the introduction of the following functional $J^{\star}: V \rightarrow \mathbb{R}$ defined by

$$
J^{\star}\left(\varphi_{0}, \varphi_{1}\right):=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>
$$

Theorem
Let $\left(y_{0}, y_{1}\right) \in \boldsymbol{H}$. and suppose that $\left(\hat{\varphi_{0}}, \hat{\varphi_{1}}\right) \in \boldsymbol{V}$ is a minimizer of \boldsymbol{J}^{\star}. If $\hat{\varphi}$ is the corresponding adjoint solution, then $v=\frac{\partial \hat{\varphi}}{\partial \nu} 1_{\Gamma_{0}}$ is a null control for $\left(y_{0}, y_{1}\right)$

Variational approach - Introduction of J^{\star}

The characterization of the controls leads to the introduction of the following functional $J^{\star}: V \rightarrow \mathbb{R}$ defined by

$$
J^{\star}\left(\varphi_{0}, \varphi_{1}\right):=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>
$$

Theorem

Let $\left(y_{0}, y_{1}\right) \in \boldsymbol{H}$. and suppose that $\left(\hat{\varphi_{0}}, \hat{\varphi_{1}}\right) \in \boldsymbol{V}$ is a minimizer of \boldsymbol{J}^{\star}. If $\hat{\varphi}$ is the corresponding adjoint solution, then $v=\frac{\partial \hat{\varphi}}{\partial \nu} 1_{\Gamma_{0}}$ is a null control for $\left(y_{0}, y_{1}\right)$

$$
D J^{\star}\left(\hat{\varphi}_{0}, \hat{\varphi}_{1}\right) \cdot\left(\varphi_{0}, \varphi_{1}\right)=\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \hat{\varphi}}{\partial \nu}(\cdot, t) \frac{\partial \varphi}{\partial \nu}(\cdot, t) d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>
$$

Existence of minimizers for J^{\star}

```
Theorem
Suppose that the adjoint system is observable at time \(T\) and let \(\left(y_{0}, y_{1}\right) \in L^{2}(\Omega) \times H^{-1}(\Omega)\). The functional \(J^{\star}\) has a unique minimizer \(\left(\hat{\varphi}_{0}, \hat{\varphi}_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)\).
```

Observability at time T implies the coercivity of $J \star$

$$
J^{\star}\left(\varphi_{0}, \varphi_{1}\right) \geq \frac{C_{o b s}^{-1}}{2}\left\|\left(\varphi_{0}, \varphi_{1}\right)\right\|_{\boldsymbol{V}}^{2}-\left\|\left(\varphi_{0}, \varphi_{1}\right)\right\| \boldsymbol{v}\left\|\left(y_{0}, y_{1}\right)\right\|_{\boldsymbol{H}}
$$

Observability of $\varphi \Longrightarrow$ Controllability of y

Observability inequality

True if Γ_{0} and $T>0$ are "large" enough!

Multiplier techniques - [Ho 1986] ${ }^{1}$ proved that if one considers subsets of Γ of the form

$$
\Gamma_{0}=\Gamma\left(x_{0}\right)=\left\{x \in \Gamma ;\left(x-x^{0}\right) \cdot \nu(x)>0\right\}
$$

for some $x^{0} \in \mathbb{R}^{N}$ and $T>T\left(x^{0}\right)=2\left\|x-x^{0}\right\|_{L \infty(\Omega)}$, the observability holds.
Multiplier $\left(x-x^{0}\right) \cdot \nabla \varphi$.
${ }^{1}$ L.F. Ho, Observabilité frontière de l'équation des ondes, 1986

Multiplier method for the $1 D$ case $, \Omega=(0,1) \subset \mathbb{R}, \Gamma_{0}=\{1\}, x_{0}=\{0\}$
We multiply the φ equation by $x \varphi_{\chi}$ and integrate over Q_{T} :

$$
\begin{aligned}
0= & \iint_{Q_{T}}\left(\varphi_{t t}-\varphi_{x x}\right) x \varphi_{x} d x d t=\iint_{Q_{T}} x \varphi_{t t} \varphi_{x} d x d t-\int_{0}^{T} \int_{0}^{1} x \varphi_{x x} \varphi_{x} d x d t \\
= & \iint_{Q_{T}}-x \varphi_{t} \varphi_{x t} d x d t+\int_{0}^{1}\left[x \varphi_{t} \varphi_{x}\right]_{0}^{T} d x-\iint_{Q_{T}} x \frac{1}{2}\left(\left|\varphi_{x}\right|^{2}\right)_{x} d x \\
= & \iint_{Q_{T}}-x \frac{1}{2}\left(\left|\varphi_{t}\right|^{2}\right)_{x} d x d t+\int_{0}^{1}\left[x \varphi_{t} \varphi_{x}\right]_{0}^{T} d x+\frac{1}{2} \iint_{Q_{T}}\left|\varphi_{x}\right|^{2} d x d t-\frac{1}{2} \int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t \\
= & \iint_{Q_{T}} \frac{1}{2}\left(\left|\varphi_{t}\right|^{2}\right) d x d t-\frac{1}{2} \int_{0}^{T}\left|\varphi_{t}(1, t)\right|^{2} d t+\int_{0}^{1}\left[x \varphi_{t} \varphi_{x}\right]_{0}^{T} d x \\
& +\frac{1}{2} \iint_{Q_{T}}\left|\varphi_{x}\right|^{2} d x d t-\frac{1}{2} \int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t
\end{aligned}
$$

Multiplier method for the $1 D$ case $, \Omega=(0,1) \subset \mathbb{R}, \Gamma_{0}=\{1\}, x_{0}=\{0\}$
We multiply the φ equation by $x \varphi_{\chi}$ and integrate over Q_{T} :

$$
\begin{aligned}
& 0= \iint_{Q_{T}}\left(\varphi_{t t}-\varphi_{x x}\right) x \varphi_{x} d x d t=\iint_{Q_{T}} x \varphi_{t t} \varphi_{x} d x d t-\int_{0}^{T} \int_{0}^{1} x \varphi_{x x} \varphi_{x} d x d t \\
&= \iint_{Q_{T}}-x \varphi_{t} \varphi_{x t} d x d t+\int_{0}^{1}\left[x \varphi_{t} \varphi_{x}\right]_{0}^{T} d x-\iint_{Q_{T}} x \frac{1}{2}\left(\left|\varphi_{x}\right|^{2}\right)_{x} d x \\
&= \iint_{Q_{T}}-x \frac{1}{2}\left(\left|\varphi_{t}\right|^{2}\right)_{x} d x d t+\int_{0}^{1}\left[x \varphi_{t} \varphi_{x}\right]_{0}^{T} d x+\frac{1}{2} \iint_{Q_{T}}\left|\varphi_{x}\right|^{2} d x d t-\frac{1}{2} \int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t \\
&=\iint_{Q_{T}} \frac{1}{2}\left(\left|\varphi_{t}\right|^{2}\right) d x d t-\frac{1}{2} \int_{0}^{T}\left|\varphi_{t}(1, t)\right|^{2} d t+\int_{0}^{1}\left[x \varphi_{t} \varphi_{x}\right]_{0}^{T} d x \\
&+\frac{1}{2} \iint_{Q_{T}}\left|\varphi_{x}\right|^{2} d x d t-\frac{1}{2} \int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t
\end{aligned}
$$

leading to

$$
\frac{1}{2} \iint_{Q_{T}}\left(\left|\varphi_{t}\right|^{2}+\left|\varphi_{x}\right|^{2}\right) d x d t+\int_{0}^{1}\left[x \varphi_{t} \varphi_{x}\right]_{0}^{T} d x=\frac{1}{2} \int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t
$$

Multiplier method for the $1 D$ case $, \Omega=(0,1) \subset \mathbb{R}, \Gamma_{0}=\{1\}$
leading to

$$
\frac{1}{2} \iint_{Q_{T}}\left(\left|\varphi_{t}\right|^{2}+\left|\varphi_{x}\right|^{2}\right) d x d t+\int_{0}^{1}\left[x \varphi_{t} \varphi_{x}\right]_{0}^{T} d x=\frac{1}{2} \int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t
$$

But

$$
\begin{equation*}
\frac{1}{2} \iint_{Q_{T}}\left(\left|\varphi_{t}\right|^{2}+\left|\varphi_{x}\right|^{2}\right) d x d t=T E(t)=T E(0) \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{0}^{1}\left[x \varphi_{t} \varphi_{x}\right]_{0}^{T} d x & \leq \int_{0}^{1}\left[\varphi_{t} \varphi_{x}\right]_{0}^{T} d t=\int_{0}^{1}\left(\left(\varphi_{t} \varphi_{x}\right)(T)-\left(\varphi_{t} \varphi_{x}\right)(0)\right) d t \\
& \leq \frac{1}{2} \int_{0}^{1}\left(\left|\varphi_{t}(\cdot, T)\right|^{2}+\left|\varphi_{x}(\cdot, T)\right|^{2}\right) d x+\frac{1}{2} \int_{0}^{1}\left(\left|\varphi_{t}(\cdot, 0)\right|^{2}+\left|\varphi_{x}(\cdot, 0)\right|^{2}\right) d x \\
& \leq 2 E(0) \tag{14}
\end{align*}
$$

leading to

$$
(T-2) E(0) \leq \frac{1}{2} \int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t
$$

Spectral method for the $1 D$ case $, \Omega=(0,1) \subset \mathbb{R}, \Gamma_{0}=\{1\}$

We expand the solution of the adjoint system as follows:

$$
\left\{\begin{array}{l}
\varphi_{0}(x)=\sum_{k>0} a_{k} \sin (k \pi x), \quad \varphi_{1}(x)=\sum_{k>0} b_{k} \cos (k \pi x), \tag{15}\\
\varphi(x, t)=\sum_{k>0}\left(a_{k} \cos (k \pi t)+\frac{b_{k}}{k \pi} \sin (k \pi t)\right) \sin (k \pi x)
\end{array}\right.
$$

leading to

$$
\left\{\begin{array}{l}
\varphi(x, t)=\sum_{k \in \mathbb{Z} \backslash\{0\}} x_{k} e^{i \Lambda_{k} t} \sin (k \pi x), \tag{16}\\
x_{k}=\frac{a_{k}-i b_{k} /(k \pi)}{2}, k>0, \quad x_{k}=\frac{-a_{-k}+i b_{-k} /(k \pi)}{2}, k<0, \quad \Lambda_{k}=k \pi
\end{array}\right.
$$

leading to

$$
\int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t=\int_{0}^{T}\left|\sum_{k \in \mathbb{Z} \backslash\{0\}}(-1)^{k} k \pi x_{k} e^{i \Lambda_{k} t}\right|^{2} d x
$$

