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Introduction to controllability

{ y'(t) = f(y(1), h(t)),
¥(0) = yo.
y(t) € Y : the state, h(t) € H : the control.
Controllability
T >0, yo, yr € .

. y, = (y7 h)7
Does there exists h : [0, T] — H such that Y . = y(T)=yr ?

small-time controllability : T << 1,
large-time controllability : T >> 1,

°
o

o global controllability : Yy, € Y,

@ local controllability : Yy, closed to yr,
°

null-controllability : ys = 0.
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Heat equation

T>0QcRY wcq.

Oty — Ay =h1l, in (0,T)xQ,
y=0 on (0, T) x 09, (Heat)
y(0,:) = yo in Q.

In (Heat), y(t,-) : Q — R is the state and h(t,-) : w — R is the control.
Modelling:
e Qs aroom,

o y(t,x): temperature at time t € (0, T), at point x € Q,
e h(t,x): action of a heater/cooler localized in w.

Goal: Drive the temperature y to a prescribed target in time T, by using the
heater/cooler h, localized in w.
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Small-time null-controllability

Oy — Ay =h1l, in(0,T) x Q,
y=0 on (0, T) x 09, (Heat)
y(0,) = yo in Q.
Theorem (Lebeau, Robbiano - Fursikov, Imanuvilov (1995-1996))
(Heat) is small-time (globally) null-controllable, i.e.

VT >0, Vyo € L2(Q), 3h € L%(0, T; L>(w)) such that y(T,-) = 0.

@ heat equation = regularizing effects = exact controllability cannot hold.

@ heat equation = infinite speed of propagation = small-time controllability.

Fattorini, Russell (1971): 1D.

Kévin Le Balc’h Observability inequalities for elliptic equations in 2-d October 4th 2021 6 /47



Hilbert Uniqueness Method

Oy —Ay =hl, in(0,T)xQ, —0p—Dp=0 in(0,T)xQ,
y=0 on (0, T) x 909, p=0 on (0, T) x 99,
y(0,") =yo in Q. o(T,) = o7 in Q.

Proposition (H.U.M.)

The heat equation is null-controllable in time T > 0 iff there exists C+ > 0

-
||cp(0,-)||i2(9) < Cr (/o / cpzdxdt> , Yor € [3(Q). (Observability)

Moreover, if such a Ct > 0 exists, then Yy € L?(2), there exists h € L?(qT)

||h||L2(qT) < CT ||y0||L2(Q) ) (COSt)

such that the solution y of (Heat) satisfies y(T,-) = 0.
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Carleman estimate
Let wq CC w a nonempty open set.
In® € C?(Q) such that n° > 0in Q, n° =0 on 9Q, and |[V1°| > 0in Q\ wo.

£(t, x) = (T — )7L,
Theorem (Fursikov, Imanuvilov (1995-1996))

There exist \; = A\ (Q,w) > 1, s = C(Q,w)(T + T2), C; = G1(Q,w) such that
for every A > A1, s > sy,

/\4/ e (s£)3| 0| dtdx
QT

<G </Q e 210, + Ap|?dtdx + x‘/( e_255(55)3|¢>2dtdx> :
T 0

,T)Xw

where ¢ € C%(QT) with p =0 on L.

The parameters A and s play an important role:
@ crucial in the proof of the Carleman estimate,
@ useful when considering more general parabolic equations.
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Proof of the observability estimate
Carleman estimate applied to —0;¢ — Ap = 0:

/ t73(T — t) 372 |p|?dxdt < Cl/ t73(T — t) 372 pdxdt. (1)
T (0

,T)xw
We have
3T — 1) 3e 2 > CT % C@I(4) in (T/4,3T/4) xQ,  (2)
t3(T —t) 3¢ < C(Quw)T %in (0, T) x w. (3)
By (1), (2) and (3), we get

/ pdxdt < e€@«)(1+7) / o2 dxdt. (4)
(T/4.3T/9)xQ (0, T)xw

Dissipativity in time of the L?-norm:

3T/4
160 ey < 7 [ ot sy 8 ©
y (4) and (5), we get

1000, )l 2y < e c@w)(1++) 1l 20, Ty xew) - (Observability)
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Parabolic equations
Let a € L*°(Q7) and consider

Oy — Ay + a(t,x)y = hl, in Qr,
y=0 on X, (Parabolic)
y(0,) =y in Q.

