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Introduction - The advection-diffusion equation

Let T>0,MeR,e>0and Qr := (0,1) x (0, T).

Ley® :=yf — ey + Myx =0, Qr,
ye(0,-) = ve(D), y°(1,-) =0, (0,7), (1)
ye(,0) =5, 0,1).

o Well-poseddness:
vye € H7'(0,1),vF € L3(0, T),

o Null control property: From D.L.Russel’78,

VT >0,y5 € H1(0,1),3v¢ € L2(0, T) st

y(1,t)=0

31y e L3(Qr)nc([o, T]; H~1(0,1))

ye(,T)=0 inH'(0,1)
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o Well-poseddness:

Vys € H7'(0,1),ve € L3(0, T), 3ty° € L3(Qr)nc([o, T; H'(0,1))

o Null control property: From D.L.Russel’78,

VT >0,y5 € H1(0,1),3ve € L2(0, T) st y°(,T)=0 inH™'(0,1)

e Main concern: Behavior of the controls v ase — 0

@ Controllability of conservation law system;
@ Toy model for fluids when Navier-Stokes — Euler.




Cost of control

e We note the non empty set of null controls by
Cly;,Te, M) := {v € L2(0, T); y = y(v) solves (5) and satisfies y(-, T) = 0}

and define, for any £ > 0, the cost of control by the following quantity :

K(e, T,M) := sup min v, 2 .
19 20,5y =1 LVECUGToemn )

K(e, T, M) is the norm of the (linear) operator y§ — vyum where vyyy is the control of
minimal L2-norm.
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Cost of control

e We note the non empty set of null controls by
Cly;,Te, M) := {v € L2(0, T); y = y(v) solves (5) and satisfies y(-, T) = 0}

and define, for any £ > 0, the cost of control by the following quantity :

K(e, T,M) := sup min v, 2 .
19 20,5y =1 LVECUGToemn )

K(e, T, M) is the norm of the (linear) operator y§ — vyum where vyyy is the control of
minimal L2-norm.

e We denote by T, the minimal time for which the cost K(e, T, M) is uniformly
bounded with respect to . In other words, (5) is uniformly controllable with respect to e
ifandonly if T > Ty.

e Remark- K(g, T,0) ~._,o+ e~ /26T, k € (1/2,3/4) so that Ty = cc.
We assume M # 0.




Objective - Outline

Main objective : Determine the behavior of the cost K (e, T, M)
ase — 0 I1?7?

Ouitline :
@ Part 1: Facts on the diffusion-advection eq. and literature.
@ Part 2: Numerical attempt to estimate K (e, T, M).

@ Part 3: Asymptotic analysis of the corresponding optimality
system

Arnaud Miinch Controllability of y; — eyxx + Myx = 0 w.rt. e



Remind

Remark

e By duality, the controllability property of (5) is related to the existence of a constant
C > 0 such that

llo(-;0)ll 20,1y < Cllewx (0, )l 20,7y VeoT € H5(0,1) N H?(0,1) (@)

where ¢ solves the adjoint system

Lio:= ¢t +epxx + Mpx =0 in Qr,

#(0,) = p(1,) =0 on (0.T),

e(T) =T in  (0,1).
e The quantity

lle(- 0)l 20,1y

Cobs(e, T, M) = —_——,
% eTEH}(0,1) lleex (0, ')||L2(0,T)

is the smallest constant for which (2) holds true and

K(e, T, M) = Cops(e, T, M).




M # 0O - Direct problem - Behavior of y¢ as e — 0

Theorem (Coron- Guerrero, 2005)

LetT >0, M € R*, y, € L?(0,1) independent of ¢. Let (v®)() be a sequence of
functions in L?(0, T) such that for some v € L?(0, T)

ve —~v in L[3(0,T), as e—0" .

Fore > 0, let us denote by y© € C([0, T]; H=1(0, 1)) the weak solution of

Vi eVt My =0 Qr,
ys(o") = Vs(t)v y€(1v) =0 (07 T)»
ye('vo) =)o (071)

Lety € C([0, T]; L2(0, 1)) be the weak solution of

Yi+Myx=0 Qr,
y(©,)=v(t) if M>0 (0,7),
y(1,)=0 if M<O0 (0, T).
y(-,0) = yo (0,1),

Then,yc —y in [?(Qr) as e— 0%,




First consequence

IfFT < Ww lim._,0 K(e, T, M) — co. Consequently, Tyy > ﬁ

PROOF. Assume that K(e, T, M) /» +oo. There exists (en)(nen) positive tending to 0
such that (K(en, T, M))(neny is bounded.

