Observability inequalities for elliptic equations in 2-d Conférence : Contrôle, Problèmes inverses et Applications

Kévin Le Balc'h

INRIA Paris, Laboratoire Jacques-Louis Lions

October 4th 2021

Plan

Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture

2 Observability inequalities for elliptic equations in 2-d and applications to control

- Main results
- Proof of the observability inequality

3 Conclusion

Table of Contents

Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture

2 Observability inequalities for elliptic equations in 2-d and applications to control

- Main results
- Proof of the observability inequality

3 Conclusion

Introduction to controllability

 $\begin{cases} y'(t) = f(y(t), h(t)), \\ y(0) = y_0. \end{cases}$

 $y(t) \in \mathcal{Y}$: the state, $h(t) \in \mathcal{H}$: the control.

Controllability

 $T > 0, y_0, y_f \in \mathcal{Y}.$

Does there exists $h: [0, T] \to \mathcal{H}$ such that $\begin{cases} y' = f(y, h), \\ y(0) = y_0, \end{cases} \implies y(T) = y_f ?$

- small-time controllability : *T* << 1,
- large-time controllability : T >> 1,
- global controllability : $\forall y_0 \in \mathcal{Y}$,
- **local controllability** : $\forall y_0$ closed to y_f ,
- *null-controllability* : $y_f = 0$.

Heat equation

$$T > 0, \ \Omega \subset \mathbb{R}^{N}, \ \omega \subset \Omega.$$

$$\begin{cases} \partial_{t}y - \Delta y = h1_{\omega} & \text{in } (0, T) \times \Omega, \\ y = 0 & \text{on } (0, T) \times \partial\Omega, \\ y(0, \cdot) = y_{0} & \text{in } \Omega. \end{cases}$$
(Heat)

In (Heat), $y(t, \cdot) : \Omega \to \mathbb{R}$ is the state and $h(t, \cdot) : \omega \to \mathbb{R}$ is the control.

Modelling:

- Ω is a room,
- y(t,x): temperature at time $t \in (0, T)$, at point $x \in \Omega$,
- h(t, x): action of a heater/cooler localized in ω .

Goal: Drive the temperature y to a prescribed target in time T, by using the heater/cooler h, localized in ω .

Small-time null-controllability

$$\begin{cases} \partial_t y - \Delta y = h \mathbf{1}_{\omega} & \text{in } (0, T) \times \Omega, \\ y = 0 & \text{on } (0, T) \times \partial \Omega, \\ y(0, \cdot) = y_0 & \text{in } \Omega. \end{cases}$$
(Heat)

Theorem (Lebeau, Robbiano - Fursikov, Imanuvilov (1995-1996))

(Heat) is small-time (globally) null-controllable, i.e.

 $\forall T > 0, \forall y_0 \in L^2(\Omega), \exists h \in L^2(0, T; L^2(\omega)) \text{ such that } y(T, \cdot) = 0.$

• heat equation \Rightarrow regularizing effects \Rightarrow exact controllability cannot hold.

• heat equation \Rightarrow infinite speed of propagation \Rightarrow small-time controllability.

Fattorini, Russell (1971): 1D.

Hilbert Uniqueness Method

$$\left\{ \begin{array}{ll} \partial_t y - \Delta y = h \mathbf{1}_{\omega} & \text{in } (0, T) \times \Omega, \\ y = 0 & \text{on } (0, T) \times \partial \Omega, \\ y(0, \cdot) = y_0 & \text{in } \Omega. \end{array} \right. \left\{ \begin{array}{ll} -\partial_t \varphi - \Delta \varphi = 0 & \text{in } (0, T) \times \Omega, \\ \varphi = 0 & \text{on } (0, T) \times \partial \Omega, \\ \varphi(T, \cdot) = \varphi_T & \text{in } \Omega. \end{array} \right.$$

Proposition (H.U.M.)

The heat equation is null-controllable in time T > 0 iff there exists $C_T > 0$

$$\left\|\varphi(0,\cdot)\right\|_{L^{2}(\Omega)}^{2} \leq C_{T}\left(\int_{0}^{T}\int_{\omega}\varphi^{2}dxdt\right), \ \forall\varphi_{T}\in L^{2}(\Omega).$$
 (Observability)

Moreover, if such a $C_T > 0$ exists, then $\forall y_0 \in L^2(\Omega)$, there exists $h \in L^2(q_T)$

$$\|h\|_{L^{2}(q_{T})} \leq C_{T} \|y_{0}\|_{L^{2}(\Omega)},$$
 (Cost)

such that the solution y of (Heat) satisfies $y(T, \cdot) = 0$.

Carleman estimate

Let $\omega_0 \subset \subset \omega$ a nonempty open set. $\exists \eta^0 \in C^2(\overline{\Omega})$ such that $\eta^0 > 0$ in Ω , $\eta^0 = 0$ on $\partial\Omega$, and $|\nabla \eta^0| > 0$ in $\overline{\Omega \setminus \omega_0}$. $\xi(t, x) := e^{\lambda \eta_0(x)} t^{-1} (T - t)^{-1}$.

Theorem (Fursikov, Imanuvilov (1995-1996))

There exist $\lambda_1 = \lambda_1(\Omega, \omega) \ge 1$, $s_1 = C(\Omega, \omega)(T + T^2)$, $C_1 = C_1(\Omega, \omega)$ such that for every $\lambda \ge \lambda_1$, $s \ge s_1$,

$$\begin{split} \lambda^4 \int_{Q_T} e^{-2s\xi} (s\xi)^3 |\varphi|^2 dt dx \\ &\leq C_1 \left(\int_{Q_T} e^{-2s\xi} |\partial_t \varphi + \Delta \varphi|^2 dt dx + \lambda^4 \int_{(0,T) \times \omega} e^{-2s\xi} (s\xi)^3 |\varphi|^2 dt dx \right), \end{split}$$

where $\varphi \in C^2(\overline{Q_T})$ with $\varphi = 0$ on Σ_T .

The parameters λ and s play an important role:

- crucial in the proof of the Carleman estimate,
- useful when considering more general parabolic equations.

Proof of the observability estimate

Carleman estimate applied to $-\partial_t \varphi - \Delta \varphi = 0$:

$$\int_{Q_{\tau}} t^{-3} (T-t)^{-3} e^{-2s\xi} |\varphi|^2 d\mathsf{x} dt \le C_1 \int_{(0,T)\times\omega} t^{-3} (T-t)^{-3} e^{-2s\xi} |\varphi|^2 d\mathsf{x} dt.$$
(1)

We have

$$t^{-3}(T-t)^{-3}e^{-2s\xi} \ge CT^{-6}e^{-C(\Omega,\omega)\left(1+\frac{1}{T}\right)}$$
 in $(T/4, 3T/4) \times \Omega$, (2)

$$t^{-3}(T-t)^{-3}e^{-2s\xi} \le C(\Omega,\omega)T^{-6} \text{ in } (0,T) \times \omega.$$
(3)

By (1), (2) and (3), we get

$$\int_{(T/4,3T/4)\times\Omega} |\varphi|^2 dx dt \le e^{C(\Omega,\omega)\left(1+\frac{1}{T}\right)} \int_{(0,T)\times\omega} |\varphi|^2 dx dt.$$
(4)