Theorem (Fernandez-Cara, Zuazua (2000))
(Parabolic) is small-time globally null-controllable, i.e.
VT >0, Vyo € L2(Q), 3h € L%(0, T; L>(w)) such that y(T,-) = 0.
Moreover, h € L?(0, T; L>(w)) can be chosen such that
1Al 2(gry < Cr llyoll 2y » (Cost)

with
_ 1 2/3
Cr=exp | CQw) {1+ =+ allc”+ Tlall ) |-
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Observability estimate for the parabolic equation

=0 on X, (Adjoint)
o(T,)=pr1 in Q.

Carleman estimate applied to —0:¢p — Ap + ap = 0:

A / e 2 (s€)®| ¢ dtdx < C < / e | ap|’dtdx + \* / e_255(55)3|4p|2dtdx> .
QT QT (0, T)xw

Take A = )1 and s > C(Q,w)T? Haﬂff, we get

A / e % (s¢)* | dtdx < CA* / e 2% (s¢)* ||’ dtdx.
QT (0

{ —0rp —Ap+ a(t,x)p=0 in Qr,

,T)Xw
w 1 2/3
= o dxdt < e (e )/ lo|* dxdt.
(T/43T/4)xQ (0, T)xw
Dissipativity in time of the L*-norm:
5 3T /4
100, Y2y < 0 (€T (Jall.0)) = / R
c(@w) (1+ 3 +al2+ Tllall o "
= 11600, )y < “™ 0 VIellisoryey-  (Observability)
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Semilinear parabolic equations

Take f € C}(R;R) such that f(0) = 0 and consider

Oy — Ay + f(y) = hl, in Qr,
y=0 on X, (HeatSL)
y(0,.) =yo in Q.

f(0) = 0 = 0 is a stationary state.
In particular if y(T,-) =0, then by setting h=0fort > T theny =0fort > T.

Goal/Question: Null-controllability of the semilinear equation (HeatSL)?
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Small-time local null-controllability

Oy — Ay + f(y) = hl, in Qr,
y=0 on X, (HeatSL)
y(0,.) = in Q.

Theorem

(HeatSL) is small-time locally null-controllable, i.e.

VT >0, 301 >0 V|yll,c <7, Ihe L0, T;L>*(w)) such that y(T,-)=0.

Linear test:

globally null-controllable, then (HeatSL) is locally null-controllable.
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What about global null-controllability?

Oy — Ay + f(y) = hl, in Qr,
y=0 on X, (HeatSL)
v(0,.) = in Q.

We will also assume that f satisfies the restrictive growth condition (« > 0)

f(s)

———— 0 as |s| = +oo.
[sTiog™ (1 + Js]) |

Under this assumption, blow-up may occur if h =0 in (HeatSL).
Take for example f(s) = —|s|log”(1 + |s|) with p > 1 (Osgood’s condition).

Goal/Question: Global null-controllability of (HeatSL)?
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Fernandez-Cara, Zuazua's results

Oty — Ay + f(y) = hl, in Qr,
y=0 on X, (HeatSL)
v(0,) =y in Q.

Theorem (Fernandez-Cara, Zuazua (2000))

o (Positive result) Assume that f(s) = 04 (|s|log®?(1 + |s|)), then (HeatSL) is
small-time globally null-controllable, i.e.

VT >0, Vyy € L>°(Q), 3h € L>°(0, T; L*°(w)) such that y(T,-) = 0.

o (Negative result) Set f(s) := |s|logP(1 + |s|) with p > 2 and assume that
Q\ @ # 0, then one cannot prevent blow-up in (HeatSL), i.e.

YT >0, dyp € L®(Q), Vh € L>(0, T; L>®(w)), y blows-up in time T* < T.

4
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Proof of the positive result
Linearization: g(s) := f(s)/s, take z € L*°(Qr) and consider
{ Oty — Ay + g(2)y = hl, in Qr,

y=0 on X, (Parabolic)
¥(0,-) = yo in Q.

Null-controllability with cost estimate: V7 > 0, 3[|h[|;c(y.) < Cr [[Yoll;00(q) With
Cr :=exp (C (1 +1+ lg(2) 122 + 7 lg(2)ll o )) such that y(r,-) = 0.

