Observability inequalities for elliptic equations in 2-d

Conférence: Contrôle, Problèmes inverses et Applications

Kévin Le Balc'h
INRIA Paris, Laboratoire Jacques-Louis Lions

October 4th 2021

Plan

(1) Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture
(2) Observability inequalities for elliptic equations in 2-d and applications to control
- Main results
- Proof of the observability inequality
(3) Conclusion

Table of Contents

(1) Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture
(2) Observability inequalities for elliptic equations in 2-d and applications to control
- Main results
- Proof of the observability inequality
(3) Conclusion

Introduction to controllability

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(y(t), h(t)) \\
y(0)=y_{0}
\end{array}\right.
$$

$y(t) \in \mathcal{Y}:$ the state, $h(t) \in \mathcal{H}:$ the control.

Controllability

$T>0, y_{0}, y_{f} \in \mathcal{Y}$.
Does there exists $h:[0, T] \rightarrow \mathcal{H}$ such that $\left\{\begin{array}{l}y^{\prime}=f(y, h), \\ y(0)=y_{0},\end{array} \Longrightarrow y(T)=y_{f}\right.$?

- small-time controllability : $T \ll 1$,
- large-time controllability : $T \gg 1$,
- global controllability : $\forall y_{0} \in \mathcal{Y}$,
- local controllability : $\forall y_{0}$ closed to y_{f},
- null-controllability : $y_{f}=0$.

Heat equation

$T>0, \Omega \subset \mathbb{R}^{N}, \omega \subset \Omega$.

$$
\begin{cases}\partial_{t} y-\Delta y=h 1_{\omega} & \text { in }(0, T) \times \Omega \tag{Heat}\\ y=0 & \text { on }(0, T) \times \partial \Omega \\ y(0, \cdot)=y_{0} & \text { in } \Omega\end{cases}
$$

In (Heat), $y(t, \cdot): \Omega \rightarrow \mathbb{R}$ is the state and $h(t, \cdot): \omega \rightarrow \mathbb{R}$ is the control.
Modelling:

- Ω is a room,
- $y(t, x)$: temperature at time $t \in(0, T)$, at point $x \in \Omega$,
- $h(t, x)$: action of a heater/cooler localized in ω.

Goal: Drive the temperature y to a prescribed target in time T, by using the heater/cooler h, localized in ω.

Small-time null-controllability

$$
\begin{cases}\partial_{t} y-\Delta y=h 1_{\omega} & \text { in }(0, T) \times \Omega, \tag{Heat}\\ y=0 & \text { on }(0, T) \times \partial \Omega \\ y(0, \cdot)=y_{0} & \text { in } \Omega\end{cases}
$$

Theorem (Lebeau, Robbiano - Fursikov, Imanuvilov (1995-1996))

(Heat) is small-time (globally) null-controllable, i.e.

$$
\forall T>0, \forall y_{0} \in L^{2}(\Omega), \exists h \in L^{2}\left(0, T ; L^{2}(\omega)\right) \text { such that } y(T, \cdot)=0
$$

- heat equation \Rightarrow regularizing effects \Rightarrow exact controllability cannot hold.
- heat equation \Rightarrow infinite speed of propagation \Rightarrow small-time controllability.

Fattorini, Russell (1971): 1D.

Hilbert Uniqueness Method

$$
\begin{cases}\partial_{t} y-\Delta y=h 1_{\omega} & \text { in }(0, T) \times \Omega, \\
y=0 & \text { on }(0, T) \times \partial \Omega,\left\{\begin{array}{ll}
-\partial_{t} \varphi-\Delta \varphi=0 & \text { in }(0, T) \times \Omega, \\
\varphi(0, \cdot)=y_{0} & \text { in } \Omega .
\end{array}, \begin{array}{ll}
\text { on }(0, T) \times \partial \Omega, \\
\varphi(T, \cdot)=\varphi_{T} & \text { in } \Omega
\end{array}, l\right.\end{cases}
$$

Proposition (H.U.M.)

The heat equation is null-controllable in time $T>0$ iff there exists $C_{T}>0$

$$
\|\varphi(0, \cdot)\|_{L^{2}(\Omega)}^{2} \leq C_{T}\left(\int_{0}^{T} \int_{\omega} \varphi^{2} d x d t\right), \forall \varphi_{T} \in L^{2}(\Omega) . \quad \text { (Observability) }
$$

Moreover, if such a $C_{T}>0$ exists, then $\forall y_{0} \in L^{2}(\Omega)$, there exists $h \in L^{2}\left(q_{T}\right)$

$$
\begin{equation*}
\|h\|_{L^{2}\left(q_{T}\right)} \leq C_{T}\left\|y_{0}\right\|_{L^{2}(\Omega)}, \tag{Cost}
\end{equation*}
$$

such that the solution y of (Heat) satisfies $y(T, \cdot)=0$.

Carleman estimate

Let $\omega_{0} \subset \subset \omega$ a nonempty open set.
$\exists \eta^{0} \in C^{2}(\bar{\Omega})$ such that $\eta^{0}>0$ in $\Omega, \eta^{0}=0$ on $\partial \Omega$, and $\left|\nabla \eta^{0}\right|>0$ in $\overline{\Omega \backslash \omega_{0}}$.

$$
\xi(t, x):=e^{\lambda \eta_{0}(x)} t^{-1}(T-t)^{-1}
$$

Theorem (Fursikov, Imanuvilov (1995-1996))

There exist $\lambda_{1}=\lambda_{1}(\Omega, \omega) \geq 1, s_{1}=C(\Omega, \omega)\left(T+T^{2}\right), C_{1}=C_{1}(\Omega, \omega)$ such that for every $\lambda \geq \lambda_{1}, s \geq s_{1}$,

$$
\begin{aligned}
& \lambda^{4} \int_{Q_{T}} e^{-2 s \xi}(s \xi)^{3}|\varphi|^{2} d t d x \\
& \leq C_{1}\left(\int_{Q_{T}} e^{-2 s \xi}\left|\partial_{t} \varphi+\Delta \varphi\right|^{2} d t d x+\lambda^{4} \int_{(0, T) \times \omega} e^{-2 s \xi}(s \xi)^{3}|\varphi|^{2} d t d x\right)
\end{aligned}
$$

where $\varphi \in C^{2}\left(\overline{Q_{T}}\right)$ with $\varphi=0$ on Σ_{T}.
The parameters λ and s play an important role:

- crucial in the proof of the Carleman estimate,
- useful when considering more general parabolic equations.