Dissipativity in time of the L^2 -norm:

$$\|\varphi(0,.)\|_{L^{2}(\Omega)} \leq \frac{2}{T} \int_{T/4}^{3T/4} \|\varphi(t,.)\|_{L^{2}(\Omega)} dt.$$
(5)

By (4) and (5), we get

$$\|\varphi(0,.)\|_{L^{2}(\Omega)} \leq e^{C(\Omega,\omega)\left(1+\frac{1}{T}\right)} \|\varphi\|_{L^{2}((0,T)\times\omega)}.$$
 (Observability)

Parabolic equations

Let $a \in L^{\infty}(Q_T)$ and consider

$$\begin{cases} \partial_t y - \Delta y + a(t, x)y = h\mathbf{1}_{\omega} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(0, \cdot) = y_0 & \text{in } \Omega. \end{cases}$$
 (Parabolic)

Theorem (Fernandez-Cara, Zuazua (2000))

(Parabolic) is small-time globally null-controllable, i.e.

$$\forall T > 0, \forall y_0 \in L^2(\Omega), \exists h \in L^2(0, T; L^2(\omega)) \text{ such that } y(T, \cdot) = 0.$$

Moreover, $h \in L^2(0, T; L^2(\omega))$ can be chosen such that

$$\|h\|_{L^{2}(q_{T})} \leq C_{T} \|y_{0}\|_{L^{2}(\Omega)},$$
 (Cost)

with

$$C_{T} = \exp\left(C(\Omega, \omega)\left(1 + \frac{1}{T} + \|\boldsymbol{a}\|_{\infty}^{2/3} + T \|\boldsymbol{a}\|_{\infty}\right)\right)$$

Observability estimate for the parabolic equation

$$\begin{cases} -\partial_t \varphi - \Delta \varphi + a(t, x)\varphi = 0 & \text{in } Q_T, \\ \varphi = 0 & \text{on } \Sigma_T, \\ \varphi(T, \cdot) = \varphi_T & \text{in } \Omega. \end{cases}$$
 (Adjoint)

Carleman estimate applied to $-\partial_t \varphi - \Delta \varphi + a \varphi = 0$:

$$\lambda^4 \int_{Q_T} e^{-2s\xi} (s\xi)^3 |\varphi|^2 dt dx \leq C \left(\int_{Q_T} e^{-2s\xi} |a\varphi|^2 dt dx + \lambda^4 \int_{(0,T) \times \omega} e^{-2s\xi} (s\xi)^3 |\varphi|^2 dt dx \right)$$

Take $\lambda = \lambda_1$ and $s \ge C(\Omega, \omega) T^2 \|a\|_{\infty}^{2/3}$, we get

$$\lambda^{4} \int_{Q_{T}} e^{-2s\xi} (s\xi)^{3} |\varphi|^{2} dt dx \leq C \lambda^{4} \int_{(0,T) \times \omega} e^{-2s\xi} (s\xi)^{3} |\varphi|^{2} dt dx.$$

$$\Rightarrow \int_{(T/4,3T/4) \times \Omega} |\varphi|^{2} dx dt \leq e^{C(\Omega,\omega) \left(1 + \frac{1}{T} + \|\boldsymbol{s}\|_{\infty}^{2/3}\right)} \int_{(0,T) \times \omega} |\varphi|^{2} dx dt.$$

Dissipativity in time of the L^2 -norm:

$$\begin{aligned} \|\varphi(0,.)\|_{L^{2}(\Omega)} &\leq \exp\left(CT\left(\|\boldsymbol{a}\|_{\infty}\right)\right)\frac{2}{T}\int_{T/4}^{3T/4} \|\varphi(t,.)\|_{L^{2}(\Omega)} dt. \\ \Rightarrow \|\varphi(0,.)\|_{L^{2}(\Omega)} &\leq e^{C(\Omega,\omega)\left(1+\frac{1}{T}+\|\boldsymbol{a}\|_{\infty}^{2/3}+T\|\boldsymbol{a}\|_{\infty}\right)} \|\varphi\|_{L^{2}((0,T)\times\omega)}. \end{aligned}$$
(Observability)

Table of Contents

Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture

2 Observability inequalities for elliptic equations in 2-d and applications to control

- Main results
- Proof of the observability inequality

3 Conclusion

Semilinear parabolic equations

Take $f \in C^1(\mathbb{R};\mathbb{R})$ such that f(0) = 0 and consider

$$\begin{cases} \partial_t y - \Delta y + f(y) = h \mathbb{1}_{\omega} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(0, .) = y_0 & \text{in } \Omega. \end{cases}$$
 (HeatSL)

13 / 47

 $f(0) = 0 \Rightarrow 0$ is a stationary state.

In particular if $y(T, \cdot) = 0$, then by setting $h \equiv 0$ for $t \ge T$ then $y \equiv 0$ for $t \ge T$.

Goal/Question: Null-controllability of the semilinear equation (HeatSL)?

Small-time local null-controllability

$$\begin{cases} \partial_t y - \Delta y + f(y) = h \mathbb{1}_{\omega} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(0, .) = y_0 & \text{in } \Omega. \end{cases}$$
(HeatSL)

Theorem

(HeatSL) is small-time locally null-controllable, i.e. $\forall T > 0, \exists \delta_T > 0 \forall \|y_0\|_{L^{\infty}} \leq \delta_T, \exists h \in L^{\infty}(0, T; L^{\infty}(\omega)) \text{ such that } y(T, \cdot) = 0.$

Linear test:

$$\left\{ \begin{array}{ll} \partial_t y - \Delta y + f'(0)y = h\mathbf{1}_\omega & \text{ in } (0,T) \times \Omega, \\ y = 0 & \text{ on } (0,T) \times \partial \Omega, \\ y(0,\cdot) = y_0 & \text{ in } \Omega, \end{array} \right.$$

globally null-controllable, then (HeatSL) is locally null-controllable.

What about global null-controllability?

$$\begin{cases} \partial_t y - \Delta y + f(y) = h \mathbb{1}_{\omega} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(0, .) = y_0 & \text{in } \Omega. \end{cases}$$
 (HeatSL)

We will also assume that f satisfies the restrictive growth condition ($\alpha > 0$)

$$rac{f(s)}{|s|\log^lpha(1+|s|)} o 0$$
 as $|s| o +\infty.$

Under this assumption, *blow-up* may occur if h = 0 in (HeatSL). Take for example $f(s) = -|s| \log^p (1 + |s|)$ with p > 1 (Osgood's condition).

Goal/Question: Global null-controllability of (HeatSL)?

Fernandez-Cara, Zuazua's results

$$\begin{cases} \partial_t y - \Delta y + f(y) = h \mathbb{1}_{\omega} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(0, \cdot) = y_0 & \text{in } \Omega. \end{cases}$$
 (HeatSL)

Theorem (Fernandez-Cara, Zuazua (2000))

• (Positive result) Assume that $f(s) = o_{+\infty}(|s| \log^{3/2}(1+|s|))$, then (HeatSL) is small-time globally null-controllable, i.e.

