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Introduction - The transport diffusion equation

Let T>0,M#0,e >0and Qr :=(0,1) x (0, T). This talk is concerned with the null
controllability problem for

0
ys(o’,): Vs(t)v y€(1’):0 on (87 T)v (1)

{Lsyszyf—eyiﬁl\/’yxeo in  (0,1) x (0, T),
(0,1),

ye(-,0) =yo in
e Well-poseddness:

Yye € HT'(0,L),ve € L3(0, T), 3y € L3(Qr)nc([o, T]; H'(0, L))

o Null control property: From (Russel’78),
VT >0,y0 € H7'(0,1),3v¢ € L2(0, T) such that
yo(,T)=0 inH'(0,1). 2

e We note the non empty set of null controls by

C(yo, T,e, M) := {(y,v) : v € L2(0, T); y solves (1) and satisfies (2)}



Cost of control
For any £ > 0, we define the cost of control by the following quantity :

K(e, T,M):=  sup { min  lullzo 7 }
130ll,2(9,1y=1 LUECH0,T>2:M) ©.7)

and denote by Ty, the minimal time for which the cost K(e, T, M) is uniformly bounded
with respect to €. In other words, (1) is uniformly controllable with respect to ¢ if and
only if T > Ty.



Cost of control
For any £ > 0, we define the cost of control by the following quantity :

K(e,T,M):=  sup { min uuumr},
130ll,2(9,1y=1 LUECH0,T>2:M) G

and denote by Tj, the minimal time for which the cost K (e, T, M) is uniformly bounded
with respect to €. In other words, (1) is uniformly controllable with respect to ¢ if and
only if T > Ty.

Theorem [Coron-Guerrero’2006]

TM6[1,4.3]1M if M>0, [2,57.2]ﬁ it M<o0.

Theorem [Glass'2009]

TMe[1,4.2]1M it M>0, [2,6.1]ﬁ it M<o.

Theorem [Lissy’2015]

TM€[1,2\/§]/:7 it M>o, [2‘@’2(1+‘/§)]ﬁ it M<o.




Remarks (1)
e The lower bound 1/|M| is expected because the weak limit of the y©-system is the
transport equation

y0(07 ) = V(t) on (07 T)7

{ y?"‘My)?:O in (071)X(07 T)7
yo('zo) =)Yo in (071)’

uniformly controllable if T > 1/|M|: Vv € L2(0, T), the transport solution y° vanishes
at any time T larger than 1/|M|.

e The negative case M < 0 is much more singular since the transport term acts
against the control. The results are not intuitive at all (singular control problem).

e The upper bounds are obtained using Carleman estimates. The lower bound are
obtained using specific initial condition:

_Mx _
Yo(x) = Kee™ 2 sin(mx), (K- =0(e%?) st |yollzo1)=1)

For M > 0, From Coron-Guerrero’2006,

=8/21-1/2)12
K(av T7 M) > C1 £

M
- = — (1= TM) — 72T
T4 M3=—3 eXp(ze( ) ”E)



Goals

Goal:

estimate the uniform minimal control time Ty, !!!

We can try the following two approachs :

» Numerical estimation of K (e, T, M) with respect to ¢ and
T > 1 (for M > 0 and M < 0)



Goals

Goal:

estimate the uniform minimal control time Ty, !!!

We can try the following two approachs :

» Numerical estimation of K (e, T, M) with respect to ¢ and
T > 1 (for M > 0 and M < 0)

» Asymptotic analysis with respect to the parameter ¢ of the
corresponding optimality system.