Spectral method for the $1 D$ case , $\Omega=(0,1) \subset \mathbb{R}, \Gamma_{0}=\{1\}$

$$
\int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t=\int_{0}^{T}|\sum_{k \in \mathbb{Z} \backslash\{0\}} \underbrace{(-1)^{k} k \pi x_{k}}_{y_{k}} e^{i \Lambda_{k} t}|^{2} d t
$$

Theorem (Ingham, $1936{ }^{2}$)
Let $K \in \mathbb{Z}$ and $\left(w_{k}\right)_{k \in K}$ be a family of real numbers satisfying the uniform gap condition $\gamma:=\inf _{k \neq n}\left|w_{k}-w_{n}\right|>0$. If I is a bounded interval of length $|I|>2 \pi / \gamma$, then

$$
\sum_{k \in K}\left|y_{k}\right|^{2} \asymp \int_{l}\left|\sum_{k \in K} y_{k} e^{i w_{k} t}\right|^{2} d t
$$

for all square-summable complex coefficients y_{k}
Application $-K=\mathbb{Z} \backslash\{0\}-w_{k}=\Lambda_{k}$ leads to $\gamma=\pi \cdot I=(0, T)$ leads to : if $T>2$, then

Spectral method for the $1 D$ case , $\Omega=(0,1) \subset \mathbb{R}, \Gamma_{0}=\{1\}$

$$
\int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t=\int_{0}^{T}|\sum_{k \in \mathbb{Z} \backslash\{0\}} \underbrace{(-1)^{k} k \pi x_{k}}_{y_{k}} e^{i \Lambda_{k} t}|^{2} d t
$$

Theorem (Ingham, $1936{ }^{2}$)
Let $K \in \mathbb{Z}$ and $\left(w_{k}\right)_{k \in K}$ be a family of real numbers satisfying the uniform gap condition $\gamma:=\inf _{k \neq n}\left|w_{k}-w_{n}\right|>0$. If I is a bounded interval of length $|I|>2 \pi / \gamma$, then

$$
\sum_{k \in K}\left|y_{k}\right|^{2} \asymp \int_{l}\left|\sum_{k \in K} y_{k} e^{i w_{k} t}\right|^{2} d t
$$

for all square-summable complex coefficients y_{k}
Application $-K=\mathbb{Z} \backslash\{0\}-w_{k}=\Lambda_{k}$ leads to $\gamma=\pi \cdot I=(0, T)$ leads to : if $T>2$, then

Spectral method for the $1 D$ case $, \Omega=(0,1) \subset \mathbb{R}, \Gamma_{0}=\{1\}$

$$
\int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t=\int_{0}^{T}|\sum_{k \in \mathbb{Z} \backslash\{0\}} \underbrace{(-1)^{k} k \pi x_{k}}_{y_{k}} e^{i \Lambda_{k} t}|^{2} d t
$$

Theorem (Ingham, $1936{ }^{2}$)
Let $K \in \mathbb{Z}$ and $\left(w_{k}\right)_{k \in K}$ be a family of real numbers satisfying the uniform gap condition $\gamma:=\inf _{k \neq n}\left|w_{k}-w_{n}\right|>0$. If I is a bounded interval of length $|I|>2 \pi / \gamma$, then

$$
\sum_{k \in K}\left|y_{k}\right|^{2} \asymp \int_{l}\left|\sum_{k \in K} y_{k} e^{i w_{k} t}\right|^{2} d t
$$

for all square-summable complex coefficients y_{k}
Application $-K=\mathbb{Z} \backslash\{0\}-w_{k}=\Lambda_{k}$ leads to $\gamma=\pi . I=(0, T)$ leads to : if $T>2$, then

$$
\begin{equation*}
\int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t \asymp \sum_{k \in \mathbb{Z}}\left|y_{k}\right|^{2} \tag{17}
\end{equation*}
$$

[^0]
Spectral method for the $1 D$ case $, \Omega=(0,1) \subset \mathbb{R}, \Gamma_{0}=\{1\}$

$$
\int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t=\int_{0}^{T}|\sum_{k \in \mathbb{Z} \backslash\{0\}} \underbrace{(-1)^{k} k \pi x_{k}}_{y_{k}} e^{i \Lambda_{k} t}|^{2} d t
$$

Theorem (Ingham, $1936{ }^{2}$)
Let $K \in \mathbb{Z}$ and $\left(w_{k}\right)_{k \in K}$ be a family of real numbers satisfying the uniform gap condition $\gamma:=\inf _{k \neq n}\left|w_{k}-w_{n}\right|>0$. If I is a bounded interval of length $|I|>2 \pi / \gamma$, then

$$
\sum_{k \in K}\left|y_{k}\right|^{2} \asymp \int_{I}\left|\sum_{k \in K} y_{k} e^{i w_{k} t}\right|^{2} d t
$$

for all square-summable complex coefficients y_{k}
Application $-K=\mathbb{Z} \backslash\{0\}-w_{k}=\Lambda_{k}$ leads to $\gamma=\pi . I=(0, T)$ leads to : if $T>2$, then

$$
\begin{equation*}
\int_{0}^{T}\left|\varphi_{x}(1, t)\right|^{2} d t \asymp \sum_{k \in \mathbb{Z}}\left|y_{k}\right|^{2}=\frac{1}{2} \sum_{k>0}\left((k \pi)^{2}\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right)=\left\|\varphi_{0}, \varphi_{1}\right\|_{V}^{2} \tag{17}
\end{equation*}
$$

[^1]The control $v=\frac{\partial \varphi}{\partial \nu}$

Theorem

The control $v=\frac{\partial \hat{\varphi}}{\partial \nu}$ associated to the minimization of $J \star$ is the control of minimal L^{2}-norm.

Proof - Let $v=\frac{\partial \hat{\varphi}}{\partial \nu}$ and v_{1} another control. They both satisfy the characterization:

$$
\begin{align*}
& \int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} v d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>=0, \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in V, \tag{18}\\
& \int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} v_{1} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>=0, \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V},
\end{align*}
$$

Taking $\left(\varphi_{0}, \varphi_{1}\right)=\left(\hat{\varphi}_{0}, \hat{\varphi}_{1}\right)$ in both, we get

$$
\begin{equation*}
\|v\|_{L^{2}\left(\Gamma_{0} \times(0, T)\right)}^{2}=\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \hat{\varphi}}{\partial \nu} v d \sigma d t=\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \hat{\varphi}}{\partial \nu} v_{1} d \sigma d t \tag{19}
\end{equation*}
$$

leading to $\|V\|_{L^{2}\left(\Gamma_{0} \times(0, T)\right)} \leq\left\|V_{1}\right\|_{L^{2}\left(\Gamma_{0} \times(0, T)\right)}$

The control $v=\frac{\partial \varphi}{\partial \nu}$

Theorem

The control $v=\frac{\partial \hat{\varphi}}{\partial \nu}$ associated to the minimization of $J \star$ is the control of minimal L^{2}-norm.

Proof - Let $v=\frac{\partial \hat{\varphi}}{\partial \nu}$ and v_{1} another control. They both satisfy the characterization:

$$
\begin{align*}
& \int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} v d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>=0, \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in V, \tag{18}\\
& \int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} v_{1} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>=0, \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V},
\end{align*}
$$

Taking $\left(\varphi_{0}, \varphi_{1}\right)=\left(\hat{\varphi}_{0}, \hat{\varphi}_{1}\right)$ in both, we get

$$
\begin{equation*}
\|v\|_{L^{2}\left(\Gamma_{0} \times(0, T)\right)}^{2}=\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \hat{\varphi}}{\partial \nu} v d \sigma d t=\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \hat{\varphi}}{\partial \nu} v_{1} d \sigma d t \tag{19}
\end{equation*}
$$

leading to $\|V\|_{L^{2}\left(\Gamma_{0} \times(0, T)\right)} \leq\left\|V_{1}\right\|_{L^{2}\left(\Gamma_{0} \times(0, T)\right)}$

The control $v=\frac{\partial \varphi}{\partial \nu}$

Theorem

The control $v=\frac{\partial \hat{\varphi}}{\partial \nu}$ associated to the minimization of $J \star$ is the control of minimal L^{2}-norm.

Proof - Let $v=\frac{\partial \hat{\varphi}}{\partial \nu}$ and v_{1} another control. They both satisfy the characterization:

$$
\begin{array}{ll}
\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} v d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>=0, \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} \\
\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} v_{1} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>=0, \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} \tag{18}
\end{array}
$$

Taking $\left(\varphi_{0}, \varphi_{1}\right)=\left(\hat{\varphi}_{0}, \hat{\varphi}_{1}\right)$ in both, we get

$$
\|v\|_{L^{2}\left(\Gamma_{0} \times(0, T)\right)}^{2}=\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \hat{\varphi}}{\partial \nu} v d \sigma d t=\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \hat{\varphi}}{\partial \nu} v_{1} d \sigma d t
$$

The control $v=\frac{\partial \varphi}{\partial \nu}$

Theorem

The control $v=\frac{\partial \hat{\varphi}}{\partial \nu}$ associated to the minimization of $J \star$ is the control of minimal L^{2}-norm.

Proof - Let $v=\frac{\partial \hat{\varphi}}{\partial \nu}$ and v_{1} another control. They both satisfy the characterization:

$$
\begin{array}{ll}
\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} v d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>=0, \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} \\
\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \varphi}{\partial \nu} v_{1} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>=0, \quad \forall\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} \tag{18}
\end{array}
$$

Taking $\left(\varphi_{0}, \varphi_{1}\right)=\left(\hat{\varphi}_{0}, \hat{\varphi}_{1}\right)$ in both, we get

$$
\begin{equation*}
\|v\|_{L^{2}\left(\Gamma_{0} \times(0, T)\right)}^{2}=\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \hat{\varphi}}{\partial \nu} v d \sigma d t=\int_{0}^{T} \int_{\Gamma_{0}} \frac{\partial \hat{\varphi}}{\partial \nu} v_{1} d \sigma d t \tag{19}
\end{equation*}
$$

leading to $\|v\|_{L^{2}\left(\Gamma_{0} \times(0, T)\right)} \leq\left\|v_{1}\right\|_{L^{2}\left(\Gamma_{0} \times(0, T)\right)}$

Equivalence with the minimization of $J \star$

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \int_{0}^{T}|v|^{2} d t \tag{20}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)
\end{array}\right.
$$

where $\mathcal{C}\left(y_{0}, y_{1} ; T\right)$ denotes the non-empty linear manifold

$$
\mathcal{C}\left(y_{0}, y_{1} ; T\right)=\left\{(y, v): v \in L^{2}(0, T), y \text { solves (68) and satisfies (8) }\right\} .
$$

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

Equivalence with the minimization of J ^

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \int_{0}^{T}|v|^{2} d t \tag{20}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)
\end{array}\right.
$$

where $\mathcal{C}\left(y_{0}, y_{1} ; T\right)$ denotes the non-empty linear manifold

$$
\mathcal{C}\left(y_{0}, y_{1} ; T\right)=\left\{(y, v): v \in L^{2}(0, T), y \text { solves (68) and satisfies (8) }\right\} .
$$