Act in very small-time: 7 := min (T ||g(z)||L_;/:;T ) = G :=exp (C (Hg(z)||2°éa))

Fixed-point argument:

2 € 1(Qr) = {y € L2(Qr) i Ihllyqq, < G I30llieqay» ¥(7:) =0}

If we prove that 3y € ®(y) then d:y — Ay + f(y) = hl, and y(T,-) =0.
Invariant ball: Using g(s) = 0. (log®?(|s])), we get

2/3
Vz € Bg, Vy € ®(2), ”)/”Loo(QT) <exp <||g(z)||Lé<>(QT ) ||y0H1_oo Q)

= 0soc(exp(Iog(R))) Yol (ay < R-

Rmk: Constructive proof in Ervedoza, Lemoine, Miinch (2021).
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Proof of the negative result

Localized eigenfunction method: Take p € C°(Q2\ @) such that fQ p(x)dx =1 and

multiply d:y — Ay + f(y) = hl, by p and integrate in Q,

% (/Qy(tX)p(x)dx) :/QAyp—/Qf(y)P

)p(x)dx, and integrating by parts

—/yAer/f(\yl)p
Q Q
By Young's inequality, we have

A 1 1 2A
/yAde S/Iyl‘—p‘de§-/f(lyl)de+—/f ( p) pdx
Q Q P 2 Jq 2 Jg P

d c 1 2|A
a >+ f(\y|)pdx C:= 24| pdx < 400 (p > 2).
dt 2 o p

Therefore, Jensen's mequallty and parity of f lead to

Setting u(t) = — fﬂ

So,

du C f(u)
—_— > 4+ — = Blow- .
dt 2 2 low-up
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Open questions

Oy — Ay + f(y) = hl, in Qr,
y=0 on X, (HeatSL)
v(0,) =y in Q.

Open questions: What happen for f(s) =51 || log”(1+|s]), p € [3/2,2]?
1. Can one prevent the blow-up from happening?
2. (HeatSL) is large-time globally null-controllable?
3. (HeatSL) is small-time globally null-controllable?

Le Balc'h (2020): 2. is true for f semi-dissipative.

Can we improve the cost of null-controllability of 0;y — Ay + a(t,x)y = hl,:

1 2/3
IAllory < & (€0 (14 3+ 13127+ Tlal.. ) ) olloy? — (Cost)
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Optimal observability inequality for parabolic equations

—O0vp— Ap+ a(t,x)p =0 in Qr,
Let ae L=((0,T)xQ), { =0 on X7,
o(T,) =T in Q.

Ferndndez-Cara, Zuazua (2000) proved:

(0, iErey < € (fo Jf, Pddt) Vor € L2(Q),

where | C = (2w, T, 2) = exp (C(R,w) (1+ 4+ + T lall . +1al1i2) ).

Theorem (Duyckaerts, Zhang, Zuazua (2008))
Optimality of ||a||*/* for o7 € L2(Q;C), a € L(Qr; C).

Le Balc'h (2020): [|a]|’/? for o1 € L2(2;R), a € L°(Qr; RY).
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Proof of the optimality by Meshkov's function
Meshkov's result: There exist V € L°°(C;C) and u # 0 such that

—Au+ V(x)u=0 and u(x) < exp(—|x[*3).
Scaling argument: We set ug(x) = u(Rx) and ag(x) = R>V(Rx), we have
—Aug + ar(x)u = 0 and ur(x) < exp(—R*/3|x|*/3).

Test the observability inequality with g = ug: Assume that d(0,@) > 0 then

1
2
(0, )20y ~ llurllFzgaz) ~ B2

lorll2(0, Ty xw) < exp(—R*?),

HaRHLoo(QT) ~ R2.

So for T < ||aR||L_;/(3QT), we get for ¢ > 0 sufficiently small

0,)|,-
. 0RO, ) 2(q) = to0.

R—+o0 eXP( ||3R||2/3 )foT ., ler(t, x)|?dtdx
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The Landis conjecture on exponential decay

Conjecture (Landis, 1960's)

—Au+ V(x)u=0in RN,

u(x)| < exp(—[x|"*9), e >0,  —UY=0

V € L=(RM), {

Example: u(x) = exp(—|x|) in {|x| > 1}, smoothly extended to R".