Attempt 1 : Numerical estimation of K(e, T, M)



Reformulation of the cost of control

A El
Kee, oMy = sup X0l
YoEL2(0,1) (,Vo,}’o)Lz(o,U

where A : L2(0,1) — L2(0,1) is the control operator defined by A:yp := —#(0)
where ¢ solves the adjoint system

—pt —epxx —Mpx =0 in (0,1) x (0, T),
‘P(O’ ) = (p(L, ) =0 on (07 T)v (3)
o(T) =7 in (0,1),

associated to the initial condition w7 € H} (0, 1), solution of the extremal problem

1 T
it )= [ (een(0.)Rdt+ 00,6,z
remo (1) 2 /o (eex(0,)) (Yo, ¢(+:0)) 20,7

REFORMULATION - K(e, T, M) is solution of the generalized eigenvalue problem :

sup{ﬁ eR:3yy € L2(0,1),y0 #0, st. Acyo = Ayp in  L3(0, 1)}.




The generalized eigenvalue problem by the power iterated method

In order to get the largest eigenvalue of the operator .A., we may employ the power
iterate method (Chatelain’89):
0 L2 . 0 —
Yo € L7(0,1) givensuchthat ||lygllz2(0,1) =1,

et = Acyg, k>0,

~k+1
K+1 _ Yo k> 0.

Yo = moa
||y(;(+1 lli2(0,1

The real sequence {||}~’(§(||L2(0,1)}k>0 converges to the eigenvalue with largest module

of the operator A.:
\ ||}~’6(HL2(0,1) — K(e, T,M) as k— oo. ®)

The L2 sequence {y(’)‘}k then converges toward the corresponding eigenvector.

The first step requires to compute the image of A.: this is done by determining the
control of minimal L2 norm by minimizing J* with yg as initial condition for (1).



Computation of the control of minimal L2-norm

For a fixed initial data y° € L?(0, 1) and & small, the numerical approximation of
controls of minimal L2-norm is a VERY SERIOUS CHALLENGE :

» the minimization of J* is ill-posed : the infimum ¢ lives in a huge dual space !!!
this implies that the minimizer o7 is highly oscillating at time T leading to highly
oscillation of the control ey x.
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Computation of the control of minimal L2-norm

For a fixed initial data y° € L?(0, 1) and & small, the numerical approximation of
controls of minimal L2-norm is a VERY SERIOUS CHALLENGE :

» the minimization of J* is ill-posed : the infimum ¢ lives in a huge dual space !!!
this implies that the minimizer o7 is highly oscillating at time T leading to highly
oscillation of the control ey x.

» Tychonoff like regularization

inf  JA5(e7) 1= J*(o7) + Blle — 1y Dl <pB (6)
remon 5(07) (o) +BlleTllgg 0,1y — IY°C Dlli=1(0,1

is meaningless here because the uncontrolled solution y<(-, T) goes to zero with
efor T >1/M.

» Boundary layers occurs for y¢ and ¢° on the boundary and requires fine
discretization.

We use the variational approach developed in [Fernandez-Cara-Munch, 2013], [De
Souza-Munch, 2015] leading to convergent approximation with respect to the
discretization parameter (= being fixed).



Picture of controls with respect to ¢, yy fixed

Yo(x) =sin(mx); T=1, M=1
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Picture of controls with respect to ¢, yy fixed

Yo(x) =sin(nx); T=1, M=-1
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Cost of control K(e, T, M) w.rt. e - M =1
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Cost of control w.rt. e for T =0.954;, T = g7 and T = 1.05y;

In agreement with Coron-Guerrero’2006,

e—3/2T7-1/2pp2 M
K, T,M)>Ci— o — — (1= TM) — 2T 7
(e ToM) = 5 g oxp( 4 (1= Th) 2T )



Corresponding worst initial condition

5
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Figure: T =1-M =1 - The optimal initial condition y in (0, 1) for e = 10~ (full
line), e = 10~2 (dashed line) and ¢ = 103 (dashed-dotted line).

. _mx
= Jp is closed to e~ 2< sin(wx)



Cost of control K(e, T, M) w.rt. e - M = —1
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Left: Cost of control w.rt. e for T = I1VI; Right: Corresponding control v¢ in the
neighborhood of T fore = 103



Corresponding worst initial condition for M = —1
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Figure: T =1 - M = —1 - The optimal initial condition y, in (0, 1) for
e =10"" (full line), ¢ = 102 (dashed line) and ¢ = 103

(dashed-dotted line).