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)} J(y, v)=-\min _{\left(\varphi_{0}, \varphi_{1}\right) \in V} J^{\star}\left(\varphi_{0}, \varphi_{1}\right)
$$

Equivalence with the minimization of J ^

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \int_{0}^{T}|v|^{2} d t \tag{20}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)
\end{array}\right.
$$

where $\mathcal{C}\left(y_{0}, y_{1} ; T\right)$ denotes the non-empty linear manifold

$$
\mathcal{C}\left(y_{0}, y_{1} ; T\right)=\left\{(y, v): v \in L^{2}(0, T), y \text { solves (68) and satisfies (8) }\right\}
$$

Using the Fenchel-Rockafellar theorem [Ekeland-Temam 74], [Brezis 84] we get that

$$
\inf _{(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)} J(y, v)=-\min _{\left(\varphi_{0}, \varphi_{1}\right) \in V} J^{\star}\left(\varphi_{0}, \varphi_{1}\right)
$$

$$
\left\{\begin{array}{l}
\text { Minimize } J^{\star}\left(\varphi_{0}, \varphi_{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)> \tag{21}\\
\text { Subject to }\left(\varphi_{0}, \varphi_{1}\right) \in \boldsymbol{V} \quad \text { where } L^{\star} \varphi=0
\end{array}\right.
$$

Extension 1 : more general cost

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \iint_{Q_{T}} \rho^{2}|y|^{2} d x d t+\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \rho_{0}^{2}|v|^{2} d \sigma d t \tag{22}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)
\end{array}\right.
$$

$$
v=-\rho_{0}^{-2} \frac{\partial \varphi}{\partial \nu} \text { in }(0, T) \times \Gamma_{0} \text { and } y=-\rho^{-2} \mu \text { in } Q_{T}
$$

Extension 1 : more general cost

$$
\left\{\begin{array}{l}
\text { Minimize } J(y, v)=\frac{1}{2} \iint_{Q_{T}} \rho^{2}|y|^{2} d x d t+\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \rho_{0}^{2}|v|^{2} d \sigma d t \tag{22}\\
\text { Subject to }(y, v) \in \mathcal{C}\left(y_{0}, y_{1} ; T\right)
\end{array}\right.
$$

$$
v=-\rho_{0}^{-2} \frac{\partial \varphi}{\partial \nu} \text { in }(0, T) \times \Gamma_{0} \text { and } y=-\rho^{-2} \mu \text { in } Q_{T}
$$

$$
\left\{\begin{aligned}
\text { Minimize } J^{\star}\left(\mu, \varphi_{0}, \varphi_{1}\right) & =\frac{1}{2} \iint_{Q_{T}} \rho^{-2}|\mu|^{2} d x d t+\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}} \rho_{0}^{-2}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t \\
& +<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)>
\end{aligned}\right.
$$

$$
\begin{equation*}
\text { Subject to }\left(\mu, \varphi_{0}, \varphi_{1}\right) \in L^{2}\left(Q_{T}\right) \times \boldsymbol{V} \tag{23}
\end{equation*}
$$

where φ solves the nonhomogeneous backward problem

$$
\begin{equation*}
L^{\star} \varphi:=\mu \quad \text { in } \quad Q_{T}, \quad \varphi=0 \quad \text { on } \quad \Sigma_{T}, \quad\left(\varphi(\cdot, 0), \varphi^{\prime}(\cdot, 0)\right)=\left(\varphi_{0}, \varphi_{1}\right) \tag{24}
\end{equation*}
$$

Extension 2 : wave equation with non constant coefficient

$T>0 a \in C^{3}([0,1])$ with $a(x) \geq a_{0}>0$ in $[0,1], b \in L^{\infty}((0,1) \times(0, T)),\left(y_{0}, y_{1}\right) \in \boldsymbol{H}$ and $v \in L^{2}(0, T)$

$$
\begin{cases}y_{t t}-\left(a(x) y_{x}\right)_{x}+b(x, t) y=0, & (x, t) \in(0,1) \times(0, T) \tag{25}\\ y(0, t)=0, \quad y(1, t)=v(t), & t \in(0, T) \\ y(x, 0)=y_{0}(x), \quad y_{t}(x, 0)=y_{1}(x), & x \in(0,1)\end{cases}
$$

[^2]
Extension 2 : wave equation with non constant coefficient

$T>0 a \in C^{3}([0,1])$ with $a(x) \geq a_{0}>0$ in $[0,1], b \in L^{\infty}((0,1) \times(0, T)),\left(y_{0}, y_{1}\right) \in \boldsymbol{H}$ and $v \in L^{2}(0, T)$

$$
\begin{cases}y_{t t}-\left(a(x) y_{x}\right)_{x}+b(x, t) y=0, & (x, t) \in(0,1) \times(0, T) \tag{25}\\ y(0, t)=0, \quad y(1, t)=v(t), & t \in(0, T) \\ y(x, 0)=y_{0}(x), \quad y_{t}(x, 0)=y_{1}(x), & x \in(0,1) .\end{cases}
$$

Theorem

Let $x_{0}<0$ and

$$
\begin{align*}
\mathcal{A}\left(x_{0}, a_{0}\right) & =\left\{a \in C^{3}([0,1]): a(x) \geq a_{0}>0,\right. \\
& \left.-\min _{[0,1]}\left(a(x)+\left(x-x_{0}\right) a_{x}(x)\right)<\min _{[0,1]}\left(a(x)+\frac{1}{2}\left(x-x_{0}\right) a_{x}(x)\right)\right\} \tag{26}
\end{align*}
$$

If

$$
a(x) \in \mathcal{A}\left(x_{0}, a_{0}\right) \quad \text { and } \quad T>\frac{1}{\beta} \max _{[0,1]} a(x)^{1 / 2}\left(x-x_{0}\right) .
$$

with $\beta \in]-\min _{[0,1]}\left(a(x)+\left(x-x_{0}\right) a_{x}(x)\right), \min _{[0,1]}\left(a(x)+\frac{1}{2}\left(x-x_{0}\right) a_{x}(x)\right)[$
then the system is null-controllable.

[^3]
Extension 3 : wave equation with inner control

$$
\begin{align*}
q_{T}=\omega \times & (0, T), Q_{T}:=\Omega \times(0, T), \boldsymbol{V}:=H_{0}^{1}(0,1) \times L^{2}(0,1), a, b \in C([0, T],] 0,1[) \\
& \begin{cases}y_{t t}-\Delta y=v 1_{q_{T}}, & (x, t) \in Q_{T} \\
y=0, & (x, t) \in \partial \Omega \times(0, T) \\
\left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right) \in \boldsymbol{V}, & x \in(0,1)\end{cases} \tag{27}
\end{align*}
$$

Theorem (Bardos-Lebeau-Rauch'92, Burq'97)
If the triplet (ω, T) satisfies the following geometric optic condition in Ω :
Every ray of geometric optics that propagates in Ω and is reflected on its boundary Γ enters ω in time less than T
then (27) is null controllable.

Part II - Controllability of the wave equation : boundary case

 Numerical issuesApproximation and minimization of J^{\star} over $\boldsymbol{H}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$

$$
\left\{\begin{array}{l}
\operatorname{Min} J^{\star}\left(\varphi_{0}, \varphi_{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)> \tag{28}\\
\text { Subject to }\left(\varphi_{0}, \varphi_{1}\right) \in V=H_{0}^{1}(\Omega) \times L^{2}(\Omega) \quad \text { where } L^{\star} \varphi=0
\end{array}\right.
$$

Gradient descent iterative method:

$$
\left.D J^{\star}\left(\varphi_{0}, \varphi_{1}\right) \cdot\left(\overline{\varphi_{0}}, \overline{\varphi_{1}}\right)=<z(\cdot, 0)-y_{0}, \overline{\varphi_{1}}\right\rangle_{L^{2}}+\left\langle z_{t}(\cdot, 0)-y_{1}, \overline{\varphi_{0}}>_{H^{-1}, H_{0}^{1}}\right.
$$

The difficulty is the constraint $L^{*} \varphi=0!!$
It is impossible in general to find an approximation of finite dimension φ_{h} such that
$L^{*} \varphi_{h}=0!!!$ (h is an approximation parameter)

In practice, one may find φ_{h} such that $\left\|L^{*} \varphi_{h}\right\|=\mathcal{O}\left(h^{\alpha}\right), \alpha>0$.
And the previous arguments are no more valid !?!!!!.

Approximation and minimization of J^{\star} over $\boldsymbol{H}:=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$

$$
\left\{\begin{array}{l}
\operatorname{Min} J^{\star}\left(\varphi_{0}, \varphi_{1}\right)=\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{0}}\left|\frac{\partial \varphi}{\partial \nu}\right|^{2} d \sigma d t+<\left(\varphi_{0}, \varphi_{1}\right),\left(y_{0}, y_{1}\right)> \tag{28}\\
\text { Subject to }\left(\varphi_{0}, \varphi_{1}\right) \in V=H_{0}^{1}(\Omega) \times L^{2}(\Omega) \quad \text { where } L^{\star} \varphi=0
\end{array}\right.
$$

Gradient descent iterative method :

$$
\left.D J^{\star}\left(\varphi_{0}, \varphi_{1}\right) \cdot\left(\overline{\varphi_{0}}, \overline{\varphi_{1}}\right)=<z(\cdot, 0)-y_{0}, \overline{\varphi_{1}}\right\rangle_{L^{2}}+\left\langle z_{t}(\cdot, 0)-y_{1}, \overline{\varphi_{0}}>_{H^{-1}, H_{0}^{1}}\right.
$$

The difficulty is the constraint $L^{\star} \varphi=0!!$
It is impossible in general to find an approximation of finite dimension φ_{h} such that $L^{\star} \varphi_{h}=0!!!(h$ is an approximation parameter)

In practice, one may find φ_{h} such that $\left\|L^{\star} \varphi_{h}\right\|=\mathcal{O}\left(h^{\alpha}\right), \alpha>0$.
And the previous arguments are no more valid !?!!!!!.

First method to bypass the fact that $L^{\star} \varphi_{h} \neq 0$

The trick, initially used by Roland Glowinski ${ }^{4}$ in the nineties and many others is :

Replace the operator L by a discrete operator L_{h} and control a finite dimensional differential system

[^4]
First method to bypass the fact that $L^{\star} \varphi_{h} \neq 0$

The trick, initially used by Roland Glowinski ${ }^{5}$ in the nineties and many others is :

Replace the operator L by a discrete operator L_{h} and control a finite dimensional differential system
$h, \Delta t$: approximation parameters

[^5]
The case of the wave equation in $1 d$

Let $J \in \mathbb{N}, h=1 /(J+1)$ and a uniform grid of $(0,1)$:

$$
0=x_{0}<x_{1}<\ldots<x_{J}<x_{J+1}=1, \quad x_{j}=j h, j=0, \ldots, J+1 .
$$

Let $N \in \mathbb{N}, \Delta t=T / N$ and a uniform grid of $(0, T)$:

$$
0=t_{0}<t_{1}<\ldots<t_{N}=1, \quad t_{n}=n \Delta t, n=0, \ldots, N .
$$

h and Δt are the space and time step.

