About the controllability of $y_{t}-\varepsilon y_{x x}+M y_{x}=0$ w.r.t. ε

Youcef Amirat and Arnaud Münch
Université Clermont Auvergne - Clermont-Ferrand - FRANCE

CEDYA 2017 - Cartagena

Cartagena - June 26th-30th 2017

LO
UNIVERSITÉ Clermont Auvergne

Introduction - The transport diffusion equation

Let $T>0, M \neq 0, \varepsilon>0$ and $Q_{T}:=(0,1) \times(0, T)$. This talk is concerned with the null controllability problem for

$$
\begin{cases}L_{\varepsilon} y^{\varepsilon}:=y_{t}^{\varepsilon}-\varepsilon y_{X x}^{\varepsilon}+M y_{x}^{\varepsilon}=0 & \text { in }(0,1) \times(0, T), \tag{1}\\ y^{\varepsilon}(0, \cdot)=v^{\varepsilon}(t), y^{\varepsilon}(1, \cdot)=0 & \text { on }(0, T), \\ y^{\varepsilon}(\cdot, 0)=y_{0} & \text { in }(0,1),\end{cases}
$$

- Well-poseddness:

$$
\forall y_{0}^{\varepsilon} \in H^{-1}(0, L), v^{\varepsilon} \in L^{2}(0, T), \quad \exists y^{\varepsilon} \in L^{2}\left(Q_{T}\right) \cap \mathcal{C}\left([0, T] ; H^{-1}(0, L)\right)
$$

- Null control property: From (Russel'78),

$$
\begin{gather*}
\forall T>0, y_{0} \in H^{-1}(0,1), \exists v^{\varepsilon} \in L^{2}(0, T) \quad \text { such that } \\
y^{\varepsilon}(\cdot, T)=0 \text { in } H^{-1}(0,1) . \tag{2}
\end{gather*}
$$

- We note the non empty set of null controls by

$$
\mathcal{C}\left(y_{0}, T, \varepsilon, M\right):=\left\{(y, v): v \in L^{2}(0, T) ; y \text { solves }(1) \text { and satisfies }(2)\right\}
$$

Cost of control

For any $\varepsilon>0$, we define the cost of control by the following quantity :

$$
K(\varepsilon, T, M):=\sup _{\left\|y_{0}\right\|_{L^{2}(0, L)}=1}\left\{\min _{u \in \mathcal{C}\left(y_{0}, T, \varepsilon, M\right)}\|u\|_{L^{2}(0, T)}\right\},
$$

and denote by T_{M} the minimal time for which the cost $K(\varepsilon, T, M)$ is uniformly bounded with respect to ε. In other words, (1) is uniformly controllable with respect to ε if and only if $T \geq T_{M}$.

Theorem [Coron-Guerrero'2006]

Theorem [Lissy'2015]

Cost of control

For any $\varepsilon>0$, we define the cost of control by the following quantity :

$$
K(\varepsilon, T, M):=\sup _{\left\|y_{0}\right\|_{L^{2}(0, L)}=1}\left\{\min _{u \in \mathcal{C}\left(y_{0}, T, \varepsilon, M\right)}\|u\|_{L^{2}(0, T)}\right\},
$$

and denote by T_{M} the minimal time for which the cost $K(\varepsilon, T, M)$ is uniformly bounded with respect to ε. In other words, (1) is uniformly controllable with respect to ε if and only if $T \geq T_{M}$.

Theorem [Coron-Guerrero'2006]

$$
T_{M} \in[1,4.3] \frac{1}{M} \quad \text { if } \quad M>0, \quad[2,57.2] \frac{1}{|M|} \quad \text { if } \quad M<0
$$

Theorem [Glass'2009]

$$
T_{M} \in[1,4.2] \frac{1}{M} \quad \text { if } \quad M>0, \quad[2,6.1] \frac{1}{|M|} \quad \text { if } \quad M<0
$$

Theorem [Lissy'2015]

$$
T_{M} \in[1,2 \sqrt{3}] \frac{1}{M} \quad \text { if } \quad M>0, \quad[2 \sqrt{2}, 2(1+\sqrt{3})] \frac{1}{|M|} \quad \text { if } \quad M<0
$$

Remarks (1)

- The lower bound $1 /|M|$ is expected because the weak limit of the y^{ε}-system is the transport equation

$$
\begin{cases}y_{t}^{0}+M y_{x}^{0}=0 & \text { in } \quad(0,1) \times(0, T), \\ y^{0}(0, \cdot)=v(t) & \text { on } \quad(0, T), \\ y^{0}(\cdot, 0)=y_{0} & \text { in } \quad(0,1),\end{cases}
$$

uniformly controllable if $T \geq 1 /|M|: \forall v \in L^{2}(0, T)$, the transport solution y^{0} vanishes at any time T larger than $1 /|M|$.

- The negative case $M<0$ is much more singular since the transport term acts against the control. The results are not intuitive at all (singular control problem).
- The upper bounds are obtained using Carleman estimates. The lower bound are obtained using specific initial condition:

$$
y_{0}(x)=K_{\varepsilon} e^{-\frac{M x}{2 \varepsilon}} \sin (\pi x), \quad\left(K_{\varepsilon}=\mathcal{O}\left(\varepsilon^{-3 / 2}\right) \quad \text { s.t. } \quad\left\|y_{0}\right\|_{L^{2}(0,1)}=1\right)
$$

For $M>0$, From Coron-Guerrero'2006,

$$
K(\varepsilon, T, M) \geq C_{1} \frac{\varepsilon^{-3 / 2} T^{-1 / 2} M^{2}}{1+M^{3} \varepsilon^{-3}} \exp \left(\frac{M}{2 \varepsilon}(1-T M)-\pi^{2} \varepsilon T\right)
$$

Goals

Goal:
estimate the uniform minimal control time T_{M} !!!

We can try the following two approachs :

- Numerical estimation of $K(\varepsilon, T, M)$ with respect to ε and $T \geq \frac{1}{M}($ for $M>0$ and $M<0)$
- Asymptotic analysis with respect to the parameter ε of the corresponding optimality system.

Goals

Goal:
estimate the uniform minimal control time T_{M} !!!

We can try the following two approachs :

- Numerical estimation of $K(\varepsilon, T, M)$ with respect to ε and $T \geq \frac{1}{M}($ for $M>0$ and $M<0)$
- Asymptotic analysis with respect to the parameter ε of the corresponding optimality system.