Proof in 1D (M. Pierre): —u” + V(x)u =0 in R, |u(x)| < exp(—|x|***).
By integrating, we easily get |u/(x)| < Cexp(—|x|*™).

Duality argument: Let ¢ s.t. —¢” + V¢ = sign(u), #(0) = ¢'(0) = 0.
Gronwall's argument: |@(x)| + |¢'(x)] < Cexp(C|x|).

ffR |u| = ffR u-sign(u) = ffR u(=¢" + Vo) = [—d'u+ pulfr < eRe R 0.

Meshkov's counterexample (1991): 3V € L>°(R* C) and u € L°(R?; C) # 0 such
that —Au+ V(x)u =0 in R? and [u(x)| < exp(—|x|*/?).

Optimality (Meshkov):
—Au+ V(x)u=0in R" and |u(x)| < exp(—|x|**™), e >0=u=0.
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Landis conjecture for real-valued potentials
Open questions (Kenig, Bourgain, 2005):
o Is the (qualitative) Landis conjecture true for real-valued potentials?

—Au+ V(x)u=0in RV,

lu(x)| < exp(—|x|*T¢), e >0, —u=0

V e [®(RV;R), {
o Quantitative Landis conjecture: for |V/| <1 real-valued and |u| < 1 such
that —Au+ Vu =0, |u(0)] =1, do we have: VR >> 1, V|x| = R,

sup  [u(x)| > exp(—Rlog” (R))?
[x—xo|<1

Logunov, Malinnikova, Nadirashvili, Nazarov (2020) in the plane R?.
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Conclusion of the first part

In brief, recall the story

Null-controllability of d;y — Ay + a(t, x)y = hl,, Cost = exp (C (HaHif))

Observability of —8xp — A+ ap = 0, |p(0)] 12 < exp (c (||a||§g3)) 0] 2(ar)-
Global null-controllability of d;y — Ay + |y|logP(1+ |y|) = hl,, p < 3/2.
Blow-up of d;y — Ay + |y|logP(1 + |y]) = hls, p > 2.

Optimality of HaHié3 by Meshkov's counterexample for a € L=°(Q7; C).
Landis conjecture: —Au+ V(x)u =0, |u(x)| < exp(—|x|**¢) = u=0.
False in 2-d for V € L>°(IR?; C) by Meshkov's counterexample.

True in 2-d for V € L*°(R?; R) by Logunov and al.

Goal: improve observability estimates for elliptic equations in 2-d and obtain new
elliptic control results.
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Optimal observability inequality in 2-d

Theorem (Ervedoza, Le Balc'h (2021))

Let Q CR? and w C Q.
For every real-valued potential V € L>°(Q;R) and function u € H*(Q) N H}(),

[ull oy < € (||—AU + Vull o) + ||U||L2(w)) ; (Observability)

where C > 0 is given by | C = exp (C(Q,w) (1 + HVH<1></>2 log?/2 (||V||OO))) .

@ V has to be real-valued (Meshkov's counterexample).
o V e L*(Q;R) = one can assume that u is real-valued.
o Today, Q has to be smooth and simply connected.

o (Observability) proved by Logunov and al for Q a 2-d manifold without
boundary and —Au+ Vu = 0.
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Applications to control theory
Take f € C1(R;R) such that f(0) = 0 and consider the elliptic control problem

{ ;iyo—i_ fly) = F+hl, :)r;%,Q (LaplaceNL)

where F € L*>(Q).
Goal: Find a pair (y, h) € [H3(Q) N L>°(Q)] x L°°(w) satisfying (LaplaceNL).

Theorem (Ervedoza, Le Balc'h (2021))
e (Positive result) Assume that f(s) = o4oo(|s|log”(1 + [s])), p < 2, then

VF € L°°(Q), 3(y, h) € [H}(Q) N L>=(Q)] x L°°(w) satisfying (LaplaceNL).
o (Negative result) Take f(s) = |s|logP(1 + |s|), p > 2. Then,

JF € L>=(Q), Vh € L>=(w), (LaplaceNL) has no solution y € H}(2) N L>=(2Q).

o Negative result is based on the localized eigenfunction method (OK in N-d).

