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Introduction - The advection-diffusion equation

Let T > 0, M ∈ R, ε > 0 and QT := (0, 1)× (0,T ).
Lεyε := yεt − εy

ε
xx + Myεx = 0, QT ,

yε(0, ·) = vε(t), yε(1, ·) = 0, (0,T ),

yε(·, 0) = yε0 , (0, 1).
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•Well-poseddness:

∀yε0 ∈ H−1(0, 1), vε ∈ L2(0,T ), ∃! yε ∈ L2(QT ) ∩ C([0,T ]; H−1(0, 1))

• Null control property: From D.L.Russel’78,

∀T > 0, yε0 ∈ H−1(0, 1),∃vε ∈ L2(0,T ) s.t. yε(·,T ) = 0 in H−1(0, 1)

• Main concern: Behavior of the controls vε as ε→ 0
Controllability of conservation law system;
Toy model for fluids when Navier-Stokes→ Euler.
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Cost of control

•We note the non empty set of null controls by

C(yε0 ,T , ε,M) :=
{

v ∈ L2(0,T ); y = y(v) solves (5) and satisfies y(·,T ) = 0
}

and define, for any ε > 0, the cost of control by the following quantity :

K (ε,T ,M) := sup
‖yε0 ‖L2(0,1)

=1

{
min

v∈C(yε0 ,T ,ε,M)
‖v‖L2(0,T )

}
.

K (ε,T ,M) is the norm of the (linear) operator yε0 → vHUM where vHUM is the control of
minimal L2-norm.

•We denote by TM the minimal time for which the cost K (ε,T ,M) is uniformly
bounded with respect to ε. In other words, (5) is uniformly controllable with respect to ε
if and only if T ≥ TM .

• Remark- K (ε,T , 0) ∼ε→0+ ε−1/2e
κ
εT , κ ∈ (1/2, 3/4) so that T0 =∞.

We assume M 6= 0.
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Objective - Outline

Main objective : Determine the behavior of the cost K (ε,T ,M)
as ε→ 0 !!??

Outline :
Part 1: Facts on the diffusion-advection eq. and literature.
Part 2: Numerical attempt to estimate K (ε,T ,M).
Part 3: Asymptotic analysis of the corresponding optimality
system
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Remind

Remark
• By duality, the controllability property of (5) is related to the existence of a constant
C > 0 such that

‖ϕ(·, 0)‖L2(0,1) ≤ C‖εϕx (0, ·)‖L2(0,T ), ∀ϕT ∈ H1
0 (0, 1) ∩ H2(0, 1) (2)

where ϕ solves the adjoint system L?εϕ := ϕt + εϕxx + Mϕx = 0 in QT ,
ϕ(0, ·) = ϕ(1, ·) = 0 on (0,T ),
ϕ(·,T ) = ϕT in (0, 1).

• The quantity

Cobs(ε,T ,M) = sup
ϕT∈H1

0 (0,1)

‖ϕ(·, 0)‖L2(0,1)

‖εϕx (0, ·)‖L2(0,T )

.

is the smallest constant for which (2) holds true and

K (ε,T ,M) = Cobs(ε,T ,M).
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M 6= 0 - Direct problem - Behavior of yε as ε→ 0

Theorem (Coron- Guerrero, 2005)

Let T > 0, M ∈ R?, y0 ∈ L2(0, 1) independent of ε. Let (vε)(ε) be a sequence of
functions in L2(0,T ) such that for some v ∈ L2(0,T )

vε ⇀ v in L2(0,T ), as ε→ 0+.

For ε > 0, let us denote by yε ∈ C([0,T ]; H−1(0, 1)) the weak solution of
yεt − εy

ε
xx + Myεx = 0 QT ,

yε(0, ·) = vε(t), yε(1, ·) = 0 (0,T ),

yε(·, 0) = y0 (0, 1).

(3)

Let y ∈ C([0,T ]; L2(0, 1)) be the weak solution of


yt + Myx = 0 QT ,

y(0, ·) = v(t) if M > 0 (0,T ),

y(1, ·) = 0 if M < 0 (0,T ).

y(·, 0) = y0 (0, 1),

(4)

Then, yε ⇀ y in L2(QT ) as ε→ 0+.
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First consequence

Corollary

If T < 1
|M| , limε→0 K (ε,T ,M)→∞. Consequently, TM ≥ 1

|M| .