Proof of the observability estimate

Carleman estimate applied to $-\partial_{t} \varphi-\Delta \varphi=0$:

$$
\begin{equation*}
\int_{Q_{T}} t^{-3}(T-t)^{-3} e^{-2 s \xi}|\varphi|^{2} d x d t \leq C_{1} \int_{(0, T) \times \omega} t^{-3}(T-t)^{-3} e^{-2 s \xi}|\varphi|^{2} d x d t . \tag{1}
\end{equation*}
$$

We have

$$
\begin{align*}
& t^{-3}(T-t)^{-3} e^{-2 s \xi} \geq C T^{-6} e^{-C(\Omega, \omega)\left(1+\frac{1}{T}\right)} \text { in }(T / 4,3 T / 4) \times \Omega, \tag{2}\\
& t^{-3}(T-t)^{-3} e^{-2 s \xi} \leq C(\Omega, \omega) T^{-6} \text { in }(0, T) \times \omega \tag{3}
\end{align*}
$$

By (1), (2) and (3), we get

$$
\begin{equation*}
\int_{(T / 4,3 T / 4) \times \Omega}|\varphi|^{2} d x d t \leq e^{C(\Omega, \omega)\left(1+\frac{1}{T}\right)} \int_{(0, T) \times \omega}|\varphi|^{2} d x d t . \tag{4}
\end{equation*}
$$

Dissipativity in time of the L^{2}-norm:

$$
\begin{equation*}
\|\varphi(0, .)\|_{L^{2}(\Omega)} \leq \frac{2}{T} \int_{T / 4}^{3 T / 4}\|\varphi(t, .)\|_{L^{2}(\Omega)} d t \tag{5}
\end{equation*}
$$

By (4) and (5), we get

$$
\|\varphi(0, .)\|_{L^{2}(\Omega)} \leq e^{C(\Omega, \omega)\left(1+\frac{1}{T}\right)}\|\varphi\|_{L^{2}((0, T) \times \omega)} .
$$

Parabolic equations

Let $a \in L^{\infty}\left(Q_{T}\right)$ and consider

$$
\begin{cases}\partial_{t} y-\Delta y+a(t, x) y=h 1_{\omega} & \text { in } Q_{T}, \\ y=0 & \text { on } \Sigma_{T}, \\ y(0, \cdot)=y_{0} & \text { in } \Omega .\end{cases}
$$

(Parabolic)

Theorem (Fernandez-Cara, Zuazua (2000))

(Parabolic) is small-time globally null-controllable, i.e.

$$
\forall T>0, \forall y_{0} \in L^{2}(\Omega), \exists h \in L^{2}\left(0, T ; L^{2}(\omega)\right) \text { such that } y(T, \cdot)=0
$$

Moreover, $h \in L^{2}\left(0, T ; L^{2}(\omega)\right)$ can be chosen such that

$$
\begin{equation*}
\|h\|_{L^{2}\left(q_{T}\right)} \leq C_{T}\left\|y_{0}\right\|_{L^{2}(\Omega)}, \tag{Cost}
\end{equation*}
$$

with

$$
C_{T}=\exp \left(C(\Omega, \omega)\left(1+\frac{1}{T}+\|a\|_{\infty}^{2 / 3}+T\|a\|_{\infty}\right)\right) .
$$

Observability estimate for the parabolic equation

$$
\begin{cases}-\partial_{t} \varphi-\Delta \varphi+a(t, x) \varphi=0 & \text { in } Q_{T} \tag{Adjoint}\\ \varphi=0 & \text { on } \Sigma_{T} \\ \varphi(T, \cdot)=\varphi_{T} & \text { in } \Omega\end{cases}
$$

Carleman estimate applied to $-\partial_{t} \varphi-\Delta \varphi+a \varphi=0$:
$\lambda^{4} \int_{Q_{T}} e^{-2 s \xi}(s \xi)^{3}|\varphi|^{2} d t d x \leq C\left(\int_{Q_{T}} e^{-2 s \xi}|a \varphi|^{2} d t d x+\lambda^{4} \int_{(0, T) \times \omega} e^{-2 s \xi}(s \xi)^{3}|\varphi|^{2} d t d x\right)$.
Take $\lambda=\lambda_{1}$ and $s \geq C(\Omega, \omega) T^{2}\|a\|_{\infty}^{2 / 3}$, we get

$$
\begin{aligned}
& \lambda^{4} \int_{Q_{T}} e^{-2 s \xi}(s \xi)^{3}|\varphi|^{2} d t d x \leq C \lambda^{4} \int_{(0, T) \times \omega} e^{-2 s \xi}(s \xi)^{3}|\varphi|^{2} d t d x \\
\Rightarrow & \int_{(T / 4,3 T / 4) \times \Omega}|\varphi|^{2} d x d t \leq e^{C(\Omega, \omega)\left(1+\frac{1}{T}+\|a\|_{\infty}^{2 / 3}\right)} \int_{(0, T) \times \omega}|\varphi|^{2} d x d t .
\end{aligned}
$$

Dissipativity in time of the L^{2}-norm:

$$
\begin{array}{r}
\|\varphi(0, .)\|_{L^{2}(\Omega)} \leq \exp \left(C T\left(\|a\|_{\infty}\right)\right) \frac{2}{T} \int_{T / 4}^{3 T / 4}\|\varphi(t, .)\|_{L^{2}(\Omega)} d t \\
\Rightarrow\|\varphi(0, .)\|_{L^{2}(\Omega)} \leq e^{C(\Omega, \omega)\left(1+\frac{1}{T}+\|a\|_{\infty}^{2 / 3}+T\|a\|_{\infty}\right)}\|\varphi\|_{L^{2}((0, T) \times \omega)}
\end{array}
$$

Table of Contents

(1) Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture
(2) Observability inequalities for elliptic equations in 2-d and applications to control
- Main results
- Proof of the observability inequality
(3) Conclusion

Semilinear parabolic equations

Take $f \in C^{1}(\mathbb{R} ; \mathbb{R})$ such that $f(0)=0$ and consider

$$
\begin{cases}\partial_{t} y-\Delta y+f(y)=h 1_{\omega} & \text { in } Q_{T}, \tag{HeatSL}\\ y=0 & \text { on } \Sigma_{T}, \\ y(0, .)=y_{0} & \text { in } \Omega .\end{cases}
$$

$f(0)=0 \Rightarrow 0$ is a stationary state.
In particular if $y(T, \cdot)=0$, then by setting $h \equiv 0$ for $t \geq T$ then $y \equiv 0$ for $t \geq T$.
Goal/Question: Null-controllability of the semilinear equation (HeatSL)?

Small-time local null-controllability

$$
\begin{cases}\partial_{t} y-\Delta y+f(y)=h 1_{\omega} & \text { in } Q_{T}, \tag{HeatSL}\\ y=0 & \text { on } \Sigma_{T}, \\ y(0, .)=y_{0} & \text { in } \Omega .\end{cases}
$$

Theorem

(HeatSL) is small-time locally null-controllable, i.e.
$\forall T>0, \exists \delta_{T}>0 \forall\left\|y_{0}\right\|_{L^{\infty}} \leq \delta_{T}, \exists h \in L^{\infty}\left(0, T ; L^{\infty}(\omega)\right)$ such that $y(T, \cdot)=0$.
Linear test:

$$
\begin{cases}\partial_{t} y-\Delta y+f^{\prime}(0) y=h 1_{\omega} & \text { in }(0, T) \times \Omega, \\ y=0 & \text { on }(0, T) \times \partial \Omega \\ y(0, \cdot)=y_{0} & \text { in } \Omega,\end{cases}
$$

globally null-controllable, then (HeatSL) is locally null-controllable.