Attempt 1 : Numerical estimation of $K(\varepsilon, T, M)$

Reformulation of the cost of control

$$
K^{2}(\varepsilon, T, M)=\sup _{y_{0} \in L^{2}(0,1)} \frac{\left(\mathcal{A}_{\varepsilon} y_{0}, y_{0}\right)_{L^{2}(0,1)}}{\left(y_{0}, y_{0}\right)_{L^{2}(0,1)}}
$$

where $\mathcal{A}_{\varepsilon}: L^{2}(0,1) \rightarrow L^{2}(0,1)$ is the control operator defined by $\mathcal{A}_{\varepsilon} y_{0}:=-\hat{\varphi}(0)$ where $\hat{\varphi}$ solves the adjoint system

$$
\begin{cases}-\varphi_{t}-\varepsilon \varphi_{x x}-M \varphi_{x}=0 & \text { in } \quad(0,1) \times(0, T) \tag{3}\\ \varphi(0, \cdot)=\varphi(L, \cdot)=0 & \text { on } \quad(0, T), \\ \varphi(\cdot, T)=\varphi_{T} & \text { in } \quad(0,1),\end{cases}
$$

associated to the initial condition $\varphi_{T} \in H_{0}^{1}(0,1)$, solution of the extremal problem

$$
\inf _{\varphi_{T} \in H_{0}^{1}(0, L)} J^{\star}\left(\varphi_{T}\right):=\frac{1}{2} \int_{0}^{T}\left(\varepsilon \varphi_{x}(0, \cdot)\right)^{2} d t+\left(y_{0}, \varphi(\cdot, 0)\right)_{L^{2}(0, T)} .
$$

Reformulation - $K(\varepsilon, T, M)$ is solution of the generalized eigenvalue problem :

$$
\sup \left\{\sqrt{\lambda} \in \mathbb{R}: \exists y_{0} \in L^{2}(0,1), y_{0} \neq 0 \text {, s.t. } \mathcal{A}_{\varepsilon} y_{0}=\lambda y_{0} \quad \text { in } \quad L^{2}(0,1)\right\}
$$

The generalized eigenvalue problem by the power iterated method

In order to get the largest eigenvalue of the operator $\mathcal{A}_{\varepsilon}$, we may employ the power iterate method (Chatelain'89):

$$
\left\{\begin{array}{l}
y_{0}^{0} \in L^{2}(0,1) \quad \text { given such that } \quad\left\|y_{0}^{0}\right\|_{L^{2}(0,1)}=1, \tag{4}\\
\tilde{y}_{0}^{k+1}=\mathcal{A}_{\varepsilon} y_{0}^{k}, \quad k \geq 0, \\
y_{0}^{k+1}=\frac{\tilde{y}^{k+1}}{\left\|\tilde{y}_{0}^{k+1}\right\|_{L^{2}(0,1)}}, \quad k \geq 0 .
\end{array}\right.
$$

The real sequence $\left\{\left\|\tilde{y}_{0}\right\|_{L^{2}(0,1)}\right\}_{k>0}$ converges to the eigenvalue with largest module of the operator $\mathcal{A}_{\varepsilon}$:

$$
\begin{equation*}
\sqrt{\left\|\tilde{y}_{0}^{k}\right\|_{L^{2}(0,1)}} \rightarrow K(\varepsilon, T, M) \quad \text { as } \quad k \rightarrow \infty . \tag{5}
\end{equation*}
$$

The L^{2} sequence $\left\{y_{0}^{k}\right\}_{k}$ then converges toward the corresponding eigenvector.
The first step requires to compute the image of $\mathcal{A}_{\varepsilon}$: this is done by determining the control of minimal L^{2} norm by minimizing J^{\star} with y_{0}^{k} as initial condition for (1).

Computation of the control of minimal L^{2}-norm

For a fixed initial data $y^{0} \in L^{2}(0,1)$ and ε small, the numerical approximation of controls of minimal L^{2}-norm is a VERY SERIOUS CHALLENGE :

- the minimization of J^{\star} is ill-posed : the infimum φ_{T} lives in a huge dual space !!! this implies that the minimizer φ_{T} is highly oscillating at time T leading to highly oscillation of the control $\varepsilon \varphi, x$.
$>$ Tychonoff like regularization
$\inf _{\varphi_{T} \in H_{0}^{1}(0,1)} J_{\beta}^{\star}\left(\varphi_{T}\right):=J^{\star}\left(\varphi_{T}\right)+\beta\left\|\varphi_{T}\right\|_{H_{0}^{1}(0,1)} \longrightarrow\left\|y^{\varepsilon}(\cdot, T)\right\|_{H^{-1}(0,1)} \leq \beta \quad$ (6)
is meaningless here because the uncontrolled solution $y^{\varepsilon}(\cdot, T)$ goes to zero with ε for $T \geq 1 / M$.
\rightarrow Boundary layers occurs for y^{ε} and φ^{ε} on the boundary and requires fine discretization.

We use the variational approach developed in [Fernandez-Cara-Munch, 2013], [De Souza-Munch, 2015] leading to convergent approximation with respect to the discretization parameter (ε being fixed)

Computation of the control of minimal L^{2}-norm

For a fixed initial data $y^{0} \in L^{2}(0,1)$ and ε small, the numerical approximation of controls of minimal L^{2}-norm is a VERY SERIOUS CHALLENGE :

- the minimization of J^{\star} is ill-posed : the infimum φ_{T} lives in a huge dual space !!! this implies that the minimizer φ_{T} is highly oscillating at time T leading to highly oscillation of the control $\varepsilon \varphi, x$.
- Tychonoff like regularization

$$
\begin{equation*}
\inf _{\varphi_{T} \in H_{0}^{1}(0,1)} J_{\beta}^{\star}\left(\varphi_{T}\right):=J^{\star}\left(\varphi_{T}\right)+\beta\left\|\varphi_{T}\right\|_{H_{0}^{1}(0,1)} \longrightarrow\left\|y^{\varepsilon}(\cdot, T)\right\|_{H^{-1}(0,1)} \leq \beta \tag{6}
\end{equation*}
$$

is meaningless here because the uncontrolled solution $y^{\varepsilon}(\cdot, T)$ goes to zero with ε for $T \geq 1 / M$.
discretization.
We use the variational approach developed in [Fernandez-Cara-Munch, 2013], [De
Souza-Munch, 2015] leading to convergent approximation with respect to the
discretization parameter (ε being fixed).

Computation of the control of minimal L^{2}-norm

For a fixed initial data $y^{0} \in L^{2}(0,1)$ and ε small, the numerical approximation of controls of minimal L^{2}-norm is a VERY SERIOUS CHALLENGE :

- the minimization of J^{\star} is ill-posed : the infimum φ_{T} lives in a huge dual space !!! this implies that the minimizer φ_{T} is highly oscillating at time T leading to highly oscillation of the control $\varepsilon \varphi, x$.
- Tychonoff like regularization

$$
\begin{equation*}
\inf _{\varphi_{T} \in H_{0}^{1}(0,1)} J_{\beta}^{\star}\left(\varphi_{T}\right):=J^{\star}\left(\varphi_{T}\right)+\beta\left\|\varphi_{T}\right\|_{H_{0}^{1}(0,1)} \longrightarrow\left\|y^{\varepsilon}(\cdot, T)\right\|_{H^{-1}(0,1)} \leq \beta \tag{6}
\end{equation*}
$$

is meaningless here because the uncontrolled solution $y^{\varepsilon}(\cdot, T)$ goes to zero with ε for $T \geq 1 / M$.

- Boundary layers occurs for y^{ε} and φ^{ε} on the boundary and requires fine discretization.

We use the variational approach developed in [Fernandez-Cara-Munch, 2013], [De
Souza-Munch, 2015] leading to convergent approximation with respect to the
discretization parameter (ε being fixed).