PROOF. Assume that K (ε,T ,M) 6→ +∞. There exists (εn)(n∈N) positive tending to 0
such that (K (εn,T ,M))(n∈N) is bounded.

Let vεn the optimal control driving y0 to 0 at time T and yεn the corresponding solution.
Let T0 ∈ (T , 1/|M|). We extend yεn and vεn by 0 on (T ,T0). From the inequality

‖vεn‖L2(0,T0) = ‖vεn‖L2(0,T ) ≤ K (εn,T ,M)‖y0‖L2(0,1),

we deduce that (vεn )(n∈N) is bounded in L2(0,T0), so we extract a subsequence
(vεn )(n∈N) such that vεn ⇀ v in L2(0,T0). We deduce that yεn ⇀ y in L2(QT0 ) solution
of the transport equation. Necessarily, y ≡ 0 on (0, 1)× (T ,T0). Contradiction.
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Lower bounds for TM

We expect TM = 1
|M| and that limε→0 K (ε,T ,M) = 0+ because the transport eq. is

null controlled at time T ≥ 1
|M| with v ≡ 0 !

Theorem (Coron-Guerrero’2005)

• If M > 0, then K (ε,T ,M) ≥ Cec/ε, c,C > 0, when ε→ 0 for T < 1
M .

The lower bound are obtained using specific initial
condition:

y0(x) = Kεe
Mx
2ε sin(πx),

Kε = O(ε−3/2e
−M
2ε ) s.t. ‖y0‖L2(0,1) = 1

leading, for M > 0, to

K (ε,T ,M) ≥ C1
ε−3/2T−1/2M2

1 + M3ε−3
exp

(
M
2ε

(1−TM)−π2εT
)

y0 for ε = 5× 10−2,
ε = 10−2, ε = 5× 10−3.
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Lower bounds for TM , M < 0.

Theorem (Coron-Guerrero’2005)

• If M < 0, then K (ε,T ,M) ≥ Cec/ε, c,C > 0, when ε→ 0 for T < 2
|M| .

With again y0(x) = Kεe
Mx
2ε sin(πx),

K (ε,T ,M) ≥ C1
ε−3/2T−1/2M2

1 + |M|3ε−3
exp

(
|M|
2ε

(2− T |M|)− π2εT
)
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M 6= 0 - Direct problem - Behavior of ‖yε(·,T )‖L2(0,1) as ε→ 0 for T > 1/|M|

Lemma

The free solution (i.e. vε = 0) satisfies

‖yε(·, t)‖L2(0,1) ≤ ‖y
ε(·, 0)‖L2(0,1)e

−M2
4ε

(
t− 1
|M|

)2

, ∀t >
1
|M|

.

PROOF. Let α > 0. We check zε(x , t) = e
−Mαx

2ε yε(x , t) solves
zεt − εz

ε
xx + M(1− α)zεx − M2

4ε (α2 − 2α)zε = 0 in QT ,
zε(0, ·) = zε(1, ·) = 0 on (0,T ),

zε(·, 0) = e
−Mαx

2ε yε0 in (0, L).

(5)

Consequently

‖e−
Mαx

2ε yε(·, t)‖L2(0,1) ≤ ‖e
−Mαx

2ε yε(·, 0)‖L2(0,1)e
M2
4ε (α2−2α)t

‖yε(·, t)‖L2(0,1) ≤ ‖e
+ Mαx

2ε ‖L∞(0,1)‖e−
Mαx

2ε yε(·, t)‖L2(0,1)

≤ ‖e+ Mαx
2ε ‖L∞(0,1)‖e−

Mαx
2ε yε(·, 0)‖L2(0,1)e

M2
4ε (α2−2α)t

≤ ‖yε(·, 0)‖L2(0,1)e
Mα
2ε

(
1−Mt+ Mα

2

)
and the result with α = t − 1

M > 0.
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Upper bounds for TM

Theorem (Coron-Guerrero’2005)

• If M > 0, then K (ε,T ,M) ≤ Ce−c/ε when ε→ 0 for T ≥ 4.3
M .

• If M < 0, then K (ε,T ,M) ≤ Ce−c/ε when ε→ 0 for T ≥ 57.2
|M| .
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Estimates for TM (Upper and lower bounds)

Theorem (Coron-Guerrero’2005)

TM ∈ [1, 4.3]
1
M

if M > 0, [2, 57.2]
1
|M|

if M < 0.

Theorem (Glass’2009)

TM ∈ [1, 4.2]
1
M

if M > 0, [2, 6.1]
1
|M|

if M < 0.

