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Introduction - The transport diffusion equation

Let T > 0, M 6= 0, ε > 0 and QT := (0, 1)× (0,T ). This talk is concerned with the null
controllability problem for8<: Lεyε := yεt − εy

ε
xx + Myεx = 0 in (0, 1)× (0,T ),

yε(0, ·) = vε(t), yε(1, ·) = 0 on (0,T ),
yε(·, 0) = y0 in (0, 1),

(1)

•Well-poseddness:

∀yε0 ∈ H−1(0, L), vε ∈ L2(0,T ), ∃yε ∈ L2(QT ) ∩ C([0,T ]; H−1(0, L))

• Null control property: From (Russel’78),

∀T > 0, y0 ∈ H−1(0, 1), ∃vε ∈ L2(0,T ) such that

yε(·,T ) = 0 in H−1(0, 1). (2)

•We note the non empty set of null controls by

C(y0,T , ε,M) := {(y , v) : v ∈ L2(0,T ); y solves (1) and satisfies (2)}



Cost of control
For any ε > 0, we define the cost of control by the following quantity :

K (ε,T ,M) := sup
‖y0‖L2(0,L)

=1


min

u∈C(y0,T ,ε,M)
‖u‖L2(0,T )

ff
,

and denote by TM the minimal time for which the cost K (ε,T ,M) is uniformly bounded
with respect to ε. In other words, (1) is uniformly controllable with respect to ε if and
only if T ≥ TM .

Theorem [Coron-Guerrero’2006]

TM ∈ [1, 4.3]
1
M

if M > 0, [2, 57.2]
1
|M|

if M < 0.

Theorem [Glass’2009]

TM ∈ [1, 4.2]
1
M

if M > 0, [2, 6.1]
1
|M|

if M < 0.

Theorem [Lissy’2015]

TM ∈ [1, 2
√

3]
1
M

if M > 0, [2
√

2, 2(1 +
√

3)]
1
|M|

if M < 0.
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Remarks (1)
• The lower bound 1/|M| is expected because the weak limit of the yε-system is the
transport equation 8<:

y0
t + My0

x = 0 in (0, 1)× (0,T ),
y0(0, ·) = v(t) on (0,T ),
y0(·, 0) = y0 in (0, 1),

uniformly controllable if T ≥ 1/|M|: ∀v ∈ L2(0,T ), the transport solution y0 vanishes
at any time T larger than 1/|M|.

• The negative case M < 0 is much more singular since the transport term acts
against the control. The results are not intuitive at all (singular control problem).

• The upper bounds are obtained using Carleman estimates. The lower bound are
obtained using specific initial condition:

y0(x) = Kεe−
Mx
2ε sin(πx), (Kε = O(ε−3/2) s.t. ‖y0‖L2(0,1) = 1)

For M > 0, From Coron-Guerrero’2006,

K (ε,T ,M) ≥ C1
ε−3/2T−1/2M2

1 + M3ε−3
exp
„

M
2ε

(1− TM)− π2εT
«



Goals

Goal:

estimate the uniform minimal control time TM !!!

We can try the following two approachs :

I Numerical estimation of K (ε,T ,M) with respect to ε and
T ≥ 1

M (for M > 0 and M < 0)

I Asymptotic analysis with respect to the parameter ε of the
corresponding optimality system.
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Attempt 1 : Numerical estimation of K (ε,T ,M)



Reformulation of the cost of control

K 2(ε,T ,M) = sup
y0∈L2(0,1)

(Aεy0, y0)L2(0,1)

(y0, y0)L2(0,1)

where Aε : L2(0, 1)→ L2(0, 1) is the control operator defined by Aεy0 := −ϕ̂(0)
where ϕ̂ solves the adjoint system8<: −ϕt − εϕxx −Mϕx = 0 in (0, 1)× (0,T ),

ϕ(0, ·) = ϕ(L, ·) = 0 on (0,T ),
ϕ(·,T ) = ϕT in (0, 1),

(3)

associated to the initial condition ϕT ∈ H1
0 (0, 1), solution of the extremal problem

inf
ϕT∈H1

0 (0,L)
J?(ϕT ) :=

1
2

Z T

0
(εϕx (0, ·))2dt + (y0, ϕ(·, 0))L2(0,T ).