Computation of the control of minimal L^{2}-norm

For a fixed initial data $y^{0} \in L^{2}(0,1)$ and ε small, the numerical approximation of controls of minimal L^{2}-norm is a VERY SERIOUS CHALLENGE :

- the minimization of J^{\star} is ill-posed : the infimum φ_{T} lives in a huge dual space !!! this implies that the minimizer φ_{T} is highly oscillating at time T leading to highly oscillation of the control $\varepsilon \varphi, x$.
- Tychonoff like regularization

$$
\begin{equation*}
\inf _{\varphi_{T} \in H_{0}^{1}(0,1)} J_{\beta}^{\star}\left(\varphi_{T}\right):=J^{\star}\left(\varphi_{T}\right)+\beta\left\|\varphi_{T}\right\|_{H_{0}^{1}(0,1)} \longrightarrow\left\|y^{\varepsilon}(\cdot, T)\right\|_{H^{-1}(0,1)} \leq \beta \tag{6}
\end{equation*}
$$

is meaningless here because the uncontrolled solution $y^{\varepsilon}(\cdot, T)$ goes to zero with ε for $T \geq 1 / M$.

- Boundary layers occurs for y^{ε} and φ^{ε} on the boundary and requires fine discretization.

We use the variational approach developed in [Fernandez-Cara-Munch, 2013], [De
Souza-Munch, 2015] leading to convergent approximation with respect to the
discretization parameter (ε being fixed).

Computation of the control of minimal L^{2}-norm

For a fixed initial data $y^{0} \in L^{2}(0,1)$ and ε small, the numerical approximation of controls of minimal L^{2}-norm is a VERY SERIOUS CHALLENGE :

- the minimization of J^{\star} is ill-posed : the infimum φ_{T} lives in a huge dual space !!! this implies that the minimizer φ_{T} is highly oscillating at time T leading to highly oscillation of the control $\varepsilon \varphi, x$.
- Tychonoff like regularization

$$
\begin{equation*}
\inf _{\varphi_{T} \in H_{0}^{1}(0,1)} J_{\beta}^{\star}\left(\varphi_{T}\right):=J^{\star}\left(\varphi_{T}\right)+\beta\left\|\varphi_{T}\right\|_{H_{0}^{1}(0,1)} \longrightarrow\left\|y^{\varepsilon}(\cdot, T)\right\|_{H^{-1}(0,1)} \leq \beta \tag{6}
\end{equation*}
$$

is meaningless here because the uncontrolled solution $y^{\varepsilon}(\cdot, T)$ goes to zero with ε for $T \geq 1 / M$.

- Boundary layers occurs for y^{ε} and φ^{ε} on the boundary and requires fine discretization.

We use the variational approach developed in [Fernandez-Cara-Munch, 2013], [De Souza-Munch, 2015] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

Picture of controls with respect to ε, y_{0} fixed

$$
y_{0}(x)=\sin (\pi x) ; \quad T=1 ; \quad M=1
$$

Control of minimal $L^{2}(0, T)$-norm $v \varepsilon(t) \in[0, T]$ for $\varepsilon=10^{-1}, 10^{-2}$ and 10^{-3}

Picture of controls with respect to ε, y_{0} fixed

$$
y_{0}(x)=\sin (\pi x) ; \quad T=1 ; \quad M=-1
$$

Control of minimal $L^{2}(0, T)$-norm $v \varepsilon(t) \in[0, T]$ for $\varepsilon=10^{-1}, 10^{-2}$ and 10^{-3}

Cost of control $K(\varepsilon, T, M)$ w.r.t. $\varepsilon-M=1$

Cost of control w.r.t. ε for $T=0.95 \frac{1}{M}, T=\frac{1}{M}$ and $T=1.05 \frac{1}{M}$

In agreement with Coron-Guerrero'2006,

$$
\begin{equation*}
K(\varepsilon, T, M) \geq C_{1} \frac{\varepsilon^{-3 / 2} T^{-1 / 2} M^{2}}{1+M^{3} \varepsilon^{-3}} \exp \left(\frac{M}{2 \varepsilon}(1-T M)-\pi^{2} \varepsilon T\right) \tag{7}
\end{equation*}
$$

Corresponding worst initial condition

Figure: $T=1-M=1$ - The optimal initial condition y_{0} in $(0,1)$ for $\varepsilon=10^{-1}$ (full line), $\varepsilon=10^{-2}$ (dashed line) and $\varepsilon=10^{-3}$ (dashed-dotted line).
$\Longrightarrow y_{0}$ is closed to $e^{-\frac{M x}{2 \varepsilon}} \sin (\pi x)$

Cost of control $K(\varepsilon, T, M)$ w.r.t. $\varepsilon-M=-1$

Left: Cost of control w.r.t. ε for $T=\frac{1}{|M|}$; Right: Corresponding control v^{ε} in the neighborhood of T for $\varepsilon=10^{-3}$

Corresponding worst initial condition for $M=-1$

Figure: $T=1-M=-1$ - The optimal initial condition y_{0} in $(0,1)$ for $\varepsilon=10^{-1}$ (full line), $\varepsilon=10^{-2}$ (dashed line) and $\varepsilon=10^{-3}$ (dashed-dotted line).

Part 2

Attempt 2 : Asymptotic analysis w.r.t. ε

We take $M>0$.

Optimality system

$$
\left\{\begin{array}{lr}
L_{\varepsilon} y^{\varepsilon}=0, \quad L_{\varepsilon}^{\star} \varphi^{\varepsilon}=0, & x \in(0,1), \tag{8}\\
y^{\varepsilon}(\cdot, 0)=y_{0}^{\varepsilon}, & x \in(0, T), \\
v^{\varepsilon}(t)=y^{\varepsilon}(0, t)=\varepsilon \varphi_{x}^{\varepsilon}(0, t), & t \in(0, T), \\
y^{\varepsilon}(1, t)=0, & t \in(0, T), \\
\varphi^{\varepsilon}(0, t)=\varphi^{\varepsilon}(1, t)=0, & t \in(0, T), \\
-\beta \varphi_{x x}^{\varepsilon}(\cdot, T)+y^{\varepsilon}(\cdot, T)=0, & x \in(0,1) .
\end{array}\right.
$$

Part 2

Attempt 2 : Asymptotic analysis w.r.t. ε

We take $M>0$.

Optimality system :

$$
\left\{\begin{array}{lr}
L_{\varepsilon} y^{\varepsilon}=0, \quad L_{\varepsilon}^{\star} \varphi^{\varepsilon}=0, & x \in(0,1), t \in(0, T), \tag{8}\\
y^{\varepsilon}(\cdot, 0)=y_{0}^{\varepsilon}, & x \in(0,1), \\
v^{\varepsilon}(t)=y^{\varepsilon}(0, t)=\varepsilon \varphi_{x}^{\varepsilon}(0, t), & t \in(0, T), \\
y^{\varepsilon}(1, t)=0, & t \in(0, T), \\
\varphi^{\varepsilon}(0, t)=\varphi^{\varepsilon}(1, t)=0, & t \in(0, T), \\
-\beta \varphi_{x x}^{\varepsilon}(\cdot, T)+y^{\varepsilon}(\cdot, T)=0, & x \in(0,1) .
\end{array}\right.
$$

Direct problem - Asymptotic expansion

$$
\left\{\begin{array}{lr}
y_{t}^{\varepsilon}-\varepsilon y_{x x}^{\varepsilon}+M y_{x}^{\varepsilon}=0, & (x, t) \in(0,1) \times(0, T), \tag{9}\\
y^{\varepsilon}(0, t)=v^{\varepsilon}(t), & t \in(0, T), \\
y^{\varepsilon}(1, t)=0, & t \in(0, T), \\
y^{\varepsilon}(x, 0)=y_{0}(x), & x \in(0,1),
\end{array}\right.
$$

y_{0} and v^{ε} are given functions.
We assume that

$$
v^{\varepsilon}=\sum_{k=0}^{m} \varepsilon^{k} v^{k}
$$

the functions $v^{0}, v^{1}, \cdots, v^{m}$ being known.
We construct an asymptotic approximation of the solution y^{ε} of (9) by using the matched asymptotic expansion method.