Theorem (Lissy’2015)

TM ∈ [1, 2
√

3]
1
M

if M > 0, [2
√

2, 2(1 +
√

3)]
1
|M|

if M < 0.

(2
√

3 ≈ 3.46)

Theorem (Darde-Ervedoza’2017)

TM ∈ [1,K ]
1
M

if M > 0,K ≈ 3.34
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Part 2

Numerical estimate of the cost K (ε,T ,M) w.r.t. ε !??
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Reformulation of the cost of control

K 2(ε,T ,M) = sup
y0∈L2(0,1)

(Aεy0, y0)L2(0,1)

(y0, y0)L2(0,1)

where Aε : L2(0, 1)→ L2(0, 1) is the control operator defined by Aεy0 := −ϕ̂(0)
where ϕ̂ solves the adjoint system L?εϕ := ϕt + εϕxx + Mϕx = 0 in QT ,

ϕ(0, ·) = ϕ(1, ·) = 0 on (0,T ),
ϕ(·,T ) = ϕT in (0, 1),

(6)

associated to the initial condition ϕT ∈ H1
0 (0, 1), solution of the extremal problem

inf
ϕT∈H1

0 (0,1)
J?(ϕT ) :=

1
2

∥∥εϕx (0, ·)
∥∥2

L2(0,T )
+ (y0, ϕ(·, 0))L2(0,1).

REFORMULATION - K (ε,T ,M) is solution of the generalized eigenvalue problem :

sup

{√
λ ∈ R : ∃ y0 ∈ L2(0, 1), y0 6= 0, s.t. Aεy0 = λy0 in L2(0, 1)

}
.

Arnaud Münch Controllability of yt − εyxx + Myx = 0 w.r.t. ε



Reformulation of the cost of control

K 2(ε,T ,M) = sup
y0∈L2(0,1)

(Aεy0, y0)L2(0,1)

(y0, y0)L2(0,1)

where Aε : L2(0, 1)→ L2(0, 1) is the control operator defined by Aεy0 := −ϕ̂(0)
where ϕ̂ solves the adjoint system L?εϕ := ϕt + εϕxx + Mϕx = 0 in QT ,

ϕ(0, ·) = ϕ(1, ·) = 0 on (0,T ),
ϕ(·,T ) = ϕT in (0, 1),

(6)

associated to the initial condition ϕT ∈ H1
0 (0, 1), solution of the extremal problem

inf
ϕT∈H1

0 (0,1)
J?(ϕT ) :=

1
2

∥∥εϕx (0, ·)
∥∥2

L2(0,T )
+ (y0, ϕ(·, 0))L2(0,1).

REFORMULATION - K (ε,T ,M) is solution of the generalized eigenvalue problem :

sup

{√
λ ∈ R : ∃ y0 ∈ L2(0, 1), y0 6= 0, s.t. Aεy0 = λy0 in L2(0, 1)

}
.

Arnaud Münch Controllability of yt − εyxx + Myx = 0 w.r.t. ε



The generalized eigenvalue problem by the power iterated method

In order to get the largest eigenvalue of the operator Aε, we may employ the power
iterate method (Chatelain’89):



y0
0 ∈ L2(0, 1) given such that ‖y0

0 ‖L2(0,1) = 1,

ỹk+1
0 = Aεyk

0 , k ≥ 0,

yk+1
0 =

ỹk+1
0

‖ỹk+1
0 ‖L2(0,1)

, k ≥ 0.

(7)

The real sequence {‖ỹk
0 ‖L2(0,1)}k>0 converges to the eigenvalue with largest module

of the operator Aε: √
‖ỹk

0 ‖L2(0,1) → K (ε,T ,M) as k →∞. (8)

The L2-sequence {yk
0 }k then converges toward the corresponding eigenvector.

Remark -The first step requires to determine the control of minimal L2 for (5) with initial
condition yk

0 .
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Computation of the control of minimal L2-norm

For a fixed initial data y0 ∈ L2(0, 1) and ε small, the numerical approximation of
controls of minimal L2-norm is a serious challenge :

the minimization of J? is ill-posed : the infimum ϕT lives in a huge dual space !!!
this implies that the minimizer ϕT is highly oscillating at time T leading to high
oscillations of the control εϕ,x (0, ·).