 $\forall T > 0, \forall y_0 \in L^{\infty}(\Omega), \exists h \in L^{\infty}(0, T; L^{\infty}(\omega)) \text{ such that } y(T, \cdot) = 0.$

• (Negative result) Set $f(s) := |s| \log^p (1+|s|)$ with p > 2 and assume that $\Omega \setminus \overline{\omega} \neq \emptyset$, then one cannot prevent blow-up in (HeatSL), i.e.

 $\forall T > 0, \exists y_0 \in L^{\infty}(\Omega), \forall h \in L^{\infty}(0, T; L^{\infty}(\omega)), y \text{ blows-up in time } T^* < T.$

Proof of the positive result

Linearization: g(s) := f(s)/s, take $z \in L^{\infty}(Q_T)$ and consider

$$\begin{cases} \partial_t y - \Delta y + g(z)y = h\mathbf{1}_{\omega} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(0, \cdot) = y_0 & \text{in } \Omega. \end{cases}$$
 (Parabolic)

<u>Null-controllability with cost estimate</u>: $\forall \tau > 0, \exists \|h\|_{L^{\infty}(q_{\tau})} \leq C_{\tau} \|y_{0}\|_{L^{\infty}(\Omega)}$ with $C_{\tau} := \exp\left(C\left(1 + \frac{1}{\tau} + \|g(z)\|_{\infty}^{2/3} + \tau \|g(z)\|_{\infty}\right)\right)$ such that $y(\tau, \cdot) = 0$. <u>Act in very small-time</u>: $\tau := \min\left(T, \|g(z)\|_{L^{\infty}(Q_{T})}^{-1/3}\right) \Rightarrow C_{\tau} := \exp\left(C\left(\|g(z)\|_{\infty}^{2/3}\right)\right)$. <u>Fixed-point argument</u>:

$$\Phi: z \in L^{\infty}(Q_{\mathcal{T}}) \mapsto \{y \in L^{\infty}(Q_{\mathcal{T}}) ; \exists \|h\|_{L^{\infty}(q_{\tau})} \leq C_{\tau} \|y_{0}\|_{L^{\infty}(\Omega)}, y(\tau, \cdot) = 0\}.$$

If we prove that $\exists y \in \Phi(y)$ then $\partial_t y - \Delta y + f(y) = h \mathbb{1}_{\omega}$ and $y(T, \cdot) = 0$. Invariant ball: Using $g(s) = o_{+\infty}(\log^{3/2}(|s|))$, we get

$$\begin{aligned} \forall z \in B_{\mathcal{R}}, \ \forall y \in \Phi(z), \ \|y\|_{L^{\infty}(Q_{\mathcal{T}})} &\leq \exp\left(\|g(z)\|_{L^{\infty}(Q_{\mathcal{T}})}^{2/3}\right) \|y_{0}\|_{L^{\infty}(\Omega)} \\ &= o_{+\infty}(\exp(\log(\mathcal{R}))) \|y_{0}\|_{L^{\infty}(\Omega)} \leq \mathcal{R}. \end{aligned}$$

Rmk: Constructive proof in Ervedoza, Lemoine, Münch (2021).

Proof of the negative result

Localized eigenfunction method: Take $\rho \in C_c^{\infty}(\Omega \setminus \overline{\omega})$ such that $\int_{\Omega} \rho(x) dx = 1$ and multiply $\partial_t y - \Delta y + f(y) = h \mathbb{1}_{\omega}$ by ρ and integrate in Ω ,

$$\frac{d}{dt}\left(\int_{\Omega} y(t,x)\rho(x)dx\right) = \int_{\Omega} \Delta y\rho - \int_{\Omega} f(y)\rho.$$

Setting $u(t) = -\int_{\Omega} y(t,x)\rho(x)dx$, and integrating by parts

$$\frac{du}{dt} = -\int_{\Omega} y \Delta \rho + \int_{\Omega} f(|y|) \rho.$$

By Young's inequality, we have

$$\left|\int_{\Omega} y \Delta \rho dx\right| \leq \int_{\Omega} |y| \left|\frac{\Delta \rho}{\rho}\right| \rho dx \leq \frac{1}{2} \int_{\Omega} f(|y|) \rho dx + \frac{1}{2} \int_{\Omega} f^*\left(\frac{2\Delta \rho}{\rho}\right) \rho dx$$

So,

$$\frac{du}{dt} \geq -\frac{C}{2} + \frac{1}{2} \int_{\Omega} f(|y|) \rho dx, \ C := \int_{\Omega} f^*\left(\frac{2|\Delta\rho|}{\rho}\right) \rho dx < +\infty \ (p > 2).$$

Therefore, Jensen's inequality and parity of f lead to

$$\frac{du}{dt} \ge -\frac{C}{2} + \frac{f(u)}{2} \Rightarrow$$
 Blow-up.

Open questions

$$\begin{cases} \partial_t y - \Delta y + f(y) = h \mathbb{1}_{\omega} & \text{in } Q_T, \\ y = 0 & \text{on } \Sigma_T, \\ y(0, \cdot) = y_0 & \text{in } \Omega. \end{cases}$$
(HeatSL)

Open questions: What happen for $f(s) \approx_{|s|\to+\infty} |s| \log^p (1+|s|)$, $p \in [3/2,2]$?

- 1. Can one prevent the blow-up from happening?
- 2. (HeatSL) is large-time globally null-controllable?
- 3. (HeatSL) is small-time globally null-controllable?

Le Balc'h (2020): 2. is true for f semi-dissipative.

Can we improve the cost of null-controllability of $\partial_t y - \Delta y + a(t,x)y = h1_\omega$:

$$\|h\|_{L^{2}(q_{T})} \leq \exp\left(C(\Omega,\omega)\left(1+\frac{1}{T}+\|\boldsymbol{a}\|_{\infty}^{2/3}+T\|\boldsymbol{a}\|_{\infty}\right)\right)\|y_{0}\|_{L^{2}(\Omega)}? \quad (\text{Cost})$$

Table of Contents

Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture

2 Observability inequalities for elliptic equations in 2-d and applications to control

- Main results
- Proof of the observability inequality

3 Conclusion

Optimal observability inequality for parabolic equations

Let
$$\mathbf{a} \in L^{\infty}((0, T) \times \Omega)$$
,
$$\begin{cases} -\partial_t \varphi - \Delta \varphi + \mathbf{a}(t, \mathbf{x}) \varphi = 0 & \text{in } Q_T, \\ \varphi = 0 & \text{on } \Sigma_T, \\ \varphi(T, \cdot) = \varphi_T & \text{in } \Omega. \end{cases}$$

Fernández-Cara, Zuazua (2000) proved:

$$\left\| arphi(0,\cdot)
ight\|_{L^2(\Omega)}^2 \leq C\left(\int_0^T \int_\omega arphi^2 d\mathsf{x} dt
ight) \ orall arphi_{\mathcal{T}} \in L^2(\Omega),$$

where
$$C = C(\Omega, \omega, T, a) = \exp\left(C(\Omega, \omega)\left(1 + \frac{1}{T} + T \|a\|_{L^{\infty}} + \|a\|_{L^{\infty}}^{2/3}\right)\right)$$
.

Theorem (Duyckaerts, Zhang, Zuazua (2008))

Optimality of $\|a\|_{\infty}^{2/3}$ for $\varphi_T \in L^2(\Omega; \mathbb{C})$, $a \in L^{\infty}(Q_T; \mathbb{C})$.