Let ven the optimal control driving yo to 0 at time T and y=» the corresponding solution.
Let Ty € (T,1/|M]). We extend y=n and ven by 0 on (T, Ty). From the inequality

IV lli2(0,7) = 1V 20,7y < K(E" T, M) 1ol 20,1y,
(0,70) ©.7) ©1)

we deduce that (v°")(peny is bounded in L?(0, Ty), so we extract a subsequence
(V") (nen) Such that ven — vin L2(0, Tp). We deduce that ysn — y in L2(Qr, ) solution
of the transport equation. Necessarily, y = 0 on (0,1) x (T, Tp). Contradiction.




Lower bounds for Ty,

We expect Ty, = |17\ and that lim._,q K(e, T, M) = 0T because the transport eq. is

null controlled at time T > fw‘ withv =10
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Lower bounds for Ty,

We expect Ty, = |17\ and that lim._,q K(e, T, M) = 0T because the transport eq. is

null controlled at time T > fw‘ withv =10

Theorem (Coron-Guerrero’2005)

e IfM >0, then K(s, T,M) > Ce®¢,¢,C >0, whene — 0 for T < /.

The lower bound are obtained using specific initial
condition:

Yo(x) = Kee%% sin(x),

M
K-=0("%%ez) st |yllizeqy) =1

leading, for M > 0, to

6_3/2 T-1/202

K, T,M) > Ci—————
(67 ’ )_ 1 1+M3€73

M
exp(£(1 —TM)—wzaT)

yofore =5x 1072,
e=10"2,e=5x 1073,




Lower bounds for Ty, M < 0.

Theorem (Coron-Guerrero’2005)

e IfM < 0, then K(e, T,M) > Ce®/¢, c,C >0, whene — 0 for T < \ZW\




Lower bounds for Ty, M < 0.

Theorem (Coron-Guerrero’2005)

e IfM < 0, then K(e, T,M) > Ce®/¢, c,C >0, whene — 0 for T < \ZW\




Lower bounds for Ty, M < 0.

Theorem (Coron-Guerrero’2005)

e IfM < 0, then K(e, T,M) > Ce®/¢, c,C >0, whene — 0 for T < \ZW\

With again yo(x) = K-e%- sin(rx),

=3/21-1/2pp2 M

(2= TIM|) = =n2eT
11 [MB=—3 2 2= TIM) ”5>

Controllability of y; — eyxx + Myy =



M # 0 - Direct problem - Behavior of ||y=(-, T)||;20,1) @s € — 0 for T > 1/|M|

The free solution (i.e. v¢ = 0) satisfies

e Dllzon < 1Y 0)lzope t () vrs
Y D21y S 1Y @ )||1_2(0,1) )
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M # 0 - Direct problem - Behavior of ||y=(-, T)||;20,1) @s € — 0 for T > 1/|M|

The free solution (i.e. v¢ = 0) satisfies

, s 4 (- gin)* 1
lyeC, Ollze,1y < e, 0z e = ™7/, Vi 7%

PROOF. Let &« > 0. We check z¢(x, t) = e o ye(x, t) solves
2f — ez + M(1 — a)z5 — Y2 (a2 — 2a)2° in  Qr,
z¢(0,-)=2z°(1,-)=0 on (0,7), (5)
z5(-,0) = eiglsax 1% in  (0,L).

Consequently

_ Max _ Max M2 (2 o0
lle™ 2= y=(, Dl 20,1y < ll€7 2 ys('aO)HLZ(oJ)e“E( 2t

Max _ Max
||.V8('at)||L2(o,1) <|let 2= L= (0,1)ll€™ 2= ye('7f)||L2(0,1)

Max _ Max M2 o
< (1™ ooy e~ Y7 (-, )l 2 0.1y 1 (22
Mo Mo
< Y° (. 0) 2o,y B (1M 5)

and the result with o = t — 1V > 0.




Upper bounds for Ty

Theorem (Coron-Guerrero’2005)

o IfM > 0, then K(¢, T, M) < Ce=°/¢ whene — 0 for T >
e IfM <0, then K(e, T, M) < Ce—°/¢ whene — 0 for T > ﬂ.




Estimates for Ty, (Upper and lower bounds)

Theorem (Coron-Guerrero’2005)

]
TMe[1,4.3]1M if M>0, [257.2]— if M<O.

IM|




Estimates for Ty, (Upper and lower bounds)

Theorem (Coron-Guerrero’2005)

1 1
3l— if M 2,57.2]— if M .
TMe[1,43]M if > 0, 2,5 ]|M| if <0

A\

Theorem (Glass’2009)

1 1
T 1,42]— if M>0, 2,6.1]— if M<O.
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Estimates for Ty, (Upper and lower bounds)

Theorem (Coron-Guerrero’2005)

1 1
3l— if M 2,57.2]— if M .
TMe[1,43]M if > 0, 2,5 ]|M| if <0

v

Theorem (Glass’2009)

1 1
Twe[l,42— if M>0, [2,61]— if M<O.