Direct problem - Asymptotic expansion

Let us consider two formal asymptotic expansions of y^{ε} :

- the outer expansion

$$
\sum_{k=0}^{m} \varepsilon^{k} y^{k}(x, t), \quad(x, t) \in(0, T)
$$

- the inner expansion

$$
\sum_{k=0}^{m} \varepsilon^{k} Y^{k}(z, t), \quad z=\frac{1-x}{\varepsilon} \in\left(0, \varepsilon^{-1}\right), t \in(0, T)
$$

Direct problem - Outer expansion

Putting $\sum_{k=0}^{m} \varepsilon^{k} y^{k}(x, t)$ into equation $(9)_{1}$, the identification of the powers of ε yields

$$
\begin{array}{ll}
\varepsilon^{0}: & y_{t}^{0}+M y_{x}^{0}=0 \\
\varepsilon^{k}: & y_{t}^{k}+M y_{x}^{k}=y_{x x}^{k-1}, \quad \text { for any } 1 \leq k \leq m
\end{array}
$$

Taking the initial and boundary conditions into account we define y^{0} and y^{k} ($1 \leq k \leq m$) as functions satisfying the transport equations, respectively,

$$
\left\{\begin{array}{lr}
y_{t}^{0}+M y_{x}^{0}=0, & (x, t) \in(0,1) \times(0, T) \tag{10}\\
y^{0}(0, t)=v^{0}(t), & t \in(0, T) \\
y^{0}(x, 0)=y_{0}(x), & x \in(0,1)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{lr}
y_{t}^{k}+M y_{x}^{k}=y_{x}^{k-1}, & (x, t) \in(0,1) \times(0, T), \tag{11}\\
y^{k}(0, t)=v^{k}(t), & t \in(0, T), \\
y^{k}(x, 0)=0, & x \in(0,1)
\end{array}\right.
$$

Direct problem - Outer expansion

The solution of (10) is given by

$$
y^{0}(x, t)= \begin{cases}y_{0}(x-M t) & x>M t \\ v^{0}\left(t-\frac{x}{M}\right), & x<M t\end{cases}
$$

Using the method of characteristics we find that, for any $1 \leq k \leq m$,

$$
y^{k}(x, t)= \begin{cases}\int_{0}^{t} y_{x x}^{k-1}(x+(s-t) M, s) d s, & x>M t \\ v^{k}\left(t-\frac{x}{M}\right)+\int_{0}^{x / M} y_{x x}^{k-1}\left(s M, t-\frac{x}{M}+s\right) d s, & x<M t\end{cases}
$$

Direct problem - Outer expansion

The solution of (10) is given by

$$
y^{0}(x, t)= \begin{cases}y_{0}(x-M t) & x>M t \\ v^{0}\left(t-\frac{x}{M}\right), & x<M t\end{cases}
$$

Using the method of characteristics we find that, for any $1 \leq k \leq m$,

$$
y^{k}(x, t)= \begin{cases}\int_{0}^{t} y_{x x}^{k-1}(x+(s-t) M, s) d s, & x>M t \\ v^{k}\left(t-\frac{x}{M}\right)+\int_{0}^{x / M} y_{x x}^{k-1}\left(s M, t-\frac{x}{M}+s\right) d s, & x<M t\end{cases}
$$

Remark

$$
\begin{gathered}
y^{1}(x, t)= \begin{cases}t y_{0}^{\prime \prime}(x-M t), & x>M t, \\
v^{1}\left(t-\frac{x}{M}\right)+\frac{x}{M^{3}}\left(v^{0}\right)^{\prime \prime}\left(t-\frac{x}{M}\right), & x<M t,\end{cases} \\
y^{2}(x, t)= \begin{cases}\frac{t^{2}}{2} y_{0}^{(4)}(x-M t), & x>M t, \\
v^{2}\left(t-\frac{x}{M}\right)+\frac{x}{M^{3}}\left(v^{1}\right)^{\prime \prime}\left(t-\frac{x}{M}\right) \\
-\frac{2 x}{M^{5}}\left(v^{0}\right)^{(3)}\left(t-\frac{x}{M}\right)+\frac{x^{2}}{2 M^{6}}\left(v^{0}\right)^{(4)}\left(t-\frac{x}{M}\right), & x<M t .\end{cases}
\end{gathered}
$$

Direct problem - Inner expansion

Now we turn back to the construction of the inner expansion. Putting $\sum_{k=0}^{m} \varepsilon^{k} Y^{k}(z, t)$ into equation $(9)_{1}$, the identification of the powers of ε yields

$$
\begin{array}{ll}
\varepsilon^{-1}: & Y_{z z}^{0}(z, t)+M Y_{z}^{0}(z, t)=0 \\
\varepsilon^{k-1}: & Y_{z z}^{k}(z, t)+M Y_{z}^{k}(z, t)=Y_{t}^{k-1}(z, t), \quad \text { for any } 1 \leq k \leq m
\end{array}
$$

We impose that $Y^{k}(0, t)=0$ for any $0 \leq k \leq m$ and use the asymptotic matching conditions

$$
\begin{aligned}
& Y^{0}(z, t) \sim y^{0}(1, t), \quad \text { as } z \rightarrow+\infty, \\
& Y^{1}(z, t) \sim y^{1}(1, t)-y_{x}^{0}(0, t) z, \quad \text { as } z \rightarrow+\infty, \\
& Y^{2}(z, t) \sim y^{2}(1, t)-y_{x}^{1}(0, t) z+\frac{1}{2} y_{x x}^{0}(0, t) z^{2}, \quad \text { as } z \rightarrow+\infty, \\
& \cdots \\
& Y^{m}(z, t) \sim y^{m}(1, t)-y_{x}^{m-1}(0, t) z+\frac{1}{2} y_{x x}^{m-2}(0, t) z^{2}+\cdots+\frac{1}{m!}\left(y^{0}\right)_{x}^{(m)}(1, t)(-z)^{m}, \\
& \text { as } z \rightarrow+\infty .
\end{aligned}
$$

Direct problem - Inner expansion

Lemma

$$
Y^{0}(z, t)=y^{0}(1, t)\left(1-e^{-M z}\right), \quad(z, t) \in(0,+\infty) \times(0, T)
$$

For any $1 \leq k \leq m$, the solution of reads

$$
\begin{equation*}
Y^{k}(z, t)=Q^{k}(z, t)+e^{-M z} P^{k}(z, t), \quad(z, t) \in(0,+\infty) \times(0, t) \tag{12}
\end{equation*}
$$

where

$$
P^{k}(z, t)=-\sum_{i=0}^{k} \frac{1}{i!} \frac{\partial^{i} y^{k-i}}{\partial x^{i}}(1, t) z^{i}, \quad Q^{k}(z, t)=\sum_{i=0}^{k} \frac{(-1)^{i}}{i!} \frac{\partial^{i} y^{k-i}}{\partial x^{i}}(1, t) z^{i} .
$$

Asymptotic approximation

Let $\mathcal{X}: \mathbb{R} \rightarrow[0,1]$ denote a C^{2} cut-off function satisfying

$$
\mathcal{X}(s)= \begin{cases}1, & s \geq 2 \tag{13}\\ 0, & s \leq 1\end{cases}
$$

We define, for $\gamma \in(0,1)$, the function

$$
\mathcal{X}_{\varepsilon}(x)=\mathcal{X}\left(\frac{1-x}{\varepsilon^{\gamma}}\right),
$$

then introduce the function

$$
\begin{equation*}
w_{m}^{\varepsilon}(x, t)=\mathcal{X}_{\varepsilon}(x) \sum_{k=0}^{m} \varepsilon^{k} y^{k}(x, t)+\left(1-\mathcal{X}_{\varepsilon}(x)\right) \sum_{k=0}^{m} \varepsilon^{k} Y^{k}\left(\frac{1-x}{\varepsilon}, t\right) \tag{14}
\end{equation*}
$$

defined to be an asymptotic approximation at order m of the solution y^{ε} of (9).