What about global null-controllability?

$$
\begin{cases}\partial_{t} y-\Delta y+f(y)=h 1_{\omega} & \text { in } Q_{T}, \tag{HeatSL}\\ y=0 & \text { on } \Sigma_{T}, \\ y(0, .)=y_{0} & \text { in } \Omega .\end{cases}
$$

We will also assume that f satisfies the restrictive growth condition $(\alpha>0)$

$$
\frac{f(s)}{|s| \log ^{\alpha}(1+|s|)} \rightarrow 0 \text { as }|s| \rightarrow+\infty .
$$

Under this assumption, blow-up may occur if $h=0$ in (HeatSL).
Take for example $f(s)=-|s| \log ^{p}(1+|s|)$ with $p>1$ (Osgood's condition).
Goal/Question: Global null-controllability of (HeatSL)?

Fernandez-Cara, Zuazua's results

$$
\begin{cases}\partial_{t} y-\Delta y+f(y)=h 1_{\omega} & \text { in } Q_{T}, \tag{HeatSL}\\ y=0 & \text { on } \Sigma_{T}, \\ y(0, \cdot)=y_{0} & \text { in } \Omega .\end{cases}
$$

Theorem (Fernandez-Cara, Zuazua (2000))

- (Positive result) Assume that $f(s)=o_{+\infty}\left(|s| \log ^{3 / 2}(1+|s|)\right)$, then (HeatSL) is small-time globally null-controllable, i.e.

$$
\forall T>0, \forall y_{0} \in L^{\infty}(\Omega), \exists h \in L^{\infty}\left(0, T ; L^{\infty}(\omega)\right) \text { such that } y(T, \cdot)=0 .
$$

- (Negative result) Set $f(s):=|s| \log ^{p}(1+|s|)$ with $p>2$ and assume that $\Omega \backslash \bar{\omega} \neq \emptyset$, then one cannot prevent blow-up in (HeatSL), i.e.
$\forall T>0, \exists y_{0} \in L^{\infty}(\Omega), \forall h \in L^{\infty}\left(0, T ; L^{\infty}(\omega)\right)$, y blows-up in time $T^{*}<T$.

Proof of the positive result

Linearization: $g(s):=f(s) / s$, take $z \in L^{\infty}\left(Q_{T}\right)$ and consider

$$
\begin{cases}\partial_{t} y-\Delta y+g(z) y=h 1_{\omega} & \text { in } Q_{T} \tag{Parabolic}\\ y=0 & \text { on } \Sigma_{T} \\ y(0, \cdot)=y_{0} & \text { in } \Omega\end{cases}
$$

Null-controllability with cost estimate: $\forall \tau>0, \exists\|h\|_{L^{\infty}\left(q_{\tau}\right)} \leq C_{\tau}\left\|y_{0}\right\|_{L^{\infty}(\Omega)}$ with $C_{\tau}:=\exp \left(C\left(1+\frac{1}{\tau}+\|g(z)\|_{\infty}^{2 / 3}+\tau\|g(z)\|_{\infty}\right)\right)$ such that $y(\tau, \cdot)=0$.
Act in very small-time: $\tau:=\min \left(T,\|g(z)\|_{L^{\infty}\left(Q_{T}\right)}^{-1 / 3}\right) \Rightarrow C_{\tau}:=\exp \left(C\left(\|g(z)\|_{\infty}^{2 / 3}\right)\right)$.
Fixed-point argument:

$$
\Phi: z \in L^{\infty}\left(Q_{T}\right) \mapsto\left\{y \in L^{\infty}\left(Q_{T}\right) ; \exists\|h\|_{L^{\infty}\left(q_{\tau}\right)} \leq C_{\tau}\left\|y_{0}\right\|_{L^{\infty}(\Omega)}, y(\tau, \cdot)=0\right\}
$$

If we prove that $\exists y \in \Phi(y)$ then $\partial_{t} y-\Delta y+f(y)=h 1_{\omega}$ and $y(T, \cdot)=0$.
Invariant ball: Using $g(s)=o_{+\infty}\left(\log ^{3 / 2}(|s|)\right)$, we get

$$
\begin{aligned}
\forall z \in B_{R}, \forall y \in \Phi(z),\|y\|_{L^{\infty}\left(Q_{T}\right)} & \leq \exp \left(\|g(z)\|_{L^{\infty}\left(Q_{T}\right)}^{2 / 3}\right)\left\|y_{0}\right\|_{L^{\infty}(\Omega)} \\
& =o_{+\infty}(\exp (\log (R)))\left\|y_{0}\right\|_{L^{\infty}(\Omega)} \leq R
\end{aligned}
$$

Rmk: Constructive proof in Ervedoza, Lemoine, Münch (2021).

Proof of the negative result

Localized eigenfunction method: Take $\rho \in C_{c}^{\infty}(\Omega \backslash \bar{\omega})$ such that $\int_{\Omega} \rho(x) d x=1$ and multiply $\partial_{t} y-\Delta y+f(y)=h 1_{\omega}$ by ρ and integrate in Ω,

$$
\frac{d}{d t}\left(\int_{\Omega} y(t, x) \rho(x) d x\right)=\int_{\Omega} \Delta y \rho-\int_{\Omega} f(y) \rho
$$

Setting $u(t)=-\int_{\Omega} y(t, x) \rho(x) d x$, and integrating by parts

$$
\frac{d u}{d t}=-\int_{\Omega} y \Delta \rho+\int_{\Omega} f(|y|) \rho
$$

By Young's inequality, we have

$$
\left|\int_{\Omega} y \Delta \rho d x\right| \leq \int_{\Omega}|y|\left|\frac{\Delta \rho}{\rho}\right| \rho d x \leq \frac{1}{2} \int_{\Omega} f(|y|) \rho d x+\frac{1}{2} \int_{\Omega} f^{*}\left(\frac{2 \Delta \rho}{\rho}\right) \rho d x
$$

So,

$$
\frac{d u}{d t} \geq-\frac{C}{2}+\frac{1}{2} \int_{\Omega} f(|y|) \rho d x, C:=\int_{\Omega} f^{*}\left(\frac{2|\Delta \rho|}{\rho}\right) \rho d x<+\infty(p>2) .
$$

Therefore, Jensen's inequality and parity of f lead to

$$
\frac{d u}{d t} \geq-\frac{C}{2}+\frac{f(u)}{2} \Rightarrow \text { Blow-up. }
$$

Open questions

$$
\begin{cases}\partial_{t} y-\Delta y+f(y)=h 1_{\omega} & \text { in } Q_{T}, \tag{HeatSL}\\ y=0 & \text { on } \Sigma_{T}, \\ y(0, \cdot)=y_{0} & \text { in } \Omega .\end{cases}
$$

Open questions: What happen for $f(s) \approx_{|s| \rightarrow+\infty}|s| \log ^{p}(1+|s|), p \in[3 / 2,2]$?

1. Can one prevent the blow-up from happening?
2. (HeatSL) is large-time globally null-controllable?
3. (HeatSL) is small-time globally null-controllable?