@ Positive result is true in 1-d, with p = 2.
o Positive result is true in N-d, with p = 3/2.
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Strategy of the proof of the main result
Theorem (Ervedoza, Le Balc’h (2021))

Let Q CR? and w C Q.
For every real-valued potential V € L>°(Q;R) and function u € H?(Q) N H}(),

[ull () < Cv (||—Au+ Vul| j2(q) + HUHLz(w)) ; (Observability)

where Cy > 0 is given by | Cy = exp (C(Q,w) (1 + | V|52 log?/? (||V||OO)>> :

The proof is divided into five main steps:
1. Reduction to concentric balls.
2. Reduction to a weak observability inequality for smooth functions.
3. Construction of a multiplier in a perforated domain.
4. A quasiconformal change of variable to transform the divergence equation.

5. Carleman estimate conjugated with Harnack inequalities.

3, 4, 5 are crucially inspired by Logunov and al (2020).
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Reduction to concentric balls (Step 1)

Up to a translation: 0 € w.

Smooth Riemann mapping theorem: 3¢ : Q — B(0, 1), one-to-one, ¢(0) = 0,

0e0Q),pecC®(Q),0<c< || <CinQ.

Open mapping theorem: ¢ maps w to a neighborhood of 0.
Cauchy-Riemann’s equation: Set & := uo ¢!, we have

Ad(x) = [VR(s P Bu(e(x)) ¥x € B(0,1).
So setting V = |[VR(¢1)[2V, we obtain

—Ab+ Vi = |[VR(e HP(—Au(e™?) + Vu(p™)) € L2(B(0,1)).

WLOG,

w=B(0,r)CQ=B(0,R), 0<r<R.|
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A weak inequality for smooth functions (Step 2)
For every V € L=(Q;R) and u € H*(Q) N H}(Q),

LHS = [Ju[| po(qy < Cv (||—Au+ Vull 2y + Hu||L2(w)> = RHS. (Observability)

Sobolev embeddings and local elliptic regularity: Take wy CC w, we have

ull (o) < Cllull (g < € (||—AU||L2(M) + ”u”L?(w)) < RHS.
Global elliptic regularity:

LHS < C[|Aull ey < Cv (|80 + Vil gy + 1ull(q) ) -

Density argument: The set

U={ue C®(R); 0is a regular value of u and u is a non-zero constant on 99}

is dense in H?(Q) N H}(2) for the H?(S2)-topology (Sard’s lemma).

WLOG, one has to prove that for every V € L*°(;R) and u € U,

lell gy < Cv (I—Au+ Vil + 1]y ) -
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Decomposition of the nodal set (Step 3)

We introduce the nodal set of u € U:
Z ={xeQ; u(x) =0}
Recall that 0 is a regular value of u and u # 0 on 0%, so
Z = Uie(C;, C; are disjoint smooth Jordan curves that do not intersect 09Q.
Take € > 0, a small parameter that will be fixed later.
Vxo € Ci, Vr € (0,¢], 0B(x0,r)NC;i # 0. (P-e)
We then decompose

Z=27'0Z? v c Z, C satisfies (P-¢), VC; C Z2, C; does not satisfy (P-¢).
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Picture of the nodal set (Step 3)

Vxo € Ci, Vr € (0,¢], 0B(x0,r)NC;i # 0. (P-¢)
Z=27'0Z? v c Z, ¢ satisfies (P-¢), VC; C Z2, C; does not satisfy (P-¢).
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Pointwise estimates (Step 3)

Vxo € C;, Vr € (0,¢], dB(xo,r) NC; # 0. (P-¢)
Z=27'0Z? v c Z, ¢ satisfies (P-¢), VC; C Z2, C; does not satisfy (P-¢).
~Au+ Vu=f e L3Q).

Proposition

There exist C > 0 and ¢ > 0 such that for every | €?[|V||;(q) < c,
o VC C ZE2, U||Hg(oc) + ||U||L°°(Oc) < C||f||L2(Oc)>
VO C @\ ZL, (Vx € O, u(x) 2 ~C|fll i) or (¥x € O, u(x) < Cllfllz(q)
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Construction of the perforated domain (Step 3)
Lemma

There exists Cy > 2% s.t. for every € > 0, there exist finitely many closed disks of
radius €, whose union is denoted by F. satisfying the following properties:

@ these disks are Coe-separated from each other, from Zsl, from OX), from Xmax
and from 0,

o the set ZX U F. U is a Coe-net in Q,

e the Poincaré constant | Cp(2.) < Ce | with Q. = Q\ (ZL U F.).
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A positive multiplier in the perforated domain (Step 3)

Recall that Cp(2.) < Ce.