Defining for $j=1, \ldots, J$ and $n=0, \ldots, N$ the operators

where

${ }^{6}$ A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation,(2005)

The case of the wave equation in $1 d$

Let $J \in \mathbb{N}, h=1 /(J+1)$ and a uniform grid of $(0,1)$:

$$
0=x_{0}<x_{1}<\ldots<x_{J}<x_{J+1}=1, \quad x_{j}=j h, j=0, \ldots, J+1 .
$$

Let $N \in \mathbb{N}, \Delta t=T / N$ and a uniform grid of $(0, T)$:

$$
0=t_{0}<t_{1}<\ldots<t_{N}=1, \quad t_{n}=n \Delta t, n=0, \ldots, N .
$$

h and Δt are the space and time step. Defining for $j=1, \ldots, J$ and $n=0, \ldots, N$ the operators

$$
\begin{equation*}
\Delta_{h} y_{j}^{n}:=\frac{y_{j+1}^{n}-2 y_{j}^{n}+y_{j-1}^{n}}{h^{2}}, \quad \Delta_{\Delta t} y_{j}^{n}:=\frac{y_{j}^{n+1}-2 y_{j}^{n}+y_{j}^{n-1}}{\Delta t^{2}} . \tag{29}
\end{equation*}
$$

${ }^{6}$ A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation,(2005)

The case of the wave equation in $1 d$

Let $J \in \mathbb{N}, h=1 /(J+1)$ and a uniform grid of $(0,1)$:

$$
0=x_{0}<x_{1}<\ldots<x_{J}<x_{J+1}=1, \quad x_{j}=j h, j=0, \ldots, J+1 .
$$

Let $N \in \mathbb{N}, \Delta t=T / N$ and a uniform grid of $(0, T)$:

$$
0=t_{0}<t_{1}<\ldots<t_{N}=1, \quad t_{n}=n \Delta t, n=0, \ldots, N .
$$

h and Δt are the space and time step.
Defining for $j=1, \ldots, J$ and $n=0, \ldots, N$ the operators

$$
\begin{equation*}
\Delta_{h} y_{j}^{n}:=\frac{y_{j+1}^{n}-2 y_{j}^{n}+y_{j-1}^{n}}{h^{2}}, \quad \Delta_{\Delta t} y_{j}^{n}:=\frac{y_{j}^{n+1}-2 y_{j}^{n}+y_{j}^{n-1}}{\Delta t^{2}} . \tag{29}
\end{equation*}
$$

$$
\left(\mathcal{S}_{h, \Delta t}^{\theta_{\nu}, 0}\right) \begin{cases}\left(1+\theta_{\nu} h^{2} \Delta_{h}\right) \Delta_{\Delta t} y_{j}^{n}=\Delta_{h} y_{j}^{n}, & 1 \leq j \leq J, \quad 0 \leq n \leq N, \tag{30}\\ y_{0}^{n}=0, y_{J+1}^{n}=v_{h}^{n}, & 0 \leq n \leq N, \\ \frac{y_{j}^{0}+y_{j}^{1}}{2}=y_{0 j}, \quad \frac{y_{j}^{1}-y_{j}^{0}}{\Delta t}=y_{1 j}, & 0 \leq j \leq J+1 .\end{cases}
$$

where

$$
\begin{equation*}
\theta \geq 0, \quad \alpha \geq 0, \quad \theta_{\nu} \equiv \theta-\alpha \nu^{2} ; \quad \nu \equiv \Delta t / h \tag{31}
\end{equation*}
$$

${ }^{6}$ A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation,(2005)

Vectorial form of the scheme $\left(\mathcal{S}_{h, \Delta t}^{\theta_{\nu}, 0}\right)$

we introduce $K, M_{0}^{\theta_{\nu}} \in \mathcal{M}_{J \times J}(\mathbb{R})$ by

$$
K=\left(\begin{array}{cccccc}
2 & -1 & & & (0) & \tag{32}\\
-1 & 2 & -1 & & (0 & \\
& -1 & \ddots & \ddots & & \\
& & \ddots & \ddots & -1 & \\
& (0) & & -1 & 2 & -1 \\
& & & & -1 & 2
\end{array}\right)_{J \times J}, \quad M_{0}^{\theta_{\nu}}=I-\theta_{\nu} K
$$

We denote the vector $\boldsymbol{Y}_{h}^{\boldsymbol{n}}=\left(y_{1}^{n}, y_{2}^{n}, \ldots, y_{j}^{n}\right)^{T}, n=0, \ldots, N .\left(\mathcal{S}_{h, \Delta t}^{\theta_{\nu}, 0}\right)$ takes the vectorial form :

$$
\left\{\begin{array}{c}
M_{0}^{\theta_{\nu}}\left(\boldsymbol{Y}_{h}^{n+1}-2 \boldsymbol{Y}_{h}^{n}+\boldsymbol{Y}_{h}^{n-1}\right)+\nu^{2} K \boldsymbol{Y}_{h}^{n}=\boldsymbol{F}_{\boldsymbol{h}}^{\boldsymbol{n}}, \quad 0 \leq n \leq N, \tag{33}\\
\frac{\boldsymbol{Y}_{h}^{0}+\boldsymbol{Y}_{h}^{1}}{2}=\boldsymbol{Y}_{0 \boldsymbol{h}}, \frac{\boldsymbol{Y}_{h}^{1}-\boldsymbol{Y}_{h}^{0}}{\Delta t}=\boldsymbol{y}_{\mathbf{1} \boldsymbol{h}},
\end{array}\right.
$$

where $\boldsymbol{F}_{\boldsymbol{h}}^{\boldsymbol{n}}=\left(f_{1}^{n}, \ldots ., f_{J-1}^{n}, f_{j}^{n}\right)$ with $f_{j}^{n}=0, j=1 \ldots J-1$ and

$$
\begin{equation*}
f_{J}^{n}=-\theta_{\nu}\left(v_{h}^{n+1}-2 v_{h}^{n}+v_{h}^{n-1}\right)+\nu^{2} v_{h}^{n}, \quad 0 \leq n \leq N, \tag{34}
\end{equation*}
$$

taking into account that $y_{J+1}^{n}=v_{h}^{n}$ and $y_{0}^{n}=0$, for $n=0 \ldots N$.

The discrete controllability problem

Given T large enough independent of h and Δt and $\left(\boldsymbol{y}_{0 \boldsymbol{h}}, \boldsymbol{y}_{1 \boldsymbol{h}}\right) \in \mathbb{R}^{2 J}$, does there exist a control function $\left(v_{h}^{n}\right)_{n}, n=0 \ldots N$, such that the solution \boldsymbol{Y}_{h}^{n} of (33) satisfies

$$
\begin{equation*}
\boldsymbol{Y}_{h}^{N}=\mathbf{0}, \quad \frac{\boldsymbol{Y}_{h}^{N}-\boldsymbol{Y}_{h}^{N-1}}{\Delta t}=\mathbf{0} \tag{35}
\end{equation*}
$$

and therefore $\boldsymbol{Y}_{\boldsymbol{h}}^{\boldsymbol{N}}=\boldsymbol{Y}_{\boldsymbol{h}}^{\boldsymbol{N}-\mathbf{1}}=\mathbf{0}$? If this holds for any $\left(\boldsymbol{y}_{\mathbf{0 h}}, \boldsymbol{y}_{\mathbf{1} \boldsymbol{h}}\right) \in \mathbb{R}^{2 J}$, we say that the discrete system (33) is null controllable.

Characterization of the discrete controls

Lemma

The discrete system is null controllable if $\forall\left(\boldsymbol{y}_{0 \boldsymbol{h}}, \boldsymbol{y}_{\mathbf{1} \boldsymbol{h}}\right) \in \mathbb{R}^{2 J}, \exists\left(v_{h}^{n}\right)_{n}$ such that
$\Delta t \sum_{n=0}^{N-1}\left(v_{h}^{n}\right)^{2}<\infty, \Delta t \sum_{n=0}^{N-1}\left(\frac{v_{h}^{n+1}-v_{h}^{n}}{\Delta t}\right)^{2}<\infty, \Delta t \sum_{n=0}^{N-1}\left(\frac{v_{h}^{n+1}-2 v_{h}^{n}+v_{h}^{n-1}}{\Delta t^{2}}\right)^{2}<\infty$ and

$$
\begin{align*}
& \Delta t \sum_{n=0}^{N-1}\left(v_{h}^{n} \frac{w_{J}^{n}}{h}+\theta_{\nu} h \frac{v_{h}^{n+1}-v_{h}^{n}}{\Delta t} \frac{w_{J}^{n+1}-w_{J}^{n}}{\Delta t}\right) \\
&-\left(\left(-K_{h}^{-1} M_{0}^{\theta_{\nu}} \boldsymbol{y}_{\mathbf{1} h},\left(M_{1}^{\theta_{\nu}}\right)^{-1} M_{0}^{\theta_{\nu}} \boldsymbol{y}_{0 h}\right),\left(\frac{\boldsymbol{W}_{h}^{0}+\boldsymbol{W}_{h}^{1}}{2}, \frac{\boldsymbol{W}_{h}^{1}-\boldsymbol{W}_{h}^{0}}{\Delta t}\right)\right)_{1}=0, \tag{36}
\end{align*}
$$

for any $\left(\boldsymbol{w}_{\mathbf{0}}, \boldsymbol{w}_{\mathbf{1 h}}\right) \in \mathbb{R}^{2 J}$, where $\boldsymbol{W}_{\boldsymbol{h}}^{\boldsymbol{n}}$ is the solution of the adjoint homogeneous system :

$$
\left\{\begin{array}{c}
M_{0}^{\theta_{\nu}}\left(W_{h}^{n+1}-2 W_{h}^{n}+W_{h}^{n-1}\right)+\nu^{2} K W_{\boldsymbol{h}}^{n}=0, \quad 0 \leq n \leq N, \tag{37}\\
\frac{w_{h}^{N-1}+w_{h}^{N}}{2}=\boldsymbol{w}_{\mathbf{0} \boldsymbol{h}}, \frac{W_{h}^{N}-W_{h}^{N-1}}{\Delta t}=\boldsymbol{w}_{1 \boldsymbol{h}} .
\end{array}\right.
$$