Le Balc'h (2020): 2. is true for f semi-dissipative.
Can we improve the cost of null-controllability of $\partial_{t} y-\Delta y+a(t, x) y=h 1_{\omega}$:

$$
\begin{equation*}
\|h\|_{L^{2}\left(q_{T}\right)} \leq \exp \left(C(\Omega, \omega)\left(1+\frac{1}{T}+\|a\|_{\infty}^{2 / 3}+T\|a\|_{\infty}\right)\right)\left\|y_{0}\right\|_{L^{2}(\Omega)} ? \tag{Cost}
\end{equation*}
$$

Table of Contents

(1) Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture
(2) Observability inequalities for elliptic equations in 2-d and applications to control
- Main results
- Proof of the observability inequality
(3) Conclusion

Optimal observability inequality for parabolic equations

$$
\text { Let } a \in L^{\infty}((0, T) \times \Omega), \begin{cases}-\partial_{t} \varphi-\Delta \varphi+a(t, x) \varphi=0 & \text { in } Q_{T}, \\ \varphi=0 & \text { on } \Sigma_{T}, \\ \varphi(T, \cdot)=\varphi_{T} & \text { in } \Omega .\end{cases}
$$

Fernández-Cara, Zuazua (2000) proved:

$$
\|\varphi(0, \cdot)\|_{L^{2}(\Omega)}^{2} \leq C\left(\int_{0}^{T} \int_{\omega} \varphi^{2} d x d t\right) \forall \varphi_{T} \in L^{2}(\Omega)
$$

where $C=C(\Omega, \omega, T, a)=\exp \left(C(\Omega, \omega)\left(1+\frac{1}{T}+T\|a\|_{L^{\infty}}+\|a\|_{L^{\infty}}^{2 / 3}\right)\right)$.
Theorem (Duyckaerts, Zhang, Zuazua (2008))
Optimality of $\|a\|_{\infty}^{2 / 3}$ for $\varphi_{T} \in L^{2}(\Omega ; \mathbb{C})$, $a \in L^{\infty}\left(Q_{T} ; \mathbb{C}\right)$.
Le Balc'h (2020): $\|a\|_{\infty}^{1 / 2}$ for $\varphi_{T} \in L^{2}(\Omega ; \mathbb{R}), a \in L^{\infty}\left(Q_{T} ; \mathbb{R}^{+}\right)$.

Proof of the optimality by Meshkov's function

Meshkov's result: There exist $V \in L^{\infty}(\mathbb{C} ; \mathbb{C})$ and $u \neq 0$ such that

$$
-\Delta u+V(x) u=0 \text { and } u(x) \leq \exp \left(-|x|^{4 / 3}\right) .
$$

Scaling argument: We set $u_{R}(x)=u(R x)$ and $a_{R}(x)=R^{2} V(R x)$, we have

$$
-\Delta u_{R}+a_{R}(x) u=0 \text { and } u_{R}(x) \leq \exp \left(-R^{4 / 3}|x|^{4 / 3}\right)
$$

Test the observability inequality with $\varphi_{R}=u_{R}$: Assume that $d(0, \bar{\omega})>0$ then

$$
\begin{aligned}
\left\|\varphi_{R}(0, \cdot)\right\|_{L^{2}(\Omega)}^{2} & \sim\left\|u_{R}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2} \sim \frac{1}{R^{2}}, \\
\left\|\varphi_{R}\right\|_{L^{2}((0, T) \times \omega)} & \leq \exp \left(-R^{4 / 3}\right) \\
\left\|a_{R}\right\|_{L^{\infty}\left(Q_{T}\right)} & \sim R^{2} .
\end{aligned}
$$

So for $T \leq\left\|a_{R}\right\|_{L^{\infty}\left(Q_{T}\right)}^{-1 / 3}$, we get for $c>0$ sufficiently small

$$
\lim _{R \rightarrow+\infty}\left\{\frac{\left\|\varphi_{R}(0, \cdot)\right\|_{L^{2}(\Omega)}}{\exp \left(c\left\|a_{R}\right\|_{L^{\infty}(\Omega)}^{2 / 3}\right) \int_{0}^{T} \int_{\omega}\left|\varphi_{R}(t, x)\right|^{2} d t d x}\right\}=+\infty .
$$

Table of Contents

(1) Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture
(2) Observability inequalities for elliptic equations in 2-d and applications to control
- Main results
- Proof of the observability inequality
(3) Conclusion

The Landis conjecture on exponential decay

Conjecture (Landis, 1960's)

$$
V \in L^{\infty}\left(\mathbb{R}^{N}\right),\left\{\begin{array}{l}
-\Delta u+V(x) u=0 \text { in } \mathbb{R}^{N}, \\
|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right), \varepsilon>0,
\end{array} \quad \Longrightarrow u \equiv 0 .\right.
$$

Example: $u(x)=\exp (-|x|)$ in $\{|x|>1\}$, smoothly extended to \mathbb{R}^{N}.
Proof in 1D (M. Pierre): $-u^{\prime \prime}+V(x) u=0$ in $\mathbb{R},|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right)$.
By integrating, we easily get $\left|u^{\prime}(x)\right| \leq C \exp \left(-|x|^{1+\varepsilon}\right)$.
Duality argument: Let ϕ s.t. $-\phi^{\prime \prime}+V \phi=\operatorname{sign}(u), \phi(0)=\phi^{\prime}(0)=0$.
Gronwall's argument: $|\phi(x)|+\left|\phi^{\prime}(x)\right| \leq C \exp (C|x|)$.
$\overline{\int_{-R}^{R}|u|=\int_{-R}^{R} u \cdot \operatorname{sign}}(u)=\int_{-R}^{R} u\left(-\phi^{\prime \prime}+V \phi\right)=\left[-\phi^{\prime} u+\phi u\right]_{-R}^{R} \leq e^{R} e^{-R^{1+\varepsilon}} \rightarrow 0$.
Meshkov's counterexample (1991): $\exists V \in L^{\infty}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$ and $u \in L^{\infty}\left(\mathbb{R}^{2} ; \mathbb{C}\right) \neq 0$ such that $-\Delta u+V(x) u=0$ in \mathbb{R}^{2} and $|u(x)| \leq \exp \left(-|x|^{4 / 3}\right)$.

Optimality (Meshkov):
$-\Delta u+V(x) u=0$ in \mathbb{R}^{N} and $|u(x)| \leq \exp \left(-|x|^{4 / 3+\varepsilon}\right), \varepsilon>0 \Rightarrow u \equiv 0$.

Landis conjecture for real-valued potentials

Open questions (Kenig, Bourgain, 2005):

- Is the (qualitative) Landis conjecture true for real-valued potentials?

$$
V \in L^{\infty}\left(\mathbb{R}^{N} ; \mathbb{R}\right),\left\{\begin{array}{l}
-\Delta u+V(x) u=0 \text { in } \mathbb{R}^{N}, \\
|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right), \varepsilon>0,
\end{array} \quad \Longrightarrow u \equiv 0 .\right.
$$

- Quantitative Landis conjecture: for $|V| \leq 1$ real-valued and $|u| \leq 1$ such that $-\Delta u+V u=0,|u(0)|=1$, do we have: $\forall R \gg 1, \forall\left|x_{0}\right|=R$,

$$
\sup _{\left|x-x_{0}\right|<1}|u(x)| \geq \exp \left(-R \log ^{\alpha}(R)\right) ?
$$

Logunov, Malinnikova, Nadirashvili, Nazarov (2020) in the plane \mathbb{R}^{2}.