Part 2
Attempt 2 : Asymptotic analysis w.r.t. ¢

We take M > 0.



Part 2
Attempt 2 : Asymptotic analysis w.r.t. ¢

We take M > 0.

Optimality system :

L.y°=0, Lip*=0
y*(-0) = ¥o,

ve(t) = y°(0, 1) = e5(0, 1)
ye(1,t)=0,.

¢°(0,1) = ¢°(1,1) =

= B (5 T) +y° (s T)=0,



Direct problem - Asymptotic expansion

Yi =¥ + My, =0, (x,1) €(0,1) x

y°(0,t) = ve(1), te

ye(1,t)=0, te

y*(x,0) = yo(x), X €
Yo and v are given functions.

We assume that o
Ve — Z ok Vk,
k=0

the functions v°, v, ... | v/ being known.

We construct an asymptotic approximation of the solution y©
of (9) by using the matched asymptotic expansion method.



Direct problem - Asymptotic expansion

Let us consider two formal asymptotic expansions of y=:
—the outer expansion

Zs"y (x, 1), (x,1)€(0,T),

—the inner expansion

m
1_
S ekYK(z ), z= 6X6(0,5‘1),t€(0, 7).



Direct problem - Outer expansion

Putting Z e"y"(x, t) into equation (9), the identification of the powers of ¢ yields

€ ytOJrMy,?:O,

e Y{(+M}’f:y)’fx_1, forany 1 < k< m.

Taking the initial and boundary conditions into account we define y° and y*
(1 < k < m) as functions satisfying the transport equations, respectively,

YA+MyR =0 (x,t)€(0,1)x(0,T),
y0(0, 1) = VO(t), te(0,7), (10)
¥°(x,0) = yo(x), x €(0,1),
and
VE+ My =yl (X1 €(0,1) x (0, T),
yk(0,1) = vk (1), te(0,7),

(11)
yK(x,0) =0, € (0,1).



Direct problem - Outer expansion
The solution of (10) is given by

{yo(x— Mt) x> Mt,
0

y(xt)= 0 X

v (t*M>, X < Mt.

Using the method of characteristics we find that, forany 1 < kK < m,

t
/nyk;‘(x+(s—t)M,s)ds, x> M,
Kiy 1y —
A t— = M - X 4 o) Mt
V<_ﬂ)+/o Yex (s,—M—i—s)s, X < Mt.



Direct problem - Outer expansion
The solution of (10) is given by

{yo(x— Mt) x> Mt,
0

y(xt)= 0 X

v (t*M>, X < Mt.

Using the method of characteristics we find that, forany 1 < kK < m,

t
/Oy)’(‘x“(x—i-(s—t)M,s)ds, x> Mt,
yi(x,t) = . Y .
ki, X k—1 X
% <t M>+/o Yex  (SM,t M+s)ds, X < Mt.
Remark
tyg (x — Mt), x > Mt,
;
y (Xv t) = 1 X X (N2 X
Vt= ) a0 (= gp) s xsm
2
%}’é4)(x - Mt), x> Mt,
2
yooe=9 20 XN X v (i X
v (t M)+M3(V) (t M)



Direct problem - Inner expansion

m
Now we turn back to the construction of the inner expansion. Putting > ¥ Y*(z, 1)
k=0
into equation (9), the identification of the powers of ¢ yields

e YR(z, )+ MYD(z, 1) =0,
N YE(Z, )+ MYE(z,t) = YET(z,), forany 1 <k <m.

We impose that Y#(0, t) = 0 for any 0 < k < m and use the asymptotic matching
conditions

YOz, t) ~ y°(1,1), asz— +oo,
Y1(Z,t)Ny1(1,t)*y)(()(0,t)z, as z — +oo,

1
Y2(27 zl) ~ y2(1at) - y)1((07 t)Z+ EySX(O’ t)zzz as z — +oo,

1 1
Y7z, 0) ~ Y10 =y TN O. 02 + SyETR0.022 4+ — (0" (1.0(=2)",

as z — +oo.