Homogeneous system

We then define the discrete version $\mathcal{J}_{h}: \mathbb{R}^{2 J} \rightarrow \mathbb{R}$ of the functional \mathcal{J}

$$
\begin{align*}
\mathcal{J}_{h}\left(\boldsymbol{w}_{\mathbf{0} \boldsymbol{h}}, \boldsymbol{w}_{\mathbf{1} \boldsymbol{h}}\right) & =\frac{\Delta t}{2} \sum_{n=0}^{N-1}\left[\left(\frac{w_{J}^{n}}{h}\right)^{2}+\rho^{n} \theta_{\nu}\left(\frac{w_{J}^{n+1}-w_{J}^{n}}{\Delta t}\right)^{2}\right] \\
& -\left(\left(-K_{h}^{-1} M_{0}^{\theta_{\nu}} \boldsymbol{y}_{\mathbf{1} \boldsymbol{h}},\left(M_{1}^{\theta_{\nu}}\right)^{-1} M_{0}^{\theta_{\nu}} \boldsymbol{y}_{\boldsymbol{0} \boldsymbol{h}}\right),\left(\frac{\boldsymbol{W}_{\boldsymbol{h}}^{0}+\boldsymbol{W}_{\boldsymbol{h}}^{1}}{2}, \frac{\boldsymbol{W}_{\boldsymbol{h}}^{1}-\boldsymbol{W}_{\boldsymbol{h}}^{0}}{\Delta t}\right)\right)_{1} \tag{38}
\end{align*}
$$

where $\boldsymbol{W}_{\boldsymbol{h}}^{\boldsymbol{n}}$ is the solution of the following adjoint homogeneous system :

$$
\left\{\begin{array}{c}
M_{0}^{\theta}\left(W_{h}^{n+1}-2 W_{h}^{n}+W_{h}^{n-1}\right)+\nu^{2} K W_{h}^{n}=0, \quad 0 \leq n \leq N \tag{39}\\
\frac{w_{h}^{N-1}+W_{h}^{N}}{2}=\boldsymbol{w}_{0 h}, \frac{W_{h}^{N}-W_{h}^{N-1}}{\Delta t}=\boldsymbol{w}_{1 \boldsymbol{h}}
\end{array}\right.
$$

Discrete control - Main result I

$$
\begin{equation*}
\mathcal{C}=\left\{(\theta, \alpha, \nu) \in \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}_{\star}^{+}, \lim _{h \rightarrow 0} \cos ^{2}(\pi h / 2)\left(\nu^{2}(1-4 \alpha)+4 \theta\right)=1\right\} \tag{40}
\end{equation*}
$$

Discrete control - Main result I

$$
\begin{equation*}
\mathcal{C}=\left\{(\theta, \alpha, \nu) \in \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}_{\star}^{+}, \lim _{h \rightarrow 0} \cos ^{2}(\pi h / 2)\left(\nu^{2}(1-4 \alpha)+4 \theta\right)=1\right\} \tag{40}
\end{equation*}
$$

Theorem

Let $(\theta, \alpha, \nu) \in \mathcal{C}$. Given any $T>2 \max \left(1, \nu^{2}\right)$ and $\left(\boldsymbol{y}_{0 h}, \boldsymbol{y}_{1 h}\right) \in \mathbb{R}^{2 J}$, the functional \mathcal{J}_{h} defined by (38) has a unique minimizer $\left(\hat{\boldsymbol{w}}_{0 h}, \hat{\boldsymbol{w}}_{1 h}\right) \in \mathbb{R}^{2 J}$. Let $v_{h}=\left(v_{h}^{n}\right)_{n}$ defined as follows :

$$
\left\{\begin{array}{l}
v_{h}^{n}-\theta_{\nu} h^{2} \frac{v_{h}^{n+1}-2 v_{h}^{n}+v_{h}^{n-1}}{\Delta t^{2}}=\frac{\hat{W}_{j}^{n}}{h}-\theta_{\nu} h \frac{\rho^{n} \frac{\hat{w}_{j}^{n+1}-\hat{W}_{j}^{n}}{\Delta t}-\rho^{n-1} \frac{\hat{W}_{j}^{n}-\hat{W}_{j}^{n-1}}{\Delta t}}{\Delta t}, \quad 0 \leq n \leq N, \tag{41}\\
\theta_{\nu}\left(v_{h}^{1}-v_{h}^{0}\right)=0, \quad \theta_{\nu}\left(v_{h}^{N}-v_{h}^{N-1}\right)=0
\end{array}\right.
$$

where \hat{W}_{h}^{n} is the solution of (39) with initial data $\left(\hat{\mathbf{w}}_{0}, \hat{\mathbf{w}}_{1 h}\right)$. Then, $v_{h}=\left(v_{h}^{n}\right)_{n}$ is a control for (33).

Remark: Analogue to the optimality condition $v=\frac{\partial \varphi}{\partial \nu}$

Discrete control - Main result II

Theorem

Let $(\theta, \alpha, \nu) \in \mathcal{C}$ and $T>2 \max \left(1, \nu^{2}\right)$. Let $\left(\boldsymbol{Y}_{\mathbf{0 h}}, \boldsymbol{Y}_{\mathbf{1 h}}\right)$ be a sequence of discretizations of the initial data $\left(y_{0}, y_{1}\right)$. Assume that $\left(a_{k, h}, b_{k, h}\right)_{k}$, the Fourier coefficients of the discrete initial data verify

$$
\begin{equation*}
\left(a_{k, h}\right)_{k} \rightharpoonup\left(a_{k}\right)_{k},\left(\frac{b_{k, h}}{\sqrt{\lambda_{k, h}^{\theta, \alpha}}}\right)_{k} \rightharpoonup\left(\frac{b_{k}}{k \pi}\right)_{k} \text { in } I^{2} \text { when } h \rightarrow 0 \tag{42}
\end{equation*}
$$

where $\left(a_{k}, b_{k}\right)$ are the Fourier coefficients of the continuous initial data.
\square
$Q\left(v_{h_{j}}\right) \rightharpoonup v \in L^{2}([0, T])$ when $h_{j} \rightarrow 0$,
$h P(1 / n,)^{\prime} \rightarrow 0 \in 1^{2}([0, T])$ when $h . \rightarrow 0$

Moreover, the limit v is the L^{2} minimal control of the continuous system.
If the convergence in (42) is strong, then the above convergences are strong too.

Discrete control - Main result II

Theorem

Let $(\theta, \alpha, \nu) \in \mathcal{C}$ and $T>2 \max \left(1, \nu^{2}\right)$. Let $\left(\boldsymbol{Y}_{\mathbf{0 h}}, \boldsymbol{Y}_{\mathbf{1 h}}\right)$ be a sequence of discretizations of the initial data $\left(y_{0}, y_{1}\right)$. Assume that $\left(a_{k, h}, b_{k, h}\right)_{k}$, the Fourier coefficients of the discrete initial data verify

$$
\begin{equation*}
\left(a_{k, h}\right)_{k} \rightharpoonup\left(a_{k}\right)_{k},\left(\frac{b_{k, h}}{\sqrt{\lambda_{k, h}^{\theta, \alpha}}}\right)_{k} \rightharpoonup\left(\frac{b_{k}}{k \pi}\right)_{k} \text { in } I^{2} \text { when } h \rightarrow 0 \tag{42}
\end{equation*}
$$

where $\left(a_{k}, b_{k}\right)$ are the Fourier coefficients of the continuous initial data.
\square
$Q\left(v_{h_{j}}\right) \rightharpoonup v \in L^{2}([0, T])$ when $h_{j} \rightarrow 0$,
$h P(1 / n,)^{\prime} \rightarrow 0 \in 1^{2}([0, T])$ when $h . \rightarrow 0$

Moreover, the limit v is the L^{2} minimal control of the continuous system.
If the convergence in (42) is strong, then the above convergences are strong too.

Discrete control - Main result II

Theorem

Let $(\theta, \alpha, \nu) \in \mathcal{C}$ and $T>2 \max \left(1, \nu^{2}\right)$. Let $\left(\boldsymbol{Y}_{0 \boldsymbol{h}}, \boldsymbol{Y}_{\mathbf{1 h}}\right)$ be a sequence of discretizations of the initial data $\left(y_{0}, y_{1}\right)$. Assume that $\left(a_{k, h}, b_{k, h}\right)_{k}$, the Fourier coefficients of the discrete initial data verify

$$
\begin{equation*}
\left(a_{k, h}\right)_{k} \rightharpoonup\left(a_{k}\right)_{k},\left(\frac{b_{k, h}}{\sqrt{\lambda_{k, h}^{\theta, \alpha}}}\right)_{k} \rightharpoonup\left(\frac{b_{k}}{k \pi}\right)_{k} \text { in } I^{2} \text { when } h \rightarrow 0 \tag{42}
\end{equation*}
$$

where $\left(a_{k}, b_{k}\right)$ are the Fourier coefficients of the continuous initial data. Let $\left(v_{h}\right)_{h}$ be the sequence of controls given by Theorem 9 . there exists a subsequence $v_{h_{j}}$ and $v \in L^{2}(0, T)$ such that

Discrete control - Main result II

Theorem

Let $(\theta, \alpha, \nu) \in \mathcal{C}$ and $T>2 \max \left(1, \nu^{2}\right)$. Let $\left(\boldsymbol{Y}_{0 \boldsymbol{h}}, \boldsymbol{Y}_{\mathbf{1 h}}\right)$ be a sequence of discretizations of the initial data $\left(y_{0}, y_{1}\right)$. Assume that $\left(a_{k, h}, b_{k, h}\right)_{k}$, the Fourier coefficients of the discrete initial data verify

$$
\begin{equation*}
\left(a_{k, h}\right)_{k} \rightharpoonup\left(a_{k}\right)_{k},\left(\frac{b_{k, h}}{\sqrt{\lambda_{k, h}^{\theta, \alpha}}}\right)_{k} \rightharpoonup\left(\frac{b_{k}}{k \pi}\right)_{k} \text { in } I^{2} \text { when } h \rightarrow 0 \tag{42}
\end{equation*}
$$

where $\left(a_{k}, b_{k}\right)$ are the Fourier coefficients of the continuous initial data.
Let $\left(v_{h}\right)_{h}$ be the sequence of controls given by Theorem 9. Then $\left(Q\left(v_{h}\right)\right)_{h},\left(h P\left(v_{h}\right)^{\prime}\right)_{h}$ are uniformly bounded in $L^{2}(0, T),\left(h^{2} P\left(v_{h}\right)^{\prime}\right)_{h}$ is uniformly bounded in $L^{\infty}(0, T)$ and there exists a subsequence $v_{h_{j}}$ and $v \in L^{2}(0, T)$ such that

$$
\begin{align*}
& Q\left(v_{h_{j}}\right) \rightharpoonup v \in L^{2}([0, T]) \text { when } h_{j} \rightarrow 0, \\
& h P\left(v_{h_{j}}\right)^{\prime} \rightharpoonup 0 \in L^{2}([0, T]) \text { when } h_{j} \rightarrow 0, \tag{43}\\
& h^{2} P\left(v_{h_{j}}\right)^{\prime} \rightharpoonup 0 \in L^{\infty}([0, T]) \text { when } h_{j} \rightarrow 0 .
\end{align*}
$$

Moreover, the limit v is the L^{2} minimal control of the continuous system. If the convergence in (42) is strong, then the above convergences are strong too.