REFORMULATION - K (ε,T ,M) is solution of the generalized eigenvalue problem :

sup
√

λ ∈ R : ∃ y0 ∈ L2(0, 1), y0 6= 0, s.t. Aεy0 = λy0 in L2(0, 1)

ff
.



The generalized eigenvalue problem by the power iterated method

In order to get the largest eigenvalue of the operator Aε, we may employ the power
iterate method (Chatelain’89):

8>>>>><>>>>>:

y0
0 ∈ L2(0, 1) given such that ‖y0

0 ‖L2(0,1) = 1,

ỹk+1
0 = Aεyk

0 , k ≥ 0,

yk+1
0 =

ỹk+1
0

‖ỹk+1
0 ‖L2(0,1)

, k ≥ 0.

(4)

The real sequence {‖ỹk
0 ‖L2(0,1)}k>0 converges to the eigenvalue with largest module

of the operator Aε: q
‖ỹk

0 ‖L2(0,1) → K (ε,T ,M) as k →∞. (5)

The L2 sequence {yk
0 }k then converges toward the corresponding eigenvector.

The first step requires to compute the image of Aε: this is done by determining the
control of minimal L2 norm by minimizing J? with yk

0 as initial condition for (1).



Computation of the control of minimal L2-norm

For a fixed initial data y0 ∈ L2(0, 1) and ε small, the numerical approximation of
controls of minimal L2-norm is a VERY SERIOUS CHALLENGE :

I the minimization of J? is ill-posed : the infimum ϕT lives in a huge dual space !!!
this implies that the minimizer ϕT is highly oscillating at time T leading to highly
oscillation of the control εϕ,x .

I Tychonoff like regularization

inf
ϕT∈H1

0 (0,1)
J?β(ϕT ) := J?(ϕT ) + β‖ϕT ‖H1

0 (0,1) −→ ‖y
ε(·,T )‖H−1(0,1) ≤ β (6)

is meaningless here because the uncontrolled solution yε(·,T ) goes to zero with
ε for T ≥ 1/M.

I Boundary layers occurs for yε and ϕε on the boundary and requires fine
discretization.

We use the variational approach developed in [Fernandez-Cara-Munch, 2013], [De
Souza-Munch, 2015] leading to convergent approximation with respect to the
discretization parameter (ε being fixed).
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Picture of controls with respect to ε, y0 fixed

y0(x) = sin(πx); T = 1; M = 1
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Picture of controls with respect to ε, y0 fixed

y0(x) = sin(πx); T = 1; M = −1
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Cost of control K (ε,T ,M) w.r.t. ε - M = 1
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In agreement with Coron-Guerrero’2006,

K (ε,T ,M) ≥ C1
ε−3/2T−1/2M2

1 + M3ε−3
exp
„

M
2ε

(1− TM)− π2εT
«

(7)



Corresponding worst initial condition
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Figure: T = 1 - M = 1 - The optimal initial condition y0 in (0, 1) for ε = 10−1 (full
line), ε = 10−2 (dashed line) and ε = 10−3 (dashed-dotted line).

=⇒ y0 is closed to e−
Mx
2ε sin(πx)



Cost of control K (ε,T ,M) w.r.t. ε - M = −1
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Corresponding worst initial condition for M = −1
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Figure: T = 1 - M = −1 - The optimal initial condition y0 in (0,1) for
ε = 10−1 (full line), ε = 10−2 (dashed line) and ε = 10−3

(dashed-dotted line).



Part 2

Attempt 2 : Asymptotic analysis w.r.t. ε

We take M > 0.

Optimality system :



Lεyε = 0, L?εϕ
ε = 0, x ∈ (0,1), t ∈ (0,T ),

yε(·,0) = yε0 , x ∈ (0,1),

vε(t) = yε(0, t) = εϕεx(0, t), t ∈ (0,T ),

yε(1, t) = 0, . t ∈ (0,T ),

ϕε(0, t) = ϕε(1, t) = 0, t ∈ (0,T ),

− βϕεxx(·,T ) + yε(·,T ) = 0, x ∈ (0,1).

(8)
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Direct problem - Asymptotic expansion


yεt − εyεxx + Myεx = 0, (x , t) ∈ (0,1)× (0,T ),

yε(0, t) = vε(t), t ∈ (0,T ),

yε(1, t) = 0, t ∈ (0,T ),

yε(x ,0) = y0(x), x ∈ (0,1),

(9)

y0 and vε are given functions.