Tychonoff like regularization

inf
ϕT∈H1

0 (0,1)
J?β(ϕT ) := J?(ϕT ) + β‖ϕT ‖H1

0 (0,1) −→ ‖y
ε(·,T )‖H−1(0,1) ≤ β (9)

is meaningless here for T > 1/|M| because the uncontrolled solution yε(·,T )
goes to zero with ε.

Several boundary layers occurs for yε and ϕε and requires fine discretization
and adapted meshes.

We use the variational approach developed in [Fernandez-Cara-Münch, 2013], [De
Souza-Münch, 2015] leading to convergent approximation with respect to the
discretization parameter (ε being fixed).
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Motivation for a space-time variational method (1)

Let ρ0, ρ continuous non negative weights function in L∞([0,T − δ]) and
L∞((0, 1)× (0,T − δ)), ∀δ > 0 and let the optimal problem

inf
ϕεT∈H

J?ρ0
(ϕT ) :=

1
2
‖ερ−1

0 ϕx (0, ·)‖2
L2(0,T )

+ (ϕ(·, 0), y0)L2(0,1),

L?εϕ
ε = 0 in QT , ϕε(0, ·) = ϕε(1, ·) = 0 on (0,T ), ϕε(·,T ) = ϕT on (0, 1)

where H is the completion of L2(0,T ) w.r.t. the norm ϕT → ‖ερ−1
0 ϕx (0, ·)‖L2(0,T ).

At the finite dimensional (numerical) level, it may not be possible to satisfy the
constraint L?εϕε = 0. A classical trick consists in discretizing first the equation then
control the discrete equation. This raises the issue of the uniform discrete observability
property !

Instead, we consider the minimization with respect to ϕ :

inf
φ∈W

J?(ϕ) :=
1
2
‖ερ−1

0 ϕx (0, ·)‖2
L2(0,T )

+ (y0, ϕ(0, ·))L2(0,1)

•W = {ϕ ∈ Φ, ρ−1L?εϕ = 0 in L2(QT )},
• Φ the completion of {ϕ ∈ C2(QT ), ϕ = 0 on ΣT } w.r.t the scalar product

(ϕ,ϕ) := (ερ−1
0 ϕx (0, ·), ερ−1

0 ϕx (0, ·))L2(0,T ) + (ρ−1L?εϕ, ρ
−1L?εϕ)L2(QT ).
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Overview of a space-time variational method (2)

The main variable is ϕ (instead of ϕ(·,T )) submitted to the constraint equality L?εϕ = 0;
a lagrange multiplier λ ∈ L2(QT ) is introduced and then the saddle-point problem :

sup
λ∈L2(QT )

inf
ϕ∈Φ
L(ϕ, λ) :=

1
2
‖ερ−1

0 ϕx (0, ·)‖2
L2(0,T )

+(y0, ϕ(0, ·))L2(0,1)+ < λ, ρ−1L?εϕ >L2(QT )

The main tool to prove the well-posedeness is a generalized observability inequality (or
global Carleman inequality): there exists a constant C > 0 such that

‖ϕ(·, 0)‖2
L2(0,1)

≤ C
(
‖ερ−1

0 ϕx (0, ·)‖2
L2(0,T )

+ ‖ρ−1L?εϕ‖2
L2(QT )

)
, ∀ϕ ∈ Φ (10)

which holds true if weights ρ−1, ρ−1
0 behave like e

β

(T−t)−α , (t close to T ) for some
β, α > 0.

Remarks : • a conformal approximation of Φ leads to strong convergent approximation
of the controls;

• The space-time approach is well-suited to mesh adaptivity.
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Overview of the space-time variational method (3)

• Augmented (to have uniform coerciviity) and stabilized (to get rid of the inf-sup
constant issue) technics :

sup
λ∈Λ

inf
ϕ∈Φ
Lr,α(ϕ, λ) :=

1
2
‖ερ−1

0 ϕx (0, ·)‖2
L2(0,T )

+ (y0, ϕ(0, ·))L2(0,L)+ < λ, ρ−1L?εϕ >L2(QT )

+
r
2
‖ρ−1L?εϕ‖2

L2(QT )
−
α

2
‖Lελ‖2

L2(QT )

and Λ :=
{
λ ∈ C([0,T ], L2(0,T )), Lελ ∈ L2(QT ), λ(L, ·) = 0

}
.