Discrete control - Main result II

Theorem

Let $(\theta, \alpha, \nu) \in \mathcal{C}$ and $T>2 \max \left(1, \nu^{2}\right)$. Let $\left(\boldsymbol{Y}_{\mathbf{0 h}}, \boldsymbol{Y}_{\mathbf{1 h}}\right)$ be a sequence of discretizations of the initial data $\left(y_{0}, y_{1}\right)$. Assume that $\left(a_{k, h}, b_{k, h}\right)_{k}$, the Fourier coefficients of the discrete initial data verify

$$
\begin{equation*}
\left(a_{k, h}\right)_{k} \rightharpoonup\left(a_{k}\right)_{k},\left(\frac{b_{k, h}}{\sqrt{\lambda_{k, h}^{\theta, \alpha}}}\right)_{k} \rightharpoonup\left(\frac{b_{k}}{k \pi}\right)_{k} \text { in } I^{2} \text { when } h \rightarrow 0 \tag{42}
\end{equation*}
$$

where $\left(a_{k}, b_{k}\right)$ are the Fourier coefficients of the continuous initial data.
Let $\left(v_{h}\right)_{h}$ be the sequence of controls given by Theorem 9. Then $\left(Q\left(v_{h}\right)\right)_{h},\left(h P\left(v_{h}\right)^{\prime}\right)_{h}$ are uniformly bounded in $L^{2}(0, T),\left(h^{2} P\left(v_{h}\right)^{\prime}\right)_{h}$ is uniformly bounded in $L^{\infty}(0, T)$ and there exists a subsequence $v_{h_{j}}$ and $v \in L^{2}(0, T)$ such that

$$
\begin{align*}
& Q\left(v_{h_{j}}\right) \rightharpoonup v \in L^{2}([0, T]) \text { when } h_{j} \rightarrow 0 \\
& h P\left(v_{h_{j}}\right)^{\prime} \rightharpoonup 0 \in L^{2}([0, T]) \text { when } h_{j} \rightarrow 0 \tag{43}\\
& h^{2} P\left(v_{h_{j}}\right)^{\prime} \rightharpoonup 0 \in L^{\infty}([0, T]) \text { when } h_{j} \rightarrow 0
\end{align*}
$$

Moreover, the limit v is the L^{2} minimal control of the continuous system. If the convergence in (42) is strong, then the above convergences are strong too.

The homogeneous system

$$
\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right) \begin{cases}\left(1+\theta_{\nu} h^{2} \Delta_{h}\right) \Delta_{\Delta t} u_{j}^{n}=\Delta_{h} u_{j}^{n}, & 1 \leq j \leq J, \quad 0 \leq n \leq N \tag{44}\\ u_{0}^{n}=u_{j+1}^{n}=0, & 0 \leq n \leq N \\ \left(u_{j}^{0}+u_{j}^{1}\right) / 2=u_{0 j}, \quad\left(u_{j}^{1}-u_{j}^{0}\right) / \Delta t=u_{1 j}, & 0 \leq j \leq J+1\end{cases}
$$

which takes the following vectorial form

$$
\left\{\begin{array}{c}
M_{0}^{\theta_{\nu}}\left(\boldsymbol{U}_{\boldsymbol{h}}^{n+1}-2 \boldsymbol{U}_{\boldsymbol{h}}^{n}+\boldsymbol{U}_{\boldsymbol{h}}^{n-1}\right)+\nu^{2} K \boldsymbol{U}_{\boldsymbol{h}}^{n}=0 \quad n=0, \ldots, N \tag{45}\\
\frac{\boldsymbol{U}_{h}^{0}+\boldsymbol{U}_{h}^{1}}{2}=\boldsymbol{u}_{0 \boldsymbol{h}}, \frac{\boldsymbol{U}_{h}^{1}-\boldsymbol{U}_{h}^{0}}{\Delta t}=\boldsymbol{u}_{1 \boldsymbol{h}}
\end{array}\right.
$$

where $\boldsymbol{U}_{\boldsymbol{h}}^{\boldsymbol{n}}=\left(u_{1}^{n}, \ldots, u_{j}^{n}\right)^{T}$.

Definition

The discrete energy $E_{n}^{\theta, \alpha}, n=0, \ldots, N$, associated to the scheme (44) is

$$
\begin{equation*}
E_{n}^{\theta, \alpha}=\frac{1}{2}\left(K_{h} \boldsymbol{U}_{h}^{n+1}, \boldsymbol{U}_{h}^{n}\right)+\frac{1}{2}\left(\left(I-\theta_{\nu} K\right) \frac{\boldsymbol{U}_{h}^{n+1}-\boldsymbol{U}_{h}^{n}}{\Delta t}, \frac{\boldsymbol{U}_{h}^{n+1}-\boldsymbol{U}_{h}^{n}}{\Delta t}\right) \tag{46}
\end{equation*}
$$

Stability and consistency

$$
\begin{equation*}
\mathcal{S}=\left\{(\theta, \alpha, \nu) \in \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}_{\star}^{+}, \cos ^{2}\left(\frac{\pi h}{2}\right)\left(\nu^{2}(1-4 \alpha)+4 \theta\right) \leq 1, \forall h>0\right\} \tag{47}
\end{equation*}
$$

Stability -The scheme $\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is stable if and only if $(\theta, \alpha, \nu) \in \mathcal{S}$.

Proof. $\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is stable if $E_{0}^{\theta, \alpha}$ is a positive quadratic form, i.e. if the matrix $M_{1}^{\theta \nu}$ is positive definite (the matrix K_{h} is positive definite). The eigenvalues $0<\lambda_{1}^{K}<\lambda_{2}^{K}<\ldots<\lambda_{J}^{K}$ of K are $\lambda_{j}^{K}=4 \sin ^{2}(j \pi h / 2)$. The eigenvalues of $M_{1}^{\theta \nu}=I-\left(\theta_{\nu}+\nu^{2} / 4\right) K$ are

$$
\begin{equation*}
\lambda_{j}^{M_{1}^{\theta_{\nu}}}=1-4\left(\theta_{\nu}+\frac{\nu^{2}}{4}\right) \sin ^{2}\left(\frac{j \pi h}{2}\right), \quad 1 \leq j \leq J \tag{48}
\end{equation*}
$$

Consistency - $\forall \theta, \alpha \geq 0$, the error of consistency associated to $\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is of order $(\theta-1 / 12) O\left(h^{2}\right)+(\alpha-1 / 12) O\left(\Delta t^{2}\right)+O\left(h^{4}\right)+O\left(\Delta t^{4}\right)+O\left(h^{2} \Delta t^{2}\right)$.

Stability and consistency

$$
\begin{equation*}
\mathcal{S}=\left\{(\theta, \alpha, \nu) \in \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}_{\star}^{+}, \cos ^{2}\left(\frac{\pi h}{2}\right)\left(\nu^{2}(1-4 \alpha)+4 \theta\right) \leq 1, \forall h>0\right\} \tag{47}
\end{equation*}
$$

Stability -The scheme $\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is stable if and only if $(\theta, \alpha, \nu) \in \mathcal{S}$.

Proof. $\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is stable if $E_{0}^{\theta, \alpha}$ is a positive quadratic form, i.e. if the matrix $M_{1}^{\theta \nu}$ is positive definite (the matrix K_{h} is positive definite). The eigenvalues $0<\lambda_{1}^{K}<\lambda_{2}^{K}<\ldots<\lambda_{J}^{K}$ of K are $\lambda_{j}^{K}=4 \sin ^{2}(j \pi h / 2)$. The eigenvalues of $M_{1}^{\theta \nu}=I-\left(\theta_{\nu}+\nu^{2} / 4\right) K$ are

$$
\begin{equation*}
\lambda_{j}^{M_{1}^{\theta_{\nu}}}=1-4\left(\theta_{\nu}+\frac{\nu^{2}}{4}\right) \sin ^{2}\left(\frac{j \pi h}{2}\right), \quad 1 \leq j \leq J \tag{48}
\end{equation*}
$$

Consistency $-\forall \theta, \alpha \geq 0$, the error of consistency associated to $\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is of order

$$
\begin{equation*}
(\theta-1 / 12) O\left(h^{2}\right)+(\alpha-1 / 12) O\left(\Delta t^{2}\right)+O\left(h^{4}\right)+O\left(\Delta t^{4}\right)+O\left(h^{2} \Delta t^{2}\right) \tag{49}
\end{equation*}
$$

Convergence - $\forall(\theta, \alpha, \nu) \in \mathcal{S},\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is convergent of order 2.

Stability and consistency

$$
\begin{equation*}
\mathcal{S}=\left\{(\theta, \alpha, \nu) \in \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}_{\star}^{+}, \cos ^{2}\left(\frac{\pi h}{2}\right)\left(\nu^{2}(1-4 \alpha)+4 \theta\right) \leq 1, \forall h>0\right\} \tag{47}
\end{equation*}
$$

Stability -The scheme $\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is stable if and only if $(\theta, \alpha, \nu) \in \mathcal{S}$.

Proof. $\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is stable if $E_{0}^{\theta, \alpha}$ is a positive quadratic form, i.e. if the matrix $M_{1}^{\theta \nu}$ is positive definite (the matrix K_{h} is positive definite). The eigenvalues $0<\lambda_{1}^{K}<\lambda_{2}^{K}<\ldots<\lambda_{J}^{K}$ of K are $\lambda_{j}^{K}=4 \sin ^{2}(j \pi h / 2)$. The eigenvalues of $M_{1}^{\theta \nu}=I-\left(\theta_{\nu}+\nu^{2} / 4\right) K$ are

$$
\begin{equation*}
\lambda_{j}^{M_{1}^{\theta \nu}}=1-4\left(\theta_{\nu}+\frac{\nu^{2}}{4}\right) \sin ^{2}\left(\frac{j \pi h}{2}\right), \quad 1 \leq j \leq J . \tag{48}
\end{equation*}
$$

Consistency - $\forall \theta, \alpha \geq 0$, the error of consistency associated to $\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is of order

$$
\begin{equation*}
(\theta-1 / 12) O\left(h^{2}\right)+(\alpha-1 / 12) O\left(\Delta t^{2}\right)+O\left(h^{4}\right)+O\left(\Delta t^{4}\right)+O\left(h^{2} \Delta t^{2}\right) \tag{49}
\end{equation*}
$$

Convergence $-\forall(\theta, \alpha, \nu) \in \mathcal{S},\left(\mathcal{A}_{h, \Delta t}^{\theta, \alpha}\right)$ is convergent of order 2.