Le Balc'h (2020): $\|a\|_{\infty}^{1/2}$ for $\varphi_T \in L^2(\Omega; \mathbb{R})$, $a \in L^{\infty}(Q_T; \mathbb{R}^+)$.

Proof of the optimality by Meshkov's function Meshkov's result: There exist $V \in L^{\infty}(\mathbb{C};\mathbb{C})$ and $u \neq 0$ such that

$$-\Delta u + V(x)u = 0$$
 and $u(x) \le \exp(-|x|^{4/3})$.

<u>Scaling argument</u>: We set $u_R(x) = u(Rx)$ and $a_R(x) = R^2 V(Rx)$, we have

$$-\Delta u_R + a_R(x)u = 0$$
 and $u_R(x) \le \exp(-R^{4/3}|x|^{4/3}).$

Test the observability inequality with $\varphi_R = u_R$: Assume that $d(0, \overline{\omega}) > 0$ then

$$\begin{split} \|\varphi_R(0,\cdot)\|_{L^2(\Omega)}^2 &\sim \|u_R\|_{L^2(\mathbb{R}^2)}^2 \sim \frac{1}{R^2},\\ \|\varphi_R\|_{L^2((0,T)\times\omega)} &\leq \exp(-R^{4/3}),\\ \|a_R\|_{L^\infty(Q_T)} \sim R^2. \end{split}$$

So for $T \leq ||a_R||_{L^{\infty}(Q_T)}^{-1/3}$, we get for c > 0 sufficiently small

$$\lim_{R \to +\infty} \left\{ \frac{\|\varphi_R(0,\cdot)\|_{L^2(\Omega)}}{\exp\left(c \|a_R\|_{L^{\infty}(\Omega)}^{2/3}\right) \int_0^T \int_{\omega} |\varphi_R(t,x)|^2 dt dx} \right\} = +\infty.$$

Table of Contents

Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture

2 Observability inequalities for elliptic equations in 2-d and applications to control

- Main results
- Proof of the observability inequality

3 Conclusion

The Landis conjecture on exponential decay

Conjecture (Landis, 1960's)

$$V \in L^{\infty}(\mathbb{R}^{N}), \begin{cases} -\Delta u + V(x)u = 0 \text{ in } \mathbb{R}^{N}, \\ |u(x)| \leq \exp(-|x|^{1+\varepsilon}), \ \varepsilon > 0, \end{cases} \implies u \equiv 0.$$

Example: $u(x) = \exp(-|x|)$ in $\{|x| > 1\}$, smoothly extended to \mathbb{R}^N .

Proof in 1D (M. Pierre): -u'' + V(x)u = 0 in \mathbb{R} , $|u(x)| \le \exp(-|x|^{1+\varepsilon})$. By integrating, we easily get $|u'(x)| \le C \exp(-|x|^{1+\varepsilon})$. Duality argument: Let ϕ s.t. $-\phi'' + V\phi = \operatorname{sign}(u)$, $\phi(0) = \phi'(0) = 0$. Gronwall's argument: $|\phi(x)| + |\phi'(x)| \le C \exp(C|x|)$. $\int_{-R}^{R} |u| = \int_{-R}^{R} u \cdot \operatorname{sign}(u) = \int_{-R}^{R} u(-\phi'' + V\phi) = [-\phi'u + \phi u]_{-R}^{R} \le e^{R}e^{-R^{1+\varepsilon}} \to 0$.

Meshkov's counterexample (1991): $\exists V \in L^{\infty}(\mathbb{R}^2; \mathbb{C})$ and $u \in L^{\infty}(\mathbb{R}^2; \mathbb{C}) \neq 0$ such that $-\Delta u + V(x)u = 0$ in \mathbb{R}^2 and $|u(x)| \leq \exp(-|x|^{4/3})$.

Optimality (Meshkov): $-\Delta u + V(x)u = 0$ in \mathbb{R}^N and $|u(x)| \le \exp(-|x|^{4/3+\varepsilon}), \ \varepsilon > 0 \Rightarrow u \equiv 0.$

Landis conjecture for real-valued potentials

Open questions (Kenig, Bourgain, 2005):

• Is the (qualitative) Landis conjecture true for real-valued potentials?

$$V \in L^{\infty}(\mathbb{R}^{N};\mathbb{R}), \begin{cases} -\Delta u + V(x)u = 0 \text{ in } \mathbb{R}^{N}, \\ |u(x)| \leq \exp(-|\mathbf{x}|^{1+\varepsilon}), \ \varepsilon > 0, \end{cases} \implies u \equiv 0.$$

• Quantitative Landis conjecture: for $|V| \le 1$ real-valued and $|u| \le 1$ such that $-\Delta u + Vu = 0$, |u(0)| = 1, do we have: $\forall R >> 1$, $\forall |x_0| = R$,

$$\sup_{|x-x_0|<1}|u(x)|\geq \exp(-R\log^{\alpha}(R))?$$

Logunov, Malinnikova, Nadirashvili, Nazarov (2020) in the plane \mathbb{R}^2 .

25 / 47

Conclusion of the first part

In brief, recall the story

- Null-controllability of $\partial_t y \Delta y + a(t, x)y = h \mathbb{1}_{\omega} \operatorname{Cost} = \exp\left(C\left(\|\mathbf{a}\|_{\infty}^{2/3}\right)\right).$
- Observability of $-\partial_t \varphi \Delta \varphi + a \varphi = 0$, $|\varphi(0)|_{L^2} \le \exp\left(C\left(\|a\|_{\infty}^{2/3}\right)\right) |\varphi|_{L^2(q_T)}$.
- Global null-controllability of $\partial_t y \Delta y + |y| \log^p (1 + |y|) = h \mathbb{1}_{\omega}$, p < 3/2.
- Blow-up of $\partial_t y \Delta y + |y| \log^p (1 + |y|) = h \mathbb{1}_{\omega}$, p > 2.
- Optimality of $||a||_{\infty}^{2/3}$ by Meshkov's counterexample for $a \in L^{\infty}(Q_T; \mathbb{C})$.
- Landis conjecture: $-\Delta u + V(x)u = 0$, $|u(x)| \le \exp(-|x|^{1+\varepsilon}) \Rightarrow u \equiv 0$.
- False in 2-d for $V \in L^{\infty}(\mathbb{R}^2; \mathbb{C})$ by Meshkov's counterexample.
- True in 2-d for $V \in L^{\infty}(\mathbb{R}^2; \mathbb{R})$ by Logunov and al.

Goal: improve observability estimates for elliptic equations in 2-d and obtain new elliptic control results.

Table of Contents

Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture

2 Observability inequalities for elliptic equations in 2-d and applications to control

- Main results
- Proof of the observability inequality

3 Conclusion

Optimal observability inequality in 2-d

Theorem (Ervedoza, Le Balc'h (2021))

Let $\Omega \subset \mathbb{R}^2$ and $\omega \subset \Omega$.

For every real-valued potential $V \in L^{\infty}(\Omega; \mathbb{R})$ and function $u \in H^{2}(\Omega) \cap H^{1}_{0}(\Omega)$,

$$\|u\|_{H^{2}(\Omega)} \leq C\left(\|-\Delta u + Vu\|_{L^{2}(\Omega)} + \|u\|_{L^{2}(\omega)}\right), \qquad (\text{Observability})$$

where
$$C > 0$$
 is given by $C = \exp\left(C(\Omega, \omega)\left(1 + \|V\|_{\infty}^{1/2}\log^{1/2}\left(\|V\|_{\infty}\right)\right)\right)$.