• The adjoint system is preliminary transformed into a first system

L?ε,1(ϕ, p) := ϕt + px + Mϕx = 0, L?ε,2(ϕ, p) := p − εϕx = 0, QT ,

leading to the saddle-point formulation

sup
(λ1,λ2)∈Λ

inf
(ϕ,p)∈Φβ

Lr,α((ϕ, p), (λ1, λ2)) :=
1
2
‖p(0, ·)‖2

L2(0,T )
+ (y0, ϕ(0, ·))L2(0,L)

+ < λ1, L?ε,1ϕ >L2(QT ) + < λ2, L?ε,2ϕ >L2(QT )

+
r1

2
‖L?ε,1(ϕ, p)‖2

L2(QT )
+

r2

2
‖L?ε,2(ϕ, p)‖2

L2(QT )

−
α1

2
‖Lε,1(λ1, λ2)‖2

L2(QT )
−
α2

2
‖Lε,2(λ1, λ2)‖2

L2(QT )

with r1, r2 > 0 (augmentation parameters) and α1, α2 (stabilization terms).
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A FreeFem++ code associated to the space-time variational formulation

1border bas(s=0,1){x=s; y=0;label=Ntop;}; border droit(s=0,T){x=1;y=s;label=Nright;}
2border haut(s=1,0){x=s;y=T;label=Nhaut;} border gauche(s=T,0){x=0;y=s;label=Ngauche;}
3mesh Th=buildmesh(bas(50)+droit(50)+haut(50)+gauche(50)) ;
4
5fespace Vh(Th,P3); fespace Ph(Th,P3);
6real eps=1.e-3, M=1, r1=1.e-6, r2=1.e-6, alpha1=5.e-2, alpha2=5.e-2;
7
8Vh phi,p,phit,pt; Ph l1,l2,l1t,l2t; Vh y0 = sin(pi*x)*(1-y);
9

10problem transport([phi,p,l1,l2],[phit,pt,l1t,l2t])=
11// Initial conjugate cost
12 int1d(Th,Ngauche) (eps*eps*dx(phi)*dx(phit))+int1d(Th,Nbas)(y0*phit)
13
14 // bilinear adjoint- direct solution terms
15 + int2d(Th)((dy(phi)+dx(p)+M*dx(phi))*l1t)
16 + int2d(Th)((dy(phit)+dx(pt)+M*dx(phit))*l1)
17 + int2d(Th)((p-eps*dx(phi))*l2t)
18 + int2d(Th)((pt-eps*dx(phit))*l2)
19
20 // Augmentation terms
21 + int2d(Th)(r1*(dy(phi)+dx(p)+M*dx(phi))* (dy(phit)+dx(pt)+M*dx(phit)))
22 + int2d(Th)(r2* (eps*dx(phi)-p) * (eps*dx(phit)-pt))
23
24 // stabilized terms
25 -int2d(Th)(alpha1*(dy(l1)+M*dx(l1)-eps*dx(l2))*(dy(l1t)+M*dx(l1t)-eps*dx(l2t)))
26 - int2d(Th)(alpha2*(dx(l1)-l2)*(dx(l1t)-l2t))
27
28 // boundary conditions for the adjoint and lagrange multiplier solutions
29 + on(Nbas,l1=y0)+on(Ndroit,Ngauche,phi=0.)+on(Ndroit, Nhaut, l1=0.);
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Space-time variational method well suited to mesh adaptivity

Typical structured space-time meshes used for small values of ε - M > 0
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Picture of controls with respect to ε, y0 fixed

y0(x) = sin(πx); T = 1; M = 1
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Control of minimal L2(0,T )-norm vε(t) ∈ [0,T ] for ε = 10−1, 10−2 and 10−3.

Arnaud Münch Controllability of yt − εyxx + Myx = 0 w.r.t. ε



One adapted mesh over QT

y0(x) = sin(πx) - M = 1 - ε = 10−3.
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Picture of controls with respect to ε, y0 fixed

y0(x) = sin(πx); T = 1; M = −1
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Cost of control K (ε,T ,M) w.r.t. ε - M = 1.
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Corresponding worst initial condition
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T = 1 - M = 1 - The optimal initial condition y0 in (0, 1) for ε = 10−1, ε = 10−2 and
ε = 10−3.

=⇒ y0 is close to e−
Mx
2ε sin(πx)/‖e−

Mx
2ε sin(πx)‖L2(0,1)
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Cost of control K (ε,T ,M) w.r.t. ε - M = −1
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Left: Cost of control w.r.t. ε for T = 1
|M| ; Right: Corresponding control vε in the

neighborhood of T for ε = 10−3
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Corresponding worst initial condition for M = −1
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T = 1 - M = −1 - The optimal initial condition y0 in (0, 1) for ε = 10−1, ε = 10−2 and
ε = 10−3.
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Part 2

Attempt 2 : Asymptotic analysis w.r.t. ε

We take M > 0.