Asymptotic approximation- Convergence

Assume that $y_{0} \in C^{2 m+1}[0,1], v^{0} \in C^{2 m+1}[0, T]$ and the following $C^{2 m+1}$-matching conditions

$$
\begin{equation*}
M^{p}\left(y_{0}\right)^{(p)}(0)+(-1)^{p+1}\left(v^{0}\right)^{(p)}(0)=0, \quad 0 \leq p \leq 2 m+1 . \tag{15}
\end{equation*}
$$

Then $y^{0} \in C^{2 m+1}([0,1] \times[0, T])$.
Assume that $v^{k} \in C^{2(m-k)+1}[0, T]$, and the following $C^{2(m-k)+1}$-matching conditions

$$
\begin{equation*}
\left(v^{k}\right)^{(p)}(0)=\sum_{i+j=p-1}(-1)^{i} M^{i} \frac{\partial^{p+1} y^{k-1}}{\partial x^{i+2} \partial t^{j}}(0,0), \quad 0 \leq p \leq 2(m-k)+1 . \tag{16}
\end{equation*}
$$

Then $y^{k} \in C^{2(m-k)+1}([0,1] \times[0, T])$.

Asymptotic approximation- Convergence

Assume that $y_{0} \in C^{2 m+1}[0,1], v^{0} \in C^{2 m+1}[0, T]$ and the following $C^{2 m+1}$-matching conditions

$$
\begin{equation*}
M^{p}\left(y_{0}\right)^{(p)}(0)+(-1)^{p+1}\left(v^{0}\right)^{(p)}(0)=0, \quad 0 \leq p \leq 2 m+1 . \tag{15}
\end{equation*}
$$

Then $y^{0} \in C^{2 m+1}([0,1] \times[0, T])$.
Assume that $v^{k} \in C^{2(m-k)+1}[0, T]$, and the following $C^{2(m-k)+1}$-matching conditions

$$
\begin{equation*}
\left(v^{k}\right)^{(p)}(0)=\sum_{i+j=p-1}(-1)^{i} M^{i} \frac{\partial^{p+1} y^{k-1}}{\partial x^{i+2} \partial t^{j}}(0,0), \quad 0 \leq p \leq 2(m-k)+1 . \tag{16}
\end{equation*}
$$

Then $y^{k} \in C^{2(m-k)+1}([0,1] \times[0, T])$.
Lemma
Let w_{m}^{ε} be the function defined by (14). Then there is a constant c independent of ε such that

$$
\left\|L_{\varepsilon}\left(w_{m}^{\varepsilon}\right)\right\|_{C\left([0, T] ; L^{2}(0,1)\right)} \leq c \varepsilon^{\frac{(2 m+1) \gamma}{2}}
$$

Proposition
Let $\boldsymbol{y}^{\varepsilon}$ be the solution of problem (9) and let w_{m}^{s} be the function defined by (12). Then
there is a constant c independent of ε such that

Asymptotic approximation- Convergence

Assume that $y_{0} \in C^{2 m+1}[0,1], v^{0} \in C^{2 m+1}[0, T]$ and the following $C^{2 m+1}$-matching conditions

$$
\begin{equation*}
M^{p}\left(y_{0}\right)^{(p)}(0)+(-1)^{p+1}\left(v^{0}\right)^{(p)}(0)=0, \quad 0 \leq p \leq 2 m+1 . \tag{15}
\end{equation*}
$$

Then $y^{0} \in C^{2 m+1}([0,1] \times[0, T])$.
Assume that $v^{k} \in C^{2(m-k)+1}[0, T]$, and the following $C^{2(m-k)+1}$-matching conditions

$$
\begin{equation*}
\left(v^{k}\right)^{(p)}(0)=\sum_{i+j=p-1}(-1)^{i} M^{i} \frac{\partial^{p+1} y^{k-1}}{\partial x^{i+2} \partial t^{j}}(0,0), \quad 0 \leq p \leq 2(m-k)+1 . \tag{16}
\end{equation*}
$$

Then $y^{k} \in C^{2(m-k)+1}([0,1] \times[0, T])$.
Lemma
Let w_{m}^{ε} be the function defined by (14). Then there is a constant c independent of ε such that

$$
\left\|L_{\varepsilon}\left(w_{m}^{\varepsilon}\right)\right\|_{C\left([0, T] ; L^{2}(0,1)\right)} \leq c \varepsilon^{\frac{(2 m+1) \gamma}{2}}
$$

Proposition

Let y^{ε} be the solution of problem (9) and let w_{m}^{ε} be the function defined by (12). Then there is a constant c independent of ε such that

$$
\left\|y^{\varepsilon}-w_{m}^{\varepsilon}\right\|_{C\left([0, T] ; L^{2}(0,1)\right)} \leq \boldsymbol{c} \varepsilon^{\frac{2 m+1}{2} \gamma}
$$

First controllability result

Proposition

Let $m \in \mathbb{N}, T>\frac{1}{M}$ and $\left.a \in\right] 0, T-\frac{1}{M}[$. Assume regularity and matching conditions on the initial condition y_{0} and functions $v^{k}, 0 \leq k \leq m$. Assume moreover that

$$
v^{k}(t)=0, \quad 0 \leq k \leq m, \forall t \in[a, T] .
$$

Then, the solution y^{ε} of problem (9) satisfies the following property

$$
\left\|y^{\varepsilon}(\cdot, T)\right\|_{L^{2}(0,1)} \leq c \varepsilon^{\frac{(2 m+1) \gamma}{2}}, \quad \forall \gamma \in(0,1)
$$

for some constant $c>0$ independent of ε. The function $v^{\varepsilon} \in C([0, T])$ defined by $v^{\varepsilon}:=\sum_{k=0}^{m} \varepsilon^{k} v^{k}$ is an approximate null control for (1).

First controllability result

The limit case $T=1 / M$ can be considered as well but requires explicit formula. We consider simply the case $m=2$ and make use of Remark 1.

Proposition

Let $m=2$. Let $T=\frac{1}{M}$. Assume regularity and matching conditions on the initial condition y_{0} and functions $v^{k}, 0 \leq k \leq m$.. There exist functions $v^{k}, 0 \leq k \leq m$ such that the solution y^{ε} of problem (9) satisfies the following property, for all $\gamma \in(0,1)$

$$
\left\|y^{\varepsilon}(\cdot, T)\right\|_{L^{2}(0,1)} \leq \begin{cases}c \varepsilon^{\frac{\gamma}{2}}, & \text { if } y_{0}(0) \neq 0 \\ c \varepsilon^{\frac{3 \gamma}{2}}, & \text { if } y_{0}(0)=0,\left(y_{0}\right)^{(1)}(0)+\frac{\left(y_{0}\right)^{(3)}(0)}{M} \neq 0 \\ c \varepsilon^{\frac{5 \gamma}{2}}, & \text { if } y_{0}(0)=0,\left(y_{0}\right)^{(1)}(0)+\frac{\left(y_{0}\right)^{(3)}(0)}{M}=0\end{cases}
$$

for some constant $c>0$ independent of ε.