Uniform discrete observability inequality

Theorem

Let $(\theta, \alpha, \nu) \in \mathcal{C}$ and $T>2 \max \left(1, \nu^{2}\right)$. There exist two constants $C_{1}, C_{2}>0$ independent of h and Δt such that

$$
\begin{equation*}
C_{1} E_{0}^{\theta, \alpha} \leq \Delta t \sum_{n=0}^{N-1}\left(\left|\frac{u_{J}^{n}}{h}\right|^{2}+\theta_{\nu}\left|\frac{u_{J}^{n+1}-u_{J}^{n}}{\Delta t}\right|^{2}\right) \leq C_{2} E_{0}^{\theta, \alpha} \tag{50}
\end{equation*}
$$

The left part of (50) is a uniform discrete observability inequality, discrete version of the inequality

$$
\begin{equation*}
C_{1} E(0) \leq \int_{0}^{T}\left[\left(u_{x}(1, t)\right)^{2}+\theta_{\nu}\left(u_{x}^{\prime}(1, t)\right)^{2}\right] d t \tag{51}
\end{equation*}
$$

with $\theta_{\nu}:=\theta-\alpha \nu^{2}=\frac{\left(1-\nu^{2}\right)}{4}, \nu=\frac{\Delta t}{h}$

Uniform discrete observability inequality - 2

$$
\begin{equation*}
\boldsymbol{U}_{\boldsymbol{h}}^{\boldsymbol{n}}=\sum_{k=1}^{J}\left[a_{k, h} \cos \left(\sqrt{\lambda_{k, h}^{\theta, \alpha}} n \Delta t\right)+\frac{b_{k, h}}{\sqrt{\lambda_{k, h}^{\theta, \alpha}}} \sin \left(\sqrt{\lambda_{k, h}^{\theta, \alpha}} n \Delta t\right)\right] \boldsymbol{\phi}_{\boldsymbol{k}, \boldsymbol{h}} \tag{52}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\lambda_{k, h}^{\theta, \alpha}=\left[\frac{2}{\Delta t} \arcsin \left(\frac{\nu \sin (k \pi h / 2)}{\sqrt{1-4\left(\theta-\alpha \nu^{2}\right) \sin ^{2}(k \pi h / 2)}}\right)\right]^{2}, \quad \forall k=1, \ldots, J \tag{53}\\
\phi_{k, h}=\left(\phi_{k, j}\right)_{(1 \leq j \leq J)}, \quad \phi_{k, j}=\sin (k \pi j h)
\end{array}\right.
$$

or equivalently

$$
\begin{equation*}
\boldsymbol{U}_{\boldsymbol{h}}^{\boldsymbol{n}}=\sum_{|k| \leq J, k \neq 0} c_{k, h} \boldsymbol{e}^{i \mu_{k, h} n \Delta t} \boldsymbol{\phi}_{\boldsymbol{k}, \boldsymbol{h}} \tag{54}
\end{equation*}
$$

with

$$
\begin{equation*}
\mu_{-k, h}=-\mu_{k, h} ; \mu_{k, h}=\sqrt{\lambda_{k, h}^{\theta, \alpha}} ; c_{k, h}=\frac{a_{k, h}-i b_{k, h} / \mu_{k, h}}{2} ; c_{-k, h}=\overline{c_{k, h}} . \tag{55}
\end{equation*}
$$

Uniform discrete observability inequality - 3
We have to estimate the quantity :

$$
\begin{align*}
& C_{1} E_{0}^{\theta, \alpha} \leq \Delta t \sum_{n=0}^{N-1}\left(\left|\frac{u_{J}^{n}}{h}\right|^{2}+\theta_{\nu}\left|\frac{u_{J}^{n+1}-u_{J}^{n}}{\Delta t}\right|^{2}\right) \leq C_{2} E_{0}^{\theta, \alpha} \tag{56}\\
& \Delta t \sum_{n=0}^{N-1}\left|\frac{u_{J}^{n}}{h}\right|^{2}=\left.\left.\Delta t \sum_{n=0}^{N-1}\right|_{|k| \leq J, k \neq 0} c_{k, h} e^{i \mu_{k, h} n \Delta t} \frac{\sin (k \pi J h)}{h}\right|^{2} \tag{57}
\end{align*}
$$

Uniform discrete observability inequality - 3
We have to estimate the quantity :

$$
\begin{align*}
& C_{1} E_{0}^{\theta, \alpha} \leq \Delta t \sum_{n=0}^{N-1}\left(\left|\frac{u_{J}^{n}}{h}\right|^{2}+\theta_{\nu}\left|\frac{u_{J}^{n+1}-u_{J}^{n}}{\Delta t}\right|^{2}\right) \leq C_{2} E_{0}^{\theta, \alpha} \tag{56}\\
& \Delta t \sum_{n=0}^{N-1}\left|\frac{u_{J}^{n}}{h}\right|^{2}=\left.\left.\Delta t \sum_{n=0}^{N-1}\right|_{|k| \leq J, k \neq 0} c_{k, h} e^{i \mu_{k, h} n \Delta t} \frac{\sin (k \pi J h)}{h}\right|^{2} \tag{57}
\end{align*}
$$

Uniform discrete observability inequality - 3

We have to estimate the quantity :

$$
\begin{align*}
& C_{1} E_{0}^{\theta, \alpha} \leq \Delta t \sum_{n=0}^{N-1}\left(\left|\frac{u_{J}^{n}}{h}\right|^{2}+\theta_{\nu}\left|\frac{u_{J}^{n+1}-u_{J}^{n}}{\Delta t}\right|^{2}\right) \leq C_{2} E_{0}^{\theta, \alpha} . \tag{56}\\
& \Delta t \sum_{n=0}^{N-1}\left|\frac{u_{J}^{n}}{h}\right|^{2}=\left.\left.\Delta t \sum_{n=0}^{N-1}\right|_{|k| \leq J, k \neq 0} c_{k, h} e^{i \mu_{k, h} n \Delta t} \frac{\sin (k \pi J h)}{h}\right|^{2} . \tag{57}
\end{align*}
$$

Theorem (Discrete ingham inequality, Negreanu'03) ${ }^{7}$ Let $\Delta t>0$ and $\left\{\mu_{k}\right\}$ be a sequence of reel numbers satisfying for some γ and $0 \leq p<1 / 2$ the conditions :

$$
\begin{align*}
& \mu_{k+1}-\mu_{k} \geq \gamma>0, \quad \forall k \in \mathbb{Z} \\
& \left|\mu_{k}-\mu_{l}\right| \leq \frac{2 \pi-(\Delta t)^{p}}{\Delta t}, \quad \forall k, I \in \mathbb{Z} \tag{58}
\end{align*}
$$

Then, for every $T>2 \pi / \gamma$, there exist two positives constants $C_{1}(T, \gamma)$ and $C_{2}(T, \gamma)$ such that

$$
\begin{equation*}
C_{1}(T, \gamma) \sum_{k=-J}^{J}\left|c_{k}\right|^{2} \leq \Delta t \sum_{n=0}^{N-1} \sum_{k=-J}^{J}\left|c_{k} e^{i n \Delta t \mu_{k}}\right|^{2} \leq C_{2}(T, \gamma) \sum_{k=-J}^{J}\left|c_{k}\right|^{2} \tag{59}
\end{equation*}
$$

for every complex sequence $\left(c_{k}\right)_{k \in Z} \in I^{2}$.
${ }^{7}$ M. Negreanu, Discrete Ingham inequalities and applications (2003)

Uniform discrete observability inequality - 4

Lemma
Let $(\theta, \alpha, \nu) \in \mathcal{C}$. Then,

$$
\begin{align*}
& \sqrt{\lambda_{j, h}^{\theta, \alpha}}-\sqrt{\lambda_{j-1, h}^{\theta, \alpha}} \geq \pi \min \left(1, \nu^{-2}\right) \quad \forall j=2, \ldots, J ; \tag{60}\\
& \left|\sqrt{\lambda_{j, h}^{\theta, \alpha}}-\sqrt{\lambda_{k, h}^{\theta, \alpha}}\right| \leq 2 \pi \Delta t^{-1}+O(1) \quad \forall j, k=1, \ldots, J .
\end{align*}
$$

Uniform discrete observability inequality - 5

Proposition

Let $(\theta, \alpha, \nu) \in \mathcal{C}$. For every $T>2 \max \left(1, \nu^{2}\right)$, there exist two constants $c, C>0$ independent of Δt and h such that

$$
\begin{align*}
c(T) \min \left(1, \nu^{-2}\right) \sum_{|k| \leq J, k \neq 0}\left|c_{k, h}\right|^{2} \mid & \left.\frac{\sin (k \pi h)}{h}\right|^{2} \leq \Delta t \sum_{n=0}^{N-1}\left(\left|\frac{u_{J}^{n}}{h}\right|^{2}+\theta_{\nu}\left|\frac{u_{J}^{n+1}-u_{J}^{n}}{\Delta t}\right|^{2}\right) \\
& \leq C(T) \max \left(1, \nu^{-2}\right) \sum_{|k| \leq J, k \neq 0}\left|c_{k, h}\right|^{2}\left|\frac{\sin (k \pi h)}{h}\right|^{2} \tag{61}
\end{align*}
$$

Uniform discrete observability inequality - 6

Theorem
Let $(\theta, \alpha, \nu) \in \mathcal{C}$. Then, we have the following inequalities :

$$
\begin{align*}
& \min \left(1, \nu^{-2}\right) \sum_{|k| \leq J, k \neq 0}\left|c_{k, h}\right|^{2}\left|\frac{\sin (k \pi h)}{h}\right|^{2} \\
& \leq 2 E_{0}^{\theta, \alpha} \leq \max \left(1, \nu^{-2}\right) \sum_{|k| \leq J, k \neq 0}\left|c_{k, h}\right|^{2}\left|\frac{\sin (k \pi h)}{h}\right|^{2} \tag{62}
\end{align*}
$$

Lack of discrete observability w.r.t. $(\Delta t, h)-7$

Figure: Evolution of $\sqrt{\lambda_{k, h}^{\theta, \alpha}}, k=1, \ldots, J$ for different values of θ, α and ν.

Lack of discrete observability w.r.t. $(\Delta t, h)-8$

Figure: Evolution of $\sqrt{\lambda_{k, h}^{\theta, \alpha}}, k=\frac{3}{4} J, \ldots, J$ for different values of θ, α and ν : zoom on the high frequencies.

Positive Commutation diagram

If $(\theta, \alpha, \nu) \in \mathcal{C}$ then $h^{2} \theta_{\nu}=\frac{1}{4}\left(h^{2}-\Delta t^{2}\right)$

$$
\left(\overline{\mathcal{S}}_{h, \Delta t}\right)\left\{\begin{array}{l}
\Delta_{\Delta t} y_{h, \Delta t}+\frac{1}{4}\left(h^{2}-\Delta t^{2}\right) \Delta_{h} \Delta_{\Delta t} y_{h, \Delta t}-\Delta_{h} y_{h, \Delta t}=0, \tag{63}\\
+ \text { Initial conditions and Boundary terms }
\end{array}\right.
$$

produces a discrete uniformly bounded and converging control under the condition $\Delta t<h \sqrt{T / 2}$.