Direct problem - Inner expansion

Lemma
Yo(z,0) = y°(1,0) (1— €M), (2,0) € (0,400) x (0,T).
For any 1 < k < m, the solution of reads
YK(z,t) = QK(z,t) + e M2PK(z,1), (z,t) € (0,400) x (0, t),

where

k i i i
Pk(z,t) = le o (11 QX(z, t)_z( 1) oy 1,0z
=0 !

ox!

(12)



Asymptotic approximation

Let X : R — [0, 1] denote a C? cut-off function satisfying

1, s§>2,
X)) =1, (13)

s<1,

We define, for v € (0, 1), the function

Xg(x):X(1;X),

then introduce the function

wa(x, t) Zakyk(x 1)+ (1 —XE(X))ZE Y"( t), (14)

k=0 k=0

defined to be an asymptotic approximation at order m of the solution y¢ of (9).



Asymptotic approximation- Convergence
Assume that yo € C?™+1[0, 1], v0 € C?™+1[0, T] and the following C2™+1-matching
conditions

MP(y0)®)(0) + (1)1 (V)P (0) =0, 0<p<2m+1. (15)
Then y® € C2™+1([0,1] x [0, T]).
Assume that vk ¢ C&m=K)+1[0, T], and the following C2(m—K)+1.matching conditions

P+ yk=
vEy ) i —
V)P (0) = ,+,§p: 1( 1)'M e (0,0), 0<p<2(m—k)+1. (16)

Then y* ¢ CAm=K+1([0,1] x [0, T]).
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oPtyk—
vEy ) i —
Py = 30 (M [0.0), 0<p<2Am-K 1 (16
i+j=p—1
Then yk € CAm=M+1([0,1] x [0, T]).
Lemma
Let wg, be the function defined by (14). Then there is a constant ¢ independent of
such that i)
m+1)y

ILe(Wm)llo(po,:e2(0,1) < € 2



Asymptotic approximation- Convergence
Assume that yo € C?™+1[0, 1], v0 € C?™+1[0, T] and the following C2™+1-matching
conditions

MP(y0)®)(0) + (1)1 (V)P (0) =0, 0<p<2m+1. (15)
Then y® € C2™+1([0,1] x [0, T]).
Assume that vk ¢ C&m=K)+1[0, T], and the following C2(m—K)+1.matching conditions

P+ yk=
vEy ) i —
V)P (0) = ,+,§p: 1( 1)'M e (0,0), 0<p<2(m—k)+1. (16)

Then y* ¢ CAm=K+1([0,1] x [0, T]).

Lemma
Let wg, be the function defined by (14). Then there is a constant ¢ independent of
such that
(2m+1)~
HLS(WS'I)”C([(),T];LZ(OJ)) <ce 2
Proposition

Let y*© be the solution of problem (9) and let wg, be the function defined by (12). Then
there is a constant ¢ independent of € such that

2m+1

”ys — Wr%HC([O,T];LZ(OJ)) <ce 2 7.



First controllability result

Proposition
LetmeN, T > ,]7 anda€l0, T — ,37 [. Assume regularity and matching conditions on
the initial condition y and functions vk, 0 < k < m. Assume moreover that

vi()=0, 0<k<mVtelaT].

Then, the solution y¢ of problem (9) satisfies the following property

(2m+1)y

Yo Dz Sce 2y vy e (0,1)

for some constant ¢ > 0 independent of . The function v¢ € C([0, T]) defined by
ve 1= SfL, eXvk is an approximate null control for (1).



First controllability result

The limit case T = 1/M can be considered as well but requires explicit formula. We
consider simply the case m = 2 and make use of Remark 1.