’

Theorem (Lissy’2015)

TM6[1,2\/§],:7, if M>0, [2%5,2(1+\@)]ﬁ if M<o.

(2V/3 ~ 3.46)

Arnaud Miinch Controllability of y; — eyxx + Myx = 0



Estimates for Ty, (Upper and lower bounds)

Theorem (Coron-Guerrero’2005)

1 1
3l— if M 2,57.2]— if M .
TMe[1,43]M if > 0, 2,5 ]|M| if <0

A

Theorem (Glass’2009)

1 1
Twe[l,42— if M>0, [2,61]— if M<O.

N

Theorem (Lissy’2015)

TM6[1,2\/§],:7, if M>0, [2%5,2(1+\@)]ﬁ if M<o.

(2V/3 ~ 3.46)

A\

Theorem (Darde-Ervedoza’2017)

TMe[1,K]1M if M>0,K~3.34

\
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Numerical estimate of the cost K(e, T, M) w.r.t. ¢ 1?7?




Reformulation of the cost of control

A )
Koo, oMy = sup 00
Yo€L2(0,1) (yO’yO)LZ(OJ)

where A, : L2(0,1) — L?(0, 1) is the control operator defined by A,y := —¢(0)
where ¢ solves the adjoint system

Lip =t +epxx + Mpx =0 in  Qr,
©(0,-) =(1,:)=0 on (0,T), (6)
Lp(': T) =¥T In (07 1)7

associated to the initial condition ¢ 1 € H(‘,(O, 1), solution of the extremal problem

inf  J* e NI + (Yo, (-, 0 .
oreHl(0,1) (o7) || vx(0 )||L2(0,7-) (Yo, »( ))L2(0,1)




Reformulation of the cost of control

A )
Koo, oMy = sup 00
Yo€L2(0,1) (yO’yO)LZ(OJ)

where A, : L2(0,1) — L?(0, 1) is the control operator defined by A,y := —¢(0)
where ¢ solves the adjoint system

Lip =t +epxx + Mpx =0 in  Qr,
©(0,-) =(1,:)=0 on (0,T), (6)
Lp(': T) =¥T In (07 1)7

associated to the initial condition ¢ 1 € H(‘,(O, 1), solution of the extremal problem

i 2
o 5 lleex(0,- + (Yo, (-0 :
oreHl(0,1) (o7) || vx(0 )||L2(0,7-) (Yo, »( ))L2(0,1)

REFORMULATION - K(g, T, M) is solution of the generalized eigenvalue problem :

sup{ﬁ €R:3yy € L2(0,1),50 #0, st. Acyo = Ayp in L2(o,1)}.




The generalized eigenvalue problem by the power iterated method

In order to get the largest eigenvalue of the operator 4., we may employ the power
iterate method (Chatelain’89):

yg S L2(0,1) given such that Hyg||L2(0,1) =1,

= Acyf, k>0,

Skt
K+t _ Y

= I
175" ll2(0,1)

@)
k > 0.

Yo




The generalized eigenvalue problem by the power iterated method

In order to get the largest eigenvalue of the operator 4., we may employ the power
iterate method (Chatelain’89):

yg S L2(0,1) given such that Hyg||L2(0,1) =1,

= Acyf, k>0,

k1
it Yo s

y() - |~ )
||}’(’)(+1 ll2(0,1)

@)

The real sequence {|\}7(’,‘||L2(071)}k>0 converges to the eigenvalue with largest module

of the operator A.:
VI 201y = K(e, T, M) as Kk — oo (®)

The [2-sequence {y(’)‘}k then converges toward the corresponding eigenvector.

Remark -The first step requires to determine the control of minimal L2 for (5) with initial
condition yX.




Computation of the control of minimal L2-norm

For a fixed initial data y° € L?(0, 1) and & small, the numerical approximation of
controls of minimal L?-norm is a serious challenge :

@ the minimization of J* is ill-posed : the infimum 7 lives in a huge dual space !!!
this implies that the minimizer o7 is highly oscillating at time T leading to high
oscillations of the control ey x(0, -).
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Computation of the control of minimal L2-norm

For a fixed initial data y° € L?(0, 1) and & small, the numerical approximation of
controls of minimal L?-norm is a serious challenge :

@ the minimization of J* is ill-posed : the infimum 7 lives in a huge dual space !!!
this implies that the minimizer o7 is highly oscillating at time T leading to high
oscillations of the control ey x(0, -).

@ Tychonoff like regularization

inf  J} =J* + B — lyeC, Dlly- < 9
oreHi(o. B(‘PT) (1) ||<PTHH6(071) lyeC Dl 100,1) B (9)

is meaningless here for T > 1/|M| because the uncontrolled solution y=(-, T)
goes to zero with e.