- V has to be real-valued (Meshkov's counterexample).
- $V \in L^{\infty}(\Omega; \mathbb{R}) \Rightarrow$ one can assume that <u>u is real-valued</u>.
- Today, $\boldsymbol{\Omega}$ has to be smooth and simply connected.
- (Observability) proved by Logunov and al for Ω a 2-d manifold without boundary and $-\Delta u + Vu = 0$.

Applications to control theory

Take $f \in C^1(\mathbb{R};\mathbb{R})$ such that f(0) = 0 and consider the elliptic control problem

$$\begin{cases} -\Delta y + f(y) = F + h\mathbf{1}_{\omega} & \text{in } \Omega, \\ y = 0 & \text{on } \partial\Omega, \end{cases}$$
 (LaplaceNL)

where $F \in L^{\infty}(\Omega)$. **Goal**: Find a pair $(y, h) \in [H_0^1(\Omega) \cap L^{\infty}(\Omega)] \times L^{\infty}(\omega)$ satisfying (LaplaceNL).

Theorem (Ervedoza, Le Balc'h (2021))

• (Positive result) Assume that $f(s) = o_{+\infty}(|s| \log^p(1+|s|))$, p < 2, then

 $\forall F \in L^{\infty}(\Omega), \exists (y,h) \in [H^{1}_{0}(\Omega) \cap L^{\infty}(\Omega)] \times L^{\infty}(\omega) \text{ satisfying (LaplaceNL)}.$

• (Negative result) Take $f(s) = |s| \log^p(1 + |s|)$, p > 2. Then,

 $\exists F \in L^{\infty}(\Omega), \forall h \in L^{\infty}(\omega)$, (LaplaceNL) has no solution $y \in H^{1}_{0}(\Omega) \cap L^{\infty}(\Omega)$.

- Negative result is based on the localized eigenfunction method (OK in N-d).
- Positive result is true in 1-d, with p = 2.
- Positive result is true in N-d, with p = 3/2.

Table of Contents

Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture

Observability inequalities for elliptic equations in 2-d and applications to control Main results

• Proof of the observability inequality

3 Conclusion

Strategy of the proof of the main result

Theorem (Ervedoza, Le Balc'h (2021))

Let $\Omega \subset \mathbb{R}^2$ and $\omega \subset \Omega$. For every **real-valued potential** $V \in L^{\infty}(\Omega; \mathbb{R})$ and function $u \in H^2(\Omega) \cap H^1_0(\Omega)$,

$$\|u\|_{H^{2}(\Omega)} \leq C_{V}\left(\|-\Delta u + Vu\|_{L^{2}(\Omega)} + \|u\|_{L^{2}(\omega)}\right), \qquad (\text{Observability})$$

where $C_V > 0$ is given by $C_V = \exp\left(C(\Omega, \omega)\left(1 + \|V\|_{\infty}^{1/2}\log^{1/2}(\|V\|_{\infty})\right)\right)$.

The proof is divided into five main steps:

- 1. Reduction to concentric balls.
- 2. Reduction to a weak observability inequality for smooth functions.
- 3. Construction of a multiplier in a perforated domain.
- 4. A quasiconformal change of variable to transform the divergence equation.
- 5. Carleman estimate conjugated with Harnack inequalities.
- 3, 4, 5 are crucially inspired by Logunov and al (2020).

Reduction to concentric balls (Step 1)

Up to a translation: $0 \in \omega$.

Smooth Riemann mapping theorem: $\exists \varphi : \overline{\Omega} \to \overline{B(0,1)}$, one-to-one, $\varphi(0) = 0$,

$$arphi \in \mathcal{O}(\Omega)$$
, $arphi \in \mathcal{C}^{\infty}(\overline{\Omega})$, $0 < c \leq |arphi'| \leq C$ in $\overline{\Omega}$.

Open mapping theorem: φ maps ω to a neighborhood of 0. Cauchy-Riemann's equation: Set $\hat{u} := u \circ \varphi^{-1}$, we have

$$\Delta \hat{u}(x) = |
abla \Re(arphi^{-1})|^2 \Delta u(arphi^{-1}(x)) \ orall x \in B(0,1).$$

So setting $\hat{V} = |
abla \Re(arphi^{-1})|^2 V$, we obtain

$$-\Delta \hat{u} + \hat{V}\hat{u} = |\nabla \Re(\varphi^{-1})|^2 (-\Delta u(\varphi^{-1}) + Vu(\varphi^{-1})) \in L^2(B(0,1)).$$

WLOG,
$$\omega = B(0, r) \subset \Omega = B(0, R), \quad 0 < r < R.$$

A weak inequality for smooth functions (Step 2) For every $V \in L^{\infty}(\Omega; \mathbb{R})$ and $u \in H^{2}(\Omega) \cap H^{1}_{0}(\Omega)$,

$$\mathsf{LHS} = \|\boldsymbol{u}\|_{H^{2}(\Omega)} \leq C_{V} \left(\|-\Delta \boldsymbol{u} + V\boldsymbol{u}\|_{L^{2}(\Omega)} + \|\boldsymbol{u}\|_{L^{2}(\omega)}\right) = \mathsf{RHS}. \quad \text{(Observability)}$$

Sobolev embeddings and local elliptic regularity: Take $\omega_0 \subset \subset \omega$, we have

$$\|u\|_{L^{\infty}(\omega_0)} \leq C \|u\|_{H^2(\omega_0)} \leq C \left(\|-\Delta u\|_{L^2(\omega)} + \|u\|_{L^2(\omega)}\right) \leq \mathsf{RHS}.$$

Global elliptic regularity:

$$\mathsf{LHS} \leq C \left\| \Delta u \right\|_{L^{2}(\Omega)} \leq C_{V} \left(\left\| -\Delta u + V u \right\|_{L^{2}(\Omega)} + \left\| u \right\|_{L^{\infty}(\Omega)} \right).$$

Density argument: The set

 $\mathcal{U} = \{ u \in C^{\infty}(\overline{\Omega}; \mathbb{R}) ; 0 \text{ is a regular value of } u \text{ and } u \text{ is a non-zero constant on } \partial \Omega \}$ is dense in $H^2(\Omega) \cap H^1_0(\Omega)$ for the $H^2(\Omega)$ -topology (Sard's lemma).

WLOG, one has to prove that for every $V \in L^{\infty}(\Omega; \mathbb{R})$ and $u \in \mathcal{U}$,

$$\|\boldsymbol{u}\|_{L^{\infty}(\Omega)} \leq C_{V}\left(\|-\Delta \boldsymbol{u}+V\boldsymbol{u}\|_{L^{2}(\Omega)}+\|\boldsymbol{u}\|_{L^{\infty}(\omega)}\right).$$

Decomposition of the nodal set (Step 3)

We introduce the *nodal set* of $u \in U$:

 $Z := \{x \in \Omega ; u(x) = 0\}.$

Recall that 0 is a regular value of u and $u \neq 0$ on $\partial \Omega$, so

 $Z = \bigcup_{i \in I} C_i$, C_i are disjoint smooth Jordan curves that do not intersect $\partial \Omega$.