We assume that

vε =
m∑

k=0

εkvk ,

the functions v0, v1, · · · , vm being known.

We construct an asymptotic approximation of the solution yε

of (9) by using the matched asymptotic expansion method.



Direct problem - Asymptotic expansion

Let us consider two formal asymptotic expansions of yε:
– the outer expansion

m∑
k=0

εkyk (x , t), (x , t) ∈ (0,T ),

– the inner expansion

m∑
k=0

εkY k (z, t), z =
1− x
ε
∈ (0, ε−1), t ∈ (0,T ).



Direct problem - Outer expansion

Putting
mX

k=0

εk yk (x , t) into equation (9)1, the identification of the powers of ε yields

ε0 : y0
t + My0

x = 0,

εk : yk
t + Myk

x = yk−1
xx , for any 1 ≤ k ≤ m.

Taking the initial and boundary conditions into account we define y0 and yk

(1 ≤ k ≤ m) as functions satisfying the transport equations, respectively,8>><>>:
y0

t + My0
x = 0, (x , t) ∈ (0, 1)× (0,T ),

y0(0, t) = v0(t), t ∈ (0,T ),

y0(x , 0) = y0(x), x ∈ (0, 1),

(10)

and 8>><>>:
yk

t + Myk
x = yk−1

xx , (x , t) ∈ (0, 1)× (0,T ),

yk (0, t) = vk (t), t ∈ (0,T ),

yk (x , 0) = 0, x ∈ (0, 1).

(11)



Direct problem - Outer expansion
The solution of (10) is given by

y0(x , t) =

8<:
y0(x −Mt) x > Mt ,

v0
“

t −
x
M

”
, x < Mt .

Using the method of characteristics we find that, for any 1 ≤ k ≤ m,

yk (x , t) =

8>>><>>>:
Z t

0
yk−1

xx (x + (s − t)M, s)ds, x > Mt ,

vk
“

t −
x
M

”
+

Z x/M

0
yk−1

xx (sM, t −
x
M

+ s)ds, x < Mt .

Remark

y1(x , t) =

8<:
t y ′′0 (x −Mt), x > Mt ,

v1
“

t −
x
M

”
+

x
M3

(v0)′′
“

t −
x
M

”
, x < Mt ,

y2(x , t) =

8>>>>>>>><>>>>>>>>:

t2

2
y (4)

0 (x −Mt), x > Mt ,

v2
“

t −
x
M

”
+

x
M3

(v1)′′
“

t −
x
M

”
−

2x
M5

(v0)(3)
“

t −
x
M

”
+

x2

2M6
(v0)(4)

“
t −

x
M

”
, x < Mt .
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Direct problem - Inner expansion

Now we turn back to the construction of the inner expansion. Putting
mX

k=0

εk Y k (z, t)

into equation (9)1, the identification of the powers of ε yields

ε−1 : Y 0
zz(z, t) + MY 0

z (z, t) = 0,

εk−1 : Y k
zz(z, t) + MY k

z (z, t) = Y k−1
t (z, t), for any 1 ≤ k ≤ m.

We impose that Y k (0, t) = 0 for any 0 ≤ k ≤ m and use the asymptotic matching
conditions

Y 0(z, t) ∼ y0(1, t), as z → +∞,

Y 1(z, t) ∼ y1(1, t)− y0
x (0, t)z, as z → +∞,

Y 2(z, t) ∼ y2(1, t)− y1
x (0, t)z +

1
2

y0
xx (0, t)z2, as z → +∞,

· · ·

Y m(z, t) ∼ ym(1, t)− ym−1
x (0, t)z +

1
2

ym−2
xx (0, t)z2 + · · ·+

1
m!

(y0)
(m)

x (1, t)(−z)m,

as z → +∞.



Direct problem - Inner expansion

Lemma

Y 0(z, t) = y0(1, t)
“

1− e−Mz
”
, (z, t) ∈ (0,+∞)× (0,T ).

For any 1 ≤ k ≤ m, the solution of reads

Y k (z, t) = Qk (z, t) + e−MzPk (z, t), (z, t) ∈ (0,+∞)× (0, t), (12)

where

Pk (z, t) = −
kX

i=0

1
i!
∂ i yk−i

∂x i
(1, t)z i , Qk (z, t) =

kX
i=0

(−1)i

i!
∂ i yk−i

∂x i
(1, t)z i .