Optimality system :

Lεyε = 0, L?εϕ
ε = 0, (x , t) ∈ QT ,

yε(·, 0) = yε0 , x ∈ (0, 1),

vε(t) = yε(0, t) = εϕεx (0, t), t ∈ (0,T ),

yε(1, t) = 0, . t ∈ (0,T ),

ϕε(0, t) = ϕε(1, t) = 0, t ∈ (0,T ),

− β(ε)ϕεxx (·,T ) + yε(·,T ) = 0, x ∈ (0, 1).

(11)

β(ε) ≥ 0- Regularization parameter

J.-L. Lions Perturbations singulières dans les problèmes aux limites et en contrôle
optimal.Lecture Notes in Mathematics. Springer 1973.
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Boundary layers

The situation is tricky because (assume M > 0)
yε exhibits a boundary layer of size O(ε) at x = 1 and a boundary layer of size
O(
√
ε) along the characteristic {(x , t) ∈ QT , x −Mt = 0};

ϕε exhibits a boundary layer of size (O(ε)) at x = 0 and a boundary layer of size
(O(
√
ε)) along the characteristic {(x , t) ∈ QT , x −M(t − T )− 1 = 0};

ε

√
ε

x

t

0
0 1

T ≥ 1
M

t = 1
M

yε(x, 0) = yε0(x)

y
ε (
0,
t)
=
v
ε (
t)

y
ε (
1,
t)
=
0

ε

√
ε

x
0
0 1

T ≥ 1
M

t = T − 1
M

ϕε(x, T ) = ϕε
T (x)

ϕ
ε (
0,
t)
=
0

ϕ
ε (
1,
t)
=
0

Boundary layers zone for yε (left) and ϕε(right) in the case M > 0.
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Direct problem - Matched asymptotic expansion method - Case 1


yεt − εy

ε
xx + Myεx = 0, (x , t) ∈ (0, 1)× (0,T ),

yε(0, t) = vε(t) =
m∑

k=0

εk vk (t), yε(1, t) = 0, t ∈ (0,T ),

yε(x , 0) = y0(x), x ∈ (0, 1),

(12)

v0, v1, · · · , vm being known.

We construct an asymptotic approximation of the solution yε of (12) by using the
matched asymptotic expansion method. We consider two formal asymptotic
expansions of yε:
– the outer expansion

m∑
k=0

εk yk (x , t), (x , t) ∈ (0,T ),

– the inner expansion. (boundary layer at x = 1)

m∑
k=0

εk Y k (z, t), z =
1− x
ε
∈ (0, ε−1), t ∈ (0,T ).
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Direct problem - Outer expansion - yk - Case 1

y0(x , t) =


y0(x −Mt) x > Mt ,

v0
(

t −
x
M

)
, x < Mt .

Using the method of characteristics we find that, for any 1 ≤ k ≤ m,

yk (x , t) =


∫ t

0
yk−1

xx (x + (s − t)M, s)ds, x > Mt ,

vk
(

t −
x
M

)
+

∫ x/M

0
yk−1

xx (sM, t −
x
M

+ s)ds, x < Mt .

For instance,

y1(x , t) =


t y ′′0 (x −Mt), x > Mt ,

v1
(

t −
x
M

)
+

x
M3

(v0)′′
(

t −
x
M

)
, x < Mt ,

y2(x , t) =



t2

2
y (4)

0 (x −Mt), x > Mt ,

v2
(

t −
x
M

)
+

x
M3

(v1)′′
(

t −
x
M

)
−

2x
M5

(v0)(3)
(

t −
x
M

)
+

x2

2M6
(v0)(4)

(
t −

x
M

)
, x < Mt .
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Direct problem - Inner expansion - Y k - Case 1

Lemma

Y 0(z, t) = y0(1, t)
(

1− e−Mz
)
, (z, t) ∈ (0,+∞)× (0,T ).