Proposition
Letm=2.LetT = ,]7 Assume regularity and matching conditions on the initial

condition yy and functions vk, 0 < k < m.. There exist functions vk, 0 < k < m such
that the solution y*= of problem (9) satisfies the following property, for all v € (0,1)

R

ce?, if »(0)#0,
- @)
1y Dllizo,1) < =7, if y(0)=0,(y0)"(0) + LM() #0,

5 ®)
%, i w0 =000+ YO o

for some constant ¢ > 0 independent of .



The case of initial condition y¢ of the form y¢(x) = e~ %

The asymptotic analysis is not valid for y5(x) = f(x)e%, a < 0. Another expansion
is needed

o (2— )Mt
e ) = %8 O ) 20 ),

« (—a)Mmt _ _
Loy®(x, 1) = o8 (= E32) <z; —ezs 4 M(1 — a)z§>
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o (2— )Mt
e ) = %8 O ) 20 ),

o (—a)Mmt _ _
Loy®(x, 1) = o8 (= E32) (z; —ezs 4+ M(1 — a)z§>

We then define the approximations

25(x, 1) = X-(x) iskzk(x, B+ (1 — X (x) iskzk (1%)( t) :
k=0 k=0

Mo (2—a)Mt
ya(x, t) = &8 (=522 ¢ ()

(18)
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The case of initial condition y¢ of the form y¢(x) = e~ %

The asymptotic analysis is not valid for yg (x) = f(x)e 2"
is needed

, a < 0. Another expansion

o (2— )Mt
e ) = %8 O ) 20 ),

o (—a)Mmt _ _ _
Loy®(x, 1) = o8 (= E32) (z; —ezs 4+ M(1 — a)z;)

We then define the approximations

Z5(x, 1) = Xe(x) 30K 2K, 1) + (1 — () S ek 2K (1;)( t) :
par k=0 € (18)
vl t) = e 05 2 )

The main issue is now to find control functions V¥ satisfying the matching conditions
such that W—s}’ﬁ1||c([0,n,L2(0,1)) goes to zero with e.
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Figure: (0,1) x (0, T) =
Df u (D, NC.)u(Dy NCY).
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Figure: (0,1) x (0, T) =
Df u (D, NC.)u(Dy NCY).
for some constants C; a

3

Leys(x,t) = o2 (x-

— We_ de(1—a) @

(P)A(1) = (Cr + Cot)e a1,
v°(0) = z5(0), V°(B) =0,
9)1(0)) = —Ma(25)'(0),

(2— oMt
)L Lz

In D5 N CY, LeyaZi(x, t) = =™ 25 (x, 1)

(X,w) —01(2) f— X
@@ (- ).
a2— a)M

alezanf (ﬁ—f) ()@ (t _

Ma?x

(2—a)M?
L, telogl

) M(B) =0,
(19)

nd C, and n > 0.

X

)

{e%
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for some constants C; and C, and > 0.

||LE(Y5)||L1(L2(Dg ncL)) ~ (VO)(O)O(61/2)+(VO)(1)(0)0(53/2)‘



ILeYmlleqo, m,L2(0,1)

5
v
=~

0

0 @ 1

Figure: (0,1) x (0, T) =

Thus, the corresponding control is given
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One result

Let m > 0. Assume that y§ € C2™+1[0, T] and that vk € H2(m=K)+2|0, T], and the
c(m=k)+1_matching conditions
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THEOREM
LetM > 0,v € (0,1).
The "cost of control"

m

S ek

k=0

K(e, T,M,m)= sup min
Yo€L2(0,1) Ve €C

(22)
£2(0,T)

— (2m+1)
with c(y07 T7€7 M) = {VE = ZZ’:O akvk’ ||y€(7 T)||L2(0,1) S ce 2 B }

is bounded uniformly with respect to mand € as soonas T > ,]7




Final remarks

» Instead of imposing regularity assumptions and matching conditions, we may
introduce an additional C? cut-off X function to take into account the
discontinuity of the solutions y* on the characteristic line. This allows to deal
with the initial optimality system.
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» The negative case is very similar except that the control v. lives in the boundary
layer. (still in progress !')
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