Conclusion of the first part

In brief, recall the story

- Null-controllability of $\partial_{t} y-\Delta y+a(t, x) y=h 1_{\omega}$ Cost $=\exp \left(C\left(\|a\|_{\infty}^{2 / 3}\right)\right)$.
- Observability of $-\partial_{t} \varphi-\Delta \varphi+a \varphi=0,|\varphi(0)|_{L^{2}} \leq \exp \left(C\left(\|a\|_{\infty}^{2 / 3}\right)\right)|\varphi|_{L^{2}\left(q_{T}\right)}$.
- Global null-controllability of $\partial_{t} y-\Delta y+|y| \log ^{p}(1+|y|)=h 1_{\omega}, p<3 / 2$.
- Blow-up of $\partial_{t} y-\Delta y+|y| \log ^{p}(1+|y|)=h 1_{\omega}, p>2$.
- Optimality of $\|a\|_{\infty}^{2 / 3}$ by Meshkov's counterexample for $a \in L^{\infty}\left(Q_{T} ; \mathbb{C}\right)$.
- Landis conjecture: $-\Delta u+V(x) u=0,|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right) \Rightarrow u \equiv 0$.
- False in 2-d for $V \in L^{\infty}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$ by Meshkov's counterexample.
- True in 2-d for $V \in L^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ by Logunov and al.

Goal: improve observability estimates for elliptic equations in 2-d and obtain new elliptic control results.

Table of Contents

(1) Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture
(2) Observability inequalities for elliptic equations in 2-d and applications to control - Main results
- Proof of the observability inequality

Optimal observability inequality in 2-d

Theorem (Ervedoza, Le Balc'h (2021))

Let $\Omega \subset \mathbb{R}^{2}$ and $\omega \subset \Omega$.
For every real-valued potential $V \in L^{\infty}(\Omega ; \mathbb{R})$ and function $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$,

$$
\|u\|_{H^{2}(\Omega)} \leq C\left(\|-\Delta u+V u\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\omega)}\right)
$$

(Observability)
where $C>0$ is given by $C=\exp \left(C(\Omega, \omega)\left(1+\|V\|_{\infty}^{1 / 2} \log ^{1 / 2}\left(\|V\|_{\infty}\right)\right)\right)$.

- V has to be real-valued (Meshkov's counterexample).
- $V \in L^{\infty}(\Omega ; \mathbb{R}) \Rightarrow$ one can assume that u is real-valued.
- Today, Ω has to be smooth and simply connected.
- (Observability) proved by Logunov and al for Ω a 2-d manifold without boundary and $-\Delta u+V u=0$.

Applications to control theory

Take $f \in C^{1}(\mathbb{R} ; \mathbb{R})$ such that $f(0)=0$ and consider the elliptic control problem

$$
\begin{cases}-\Delta y+f(y)=F+h 1_{\omega} & \text { in } \Omega \tag{LaplaceNL}\\ y=0 & \text { on } \partial \Omega\end{cases}
$$

where $F \in L^{\infty}(\Omega)$.
Goal: Find a pair $(y, h) \in\left[H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\right] \times L^{\infty}(\omega)$ satisfying (LaplaceNL).

Theorem (Ervedoza, Le Balc'h (2021))

- (Positive result) Assume that $f(s)=o_{+\infty}\left(|s| \log ^{p}(1+|s|)\right), p<2$, then

$$
\forall F \in L^{\infty}(\Omega), \exists(y, h) \in\left[H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\right] \times L^{\infty}(\omega) \text { satisfying (LaplaceNL). }
$$

- (Negative result) Take $f(s)=|s| \log ^{p}(1+|s|), p>2$. Then, $\exists F \in L^{\infty}(\Omega), \forall h \in L^{\infty}(\omega)$, (LaplaceNL) has no solution $y \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$.
- Negative result is based on the localized eigenfunction method (OK in N-d).
- Positive result is true in $1-\mathrm{d}$, with $p=2$.
- Positive result is true in $\mathrm{N}-\mathrm{d}$, with $p=3 / 2$.

Table of Contents

(1) Introduction and several motivations

- Null-controllability of linear parabolic equations
- Null-controllability of semilinear parabolic equations
- Optimality of observability inequalities
- Landis conjecture
(2) Observability inequalities for elliptic equations in 2-d and applications to control
- Main results
- Proof of the observability inequality

Strategy of the proof of the main result

Theorem (Ervedoza, Le Balc'h (2021))
Let $\Omega \subset \mathbb{R}^{2}$ and $\omega \subset \Omega$.
For every real-valued potential $V \in L^{\infty}(\Omega ; \mathbb{R})$ and function $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$,

$$
\|u\|_{H^{2}(\Omega)} \leq C_{V}\left(\|-\Delta u+V u\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\omega)}\right), \quad \text { (Observability) }
$$

where $C_{V}>0$ is given by $C_{V}=\exp \left(C(\Omega, \omega)\left(1+\|V\|_{\infty}^{1 / 2} \log ^{1 / 2}\left(\|V\|_{\infty}\right)\right)\right)$.
The proof is divided into five main steps:

1. Reduction to concentric balls.
2. Reduction to a weak observability inequality for smooth functions.
3. Construction of a multiplier in a perforated domain.
4. A quasiconformal change of variable to transform the divergence equation.
5. Carleman estimate conjugated with Harnack inequalities.

3, 4, 5 are crucially inspired by Logunov and al (2020).

Reduction to concentric balls (Step 1)

Up to a translation: $0 \in \omega$.
Smooth Riemann mapping theorem: $\exists \varphi: \bar{\Omega} \rightarrow \overline{B(0,1)}$, one-to-one, $\varphi(0)=0$,

$$
\varphi \in \mathcal{O}(\Omega), \varphi \in C^{\infty}(\bar{\Omega}), 0<c \leq\left|\varphi^{\prime}\right| \leq C \text { in } \bar{\Omega} .
$$

Open mapping theorem: φ maps ω to a neighborhood of 0 .
Cauchy-Riemann's equation: Set $\hat{u}:=u \circ \varphi^{-1}$, we have

$$
\Delta \hat{u}(x)=\left|\nabla \Re\left(\varphi^{-1}\right)\right|^{2} \Delta u\left(\varphi^{-1}(x)\right) \forall x \in B(0,1) .
$$

So setting $\hat{V}=\left|\nabla \Re\left(\varphi^{-1}\right)\right|^{2} V$, we obtain

$$
\begin{gathered}
-\Delta \hat{u}+\hat{V} \hat{u}=\left|\nabla \Re\left(\varphi^{-1}\right)\right|^{2}\left(-\Delta u\left(\varphi^{-1}\right)+V u\left(\varphi^{-1}\right)\right) \in L^{2}(B(0,1)) . \\
\text { WLOG, } \omega=B(0, r) \subset \Omega=B(0, R), \quad 0<r<R .
\end{gathered}
$$