Take $\varepsilon > 0$, a small parameter that will be fixed later.

$$\forall x_0 \in \mathcal{C}_i, \ \forall r \in (0, \varepsilon], \ \partial B(x_0, r) \cap \mathcal{C}_i \neq \emptyset.$$
 (P- ε)

We then decompose

 $Z = Z_{\varepsilon}^1 \cup Z_{\varepsilon}^2, \ \forall \mathcal{C}_i \subset Z_{\varepsilon}^1, \ \mathcal{C}_i \text{ satisfies (P-}\varepsilon), \ \forall \mathcal{C}_i \subset Z_{\varepsilon}^2, \ \mathcal{C}_i \text{ does not satisfy (P-}\varepsilon).$

Picture of the nodal set (Step 3)

 $\forall x_0 \in \mathcal{C}_i, \ \forall r \in (0, \varepsilon], \ \partial B(x_0, r) \cap \mathcal{C}_i \neq \emptyset.$ (P- ε)

 $Z = Z_{\varepsilon}^1 \cup Z_{\varepsilon}^2, \ \forall \mathcal{C}_i \subset Z_{\varepsilon}^1, \ \mathcal{C}_i \text{ satisfies (P-}{\varepsilon}), \ \forall \mathcal{C}_i \subset Z_{\varepsilon}^2, \ \mathcal{C}_i \text{ does not satisfy (P-}{\varepsilon}).$

Pointwise estimates (Step 3)

 $\forall x_0 \in \mathcal{C}_i, \ \forall r \in (0, \varepsilon], \ \partial B(x_0, r) \cap \mathcal{C}_i \neq \emptyset.$ $Z = Z_{\varepsilon}^1 \cup Z_{\varepsilon}^2, \ \forall \mathcal{C}_i \subset Z_{\varepsilon}^1, \ \mathcal{C}_i \text{ satisfies (P-}\varepsilon), \ \forall \mathcal{C}_i \subset Z_{\varepsilon}^2, \ \mathcal{C}_i \text{ does not satisfy (P-}\varepsilon).$ $-\Delta u + Vu = f \in L^2(\Omega).$ $(P-\varepsilon)$

Proposition

There exist C > 0 and c > 0 such that for every $\left| \varepsilon^2 \left\| V \right\|_{L^{\infty}(\Omega)} \leq c, \right|$

• $\forall \mathcal{C} \subset Z_{\varepsilon}^{2}, \|u\|_{H_{0}^{1}(\mathcal{O}_{\mathcal{C}})} + \|u\|_{L^{\infty}(\mathcal{O}_{\mathcal{C}})} \leq C \|f\|_{L^{2}(\mathcal{O}_{\mathcal{C}})},$ • $\forall \mathcal{O} \subset \Omega \setminus Z_{\varepsilon}^{1}, \left(\forall x \in \mathcal{O}, u(x) \geq -C \|f\|_{L^{2}(\Omega)}\right) \text{ or } \left(\forall x \in \mathcal{O}, u(x) \leq C \|f\|_{L^{2}(\Omega)}\right)$

Construction of the perforated domain (Step 3)

Lemma

There exists $C_0 \ge 2^{14}$ s.t. for every $\varepsilon > 0$, there exist finitely many closed disks of radius ε , whose union is denoted by F_{ε} satisfying the following properties:

- these disks are C₀ε-separated from each other, from Z¹_ε, from ∂Ω, from x_{max} and from 0,
- the set $Z^1_{\varepsilon} \cup F_{\varepsilon} \cup \partial \Omega$ is a $C_0 \varepsilon$ -net in Ω ,
- the Poincaré constant $C_P(\Omega_{\varepsilon}) \leq C_{\varepsilon}$ with $\Omega_{\varepsilon} = \Omega \setminus (\mathbb{Z}_{\varepsilon}^1 \cup F_{\varepsilon})$.

A positive multiplier in the perforated domain (Step 3) Recall that $C_P(\Omega_{\varepsilon}) \leq C_{\varepsilon}$.

Lemma

There exist C > 0 and c > 0 such that for every $\varepsilon > 0$, with $\varepsilon^2 \|V\|_{L^{\infty}(\Omega)} \leq c$, there exists $\varphi \in H^1(\Omega_{\varepsilon})$ such that • $-\Delta \varphi + V \varphi = 0$ in Ω_{ε} , • $\tilde{\varphi} := \varphi - 1 \in H^1_0(\Omega_{\varepsilon})$ and $\|\tilde{\varphi}\|_{\infty} \leq C \varepsilon^2 \|V\|_{L^{\infty}(\Omega)}$.

Summary of Step 3

The main steps are the following

- Decomposition of the nodal set: $Z := \{x \in \Omega ; u(x) = 0\} = Z_1^{\varepsilon} \cup Z_2^{\varepsilon}$,
- <u>Punctual estimate</u>: $\forall \mathcal{O} \subset \Omega \setminus \mathbb{Z}^{1}_{\varepsilon}$, $(\forall x \in \mathcal{O}, \ u(x) \ge -C \|f\|_{L^{2}(\Omega)})$ or $(\forall x \in \mathcal{O}, \ u(x) \le C \|f\|_{L^{2}(\Omega)})$
- Perforation of the domain: $\Omega_{\varepsilon} = \Omega \setminus (Z_{\varepsilon}^{1} \cup F_{\varepsilon}) \Rightarrow C_{P}(\Omega_{\varepsilon}) \leq C_{\varepsilon}$,

• First choice of
$$\varepsilon$$
: $\varepsilon^2 \|V\|_{L^{\infty}(\Omega)} \leq c$,

• Construction of the multiplier: $\frac{-\Delta \varphi + V \varphi = 0 \quad \text{in } \Omega_{\varepsilon} \ \tilde{\varphi} := \varphi - 1 \in H^1_0(\Omega_{\varepsilon}) \text{ and } \|\tilde{\varphi}\|_{\infty} \leq C \varepsilon^2 \|V\|_{L^{\infty}(\Omega)}.$

Reduction to a homogeneous divergence equation (Step 4)

Recall that $-\Delta u + Vu = f$ in Ω and $-\Delta \varphi + V\varphi = 0$ in $\Omega_{\varepsilon} = \Omega \setminus (Z_{\varepsilon}^1 \cup F_{\varepsilon})$.

The function $v = u/\varphi$ satisfies - $\nabla \cdot (\varphi^2 \nabla v) = f \varphi$ in $\Omega'_{\varepsilon} = \Omega \setminus F_{\varepsilon}$.