For any 1 ≤ k ≤ m, the solution reads

Y k (z, t) = Qk (z, t) + e−MzPk (z, t), (z, t) ∈ (0,+∞)× (0,T ), (13)

where

Pk (z, t) = −
k∑

i=0

1
i!
∂ i yk−i

∂x i
(1, t)z i , Qk (z, t) =

k∑
i=0

(−1)i

i!
∂ i yk−i

∂x i
(1, t)z i .
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Asymptotic regular approximation at the order m

Theorem (Amirat, M)

Let yε be the solution of problem (12) and let wεm be the function defined as follows

wεm(x , t) = Xε(x)
m∑

k=0

εk yk (x , t) + (1−Xε(x))
m∑

k=0

εk Y k
(

1− x
ε

, t
)
.

Assume that y0 ∈ C2m+1[0, 1], vk ∈ C2(m−k)+1[0,T ], k = 0, · · · ,m and that the
C2(m−k)+1- matching conditions are satisfied

(vk )(p)(0) =
∑

i+j=p−1

(−1)i M i ∂
p+1yk−1

∂x i+2∂t j
(0, 0), 0 ≤ p ≤ 2(m − k) + 1.

Then there is a constant cm independent of ε such that

‖yε − wεm‖C([0,T ];L2(0,1)) ≤ cmε
2m+1

2 γ .

Example For m = 0, y0 and v0 should satisfies y0 ∈ C1[0, 1], v0 ∈ C1[0,T ] and

v0(t = 0) = y0(x = 0), M(v0)′(t = 0) + y ′0(x = 0) = 0.
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Approximate controllability result

Proposition

Let m ∈ N, T > 1
M and a ∈]0,T − 1

M [.
Assume regularity and matching conditions
on the initial condition y0 and functions vk ,
0 ≤ k ≤ m. Assume moreover that

vk (t) = 0, 0 ≤ k ≤ m, ∀t ∈ [a,T ].

Then, the solution yε of problem (12)
satisfies the following property

‖yε(·,T )‖L2(0,1) ≤ cm ε
(2m+1)γ

2 , ∀γ ∈ (0, 1)

for some constant cm > 0 independent of
ε. The function vε ∈ C([0,T ]) defined by
vε :=

∑m
k=0 ε

k vk is an approximate null
control for (5).

x
0

0 L

T >
L

M

t =
L

M

t = T −

L

M
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Convergence with respect to m under conditions on y0 and the vk .

(i) The initial condition y0 belongs to C∞[0, 1] and there is b ∈ R such that

‖y (k)
0 ‖L2(0,1) ≤

⌊
k
2

⌋
! b

k
2 , ∀k ∈ N, (14)

(ii) (vk )k≥0 is a sequence of polynomials of degree ≤ p − 1, p ≥ 1, uniformly
bounded in Cp−1[0,T ].

(iii) For any k ∈ N, for any m ∈ N, the functions vk and y0 satisfy the matching
conditions.

Theorem

Assume (i)-(ii)-(iii). There exist ε0 > 0 and a function
θ̃ε ∈ L2(0,T ; H1

0 (0, 1)) ∩ C([0,T ]; L2(0, 1)) satisfying an exponential decay, such that,
for any fixed 0 < ε < ε0, we have

yεm − wεm − θ̃ε → 0 in C([0,T ]; L2(0, 1)), as m→ +∞.

The function θ̃ε satisfies

‖θ̃ε‖C([0,T ],L2(0,1)) ≤ c e−2M εγ

ε ,

where c is a constant independent of ε.
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Optimality condition

Using the inner expansion for ϕε, the equality vε(t) = εϕεx (0, t) rewrites as follows

v0(t) + ε v1(t) + · · · = Φ0
z (0, t) + εΦ1

z (0, t) + · · · , ∀t ∈ (0,T ).

At the zero order, we get therefore the equality v0(t) = Φ0
z (0, t) leading to

v0(t) = Mϕ0(0, t) =

{
Mϕ0

T (M(T − t)), t ∈]T − 1/M,T ],

0, t ∈ [0,T − 1/M].
(15)

leading to v0(0) = 0 and contradicts the matching condition v0(0) = y0(0) unless
y0(0) = 0 ! Assuming y0(0) = 0, we determine the optimal function ϕ0

T by developing
J?ε (ϕεT ) = J?0 (ϕ0

T ) + ε . . . with

J?0 (ϕ0
T ) :=

1
2
‖v0‖2

L2(0,T )
−
(

y0,Xεϕ0(x , 0) + (1−Xε)Φ0(x , 0)

)
L2(0,1)

leading to ϕ0
T = 0, i.e. v0 ≡ 0. The transport equation in y0 and ϕ0 separates the

domain (0, 1)× (0,T ) into two distincts part: at the first order, the initial condition y0 is
not seen by the control function v0.