@ Several boundary layers occurs for y© and ¢° and requires fine discretization
and adapted meshes.

We use the variational approach developed in [Fernandez-Cara-Munch, 2013], [De
Souza-Mulnch, 2015] leading to convergent approximation with respect to the
discretization parameter (e being fixed).




Motivation for a space-time variational method (1)

Let po, p continuous non negative weights function in L>° ([0, T — §]) and
L>((0,1) x (0, T — §)), V6 > 0 and let the optimal problem

. « S T 2
(p%_'g,H Jpg (p7) = 5”8/70 ©x(0, ')HLZ(O,T) + (e, O)7y0)L2(0,1)»

L;QOE =0inQr, 505(07'):505(1"):001'1(07 T)» 505('77-):‘197—011(071)

where H is the completion of L?(0, T) w.r.t. the norm o7 — ||sp0‘1<px(0, ')HLZ(O,T)-
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At the finite dimensional (numerical) level, it may not be possible to satisfy the
constraint Lz ¢® = 0. A classical trick consists in discretizing first the equation then
control the discrete equation. This raises the issue of the uniform discrete observability
property !




Motivation for a space-time variational method (1)

Let po, p continuous non negative weights function in L>° ([0, T — §]) and
L>((0,1) x (0, T — §)), V6 > 0 and let the optimal problem

. " S T 2
(p%_'g,H JpU(LPT) = 5”8/70 ©x(0, ')HLZ(O,T) + (W(‘70)7YO)L2(0,1)»
L;‘:OE:OinQT» 505(07'):505(1"):00n(07 T)» 505('77-):‘197—011(071)

where H is the completion of L?(0, T) w.r.t. the norm o7 — ||sp0‘1<px(0, ')HLZ(O,T)-

At the finite dimensional (numerical) level, it may not be possible to satisfy the
constraint Lz ¢® = 0. A classical trick consists in discretizing first the equation then
control the discrete equation. This raises the issue of the uniform discrete observability
property !

Instead, we consider the minimization with respect to ¢ :

: T 1 2
(;gfw*f*(@) = §||€Po <PX(0:')||L2(07T) + (Yo, ¢(0, '))L2(o,1)

eW={pcd p'Lip= OinﬁQr)},
o & the completion of {x € C?(Qr), » = 0 on X7} w.r.t the scalar product

(,8) = (py " ¢x(0,-), epg '@x(0, Nezo,n + (p"Lip,p L3®)12(ap)-




Overview of a space-time variational method (2)

The main variable is ¢ (instead of (-, T)) submitted to the constraint equality LX¢ = 0;
alagrange multiplier A € L?(Qr) is introduced and then the saddle-point problem :

: 1 2 -1
fL(p,N) = = 0, (0, <\p e >
Aeig(poﬂ;g‘b (2. 2) 1= S llepg " @x(0. )z o 7y + (Y0, £(0,)) 120,y + P Lio > 12




Overview of a space-time variational method (2)

The main variable is ¢ (instead of (-, T)) submitted to the constraint equality LX¢ = 0;
alagrange multiplier A € L?(Qr) is introduced and then the saddle-point problem :

T - 1%
sup inf L(p,A) = EHEPO "x(0, ')||i2(0 T)+(YO7<P(07 Nezpnt <Ap Lo >12(Qy)
xel2(Qr) PE® '

The main tool to prove the well-posedeness is a generalized observability inequality (or
global Carleman inequality): there exists a constant C > 0 such that

(- O)lZ 0. sc(||spg‘@x(o,-)uf2(m+Hp—u*sou p) e (10)

_ B8
which holds true if weights p— ,po ~1 behave like eT-0-7 | (t close to T) for some
B,a>0.




Overview of a space-time variational method (2)

The main variable is ¢ (instead of (-, T)) submitted to the constraint equality LX¢ = 0;
alagrange multiplier A € L?(Qr) is introduced and then the saddle-point problem :

1. 4 2 1
fL == 0,- 0,- A L:
Aeng(pOT) "; (e, A) 2“5/70 ©x(0, )||L2(0,7-)+(.V07<P( s Nz, <A pT LIe >0

The main tool to prove the well-posedeness is a generalized observability inequality (or
global Carleman inequality): there exists a constant C > 0 such that

(- O)lZ 0. sc(nspg‘@x(o,-)ufzw+Hp—u*sou p) e (10)

_ B8
which holds true if weights p— ,po ~1 behave like eT-0-7 | (t close to T) for some
B,a>0.

Remarks : e a conformal approximation of ® leads to strong convergent approximation
of the controls;
e The space-time approach is well-suited to mesh adaptivity.