Lemma

There exist C > 0 and ¢ > 0 such that for every € > 0, with

there exists ¢ € HY () such that
o —Ap+Vp=0 infQ,,
o 3i=p—1eHiQ) and 3], < C2 |V w(qy-

e[|Vl () < c

Kévin Le Balc'h

Observability inequalities for elliptic equations in 2-d

October 4th 2021

38 /47




Summary of Step 3

The main steps are the following
@ Decomposition of the nodal set: Z:={x € Q; u(x) =0} = Zf U Z5,
@ Punctual estimate: VO C Q\ ZZ,
(vx €O, ulx)>-C ||f|\L2(Q)> or (vx €O, ulx)< C HfHLQ(Q))

@ Perforation of the domain: Q. = Q\ (ZXUF.) = Cp(Q.) < Ce,

o First choice of &: &2 || V|| ;o) < ¢,

@ Construction of the multiplier:

—Ap+ V=0 inQ. g:=¢p—1€ Hj(Q) and ||@]| < Ce? [V oo
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Reduction to a homogeneous divergence equation (Step 4)

Recall that —Au+ Vu=fin Qand —Ap+ Vo =0in Q. =Q\ (Z2UF.).
The function v = u/ satisfies - V- (¢°Vv) = fpin QL = Q\ F..
Lax-Milgram: 31 € HI(), ~V - (9V9) = Fip in 2, 0] 1) < C 1L

Lemma
The function ¥ = v — 1 satisfies V - (p°V ) =0 in Q..
There exists C > 0 such that for every disk D C F,
(vx €Q., dx,D) < Goe, ¥(x) > —C ||fHL2(Q))

or
(Vx €, d(x,D) < Goe, ¥(x) < C Hf”L?(Q)) :
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Quasiconformal change of variable (Step 4)

Recall that V- (¢*V¥) =0 in QL.
Lemma

There exists a K-quasiconformal mapping L : Q — Q, L(0) =0, with K s.t.

1<K <1+ CE Voo s

such that h:= ¥ o L=1 satisfies Ah =0 in L(2).

Poincaré’s lemma for divergence free vector: 37 s.t. ¢*0x = ¥, and npz\“/y = —.
Beltrami's equation: w := ¥ + i¥ satisfies 2% = ;2% with p = 115 ::t'lti
2
Estimate on ¢: |p| < % e > < Ce [Vl oo (0
Beltrami: 3¢ K-quasiconformal, 1(0) = 0, %—%’ = p% inC, 1< K<1+Ce|V|

Stoilow factorization theorem: IW hol. s.t. w = W o1 so ¥ op~! = R(W) is harmonic.
Riemann mapping theorem: () is simply connected so Ja : ¥(2) — Q and «(0) = 0.
Set L := o v, K-quasiconformal, L(0) =0 maps Q to Q and h= ¥ o L' is harmonic.

Kévin Le Balc’h Observability inequalities for elliptic equations in 2-d October 4th 2021 41 / 47



Image of the perforated domain by L (Step 4)
Recall that L : Q — Q, L(0) = 0, K-quasiconformal, 1 < K < 1+ Ce2||V||,. -

Lemma

There exist a positive constant ¢ > 0 such that for every € > 0 satisfying

—1/2 —
e < IVl log ™2 (IVll e

o L(w) contains B(0, r/32),
e VD C F., L(D) C D', a disk of size e’ = 32¢,

e these disks are Cyc/32-separated from each other, from L(Z}), from 02
(= L(092)), from L(xmax) and from 0.

4

o o ., K _ _11/K
The main ingredient is Mori's theorem: - |21R22’ < |L(ZI)RL(ZZ)| <16 |21Rz2’ /K.