The case of initial condition y_{0}^{ε} of the form $y_{0}^{\varepsilon}(x)=e^{-\frac{M x}{2 \varepsilon}}$

The asymptotic analysis is not valid for $y_{0}^{\varepsilon}(x)=f(x) e^{\frac{M \alpha x}{2 \varepsilon}}, \alpha<0$. Another expansion is needed

$$
\left\{\begin{array}{l}
y^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} z^{\varepsilon}(x, t) \tag{17}\\
L_{\varepsilon} y^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)}\left(z_{t}^{\varepsilon}-\varepsilon z_{x x}^{\varepsilon}+M(1-\alpha) z_{x}^{\varepsilon}\right)
\end{array}\right.
$$

We then define the approximations

$$
\left\{\begin{array}{l}
z_{m}^{\varepsilon}(x, t)=\mathcal{X}_{\varepsilon}(x) \sum_{k=0}^{m} \varepsilon^{k} z^{k}(x, t)+\left(1-\mathcal{X}_{\varepsilon}(x)\right) \sum_{k=0}^{m} \varepsilon^{k} z^{k}\left(\frac{1-x}{\varepsilon}, t\right), \tag{18}\\
y_{m}^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} z_{m}^{\varepsilon}(x, t)
\end{array}\right.
$$

The main issue is now to find control functions \bar{v}^{k} satisfying the matching conditions such that $\left\|L_{\varepsilon} y_{m}^{E}\right\|_{C\left([0, T], L^{2}(0,1)\right)}$ goes to zero with ε.

The case of initial condition y_{0}^{ε} of the form $y_{0}^{\varepsilon}(x)=e^{-\frac{M x}{2 \varepsilon}}$

The asymptotic analysis is not valid for $y_{0}^{\varepsilon}(x)=f(x) e^{\frac{M \alpha x}{2 \varepsilon}}, \alpha<0$. Another expansion is needed

$$
\left\{\begin{array}{l}
y^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} z^{\varepsilon}(x, t) \tag{17}\\
L_{\varepsilon} y^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)}\left(z_{t}^{\varepsilon}-\varepsilon z_{x x}^{\varepsilon}+M(1-\alpha) z_{x}^{\varepsilon}\right)
\end{array}\right.
$$

We then define the approximations

$$
\left\{\begin{array}{l}
z_{m}^{\varepsilon}(x, t)=\mathcal{X}_{\varepsilon}(x) \sum_{k=0}^{m} \varepsilon^{k} z^{k}(x, t)+\left(1-\mathcal{X}_{\varepsilon}(x)\right) \sum_{k=0}^{m} \varepsilon^{k} Z^{k}\left(\frac{1-x}{\varepsilon}, t\right), \tag{18}\\
y_{m}^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} z_{m}^{\varepsilon}(x, t)
\end{array}\right.
$$

The main issue is now to find control functions \bar{v}^{k} satisfying the matching conditions

The case of initial condition y_{0}^{ε} of the form $y_{0}^{\varepsilon}(x)=e^{-\frac{M x}{2 \varepsilon}}$

The asymptotic analysis is not valid for $y_{0}^{\varepsilon}(x)=f(x) e^{\frac{M \alpha x}{2 \varepsilon}}, \alpha<0$. Another expansion is needed

$$
\left\{\begin{array}{l}
y^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} z^{\varepsilon}(x, t) \tag{17}\\
L_{\varepsilon} y^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)}\left(z_{t}^{\varepsilon}-\varepsilon z_{x x}^{\varepsilon}+M(1-\alpha) z_{x}^{\varepsilon}\right)
\end{array}\right.
$$

We then define the approximations

$$
\left\{\begin{array}{l}
z_{m}^{\varepsilon}(x, t)=\mathcal{X}_{\varepsilon}(x) \sum_{k=0}^{m} \varepsilon^{k} z^{k}(x, t)+\left(1-\mathcal{X}_{\varepsilon}(x)\right) \sum_{k=0}^{m} \varepsilon^{k} Z^{k}\left(\frac{1-x}{\varepsilon}, t\right), \tag{18}\\
y_{m}^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} z_{m}^{\varepsilon}(x, t)
\end{array}\right.
$$

The main issue is now to find control functions \bar{v}^{k} satisfying the matching conditions

The case of initial condition y_{0}^{ε} of the form $y_{0}^{\varepsilon}(x)=e^{-\frac{M x}{2 \varepsilon}}$

The asymptotic analysis is not valid for $y_{0}^{\varepsilon}(x)=f(x) e^{\frac{M \alpha x}{2 \varepsilon}}, \alpha<0$. Another expansion is needed

$$
\left\{\begin{array}{l}
y^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} z^{\varepsilon}(x, t) \tag{17}\\
L_{\varepsilon} y^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)}\left(z_{t}^{\varepsilon}-\varepsilon z_{x x}^{\varepsilon}+M(1-\alpha) z_{x}^{\varepsilon}\right)
\end{array}\right.
$$

We then define the approximations

$$
\left\{\begin{array}{l}
z_{m}^{\varepsilon}(x, t)=\mathcal{X}_{\varepsilon}(x) \sum_{k=0}^{m} \varepsilon^{k} z^{k}(x, t)+\left(1-\mathcal{X}_{\varepsilon}(x)\right) \sum_{k=0}^{m} \varepsilon^{k} Z^{k}\left(\frac{1-x}{\varepsilon}, t\right), \tag{18}\\
y_{m}^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} z_{m}^{\varepsilon}(x, t)
\end{array}\right.
$$

The main issue is now to find control functions \bar{v}^{k} satisfying the matching conditions such that $\left\|L_{\varepsilon} y_{m}^{\varepsilon}\right\|_{C\left([0, T], L^{2}(0,1)\right)}$ goes to zero with ε.
$\left\|L_{\varepsilon} y_{m}^{\varepsilon}\right\|_{C\left([0, T], L^{2}(0,1)\right)}$

Figure: $(0,1) \times(0, T)=$ $D_{\beta}^{+} \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{-}\right) \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{+}\right)$.