A weak inequality for smooth functions (Step 2)

For every $V \in L^{\infty}(\Omega ; \mathbb{R})$ and $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$,

$$
\text { LHS }=\|u\|_{H^{2}(\Omega)} \leq C_{V}\left(\|-\Delta u+V u\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\omega)}\right)=\text { RHS. } \quad \text { (Observability) }
$$

Sobolev embeddings and local elliptic regularity: Take $\omega_{0} \subset \subset \omega$, we have

$$
\|u\|_{L^{\infty}\left(\omega_{0}\right)} \leq C\|u\|_{H^{2}\left(\omega_{0}\right)} \leq C\left(\|-\Delta u\|_{L^{2}(\omega)}+\|u\|_{L^{2}(\omega)}\right) \leq \operatorname{RHS} .
$$

Global elliptic regularity:

$$
\operatorname{LHS} \leq C\|\Delta u\|_{L^{2}(\Omega)} \leq C_{V}\left(\|-\Delta u+V u\|_{L^{2}(\Omega)}+\|u\|_{L^{\infty}(\Omega)}\right) .
$$

Density argument: The set
$\mathcal{U}=\left\{u \in C^{\infty}(\bar{\Omega} ; \mathbb{R}) ; 0\right.$ is a regular value of u and u is a non-zero constant on $\left.\partial \Omega\right\}$ is dense in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ for the $H^{2}(\Omega)$-topology (Sard's lemma).

WLOG, one has to prove that for every $V \in L^{\infty}(\Omega ; \mathbb{R})$ and $u \in \mathcal{U}$,

$$
\|u\|_{L^{\infty}(\Omega)} \leq C_{V}\left(\|-\Delta u+V u\|_{L^{2}(\Omega)}+\|u\|_{L^{\infty}(\omega)}\right)
$$

Decomposition of the nodal set (Step 3)

We introduce the nodal set of $u \in \mathcal{U}$:

$$
Z:=\{x \in \Omega ; u(x)=0\} .
$$

Recall that 0 is a regular value of u and $u \neq 0$ on $\partial \Omega$, so
$Z=\cup_{i \in \mathcal{I}} \mathcal{C}_{i}, \mathcal{C}_{i}$ are disjoint smooth Jordan curves that do not intersect $\partial \Omega$.
Take $\varepsilon>0$, a small parameter that will be fixed later.

$$
\forall x_{0} \in \mathcal{C}_{i}, \forall r \in(0, \varepsilon], \partial B\left(x_{0}, r\right) \cap \mathcal{C}_{i} \neq \emptyset .
$$

We then decompose
$Z=Z_{\varepsilon}^{1} \cup Z_{\varepsilon}^{2}, \forall \mathcal{C}_{i} \subset Z_{\varepsilon}^{1}, \mathcal{C}_{i}$ satisfies (P- ε), $\forall \mathcal{C}_{i} \subset Z_{\varepsilon}^{2}, \mathcal{C}_{i}$ does not satisfy (P-).

Picture of the nodal set (Step 3)

$$
\forall x_{0} \in \mathcal{C}_{i}, \forall r \in(0, \varepsilon], \quad \partial B\left(x_{0}, r\right) \cap \mathcal{C}_{i} \neq \emptyset .
$$

$Z=Z_{\varepsilon}^{1} \cup Z_{\varepsilon}^{2}, \forall \mathcal{C}_{i} \subset Z_{\varepsilon}^{1}, \mathcal{C}_{i}$ satisfies (P- $), \forall \mathcal{C}_{i} \subset Z_{\varepsilon}^{2}, \mathcal{C}_{i}$ does not satisfy (P-).

Pointwise estimates (Step 3)

$$
\forall x_{0} \in \mathcal{C}_{i}, \forall r \in(0, \varepsilon], \partial B\left(x_{0}, r\right) \cap \mathcal{C}_{i} \neq \emptyset
$$

$Z=Z_{\varepsilon}^{1} \cup Z_{\varepsilon}^{2}, \forall \mathcal{C}_{i} \subset Z_{\varepsilon}^{1}, \mathcal{C}_{i}$ satisfies (P- $), \forall \mathcal{C}_{i} \subset Z_{\varepsilon}^{2}, \mathcal{C}_{i}$ does not satisfy (P-).

$$
-\Delta u+V u=f \in L^{2}(\Omega) .
$$

Proposition

There exist $C>0$ and $c>0$ such that for every $\varepsilon^{2}\|V\|_{L^{\infty}(\Omega)} \leq c$,

- $\forall \mathcal{C} \subset Z_{\varepsilon}^{2},\|u\|_{H_{0}^{1}\left(\mathcal{O}_{\mathcal{C}}\right)}+\|u\|_{L^{\infty}\left(\mathcal{O}_{\mathcal{C}}\right)} \leq C\|f\|_{L^{2}\left(\mathcal{O}_{\mathcal{C}}\right)}$,
- $\forall \mathcal{O} \subset \Omega \backslash Z_{\varepsilon}^{1},\left(\forall x \in \mathcal{O}, u(x) \geq-C\|f\|_{L^{2}(\Omega)}\right)$ or $\left(\forall x \in \mathcal{O}, u(x) \leq C\|f\|_{L^{2}(\Omega)}\right)$

Construction of the perforated domain (Step 3)

Lemma

There exists $C_{0} \geq 2^{14}$ s.t. for every $\varepsilon>0$, there exist finitely many closed disks of radius ε, whose union is denoted by F_{ε} satisfying the following properties:

- these disks are $C_{0} \varepsilon$-separated from each other, from Z_{ε}^{1}, from $\partial \Omega$, from $x_{\max }$ and from 0 ,
- the set $Z_{\varepsilon}^{1} \cup F_{\varepsilon} \cup \partial \Omega$ is a $C_{0} \varepsilon$-net in Ω,
- the Poincaré constant $C_{P}\left(\Omega_{\varepsilon}\right) \leq C \varepsilon$ with $\Omega_{\varepsilon}=\Omega \backslash\left(Z_{\varepsilon}^{1} \cup F_{\varepsilon}\right)$.

A positive multiplier in the perforated domain (Step 3) Recall that $C_{P}\left(\Omega_{\varepsilon}\right) \leq C \varepsilon$.

Lemma
There exist $C>0$ and $c>0$ such that for every $\varepsilon>0$, with $\varepsilon^{2}\|V\|_{L^{\infty}(\Omega)} \leq c$, there exists $\varphi \in H^{1}\left(\Omega_{\varepsilon}\right)$ such that

- $-\Delta \varphi+V \varphi=0$ in Ω_{ε},
- $\tilde{\varphi}:=\varphi-1 \in H_{0}^{1}\left(\Omega_{\varepsilon}\right)$ and $\|\tilde{\varphi}\|_{\infty} \leq C \varepsilon^{2}\|V\|_{L^{\infty}(\Omega)}$.