 $\underline{\mathsf{Lax-Milgram:}} \ \exists !\psi \in H^1_0(\Omega'_{\varepsilon}), \ -\nabla \cdot (\varphi^2 \nabla \psi) = f\varphi \ \text{in} \ \Omega'_{\varepsilon}, \ \|\psi\|_{L^\infty(\Omega'_{\varepsilon})} \leq C \, \|f\|_{L^2(\Omega)}.$

Lemma

The function $\hat{\mathbf{v}} = \mathbf{v} - \psi$ satisfies $\nabla \cdot (\varphi^2 \nabla \hat{\mathbf{v}}) = 0$ in Ω'_{ε} . There exists C > 0 such that for every disk $D \subset F_{\varepsilon}$,

$$\left(orall x \in \Omega'_{arepsilon}, \ d(x,D) \leq C_0 arepsilon, \ \hat{v}(x) \geq -C \left\| f
ight\|_{L^2(\Omega)}
ight)$$

or

$$\left(orall x \in \Omega_{arepsilon}', \ d(x,D) \leq C_0 arepsilon, \ \hat{v}(x) \leq C \left\| f \right\|_{L^2(\Omega)}
ight).$$

Quasiconformal change of variable (Step 4)

Recall that $\nabla \cdot (\varphi^2 \nabla \hat{v}) = 0$ in Ω'_{ε} .

Lemma

There exists a K-quasiconformal mapping $L : \Omega \to \Omega$, L(0) = 0, with K s.t.

$$1 \leq K \leq 1 + C\varepsilon^2 \left\| V \right\|_{L^{\infty}(\Omega)},$$

such that $h := \hat{v} \circ L^{-1}$ satisfies $\Delta h = 0$ in $L(\Omega'_{\varepsilon})$.

Poincaré's lemma for divergence free vector: $\exists \tilde{v} \text{ s.t. } \varphi^2 \hat{v}_x = \tilde{v}_y \text{ and } \varphi^2 \hat{v}_y = -\tilde{v}_x.$ Beltrami's equation: $w := \hat{v} + i\tilde{v}$ satisfies $\frac{\partial w}{\partial \tilde{z}} = \mu \frac{\partial w}{\partial z}$ with $\mu = \frac{1-\varphi^2}{1+\varphi^2} \frac{\hat{v}_x + i\hat{v}_y}{\hat{v}_x - i\hat{v}_y}.$ Estimate on φ : $|\mu| \leq \frac{1-\varphi^2}{1+\varphi^2} \leq C\varepsilon^2 ||V||_{L^{\infty}(\Omega)}.$ Beltrami: $\exists \psi$ K-quasiconformal, $\psi(0) = 0$, $\frac{\partial \psi}{\partial \tilde{z}} = \mu \frac{\partial \psi}{\partial z}$ in \mathbb{C} , $1 \leq K \leq 1 + C\varepsilon^2 ||V||_{\infty}.$ Stoilow factorization theorem: $\exists W$ hol. s.t. $w = W \circ \psi$ so $\hat{v} \circ \psi^{-1} = \Re(W)$ is harmonic. Riemann mapping theorem: $\psi(\Omega)$ is simply connected so $\exists \alpha : \psi(\Omega) \to \Omega$ and $\alpha(0) = 0$. Set $L := \alpha \circ \psi$, K-quasiconformal, L(0) = 0 maps Ω to Ω and $h = \hat{v} \circ L^{-1}$ is harmonic.

Image of the perforated domain by L (Step 4)

Recall that $L: \Omega \to \Omega$, L(0) = 0, K-quasiconformal, $1 \le K \le 1 + C\varepsilon^2 \|V\|_{L\infty}$.

Lemma

There exist a positive constant c > 0 such that for every $\varepsilon > 0$ satisfying

$$arepsilon \leq c \, \|V\|_{L^{\infty}(\Omega)}^{-1/2} \left(\|V\|_{L^{\infty}(\Omega)}
ight),$$

• $L(\omega)$ contains B(0, r/32),

- $\forall D \subset F_{\varepsilon}$, $L(D) \subset D'$, a disk of size $\varepsilon' = 32\varepsilon$,
- these disks are C₀ε/32-separated from each other, from L(Z¹_ε), from ∂Ω (= L(∂Ω)), from L(x_{max}) and from 0.

The main ingredient is <u>Mori's theorem</u>: $\frac{1}{16} \left| \frac{z_1 - z_2}{R} \right|^K \le \frac{|L(z_1) - L(z_2)|}{R} \le 16 \left| \frac{z_1 - z_2}{R} \right|^{1/K}$.

Summary of Step 4

By the change of variable L, the equation $\nabla \cdot (\varphi^2 \nabla \hat{\nu}) = 0$ in Ω'_{ε} becomes

$$\Delta h = 0$$
 in $L(\Omega'_{\varepsilon})$.

Moreover, we have for $\varepsilon \leq c \|V\|_{L^{\infty}(\Omega)}^{-1/2} \log^{-1/2} \left(\|V\|_{L^{\infty}(\Omega)}\right)$,

- L(ω) ~ B(0, r/32),
- $L(\Omega_{\varepsilon}) \sim \Omega \setminus \cup_{i \in I} D(x'_i, \varepsilon')$,
- $D(x'_i, \varepsilon')$ are $16\varepsilon'$ -separated from each other, from $L(Z^1_{\varepsilon})$, from $\partial\Omega$, from $L(x_{\max})$ and from 0,
- *h* is constant on $\partial \Omega$,
- punctual estimate of h near the disks $D' = D(x'_i, \varepsilon')$,

$$\left(orall x \in \Omega'_{arepsilon}, \ \mathsf{d}(x,D') \leq 16arepsilon, \ h(x) \geq -C \left\| f \right\|_{L^2(\Omega)}
ight)$$

or

$$\left(orall x \in \Omega'_arepsilon, \ \mathsf{d}(x,D) \leq 16arepsilon, \ h(x) \leq C \left\| f
ight\|_{L^2(\Omega)}
ight).$$

A Carleman estimate (Step 5)

Set
$$\eta(x) = \sqrt{R^2 + 1} - \sqrt{|x|^2 + 1}$$
 and for $\lambda \ge 1$, $\xi(x) = e^{\lambda \eta(x)}$.

Theorem

There exist $\lambda_1 \ge 1$, $s_1 > 0$, $C_1 > 0$ such that for every $\lambda \ge \lambda_1$, $s \ge s_1$,

$$\lambda^4 \int_{\Omega} e^{2s\xi} (s\xi)^3 |\varphi|^2 dx \leq C_1 \left(\int_{\Omega} e^{2s\xi} |\Delta \varphi|^2 dx + \lambda^4 \int_{\omega} e^{2s\xi} (s\xi)^3 |\varphi|^2 dx \right),$$

where $\varphi \in H^2(B(0, R))$, constant on $\partial B(0, R)$.