$$
L_{\varepsilon} y_{m}^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} L_{\varepsilon, \alpha} Z_{m}^{\varepsilon}(x, t)
$$

$$
\ln D_{\beta}^{-} \cap C_{\alpha}^{+}, L_{\varepsilon, \alpha} z_{m}^{\varepsilon}(x, t)=-\varepsilon^{m+1} z_{x x}^{m}(x, t)
$$

$$
\begin{aligned}
L_{\varepsilon} y_{0}^{\varepsilon}(x, t) & =-\frac{\varepsilon}{M_{\alpha}^{2}} e^{\frac{M_{\alpha}}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)}\left(\bar{v}^{0}\right)^{(2)}\left(t-\frac{x}{M_{\alpha}}\right), \\
& =-\frac{\varepsilon}{M_{\alpha}^{2}} e^{-\frac{M^{2} x}{4 \varepsilon(1-\alpha)}} e^{\frac{\alpha(2-\alpha) M^{2}}{4 \varepsilon}\left(\frac{x}{M_{\alpha}}-t\right)}\left(\bar{v}^{0}\right)^{(2)}\left(t-\frac{x}{M_{\alpha}}\right)
\end{aligned}
$$

$$
\begin{cases}\left(\bar{v}^{0}\right)^{(2)}(t)=\left(C_{1}+C_{2} t\right) e^{\frac{-\eta+\alpha(2-\alpha) M^{2}}{4 \varepsilon} t}, & t \in[0, \beta] \tag{v}\\ \bar{v}^{0}(0)=z_{0}^{\varepsilon}(0), \quad \bar{v}^{0}(\beta)=0\end{cases}
$$

for some constants C_{1} and C_{2} and $\eta>0$.
$\left\|L_{\varepsilon}\left(y_{0}^{\varepsilon}\right)\right\|_{L^{1}\left(L^{2}\left(D_{\beta}^{-} \cap C_{\alpha}^{+}\right)\right)} \approx\left(\bar{v}^{0}\right)(0) \mathcal{O}\left(\varepsilon^{1 / 2}\right)+\left(\bar{v}^{0}\right)^{(1)}(0) \mathcal{O}\left(\varepsilon^{3 / 2}\right)$.
$\left\|L_{\varepsilon} y_{m}^{\varepsilon}\right\|_{C\left([0, T], L^{2}(0,1)\right)}$

Figure: $(0,1) \times(0, T)=$ $D_{\beta}^{+} \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{-}\right) \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{+}\right)$.

$$
L_{\varepsilon} y_{m}^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} L_{\varepsilon, \alpha} Z_{m}^{\varepsilon}(x, t)
$$

$$
\ln D_{\beta}^{-} \cap C_{\alpha}^{+}, L_{\varepsilon, \alpha} z_{m}^{\varepsilon}(x, t)=-\varepsilon^{m+1} z_{x x}^{m}(x, t)
$$

$$
L_{\varepsilon} y_{0}^{\varepsilon}(x, t)=-\frac{\varepsilon}{M_{\alpha}^{2}} e^{\frac{M_{\alpha}}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)}\left(\bar{v}^{0}\right)^{(2)}\left(t-\frac{x}{M_{\alpha}}\right),
$$

$$
\left\{\begin{array}{l}
\left(\bar{v}^{0}\right)^{(2)}(t)=\left(C_{1}+C_{2} t\right) e^{\frac{-\eta+\alpha(2-\alpha) M^{2}}{4 \varepsilon} t}, \quad t \in[\\
\bar{v}^{0}(0)=z_{0}^{\varepsilon}(0), \quad \bar{v}^{0}(\beta)=0, \\
\left.\left(\bar{v}^{0}\right)^{(1)}(0)\right)=-M_{\alpha}\left(z_{0}^{\varepsilon}\right)^{\prime}(0), \quad\left(\bar{v}^{0}\right)^{(1)}(\beta)=0,
\end{array}\right.
$$

$$
\text { for some constants } C_{1} \text { and } C_{2} \text { and } \eta>0 \text {. }
$$

$\left\|L_{\varepsilon} y_{m}^{\varepsilon}\right\|_{C\left([0, T], L^{2}(0,1)\right)}$

Figure: $(0,1) \times(0, T)=$ $D_{\beta}^{+} \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{-}\right) \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{+}\right)$.

$$
L_{\varepsilon} y_{m}^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} L_{\varepsilon, \alpha} z_{m}^{\varepsilon}(x, t)
$$

$$
\ln D_{\beta}^{-} \cap C_{\alpha}^{+}, L_{\varepsilon, \alpha} z_{m}^{\varepsilon}(x, t)=-\varepsilon^{m+1} z_{x x}^{m}(x, t)
$$

$$
L_{\varepsilon} y_{0}^{\varepsilon}(x, t)=-\frac{\varepsilon}{M_{\alpha}^{2}} e^{\frac{M_{\alpha}}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)}\left(\bar{v}^{0}\right)^{(2)}\left(t-\frac{x}{M_{\alpha}}\right)
$$

$$
=-\frac{\varepsilon}{M_{\alpha}^{2}} e^{-\frac{M \alpha^{2} x}{4 \varepsilon(1-\alpha)}} e^{\frac{\alpha(2-\alpha) M^{2}}{4 \varepsilon}\left(\frac{x}{M_{\alpha}}-t\right)}\left(\bar{V}^{0}\right)^{(2)}\left(t-\frac{x}{M_{\alpha}}\right)
$$

$$
\int\left(\bar{v}^{0}\right)^{(2)}(t)=\left(C_{1}+C_{2} t\right) e^{\frac{-\eta+\alpha(2-\alpha) M^{2}}{4 \varepsilon} t}, \quad t \in[0, \beta],
$$

$$
\begin{equation*}
\bar{v}^{0}(0)=z_{0}^{\varepsilon}(0), \quad \bar{v}^{0}(\beta)=0 \tag{v}
\end{equation*}
$$

for some constants C_{1} and C_{2} and $\eta>0$.

$\left\|L_{\varepsilon} y_{m}^{\varepsilon}\right\|_{C\left([0, T], L^{2}(0,1)\right)}$

Figure: $(0,1) \times(0, T)=$ $D_{\beta}^{+} \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{-}\right) \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{+}\right)$.

$$
L_{\varepsilon} y_{m}^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} L_{\varepsilon, \alpha} Z_{m}^{\varepsilon}(x, t)
$$

$$
\ln D_{\beta}^{-} \cap C_{\alpha}^{+}, L_{\varepsilon, \alpha} z_{m}^{\varepsilon}(x, t)=-\varepsilon^{m+1} z_{x x}^{m}(x, t)
$$

$$
L_{\varepsilon} y_{0}^{\varepsilon}(x, t)=-\frac{\varepsilon}{M_{\alpha}^{2}} e^{\frac{M_{\alpha}}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)}\left(\bar{v}^{0}\right)^{(2)}\left(t-\frac{x}{M_{\alpha}}\right)
$$

$$
=-\frac{\varepsilon}{M_{\alpha}^{2}} e^{-\frac{M \alpha^{2} x}{4 \varepsilon(1-\alpha)}} e^{\frac{\alpha(2-\alpha) M^{2}}{4 \varepsilon}\left(\frac{x}{M_{\alpha}}-t\right)}\left(\bar{V}^{0}\right)^{(2)}\left(t-\frac{x}{M_{\alpha}}\right)
$$

$$
\left\{\begin{array}{l}
\left(\bar{v}^{0}\right)^{(2)}(t)=\left(C_{1}+C_{2} t\right) e^{\frac{-\eta+\alpha(2-\alpha) M^{2}}{4 \varepsilon} t}, \quad t \in[0, \beta] \tag{19}\\
\bar{v}^{0}(0)=z_{0}^{\varepsilon}(0), \quad \bar{v}^{0}(\beta)=0, \\
\left.\left(\bar{v}^{0}\right)^{(1)}(0)\right)=-M_{\alpha}\left(z_{0}^{\varepsilon}\right)^{\prime}(0), \quad\left(\bar{v}^{0}\right)^{(1)}(\beta)=0,
\end{array}\right.
$$

for some constants C_{1} and C_{2} and $\eta>0$.