Asymptotic approximation

Let X : R→ [0, 1] denote a C2 cut-off function satisfying

X (s) =

(
1, s ≥ 2,

0, s ≤ 1,
(13)

We define, for γ ∈ (0, 1), the function

Xε(x) = X
„

1− x
εγ

«
,

then introduce the function

wεm(x , t) = Xε(x)
mX

k=0

εk yk (x , t) + (1−Xε(x))
mX

k=0

εk Y k
„

1− x
ε

, t
«
, (14)

defined to be an asymptotic approximation at order m of the solution yε of (9).



Asymptotic approximation- Convergence
Assume that y0 ∈ C2m+1[0, 1], v0 ∈ C2m+1[0,T ] and the following C2m+1-matching
conditions

Mp(y0)
(p)(0) + (−1)p+1(v0)(p)(0) = 0, 0 ≤ p ≤ 2m + 1. (15)

Then y0 ∈ C2m+1([0, 1]× [0,T ]).
Assume that vk ∈ C2(m−k)+1[0,T ], and the following C2(m−k)+1-matching conditions

(vk )(p)(0) =
X

i+j=p−1

(−1)i M i ∂
p+1yk−1

∂x i+2∂t j
(0, 0), 0 ≤ p ≤ 2(m − k) + 1. (16)

Then yk ∈ C2(m−k)+1([0, 1]× [0,T ]).

Lemma
Let wεm be the function defined by (14). Then there is a constant c independent of ε
such that

‖Lε(wεm)‖C([0,T ];L2(0,1)) ≤ cε
(2m+1)γ

2 .

Proposition
Let yε be the solution of problem (9) and let wεm be the function defined by (12). Then
there is a constant c independent of ε such that

‖yε − wεm‖C([0,T ];L2(0,1)) ≤ cε
2m+1

2 γ .
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Then y0 ∈ C2m+1([0, 1]× [0,T ]).
Assume that vk ∈ C2(m−k)+1[0,T ], and the following C2(m−k)+1-matching conditions

(vk )(p)(0) =
X

i+j=p−1

(−1)i M i ∂
p+1yk−1

∂x i+2∂t j
(0, 0), 0 ≤ p ≤ 2(m − k) + 1. (16)

Then yk ∈ C2(m−k)+1([0, 1]× [0,T ]).

Lemma
Let wεm be the function defined by (14). Then there is a constant c independent of ε
such that

‖Lε(wεm)‖C([0,T ];L2(0,1)) ≤ cε
(2m+1)γ

2 .

Proposition
Let yε be the solution of problem (9) and let wεm be the function defined by (12). Then
there is a constant c independent of ε such that

‖yε − wεm‖C([0,T ];L2(0,1)) ≤ cε
2m+1

2 γ .
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First controllability result

Proposition
Let m ∈ N, T > 1

M and a ∈]0,T − 1
M [. Assume regularity and matching conditions on

the initial condition y0 and functions vk , 0 ≤ k ≤ m. Assume moreover that

vk (t) = 0, 0 ≤ k ≤ m, ∀t ∈ [a,T ].

Then, the solution yε of problem (9) satisfies the following property

‖yε(·,T )‖L2(0,1) ≤ cε
(2m+1)γ

2 , ∀γ ∈ (0, 1)

for some constant c > 0 independent of ε. The function vε ∈ C([0,T ]) defined by
vε :=

Pm
k=0 ε

k vk is an approximate null control for (1).



First controllability result

The limit case T = 1/M can be considered as well but requires explicit formula. We
consider simply the case m = 2 and make use of Remark 1.

Proposition
Let m = 2. Let T = 1

M . Assume regularity and matching conditions on the initial
condition y0 and functions vk , 0 ≤ k ≤ m.. There exist functions vk , 0 ≤ k ≤ m such
that the solution yε of problem (9) satisfies the following property, for all γ ∈ (0, 1)

‖yε(·,T )‖L2(0,1) ≤

8>>>>><>>>>>:

cε
γ
2 , if y0(0) 6= 0,

cε
3γ
2 , if y0(0) = 0, (y0)

(1)(0) +
(y0)

(3)(0)

M
6= 0,

cε
5γ
2 , if y0(0) = 0, (y0)

(1)(0) +
(y0)

(3)(0)

M
= 0,

for some constant c > 0 independent of ε.