Corollary

In the class of initial condition
{

y0 ∈ C∞[0, 1], (y0)(m)(0) = 0, ∀m ∈ N
}

,

K (ε,T ,M)→ 0 as ε→ 0 if T ≥ 1
M .
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Direct problem - Matched asymptotic expansion method - Case 2

We now take into account the boundary layer on the characteristic and consider three
formal asymptotic expansions of yε:
– the outer expansion

m∑
k=0

εk yk (x , t), (x , t) ∈ QT , x −Mt 6= 0

– the first inner expansion (on the characteristic x −Mt = 0)

m∑
k=0

ε
k
2 W k/2(w , t), w =

x −Mt
√
ε
∈
(
−

Mt
ε1/2

,
1−Mt
√
ε

)
, t ∈ (0,T ).

– the second inner expansion (at x = 1)

m∑
k=0

εk/2Y k/2(z, t), z =
1− x
ε
∈ (0, ε−1), t ∈ (0,T ).
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Direct problem - Matched asymptotic expansion method - Case 2 - First order

approximation

After computations, the first order approximation of yε is given by

P0
ε(x , t) =



y0(x −Mt) + W 0(w , t)− y0(0)− C0
ε(t)e−Mz , x > Mt ,

y0(0) + v0(0)

2
− C0

ε(t)e−Mz , x = Mt ,

v0
(

t −
x
M

)
+ W 0(w , t)− v0(0)− C0

ε(t)e−Mz , x < Mt ,

with
(

recall that erf (x) = 2√
π

∫ x
0 e−s2

ds
)



z =
1− x
ε

,w =
x −Mt
√
ε

,

W 0(w , t) = erf
(

w
2
√

t

)
y0(0)− v0(0)

2
+

y0(0) + v0(0)

2
,

C0
ε(t) = y0(1, t) + W 0

(
1−Mt
√
ε

, t
)
− y0(0).

(16)
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Direct problem - Matched asymptotic expansion method - Case 2 - First order

approximation (1)

After more computations, the next approximation of yε is given by
P1/2
ε (x , t) = P0

ε(x , t) +
√
εF 1/2
ε (x , t) with

F 1/2
ε (x , t) =

{
W 1/2(w , t)− d+w − C1

ε(t)e−Mz , x ≥ Mt ,

W 1/2(w , t)− d−w − C1
ε(t)e−Mz , x ≤ Mt ,

and

z =
1− x
ε

,w0 =
1−Mt
√
ε

, d+ = (y0)(1)(0), d− = −
1
M

(v0)(1)(0),

C1
ε(t) = W 1/2

(
1−Mt
√
ε

, t
)
− d+w0 + zW 0

z (w0, t),

W 1/2(w , t) =
d+ − d−

2
erf
(

w
2
√

t

)
w + (d+ − d−)

√
t
√
π

e−
w2
4t +

(d+ + d−)

2
w .

(17)

Theorem (First order approximation)

Assume v0 ∈ C1([0,T ]), y0 ∈ C1([0, 1]). Then ∃C > 0 independent of ε s.t.

‖yε − P1/2
ε ‖C([0,T ],L2(0,1)) ≤ C

√
ε.
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A word about the case of initial condition yε
0 of the form yε

0 (x) = e
Mαx

2ε f (x)

Let us assume that the initial condition is of the form yε0 (x) = cεe
Mαx

2ε f (x) where f is
an arbitrary function independent of ε, α < 0 and cε ∈ R+. We introduce the following
change of variable

yε(x , t) = cεelε,α(x,t)zε(x , t), lε,α(x , t) :=
Mαx

2ε

(
x −

(2− α)Mt
2

)
. (18)

We then check that

Lε(yε)(x , t) = cεelε,α(x,t)
(

zεt − εz
ε
xx + Mαzεx

)
:= cεelε,α(x,t)Lε,α(zε)(x , t)

with Mα := M(1− α) > 0. Consequently, the new variable zε solves
Lε,α(zε) := zεt − εz

ε
xx + Mαzεx = 0, (x , t) ∈ QT ,

zε(0, t) := vε(t) = c−1
ε e−lε,α(0,t)vε, zε(L, t) = 0, t ∈ (0,T ),

zε(x , 0) =: z0(x) = f (x), x ∈ (0, L).
(19)

The initial data is now independent of ε. On the contrary, the control vε depends a
priori on ε. We have thus reported the problem on the control part (which is relevant
from a controllability viewpoint).
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