$\left\|L_{\varepsilon} y_{m}^{\varepsilon}\right\|_{C\left([0, T], L^{2}(0,1)\right)}$

Figure: $(0,1) \times(0, T)=$ $D_{\beta}^{+} \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{-}\right) \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{+}\right)$.

$$
L_{\varepsilon} y_{m}^{\varepsilon}(x, t)=e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)} L_{\varepsilon, \alpha} z_{m}^{\varepsilon}(x, t)
$$

$$
\ln D_{\beta}^{-} \cap C_{\alpha}^{+}, L_{\varepsilon, \alpha} z_{m}^{\varepsilon}(x, t)=-\varepsilon^{m+1} z_{x x}^{m}(x, t)
$$

$$
\begin{aligned}
L_{\varepsilon} y_{0}^{\varepsilon}(x, t) & =-\frac{\varepsilon}{M_{\alpha}^{2}} e^{\frac{M \alpha}{2 \varepsilon}\left(x-\frac{(2-\alpha) M t}{2}\right)}\left(\bar{v}^{0}\right)^{(2)}\left(t-\frac{x}{M_{\alpha}}\right), \\
& =-\frac{\varepsilon}{M_{\alpha}^{2}} e^{-\frac{M^{2} x}{4 \varepsilon(1-\alpha)}} e^{\frac{\alpha(2-\alpha) M^{2}}{4 \varepsilon}\left(\frac{x}{M_{\alpha}}-t\right)}\left(\bar{v}^{0}\right)^{(2)}\left(t-\frac{x}{M_{\alpha}}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\left(\bar{v}^{0}\right)^{(2)}(t)=\left(C_{1}+C_{2} t\right) e^{\frac{-\eta+\alpha(2-\alpha) M^{2}}{4 \varepsilon} t}, \quad t \in[0, \beta] \\
\bar{v}^{0}(0)=z_{0}^{\varepsilon}(0), \quad \bar{v}^{0}(\beta)=0, \\
\left.\left(\bar{v}^{0}\right)^{(1)}(0)\right)=-M_{\alpha}\left(z_{0}^{\varepsilon}\right)^{\prime}(0), \quad\left(\bar{v}^{0}\right)^{(1)}(\beta)=0,
\end{array}\right.
$$

for some constants C_{1} and C_{2} and $\eta>0$.

$$
\left\|L_{\varepsilon}\left(y_{0}^{\varepsilon}\right)\right\|_{L^{1}\left(L^{2}\left(D_{\beta}^{-} \cap C_{\alpha}^{+}\right)\right)} \approx\left(\bar{v}^{0}\right)(0) \mathcal{O}\left(\varepsilon^{1 / 2}\right)+\left(\bar{v}^{0}\right)^{(1)}(0) \mathcal{O}\left(\varepsilon^{3 / 2}\right)
$$

$\left\|L_{\varepsilon} y_{m}^{\varepsilon}\right\|_{C\left([0, T], L^{2}(0,1)\right)}$

Thus, the corresponding control is given

$$
\left\{\begin{array}{l}
v^{0}(t)=e^{-\frac{\gamma M^{2} t}{4 \varepsilon}} \bar{v}^{0}(t) 1_{[0, \beta]}(t), \quad \gamma=\alpha(2-\alpha), \tag{20}\\
\bar{v}^{0}(t)=\frac{k C_{1}-2 C_{2}+k C_{2} t}{k^{3}} e^{k t}+C_{3} t+C_{4}, \quad k:=\frac{-\eta+\alpha(2-\alpha)}{4 \varepsilon}
\end{array}\right.
$$

Figure: $(0,1) \times(0, T)=$ $D_{\beta}^{+} \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{-}\right) \cup\left(D_{\beta}^{-} \cap C_{\alpha}^{+}\right)$.

One result

Let $m \geq 0$. Assume that $y_{0}^{\varepsilon} \in C^{2 m+1}[0, T]$ and that $v^{k} \in H^{2(m-k)+2}[0, T]$, and the $C^{2(m-k)+1}$-matching conditions

$$
\begin{equation*}
\left(v^{k}\right)^{(p)}(0)=\sum_{i+j=p-1}(-1)^{i} M^{i} \frac{\partial^{p+1} y^{k-1}}{\partial x^{i+2} \partial t^{j}}(0,0), \quad 0 \leq p \leq 2(m-k)+1 . \tag{21}
\end{equation*}
$$

Theorem

Let $M>0, \gamma \in(0,1)$.
The "cost of control"

$$
\begin{equation*}
\bar{K}(\varepsilon, T, M, m)=\sup _{y_{0} \in L^{2}(0,1)} \min _{v_{\varepsilon} \in \overline{\mathcal{C}}}\left\|\sum_{k=0}^{m} \varepsilon^{k} v^{k}\right\|_{L^{2}(0, T)} \tag{22}
\end{equation*}
$$

with $\overline{\mathcal{C}}\left(y_{0}, T, \varepsilon, M\right):=\left\{v_{\varepsilon}=\sum_{k=0}^{m} \varepsilon^{k} v^{k},\left\|y_{\varepsilon}(\cdot, T)\right\|_{L^{2}(0,1)} \leq c \varepsilon^{\frac{(2 m+1) \gamma}{2}}\right\}$
is bounded uniformly with respect to m and ε as soon as $T>\frac{1}{M}$.

Final remarks

- Instead of imposing regularity assumptions and matching conditions, we may introduce an additional C^{2} cut-off \mathcal{X} function to take into account the discontinuity of the solutions y^{k} on the characteristic line. This allows to deal with the initial optimality system.
Y. Amirat, A. Münch: Boundary controls for the equation $y_{t}-\varepsilon y_{x x}+M y_{x}=0$: Asymptotic analysis with respect to ε for $M>0$. Preprint 2017.
- The negative case is very similar except that the control v_{ε} lives in the boundary layer. (still in progress!)

Final remarks

- Instead of imposing regularity assumptions and matching conditions, we may introduce an additional C^{2} cut-off \mathcal{X} function to take into account the discontinuity of the solutions y^{k} on the characteristic line. This allows to deal with the initial optimality system.
Y. Amirat, A. Münch: Boundary controls for the equation $y_{t}-\varepsilon y_{x x}+M y_{x}=0$: Asymptotic analysis with respect to ε for $M>0$. Preprint 2017.
- The negative case is very similar except that the control v_{ε} lives in the boundary layer. (still in progress !)

Final remarks

- Instead of imposing regularity assumptions and matching conditions, we may introduce an additional C^{2} cut-off \mathcal{X} function to take into account the discontinuity of the solutions y^{k} on the characteristic line. This allows to deal with the initial optimality system.
Y. Amirat, A. Münch: Boundary controls for the equation $y_{t}-\varepsilon y_{x x}+M y_{x}=0$: Asymptotic analysis with respect to ε for $M>0$. Preprint 2017.
- The negative case is very similar except that the control v_{ε} lives in the boundary layer. (still in progress !)

Final remarks

- Instead of imposing regularity assumptions and matching conditions, we may introduce an additional C^{2} cut-off \mathcal{X} function to take into account the discontinuity of the solutions y^{k} on the characteristic line. This allows to deal with the initial optimality system.
Y. Amirat, A. Münch: Boundary controls for the equation $y_{t}-\varepsilon y_{x x}+M y_{x}=0$: Asymptotic analysis with respect to ε for $M>0$. Preprint 2017.
- The negative case is very similar except that the control v_{ε} lives in the boundary layer. (still in progress !)