Overview of the space-time variational method (3)

e Augmented (to have uniform coerciviity) and stabilized (to get rid of the inf-sup
constant issue) technics :

1 — —1 7%
iue\;nf Lra(p; N) -*Ellépo Tox(0, - )||L2 0,1y T (0,90, )) 20,y + < A p "LEe > 12y
€

ST e o 2
+ é”p L YHLZ EHLE}\”LZ(Q )

and A = {x € C([0, T], L2(0, T)), LA € L2(QT)7>\(L7 ) =0}




Overview of the space-time variational method (3)

e Augmented (to have uniform coerciviity) and stabilized (to get rid of the inf-sup
constant issue) technics :

1 — —17*
iue\;nf Lra(p; N) -*Ellépo Tox(0, - )||L2 0,1y T (0,90, )) 20,y + < A p "LEe > 12y
€

ST e o 2
+ é”p L YHLZ EHLE}\”LZ(Q )

and A := {X € C([0, T],L3(0, T)), LA € L2(OT),>\(L, ) =0}.

e The adjoint system is preliminary transformed into a first system
L:J (‘r; p) =@t +Ppx+ M‘PX =0, L:2(‘pp) =P —cepx = 0, OT:

leading to the saddle-point formulation

1
su inf  Lral(e,p), (M, A2)) := =|p(0, )2 + (Yo, ©(0, -
()\1,A2p)€/\(<ﬂvp)€®/3 r, ((L/7 p) ( 1 2)) 2||p( )HLZ(O,T) (yO 50( ))LZ(O,L)
+ < )\1,L;190 >12(0p) T < A2, L;z@ >12(Q7)
My« f2 *
+ L P ooy + 2L 2P gy

aq as 2
- ?“LE.1(A1?>\2)||L2(QT) - ?“LEA,Z()\17)\2)HL2(QT)

with ry, r > 0 (augmentation parameters) and «, a, (stabilization terms).




A FreeFem++ code associated to the space-time variational formulation

[porder bas (s=0,1) {x=s; y=0;label=Ntop;}; border droit (s=0,T) {x=1;y=s;label=Nright;}

[porder haut (s=1,0) {x=s;y=T; label=Nhaut; } border gauche (s=T,0) {x=0; y=s;label=Ngauche; }
mesh Th=buildmesh (bas (50) +droit (50) +haut (50) +gauche (50)) ;
fespace Vh(Th,P3

); fespace Ph(Th,P3);
real eps=1.e-3, M=

1, rl=l.e-6, r2=1.e-6, alphal=5.e-2, alpha2=5.e-2;

Vh phi,p,phit,pt; Ph 11,12,11t,12t; Vh y0 = sin (pi«x)«(l-y);

O©CoONOOSWN =

10pproblem transport ([phi,p,11,12], [phit,pt,11lt,12t])=
11|// Initial conjugate cost
12| int1d (Th,Ngauche) (eps*eps+dx (phi) xdx (phit))+intld(Th,Nbas) (yO+phit)

13

14| // bilinear adjoint- direct solution terms
15| + int2d(Th) ( (dy (phi) +dx (p) +Mxdx (phi)) x11t)
16| + int2d(Th) ( (dy (phit) +dx (pt) +Mxdx (phit)) »11)
17| + int2d(Th) ( (p-eps*dx (phi)) x12t)

18| + int2d (Th) ( (pt-eps+dx (phit)) «x12)

19

20| // Rugmentation terms

21| + int2d(Th) (rlx (dy (phi) +dx (p) +Mdx (phi) )+ (dy (phit) +dx (pt) +M+dx (phit)))
22| + int2d(Th) (r2* (eps*dx(phi)-p) * (eps*dx(phit)-pt))

23
24| // stabilized terms

25| -int2d (Th) (alphalx (dy (11) +Msdx (11) —~eps*dx (12) ) « (dy (11t) +Mxdx (11t) —eps+dx (12t)))
26| - int2d(Th) (alpha2x* (dx (11)-12) » (dx (11t)-12t))

27
28| // boundary conditions for the adjoint and lagrange multiplier solutions
29| + on (Nbas, 11=y0) +on (Ndroit, Ngauche, phi=0.) +on (Ndroit, Nhaut, 11=0.);




Space-time variational method well suited to mesh adaptivity
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Typical structured space-time meshes used for small values of e - M > 0

Arnaud Miinch Controllability of y; — eyxx + Myx = O w.rt.



Picture of controls with respect to ¢, yy fixed

Jolx) = sin(mx); T=1; M —1
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Control of minimal L?(0, T)-norm v&(t) € [0, T] fore = 10~",10~2 and 10~ 5.