The case of initial condition yε
0 of the form yε

0 (x) = e−
Mx
2ε

The asymptotic analysis is not valid for yε0 (x) = f (x)e
Mαx

2ε , α < 0. Another expansion
is needed 8><>:

yε(x , t) = e
Mα
2ε

`
x− (2−α)Mt

2

´
zε(x , t),

Lεyε(x , t) = e
Mα
2ε

`
x− (2−α)Mt

2

´„
zεt − εz

ε
xx + M(1− α)zεx

« (17)

We then define the approximations8>>><>>>:
zεm(x , t) = Xε(x)

mX
k=0

εk zk (x , t) + (1−Xε(x))
mX

k=0

εk Z k
„

1− x
ε

, t
«
,

yεm(x , t) = e
Mα
2ε

`
x− (2−α)Mt

2

´
zεm(x , t)

(18)

The main issue is now to find control functions vk satisfying the matching conditions
such that ‖Lεyεm‖C([0,T ],L2(0,1)) goes to zero with ε.
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‖Lεyε
m‖C([0,T ],L2(0,1))

x

t

β

0

0 1

C

1
M(1−α)

2
M(2−α)

T ≥
1
M

Figure: (0, 1)× (0,T ) =

D+
β ∪ (D−β ∩ C−α ) ∪ (D−β ∩ C+

α ).

Lεyεm(x , t) = e
Mα
2ε

`
x− (2−α)Mt

2

´
Lε,αzεm(x , t)

In D−β ∩ C+
α , Lε,αzεm(x , t) = −εm+1zm

xx (x , t)

Lεyε0 (x , t) =−
ε

M2
α

e
Mα
2ε

`
x− (2−α)Mt

2

´
(v0)(2)

„
t −

x
Mα

«
,

=−
ε

M2
α

e−
Mα2x

4ε(1−α) e
α(2−α)M2

4ε

„
x

Mα
−t

«
(v0)(2)

„
t −

x
Mα

«
8>>><>>>:

(v0)(2)(t) = (C1 + C2t)e
−η+α(2−α)M2

4ε t , t ∈ [0, β],

v0(0) = zε0 (0), v0(β) = 0,

(v0)(1)(0)) = −Mα(zε0 )′(0), (v0)(1)(β) = 0,
(19)

for some constants C1 and C2 and η > 0.

‖Lε(yε0 )‖L1(L2(D−
β
∩C+

α))
≈ (v0)(0)O(ε1/2)+(v0)(1)(0)O(ε3/2).
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Thus, the corresponding control is given8>><>>:
v0(t) = e−

γM2 t
4ε v0(t) 1[0,β](t), γ = α(2− α),

v0(t) =
kC1 − 2C2 + kC2t

k3
ekt + C3t + C4, k :=

−η + α(2− α)M2

4ε
(20)



One result

Let m ≥ 0. Assume that yε0 ∈ C2m+1[0,T ] and that vk ∈ H2(m−k)+2[0,T ], and the
C2(m−k)+1-matching conditions

(vk )(p)(0) =
X

i+j=p−1

(−1)i M i ∂
p+1yk−1

∂x i+2∂t j
(0, 0), 0 ≤ p ≤ 2(m − k) + 1. (21)

THEOREM
Let M > 0, γ ∈ (0, 1).
The "cost of control"

K (ε,T ,M,m) = sup
y0∈L2(0,1)

min
vε∈C

‚‚‚‚ mX
k=0

εk vk
‚‚‚‚

L2(0,T )

(22)

with C(y0,T , ε,M) :=


vε =

Pm
k=0 ε

k vk , ‖yε(·,T )‖L2(0,1) ≤ cε
(2m+1)γ

2

ff
is bounded uniformly with respect to m and ε as soon as T > 1

M .



Final remarks

I Instead of imposing regularity assumptions and matching conditions, we may
introduce an additional C2 cut-off X function to take into account the
discontinuity of the solutions yk on the characteristic line. This allows to deal
with the initial optimality system.

Y. Amirat, A. Münch: Boundary controls for the equation yt − εyxx + Myx = 0:
Asymptotic analysis with respect to ε for M > 0.Preprint 2017.

I The negative case is very similar except that the control vε lives in the boundary
layer. (still in progress ! )

NADA MAS ! GRACIAS !
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