Carleman estimate in the perforated domain (Step 5)

$$\begin{split} & \underline{\text{Cut-off near the disks:}} \quad \chi \equiv 0 \text{ on } B(0,3) \quad \chi \equiv 1 \text{ on } \mathbb{R}^2 \setminus B(0,4), \text{ and set} \\ & \varphi(x) = \begin{cases} h(x) \prod_{i \in I} \chi \left(\frac{x - x'_i}{\varepsilon'} \right) & \text{for } x \in L(\Omega'_{\varepsilon}), \\ 0 \text{ for } x \in \Omega \setminus L(\Omega'_{\varepsilon}). \\ & \underline{\text{Carleman estimate:}} \quad s^3 \int_{\Omega} e^{2s\xi} |\varphi|^2 dx \leq C \left(\int_{\Omega} e^{2s\xi} |\Delta\varphi|^2 dx + s^3 \int_{\omega} e^{2s\xi} |\varphi|^2 dx \right). \\ & \underline{\Delta h = 0}: \quad \int_{\Omega} e^{2s\xi} |\Delta\varphi|^2 \leq C \sum \int_{B(x'_i, 4\varepsilon') \setminus B(x'_i, 3\varepsilon')} \left(\frac{1}{|\varepsilon'|^4} |h|^2 + \frac{1}{|\varepsilon'|^2} |\nabla h|^2 \right) e^{2s\xi} \\ & \underline{\text{Harnack's inequality:}} \quad \int_{B(x'_i, 4\varepsilon') \setminus B(x'_i, 3\varepsilon')} \frac{1}{|\varepsilon'|^2} |\nabla h|^2 e^{2s\varphi} \leq C \int_{B(x'_i, 4\varepsilon') \setminus B(x'_i, 3\varepsilon')} \frac{1}{|\varepsilon'|^4} |h|^2 e^{2s\xi}. \\ & \overline{s^3 \sum \int_{B(x'_i, 8\varepsilon') \setminus B(x'_i, 4\varepsilon')} |h|^2 e^{2s\xi} \leq C \left(\sum \int_{B(x'_i, 4\varepsilon') \setminus B(x'_i, 3\varepsilon')} \frac{1}{|\varepsilon'|^4} |h|^2 e^{2s\xi} + s^3 \int_{\omega} e^{2s\xi} |h|^2 dx \right). \\ & \underline{\text{Weight property:}} \quad \int_{B(x'_i, 4\varepsilon') \setminus B(x'_i, 3\varepsilon')} e^{2s\xi} \leq e^{-2s\varepsilon'} \int_{B(x'_i, 8\varepsilon') \setminus B(x'_i, 4\varepsilon')} e^{2s\xi}. \\ & \underline{\text{Harnack's inequality:}} \quad \int_{B(x'_i, 4\varepsilon') \setminus B(x'_i, 3\varepsilon')} \frac{1}{|\varepsilon'|^4} |h|^2 e^{2s\xi} \leq e^{-2s\varepsilon'} \int_{B(x'_i, 8\varepsilon') \setminus B(x'_i, 4\varepsilon')} |h|^2 e^{2s\xi}. \\ & \underline{\text{Harnack's inequality:}} \quad \int_{B(x'_i, 4\varepsilon') \setminus B(x'_i, 3\varepsilon')} \frac{1}{|\varepsilon'|^4} |h|^2 e^{2s\xi} \leq e^{-2s\varepsilon'} \int_{B(x'_i, 8\varepsilon') \setminus B(x'_i, 4\varepsilon')} |h|^2 e^{2s\xi}. \\ & \underline{\text{Harnack's inequality:}} \quad \int_{B(x'_i, 4\varepsilon') \setminus B(x'_i, 3\varepsilon')} \frac{1}{|\varepsilon'|^4} |h|^2 e^{2s\xi} \leq e^{-2s\varepsilon'} \int_{B(x'_i, 8\varepsilon') \setminus B(x'_i, 4\varepsilon')} |h|^2 e^{2s\xi}. \\ & \underline{\text{For } s\varepsilon'^4 e^{2s\varepsilon'}} \geq C, \text{ i.e. } s \geq C\varepsilon^{-1} \log(\varepsilon^{-1}) \text{ we obtain } \boxed{s^3 \int_{\Omega} e^{2s\xi} |\varphi|^2 \leq Cs^3 \int_{\omega} e^{2s\xi} |h|^2}. \end{aligned}$$

Summary of Step 5

For $\varphi = h$, far from the disks, we obtain for $s \geq C \varepsilon^{-1} \log(\varepsilon^{-1})$,

$$s^3 \int_{\Omega} e^{2s\xi} |\varphi|^2 \leq C s^3 \int_{\omega} e^{2s\xi} |h|^2.$$

How can we finish the proof?

- $\varepsilon \leq c \|V\|_{\infty}^{-1/2} \log^{-1/2} (\|V\|_{\infty}) \Rightarrow s \geq \|V\|_{\infty}^{1/2} \log^{3/2} (\|V\|_{\infty}).$
- $|\varphi|_{L^{2}(\Omega)} \leq \exp(C \|V\|_{\infty}^{1/2} \log^{3/2} (\|V\|_{\infty}))(|f|_{L^{2}(\Omega)} + |h|_{L^{2}(\omega)}).$
- <u>Mean-value</u>: $|h(L(x_{max})| \le \exp(C \|V\|_{\infty}^{1/2} \log^{3/2} (\|V\|_{\infty}))(|f|_{L^{2}(\Omega)} + |h|_{L^{2}(\omega)}).$
- <u>Coming back</u>: $|u(x_{max})| \le \exp(C \|V\|_{\infty}^{1/2} \log^{3/2} (\|V\|_{\infty}))(|f|_{L^{2}(\Omega)} + |u|_{L^{\infty}(\omega)}).$

Rmk: To obtain $\exp(C\|V\|_{\infty}^{1/2} \log^{1/2} (\|V\|_{\infty}))$, we have to use the antisymmetric term in the Carleman estimate.

Conclusion

In brief, recall the story

- Null-controllability of $\partial_t y \Delta y + a(t, x)y = h \mathbb{1}_{\omega} \operatorname{Cost} = \exp\left(C\left(\|a\|_{\infty}^{2/3}\right)\right)$.
- Observability of $-\partial_t \varphi \Delta \varphi + a \varphi = 0$, $|\varphi(0)|_{L^2} \le \exp\left(C\left(\|a\|_{\infty}^{2/3}\right)\right) |\varphi|_{L^2(q_T)}$.
- Global null-controllability of $\partial_t y \Delta y + |y| \log^p(1+|y|) = h \mathbb{1}_{\omega}$, p < 3/2.
- Blow-up of $\partial_t y \Delta y + |y| \log^p (1 + |y|) = h \mathbb{1}_{\omega}, \ p > 2.$
- Optimality of $||a||_{\infty}^{2/3}$ by Meshkov's counterexample for $a \in L^{\infty}(Q_T; \mathbb{C})$.
- Landis conjecture: $-\Delta u + V(x)u = 0$, $|u(x)| \le \exp(-|x|^{1+\varepsilon}) \Rightarrow u \equiv 0$.
- False in 2-d for $V \in L^{\infty}(\mathbb{R}^2; \mathbb{C})$ by Meshkov's counterexample.
- True in 2-d for $V \in L^{\infty}(\mathbb{R}^2; \mathbb{R})$ by Logunov and al.

What's new? In 2-d,

- $\left\| \|u\|_{H^2(\Omega)} \le \exp\left(C\left(\|V\|_{\infty}^{1/2}\log^{1/2}\left(\|V\|_{\infty}\right)\right)\right)\left(\|-\Delta u + Vu\|_{L^2(\Omega)} + \|u\|_{L^2(\omega)}\right),$
- Existence of a pair (y, h) s.t. $-\Delta y + |y| \log^p (1 + |y|) = F + h 1_{\omega}$, p < 2,
- No existence of a pair $-\Delta y + |y| \log^p (1 + |y|) = F + h \mathbb{1}_{\omega}, p > 2.$

<u>Perspectives</u>: Ω connected, optimality of $\|V\|_{\infty}^{1/2} \log^{1/2} (\|V\|_{\infty})$, parabolic equations with spatial potential in 2-d, multi-d case...