One adapted mesh over Qr
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Arnaud Miinch Controllability of y; — eyxx + Myx =0



Picture of controls with respect to ¢, yy fixed
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Control of minimal L?(0, T)-norm v&(t) € [0, T] fore = 10~",10~2 and 10~ 5.




Cost of control K(e, T, M) w.rt. e - M = 1.
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Cost of control w.rt. e € [1073,10~ ] for T =0.954;, T = ;; and T = 1.054;




Corresponding worst initial condition
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Cost of control K(e, T, M) w.rt. e - M = —1
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Left: Cost of control w.r.t. e for T = I1WI; Right: Corresponding control v in the
neighborhood of T fore = 10—3




Corresponding worst initial condition for M = —1
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Attempt 2 : Asymptotic analysis w.r.t. ¢

We take M > 0.




Attempt 2 : Asymptotic analysis w.r.t. ¢
We take M > 0.

Optimality system :

Loy =0, Lfp® =0, (x,1) € Qr,
ye(-,0) =5, x €(0,1),
VE() = y2(0, 1) = ep5(0, 1), te(0,7), )
ye(1,) = 0,. te(0,7),
©°(0,1) = ¢*(1,1) =0, te(0,7),
= B(E)pu (- T)+y(,T) =0, x€(0,1).

B(g) > 0- Regularization parameter

J.-L. Lions Perturbations singuliéres dans les probléemes aux limites et en contréle
optimal Lecture Notes in Mathematics. Springer 1973.




Boundary layers

The situation is tricky because (assume M > 0)
@ y¢ exhibits a boundary layer of size O(e) at x = 1 and a boundary layer of size
O(4/¢) along the characteristic {(x,t) € Qr,x — Mt = 0};
@ ° exhibits a boundary layer of size (O(¢)) at x = 0 and a boundary layer of size
(O(/¢)) along the characteristic {(x,t) € Qr,x —M(t—T) —1=0};

) [ O (r — E(1
£ (2, T) = p7(x)
1 1
T>1 T> -

_ 1
t_}\[

=0

o (1,t)

x 1




Direct problem - Matched asymptotic expansion method - Case 1

Yt — &Y+ My =0, (x; 1) € (0,1) x (0, 7),
ye(0, 1) = ve(t) = iakv"(t), ye(1,t) =0, te(0,T), (12
k=0
ye(x,0) = yo(x), x € (0,1),
vO, v, ... v being known.

We construct an asymptotic approximation of the solution y¢ of (12) by using the
matched asymptotic expansion method. We consider two formal asymptotic
expansions of y©:

—the outer expansion
m

ST yR(x ), (x, 1) €(0,T),

k=0

—the inner expansion. (boundary layer at x = 1)




Direct problem - Outer expansion - y* - Case 1

Yo(x — Mt) x> Mt,
yO(X7 t) = 0 X M
v (t - M> . x< Mt
Using the method of characteristics we find that, forany 1 < kK < m,
t
/ Ve (X + (s — )M, s)ds, x> M,
0
yk(X7 t) =

M

x/M
vk (t— 1) +/ yEtsM,t— X 4 s)ds, x < M.
0 M




Direct problem - Outer expansion - y* - Case 1

Yo(x — Mt) x > Mt,
y (X t) 0 X
v (t — M) , X< Mt
Using the method of characteristics we find that, forany 1 < kK < m,
/ yE (X + (s — )M, s)ds, x> Mt,

K
yixt) =
vk (t— 1) +/X/Myk‘1(sM t— X 4 s)ds, x< Mt

M 0 XX I M El

For instance,

{tyé’(x — Mt), x> Mt,
yi(x b= 1 X VoY X
V<t*M)+W( ) <t*M>, X < Mt,

2 4

Eyé )(x — Mt), x> Mt,

,V2(x,t): Vz(l‘—%)—i—%(W)”(t—%)

2X (,0)@) (- 2) (OO (- 2), x<mt




Direct problem - Inner expansion -

Yk - Case 1

Yo(z,1) = y°(1,0) (1-

For any 1 < k < m, the solution reads

Y(z, t) = QX(z, t) + e M2 PK (2, 1),

o), (z,1) € (0,+00) x (0, T).

(z,1) € (0,+c0) x (0, T),

Qk(z7t)_z( 1)'3' k— 1(1 t) i

il
i=0 L ox'




Asymptotic regular approximation at the order m

Theorem (Amirat, M)

Let y© be the solution of problem (12) and let w, be the function defined as follows

).