16
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Summary of Step 4

By the change of variable L, the equation V - (¢*V{) = 0 in Q. becomes

[Ah=0in L(QL). |

Moreover, we have for ¢ < c ||V . 1/2) log~1/2 (H VHLOO(Q))
o L(w) ~ B(0,r/32),
o L(Q.) ~Q\Uie/D(x!, €,
o D(x!,€') are 16¢’-separated from each other, from L(Z1), from 0, from
L(Xmax) and from 0,
h is constant on 02,
punctual estimate of h near the disks D’ = D(x/,¢’),

(vx € %, dox D) < 162, () 2 =C o))

or

(vx € Q.. d(x, D) < 16¢, h(x) < C ||fHL2(Q)) .
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A Carleman estimate (Step 5)

Set (x) = VRZ+1— /[x]2+ 1 and for A > 1, £(x) = e ).
Theorem

There exist A\ > 1, s3 > 0, C; > 0 such that for every A > A1, s > s,

2 [ es(selobax < G ( | eingpaxtat [ eZSﬁ(ss)ﬂsoFdx),
Q Q w

where ¢ € H?(B(0, R)), constant on dB(0, R).
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Carleman estimate in the perforated domain (Step 5)

Cut-off near the disks: x =0 on B(0,3) x =1 on R?\ B(0,4), and set
h(x)[T,c; x (X ,X’/) for x € L(Q7),
p(x) = { e

0 for x € Q\ L(Q27).
Carleman estimate: s° fQ e*¢|p2dx < C (fn e**|Ap)?dx + §° fw 625§|gp|2dx).

0N 2 2 1 2 1 2 2
Bh=0: [, |00 < C [y sy g ey (o IE + 23 VAE)

[ P 1 2 2sp _1 2 2s&
Harnack's inequality: fB(x;,4e')\B(x/,3e')) WWM e”? < CfB(x;,4e')\B(x,!,3a')) |5,‘4\h| e~*s.

3 2 2s¢ 1 2 2s¢ 3 2s€ 2
S sy oo ey 125 < € (z Jotesaerp ot aery TIPS 457 [ €

N—

. . 2s§ —2se’ 2s§
Weight property: fB(xl.’,4s’)\B(xl.’,3E')e <e fo 8/ N\B(x! ae") €

Harnack’s inequality: fo 4c |4|h|2 et < e 2 fo 86

N\B(x!,3¢) |e’ "N\B(x! 4e

’) |h|2 255

For se™e”*" > C,i.e. s > Ce *log(e ') we obtain | s* fQ e*¢|p]? < Cs° fw e*¢|h? |
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Summary of Step 5

For ¢ = h, far from the disks, we obtain for s > Ce~!log(e~1),

& Jp o < C5° [, X [hf.

How can we finish the proof?

o e <c|V[ M log 2 (IVII) = |s = VI log® (I VI|..).

o ¢liz) < exp(C|| VA2 log®* (| V] )) (I Flize) + [hlizge))-
o Mean-value: |A(L(xmax)| < exp(C|| V% log™ (IV[|.))(IFl2(@) + [li2(ey)-
o Coming back: [u(xmax)| < exp(C||V[5log™ (|IVI|.))(|Flizqe) + [uli=(w)-

Rmk: To obtain exp(C]|| VHééz log? (|| V|..)). we have to use the antisymmetric
term in the Carleman estimate.
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Conclusion

In brief, recall the story

Null-controllability of 8:y — Ay + a(t, x)y = hl.,, Cost = exp (C (HaHZB))
Observability of —0:p — Ap + ap =0, [p(0)],2 < exp (C (HaHif)) leli2egr)-
Global null-controllability of 0;y — Ay + |y|log”(1 + |y|) = hl., p < 3/2.
Blow-up of d:y — Ay + |y|logP(1 + |y|) = hle, p > 2.

Optimality of HaHié3 by Meshkov's counterexample for a € L*°(Qr; C).
Landis conjecture: —Au+ V(x)u =0, |u(x)| < exp(—|x|'T¢) = u=0.
False in 2-d for V € L>°(IR?; C) by Meshkov's counterexample.

True in 2-d for V € L(R* R) by Logunov and al.

What's new? In 2-d,

lull gy < exp (€ (IVIY2 10" (1VIIL))) (=B + Vil 2y + lull 2.y

Existence of a pair (y, h) s.t. —Ay + |y|logP(1+ |y|) = F + hls, p < 2,
No existence of a pair —Ay + |y|log?(1+ |y|) = F + hl,, p > 2.

Perspectives: Q connected, optimality of ||V|\ié2 log'/? (H VHx) parabolic equations
with spatial potential in 2-d, multi-d case...
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