Summary of Step 3

The main steps are the following

- Decomposition of the nodal set: $Z:=\{x \in \Omega ; u(x)=0\}=Z_{1}^{\varepsilon} \cup Z_{2}^{\varepsilon}$,
- Punctual estimate: $\forall \mathcal{O} \subset \Omega \backslash Z_{\varepsilon}^{1}$,

$$
\left.\overline{(\forall x \in \mathcal{O}, u(x) \geq}-C\|f\|_{L^{2}(\Omega)}\right) \text { or }\left(\forall x \in \mathcal{O}, u(x) \leq C\|f\|_{L^{2}(\Omega)}\right)
$$

- Perforation of the domain: $\Omega_{\varepsilon}=\Omega \backslash\left(Z_{\varepsilon}^{1} \cup F_{\varepsilon}\right) \Rightarrow C_{P}\left(\Omega_{\varepsilon}\right) \leq C \varepsilon$,
- First choice of $\varepsilon: \varepsilon^{2}\|V\|_{L \infty(\Omega)} \leq c$,
- Construction of the multiplier:
$-\Delta \varphi+V \varphi=0$ in $\Omega_{\varepsilon} \tilde{\varphi}:=\varphi-1 \in H_{0}^{1}\left(\Omega_{\varepsilon}\right)$ and $\|\tilde{\varphi}\|_{\infty} \leq C \varepsilon^{2}\|V\|_{L^{\infty}(\Omega)}$.

Reduction to a homogeneous divergence equation (Step 4)

Recall that $-\Delta u+V u=f$ in Ω and $-\Delta \varphi+V \varphi=0$ in $\Omega_{\varepsilon}=\Omega \backslash\left(Z_{\varepsilon}^{1} \cup F_{\varepsilon}\right)$.
The function $v=u / \varphi$ satisfies $-\nabla \cdot\left(\varphi^{2} \nabla v\right)=f \varphi$ in $\Omega_{\varepsilon}^{\prime}=\Omega \backslash F_{\varepsilon}$.
Lax-Milgram: $\exists!\psi \in H_{0}^{1}\left(\Omega_{\varepsilon}^{\prime}\right),-\nabla \cdot\left(\varphi^{2} \nabla \psi\right)=f \varphi$ in $\Omega_{\varepsilon}^{\prime},\|\psi\|_{L^{\infty}\left(\Omega_{\varepsilon}^{\prime}\right)} \leq C\|f\|_{L^{2}(\Omega)}$.

Lemma

The function $\hat{v}=v-\psi$ satisfies $\nabla \cdot\left(\varphi^{2} \nabla \hat{v}\right)=0$ in $\Omega_{\varepsilon}^{\prime}$.
There exists $C>0$ such that for every disk $D \subset F_{\varepsilon}$,

$$
\left(\forall x \in \Omega_{\varepsilon}^{\prime}, d(x, D) \leq C_{0} \varepsilon, \hat{v}(x) \geq-C\|f\|_{L^{2}(\Omega)}\right)
$$

or

$$
\left(\forall x \in \Omega_{\varepsilon}^{\prime}, d(x, D) \leq C_{0} \varepsilon, \hat{v}(x) \leq C\|f\|_{L^{2}(\Omega)}\right) .
$$

Quasiconformal change of variable (Step 4)

Recall that $\nabla \cdot\left(\varphi^{2} \nabla \hat{v}\right)=0$ in $\Omega_{\varepsilon}^{\prime}$.

Lemma

There exists a K-quasiconformal mapping $L: \Omega \rightarrow \Omega, L(0)=0$, with K s.t.

$$
1 \leq K \leq 1+C \varepsilon^{2}\|V\|_{L^{\infty}(\Omega)}
$$

such that $h:=\hat{v} \circ L^{-1}$ satisfies $\Delta h=0$ in $L\left(\Omega_{\varepsilon}^{\prime}\right)$.
Poincaré's lemma for divergence free vector: $\exists \tilde{v}$ s.t. $\varphi^{2} \hat{v}_{x}=\tilde{v}_{y}$ and $\varphi^{2} \hat{v}_{y}=-\tilde{v}_{x}$. Beltrami's equation: $w:=\hat{v}+i \tilde{v}$ satisfies $\frac{\partial w}{\partial \bar{z}}=\mu \frac{\partial w}{\partial z}$ with $\mu=\frac{1-\varphi^{2}}{1+\varphi^{2}} \frac{\hat{v}_{x}+i \hat{v}_{y}}{\hat{v}_{x}-i \hat{v}_{y}}$. Estimate on $\varphi:|\mu| \leq \frac{1-\varphi^{2}}{1+\varphi^{2}} \leq C \varepsilon^{2}\|V\|_{L^{\infty}(\Omega)}$. Beltrami: $\exists \psi K$-quasiconformal, $\psi(0)=0, \frac{\partial \psi}{\partial \bar{z}}=\mu \frac{\partial \psi}{\partial z}$ in $\mathbb{C}, 1 \leq K \leq 1+C \varepsilon^{2}\|V\|_{\infty}$. Stoilow factorization theorem: $\exists W$ hol. s.t. $w=W \circ \psi$ so $\hat{v} \circ \psi^{-1}=\Re(W)$ is harmonic. Riemann mapping theorem: $\psi(\Omega)$ is simply connected so $\exists \alpha: \psi(\Omega) \rightarrow \Omega$ and $\alpha(0)=0$. Set $L:=\alpha \circ \psi, K$-quasiconformal, $L(0)=0$ maps Ω to Ω and $h=\hat{v} \circ L^{-1}$ is harmonic.

Image of the perforated domain by L (Step 4)

Recall that $L: \Omega \rightarrow \Omega, L(0)=0, K$-quasiconformal, $1 \leq K \leq 1+C \varepsilon^{2}\|V\|_{L \infty}$.

Lemma

There exist a positive constant $c>0$ such that for every $\varepsilon>0$ satisfying

$$
\varepsilon \leq c\|V\|_{L^{\infty}(\Omega)}^{-1 / 2} \log ^{-1 / 2}\left(\|V\|_{L^{\infty}(\Omega)}\right)
$$

- $L(\omega)$ contains $B(0, r / 32)$,
- $\forall D \subset F_{\varepsilon}, L(D) \subset D^{\prime}$, a disk of size $\varepsilon^{\prime}=32 \varepsilon$,
- these disks are $C_{0} \varepsilon / 32$-separated from each other, from $L\left(Z_{\varepsilon}^{1}\right)$, from $\partial \Omega$ $(=L(\partial \Omega))$, from $L\left(x_{\max }\right)$ and from 0 .

The main ingredient is Mori's theorem: $\frac{1}{16}\left|\frac{z_{1}-z_{2}}{R}\right|^{K} \leq \frac{\left|L\left(z_{1}\right)-L\left(z_{2}\right)\right|}{R} \leq 16\left|\frac{z_{1}-z_{2}}{R}\right|^{1 / K}$.