Assume that yy € C?™+1[0,1], vk € CAmM=K+1[0, T], k = 0, - -- , m and that the
CcAm=K)+1_ matching conditions are satisfied

wg, (X, 1) Zskyk(x )+ (1 —Xe(x))Zs Y"(

1
VPO = S (- 1)M’W(O 0), 0<p<2(m—k)+1.
i+j=p—1

Then there is a constant cm independent of e such that

2m+1
Iy* = Wallc(o,me200,1)) < Cme 27

Example For m = 0, y° and v° should satisfies y; € C'[0, 1], v° € C'[0, T] and

V(t=0)=y(x=0), M) (t=0)+y(x=0)=0.




Approximate controllability result

LetmeN, T > fanda€lo, T — 4.
Assume regularity and matching conditions
on the initial condition y, and functions v,
0 < k < m. Assume moreover that

vE(t) =0, 0<k<mVte][aT].

Then, the solution y¢ of problem (12)
satisfies the following property

(. (2m+1)~
Iy, Dz, < 6me 2, vy €(0,1

— L
t=T-L

for some constant cm > 0 independent of
e. The function v¢ € C([0, T]) defined by 0
ve 1= L, eXvK is an approximate null
control for (5).




Convergence with respect to m under conditions on y, and the v,
(i) The initial condition yg belongs to C>°[0, 1] and there is b € R such that
k
1§ 201y < le b%, VkeN, (14)
(i) (Vk)kzo is a sequence of polynomials of degree < p — 1, p > 1, uniformly
bounded in CP~[0, T].
(iiiy Forany k € N, for any m € N, the functions vk and y, satisfy the matching

conditions.

Theorem

Assume (i)-(ii)-(iii). There existey > 0 and a function
6= € [2(0, T; H}(0,1)) N C([0, T]; L3(0, 1)) satisfying an exponential decay, such that,
for any fixed 0 < e < gg, we have

Ve —ws —0° =0 inC([0, T]; L?(0,1)), asm — +oo.
The function §¢ satisfies

7] —am=X
6%l cqpo, 77,1200,y S €€ <

where c is a constant independent of .

Arnaud Miinch Controllability of y; — eyxx + Myx = Ow.rt.




Optimality condition

Using the inner expansion for ¢, the equality v= () = e¢5(0, t) rewrites as follows
V() +ev'(t)+--- = 03(0,t) +e®L(0,8) +---, Vt€(0,T).

At the zero order, we get therefore the equality vO(t) = ¢9(0, t) leading to

MES(M(T — 1)), te]T —1/M,T],

0, telo, T—1/M).

leading to v9(0) = 0 and contradicts the matching condition v9(0) = y,(0) unless
¥0(0) =01

vo(t) = M(0,1) = { (15)




Optimality condition

Using the inner expansion for ¢, the equality v= () = e¢5(0, t) rewrites as follows
V() +ev'(t)+--- = 03(0,t) +e®L(0,8) +---, Vt€(0,T).

At the zero order, we get therefore the equality vO(t) = ¢9(0, t) leading to

MES(M(T — 1)), te]T —1/M,T],

0, telo, T—1/M).

leading to v9(0) = 0 and contradicts the matching condition v9(0) = y,(0) unless
¥0(0) = 0! Assuming yo(0) = 0, we determine the optimal function <p°T by developing

JE(95) = Jg (%) +£... with

vo(t) = M(0,1) = { (15)

]
JE(PY) = = ||VO? 7<,X°,0 1— x.)e° ,0)
5 (e7) 2||v 20,7y = | Yo, Xe0™ (X, 0) + ( )7 (x )Lz(m

leading to ¢ = 0, i.e. v0 = 0. The transport equation in y° and ¢ separates the
domain (0, 1) x (0, T) into two distincts part: at the first order, the initial condition y; is
not seen by the control function v°.




Optimality condition

Using the inner expansion for ¢, the equality v= () = e¢5(0, t) rewrites as follows
V() +ev'(t)+--- = 03(0,t) +e®L(0,8) +---, Vt€(0,T).

At the zero order, we get therefore the equality vO(t) = ¢9(0, t) leading to

MES(M(T — 1)), te]T —1/M,T],

0, telo, T—1/M).

leading to v9(0) = 0 and contradicts the matching condition v9(0) = y,(0) unless
¥0(0) = 0! Assuming yo(0) = 0, we determine the optimal function <p°T by developing

JE(95) = Jg (%) +£... with

vo(t) = M(0,1) = { (15)

]
JE(PY) = = ||VO? 7<,X°,0 1— x.)e° ,0)
5 (e7) 2||v 20,7y = | Yo, Xe0™ (X, 0) + ( )7 (x )Lz(m

leading to ¢ = 0, i.e. v0 = 0. The transport equation in y° and ¢ separates the
domain (0, 1) x (0, T) into two distincts part: at the first order, the initial condition y; is
not seen by the control function v°.

In the class of initial condition {yo € C*[0,1], (¥0)™(0) = 0,Ym € N},
K(e,T,M) —0ase —0ifT > .