Figure: Commuting diagram associated to the scheme $\left(\overline{\mathcal{S}}_{h, \Delta t}\right)$ for $\Delta t<h \sqrt{T / 2}$.

Positive Commutation diagram

If $(\theta, \alpha, \nu) \in \mathcal{C}$ then $h^{2} \theta_{\nu}=\frac{1}{4}\left(h^{2}-\Delta t^{2}\right)$

$$
\left(\overline{\mathcal{S}}_{h, \Delta t}\right)\left\{\begin{array}{l}
\Delta_{\Delta t} y_{h, \Delta t}+\frac{1}{4}\left(h^{2}-\Delta t^{2}\right) \Delta_{h} \Delta_{\Delta t} y_{h, \Delta t}-\Delta_{h} y_{h, \Delta t}=0, \tag{63}\\
+ \text { Initial conditions and Boundary terms }
\end{array}\right.
$$

produces a discrete uniformly bounded and converging control under the condition $\Delta t<h \sqrt{T / 2}$.

Figure: Commuting diagram associated to the scheme $\left(\overline{\mathcal{S}}_{h, \Delta t}\right)$ for $\Delta t<h \sqrt{T / 2}$.

Negative Commutation diagram

If $(\theta, \alpha, \nu) \notin \mathcal{C}$, in particular $\theta=\alpha$ and $\nu<1(\Delta t<h)$

$$
\left(\overline{\mathcal{S}}_{h, \Delta t}\right)\left\{\begin{array}{l}
\Delta_{\Delta t} y_{h, \Delta t}-\Delta_{h} y_{h, \Delta t}=0 \tag{64}\\
+ \text { Initial conditions and Boundary terms }
\end{array}\right.
$$

produces a non discrete uniformly bounded and converging control under the condition $\Delta t<h$.

Figure: Non commuting diagram associated to the scheme $\left(\overline{\mathcal{S}}_{h, \Delta t}\right)$ for $\Delta t<h$.

Numerical example

$$
y_{0}(x)=\left\{\begin{array}{cc}
16 x & x \in[0,1 / 2], \tag{65}\\
0 & x \in] 1 / 2,1] .
\end{array} \quad ; \quad y_{1}(x)=0\right.
$$

Let us take $T=2.4$. The control v with minimal L^{2}-norm is the following discontinuous function:

$$
v(t)=\left\{\begin{array}{cc}
0 & t \in[0,0.9] \cup[1.9, T], \tag{66}\\
8(t-1.4) & t \in] 0.9,1.9[
\end{array}\right.
$$

leading to $\|V\|_{L^{2}(0, T)}=4 / \sqrt{3} \approx 2.3094$. The corresponding initial conditions of the forward problem are

$$
\hat{w}_{0}(x)=0 \quad ; \quad \hat{w}_{1}(x)=\left\{\begin{array}{cl}
-8 x & x \in[0,1 / 2[\tag{67}\\
0 & x \in[1 / 2,1] .
\end{array}\right.
$$

Usual scheme - Minimizer

Figure: (FDS) $P\left(\hat{w}_{1 h}\right)(x)$ vs. $x \in[0,1], \nu=0.98, T=2.4$ and $h=1 / 10$ (top left), $h=1 / 20$ (top right), $h=1 / 30$ (bottom left), $h=1 / 40$ (bottom right).

Usual scheme - control

Figure: (FDS): Control $P\left(\boldsymbol{v}_{\boldsymbol{h}}\right)(t)$ vs. $t \in[0, T], \nu=0.98, T=2.4$ and $h=1 / 10$ (top left), $h=1 / 20$ (top right), $h=1 / 30$ (bottom left), $h=1 / 40$ (bottom right).

Usual scheme - control norm

Figure: $($ FDS $) \log \left(\left\|Q\left(\boldsymbol{v}_{\boldsymbol{h}}\right)\right\|_{L^{2}(0, T)}\right)$ vs. $1 / h$ for different values of $\nu . T=2.4$

Modified scheme - Minimizer

Figure: $(\mathrm{MFS}) P\left(\hat{w}_{1 h}\right)(x)$ vs. $x \in[0,1]-(\theta, \alpha, \nu) \approx(1 / 20,1 / 12,1.095445), T=2.4$ and $h=1 / 21,1 / 41,1 / 81,1 / 161$.

Modified scheme - control

Figure: (MFS) Control $P\left(\boldsymbol{v}_{\boldsymbol{n}}\right)(t)$ vs. $t \in[0, T]$ $(\theta, \alpha, \nu) \approx(1 / 20,1 / 12,1.095445), T=2.4$ and $h=1 / 21,1 / 41,1 / 81,1 / 161$.

Remarks

The situation is open when the discrete spectrum is not available. In practice, we may

- Regularize the discrete cost, i.e. add coercivity [Tychonoff regularization]

$$
J_{\varepsilon}^{\star}\left(\varphi_{0}, \varphi_{1}\right)=J^{\star}\left(\varphi_{0}, \varphi_{1}\right)+\frac{\varepsilon^{2}}{2}\left\|\varphi_{0}, \varphi_{1}\right\|_{\boldsymbol{V}}^{2}, \quad \varepsilon>0
$$

- Filter out the high frequency components Minimize over the "first" discrete modes of φ_{0}, φ_{1}
- Use Bi-Grid strategy

Introduce by [Glowinski,92] and justify by [Zuazua-Ignat, 2009 in 1D] and ['Komornik-Loreti 2010] in 2D

Remarks

The situation is open when the discrete spectrum is not available. In practice, we may

- Regularize the discrete cost, i.e. add coercivity [Tychonoff regularization]

$$
J_{\varepsilon}^{\star}\left(\varphi_{0}, \varphi_{1}\right)=J^{\star}\left(\varphi_{0}, \varphi_{1}\right)+\frac{\varepsilon^{2}}{2}\left\|\varphi_{0}, \varphi_{1}\right\|_{\boldsymbol{V}}^{2}, \quad \varepsilon>0
$$

- Filter out the high frequency components Minimize over the "first" discrete modes of φ_{0}, φ_{1}
- Use Bi-Grid strategy Introduce by [Glowinski,92] and justify by [Zuazua-Ignat, 2009 in 1D] and [Komornik-Loreti 2010] in 2D

Remarks

The situation is open when the discrete spectrum is not available. In practice, we may

- Regularize the discrete cost, i.e. add coercivity [Tychonoff regularization]

$$
J_{\varepsilon}^{\star}\left(\varphi_{0}, \varphi_{1}\right)=J^{\star}\left(\varphi_{0}, \varphi_{1}\right)+\frac{\varepsilon^{2}}{2}\left\|\varphi_{0}, \varphi_{1}\right\|_{\boldsymbol{V}}^{2}, \quad \varepsilon>0
$$

- Filter out the high frequency components Minimize over the "first" discrete modes of φ_{0}, φ_{1}
- Use Bi-Grid strategy

Introduce by [Glowinski,92] and justify by [Zuazua-Ignat, 2009 in 1D] and [Komornik-Loreti 2010] in 2D

A word on stabilization : lack of uniform exponential decay

$$
\left\{\begin{array}{lr}
y_{t t}-\Delta y+a(x) 1_{\omega} y^{\prime}=0, & (x, t) \in Q_{T}:=\Omega \times(0, T) \tag{68}\\
y=0, & (x, t) \in \Sigma_{T} \\
\left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right) \in H_{0}^{1} \times L^{2}, & x \in \Omega
\end{array}\right.
$$

Theorem
If (Ω, T, ω) satisfy the geometric condition:

$$
\exists \alpha, C>0, \quad E(t) \leq C E(0) e^{-\alpha t}, \quad t>0
$$

but, if $\omega \neq \Omega$, then at the discrete level [Banks-Ito-Wang, 91]

A word on stabilization : lack of uniform exponential decay

$$
\left\{\begin{array}{lr}
y_{t t}-\Delta y+a(x) 1_{\omega} y^{\prime}=0, & (x, t) \in Q_{T}:=\Omega \times(0, T) \tag{68}\\
y=0, & (x, t) \in \Sigma_{T} \\
\left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right) \in H_{0}^{1} \times L^{2}, & x \in \Omega
\end{array}\right.
$$

Theorem
If (Ω, T, ω) satisfy the geometric condition:

$$
\exists \alpha, C>0, \quad E(t) \leq C E(0) e^{-\alpha t}, \quad t>0
$$

but, if $\omega \neq \Omega$, then at the discrete level [Banks-Ito-Wang, 91]

A word on stabilization : lack of uniform exponential decay

$$
\left\{\begin{array}{lr}
y_{t t}-\Delta y+a(x) 1_{\omega} y^{\prime}=0, & (x, t) \in Q_{T}:=\Omega \times(0, T) \tag{68}\\
y=0, & (x, t) \in \Sigma_{T} \\
\left(y(\cdot, 0), y_{t}(\cdot, 0)\right)=\left(y_{0}, y_{1}\right) \in H_{0}^{1} \times L^{2}, & x \in \Omega
\end{array}\right.
$$

Theorem

If (Ω, T, ω) satisfy the geometric condition:

$$
\exists \alpha, C>0, \quad E(t) \leq C E(0) e^{-\alpha t}, \quad t>0
$$

but, if $\omega \neq \Omega$, then at the discrete level [Banks-Ito-Wang, 91]

$$
\exists \alpha_{h}, C_{h}>0, E_{h}(t) \leq C_{h} E_{h}(0) e^{-\alpha_{h} t}, \quad t>0, \quad \lim _{h \rightarrow 0} \alpha_{h} \rightarrow 0
$$

Theorem (AM, Pazoto (2005))
The semi-discret scheme associated to $\left(h=\left(h_{1}, h_{2}\right)\right)$

$$
y_{t t}-\Delta y+a(x) 1_{\omega} y^{\prime}-h_{1}^{2} \frac{\partial^{2} y^{\prime}}{\partial x_{1}^{2}}-h_{2}^{2} \frac{\partial^{2} y^{\prime}}{\partial x_{2}^{2}}=0
$$

preserve the uniforme decay: $\exists \alpha_{0}>0$ such that $\alpha_{h} \geq \alpha_{0}, \forall h>0$

[^0]: ${ }^{2}$ V. Komornik, P. Loreti, Fourier series in control theory, 2005

[^1]: ${ }^{2}$ V. Komornik, P. Loreti, Fourier series in control theory, 2005

[^2]: ${ }^{3}$ N. Cindea, E. Fernandez-Cara, AM, Numerical controllability of the wave equation through primal methods and Carleman estimates, 2012

[^3]: ${ }^{3}$ N. Cindea, E. Fernandez-Cara, AM, Numerical controllability of the wave equation through primal methods and Carleman estimates, 2012

[^4]: ${ }^{4}$ R. Glowinski, C.H. Li, J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods, (1990)

[^5]: ${ }^{5}$ R. Glowinski, C.H. Li, J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods, (1990)