Direct problem - Matched asymptotic expansion method - Case 2

We now take into account the boundary layer on the characteristic and consider three
formal asymptotic expansions of y*:
—the outer expansion

m
DY, (xheQr, x—Mt#0
k=0

—the first inner expansion (on the characteristic x — Mt = 0)

m
§ e X — Mt ( Mt 1—Mt)
E e2 W (Wt w = € Y I ,te(O,T).
pard NG el/ NG

—the second inner expansion (at x = 1)

m
1—
SOk2YKR(z 1), z= X e (0,e7), te(0,T).




Direct problem - Matched asymptotic expansion method - Case 2 - First order

approximation

After computations, the first order approximation of y< is given by
Yo(x — Mt) + WO(w. 1) — yo(0) — C2(t)e™ ™, x > Mt,

0
PS(X7 )= M - Cg(t)e_Mzu x = Mt,

Vo (tf %) £ WO(w, t) — VO(0) — CO(t)e Mz, x < Mt

with (recall that erf(x) = % 5 e*szds)

S 1—x W X — Mt

= W=
WO(W, t) — erf(%) yo(O) ; VO(O) + yO(O) _'2_ VO(O)7 (16)
02(t) = y°(1.0)+ WO (1=25.1) = (o).




Direct problem - Matched asymptotic expansion method - Case 2 - First order

approximation (1)

After more computations, the next approximation of y¢ is given by
P2 (x,t) = PO(x, 1) + vEF/?(x, t) with

W'2(w,t) —dtw — Cl(t)e ™, x> Mt,
Fg/z(xvt): { 1/2( : - 81( ) —Mz _
W'/2(w,t) —d~w— C! (e ™2, x < Mt,
and
1—x 1— Mt 1
=2 = dt = M), d = ——(v>YD(o
z c , Wo \/g ) (yO) ( )7 M(V) ( )7

1 — Mi
Cl(t) = w2 (7’ t) — a0 WO (o, 1),

W2 (w, t) = (ﬁ_%erf(zlﬁ) w+ (dt — d*)%e*% + (dti_fdi)w
(17

Theorem (First order approximation)

Assume v0 € C'([0, T]), y° € C'([0,1]). Then3C > 0 independent of € s.t.

1
ly* = P22l oo, .20y < CVE.




Let us assume that the initial condition is of the form y;(x) = cge% f(x) where f is
an arbitrary function independent of £, @ < 0 and ¢ € R*. We introduce the following
change of variable

e, 1) = coee oDz (x 1), La(x,t) = '\’g” (x - M) (18)

e 2




Let us assume that the initial condition is of the form y;(x) = cge% f(x) where f is
an arbitrary function independent of £, @ < 0 and ¢ € R*. We introduce the following
change of variable

_ M 2 —a)Mt
VI, t) = oo D25 (x, ), fea(x,t) = X (x - %) (18)
2¢e 2
We then check that
Le(y®)(x, t) = cogl=a (XD (zf —ez5 + Maz;) = coela DL L (25)(x, 1)

with M, := M(1 — a) > 0. Consequently, the new variable z* solves

Le,o(2°) := 77 — ez + Mazg =0, (x,t) € Qr,
25(0,8) ;== Vo(t) = ¢ el aOye ZE(L 1) =0, te(0,T), (19)
z8(x,0) =: z5(x) = f(x), x € (0,L).

The initial data is now independent of €. On the contrary, the control v* depends a
priori on €. We have thus reported the problem on the control part (which is relevant
from a controllability viewpoint).




@ Y. Amirat, A. Mlinch, Asymptotic analysis of an advection-diffusion equation and
application to boundary controllability. Submitted.

@ J-.M Coron, S. Guerrero, Singular optimal control: a linear 1-D
parabolic-hyperbolic example, 2005.

@ E. Fernandez-Cara, A. Miinch, Strong convergence approximations of null
controls for the 1D heat equation, 2013.

@ O. Glass, A complex-analytic approach to the problem of uniform controllability of
a transport equation in the vanishing viscosity limit, 2010.

@ J. Kevorkian, J.-D. Cole,Multiple scale and singular perturbation methods, 1996.

@ P Lissy, Explicit lower bounds for the cost of fast controls for some 1-D parabolic
or dispersive equations, and a new lower bound concerning the uniform
controllability of the 1-D transport-diffusion equation, 2015.

@ A. Miinch, Numerical estimate of the cost of boundary controls for the equation
Yt — e¥xx + Myx = 0 with respect to . Submitted.

@ A. Minch, D. Souza, A mixed formulation for the direct approximation of
L2-weighted controls for the linear heat equation, 2015.

NADA MAS | THANK YOU FOR YOUR ATTENTION