Summary of Step 4

By the change of variable L, the equation $\nabla \cdot\left(\varphi^{2} \nabla \hat{v}\right)=0$ in $\Omega_{\varepsilon}^{\prime}$ becomes

$$
\Delta h=0 \text { in } L\left(\Omega_{\varepsilon}^{\prime}\right) .
$$

Moreover, we have for $\varepsilon \leq c\|V\|_{L^{\infty}(\Omega)}^{-1 / 2} \log ^{-1 / 2}\left(\|V\|_{L^{\infty}(\Omega)}\right)$,

- $L(\omega) \sim B(0, r / 32)$,
- $L\left(\Omega_{\varepsilon}\right) \sim \Omega \backslash \cup_{i \in I} D\left(x_{i}^{\prime}, \varepsilon^{\prime}\right)$,
- $D\left(x_{i}^{\prime}, \varepsilon^{\prime}\right)$ are $16 \varepsilon^{\prime}$-separated from each other, from $L\left(Z_{\varepsilon}^{1}\right)$, from $\partial \Omega$, from $L\left(x_{\text {max }}\right)$ and from 0 ,
- h is constant on $\partial \Omega$,
- punctual estimate of h near the disks $D^{\prime}=D\left(x_{i}^{\prime}, \varepsilon^{\prime}\right)$,

$$
\left(\forall x \in \Omega_{\varepsilon}^{\prime}, \mathrm{d}\left(x, D^{\prime}\right) \leq 16 \varepsilon, h(x) \geq-C\|f\|_{L^{2}(\Omega)}\right)
$$

or

$$
\left(\forall x \in \Omega_{\varepsilon}^{\prime}, \mathrm{d}(x, D) \leq 16 \varepsilon, h(x) \leq C\|f\|_{L^{2}(\Omega)}\right) .
$$

A Carleman estimate (Step 5)

Set $\eta(x)=\sqrt{R^{2}+1}-\sqrt{|x|^{2}+1}$ and for $\lambda \geq 1, \xi(x)=e^{\lambda \eta(x)}$.

Theorem

There exist $\lambda_{1} \geq 1, s_{1}>0, C_{1}>0$ such that for every $\lambda \geq \lambda_{1}, s \geq s_{1}$,

$$
\lambda^{4} \int_{\Omega} e^{2 s \xi}(s \xi)^{3}|\varphi|^{2} d x \leq C_{1}\left(\int_{\Omega} e^{2 s \xi}|\Delta \varphi|^{2} d x+\lambda^{4} \int_{\omega} e^{2 s \xi}(s \xi)^{3}|\varphi|^{2} d x\right)
$$

where $\varphi \in H^{2}(B(0, R))$, constant on $\partial B(0, R)$.

Carleman estimate in the perforated domain (Step 5)

Cut-off near the disks: $\chi \equiv 0$ on $B(0,3) \chi \equiv 1$ on $\mathbb{R}^{2} \backslash B(0,4)$, and set
$\varphi(x)=\left\{\begin{array}{l}h(x) \prod_{i \in I} \chi\left(\frac{x-x_{i}^{\prime}}{\varepsilon^{\prime}}\right) \text { for } x \in L\left(\Omega_{\varepsilon}^{\prime}\right), \\ 0 \text { for } x \in \Omega \backslash L\left(\Omega_{\varepsilon}^{\prime}\right) .\end{array}\right.$
Carleman estimate: $s^{3} \int_{\Omega} e^{2 s \xi}|\varphi|^{2} d x \leq C\left(\int_{\Omega} e^{2 s \xi}|\Delta \varphi|^{2} d x+s^{3} \int_{\omega} e^{2 s \xi}|\varphi|^{2} d x\right)$.
$\Delta h=0: \int_{\Omega} e^{2 s \xi}|\Delta \varphi|^{2} \leq C \sum \int_{B\left(x_{i}^{\prime}, 4 \varepsilon^{\prime}\right) \backslash B\left(x^{\prime}, 3 \varepsilon^{\prime}\right)}\left(\frac{1}{\left.\left|\varepsilon^{\prime}\right|\right|^{\prime}}|h|^{2}+\frac{1}{\left|\varepsilon^{\prime}\right|^{2}}|\nabla h|^{2}\right) e^{2 s \xi}$
Harnack's inequality: $\int_{\left.B\left(x_{i}^{\prime}, 4 \varepsilon^{\prime}\right) \backslash B\left(x_{i}^{\prime}, 3 \varepsilon^{\prime}\right)\right)} \frac{1}{\varepsilon^{\prime}| |^{2}}|\nabla h|^{2} e^{2 s \varphi} \leq C \int_{\left.B\left(x_{i}^{\prime}, 4 \varepsilon^{\prime}\right) \backslash B\left(x_{i}^{\prime}, 3 \varepsilon^{\prime}\right)\right)} \frac{1}{\left.\left|\varepsilon^{\prime}\right|\right|^{4}}|h|^{2} e^{2 s \xi}$.
$s^{3} \sum \int_{B\left(x_{i}^{\prime}, 8 \varepsilon^{\prime}\right) \backslash B\left(x_{i}^{\prime}, 4 \varepsilon^{\prime}\right)}|h|^{2} e^{2 s \xi} \leq C\left(\sum \int_{B\left(x_{i}^{\prime}, 4 \varepsilon^{\prime}\right) \backslash B\left(x_{i}^{\prime}, 3 \varepsilon^{\prime}\right)} \frac{1}{\left|\varepsilon^{\prime}\right| 4}|h|^{2} e^{2 s \xi}+s^{3} \int_{\omega} e^{2 s \xi}|h|^{2} d x\right)$.
Weight property: $\int_{B\left(x^{\prime}, 4 \varepsilon^{\prime}\right) \backslash B\left(x_{i}^{\prime}, 3 \varepsilon^{\prime}\right)} e^{2 s \xi} \leq e^{-2 s \varepsilon^{\prime}} \int_{B\left(x_{i}^{\prime}, 8 \varepsilon^{\prime}\right) \backslash B\left(x_{i}^{\prime}, 4 \varepsilon^{\prime}\right)} e^{2 s \xi}$.
Harnack's inequality: $\int_{B\left(x_{i}^{\prime}, 4 \varepsilon^{\prime}\right) \backslash B\left(x_{i}^{\prime}, 3 \varepsilon^{\prime}\right)} \frac{1}{\left|\varepsilon^{\prime}\right| 4}|h|^{2} e^{2 s \xi} \leq e^{-2 s \varepsilon^{\prime}} \int_{B\left(x_{i}^{\prime}, 8 \varepsilon^{\prime}\right) \backslash B\left(x_{i}^{\prime}, 4 \varepsilon^{\prime}\right)}|h|^{2} e^{2 s \xi}$.
For $s \varepsilon^{\prime 4} e^{2 s \varepsilon^{\prime}} \geq C$, i.e. $s \geq C \varepsilon^{-1} \log \left(\varepsilon^{-1}\right)$ we obtain $s^{3} \int_{\Omega} e^{2 s \xi}|\varphi|^{2} \leq C s^{3} \int_{\omega} e^{2 s \xi}|h|^{2}$.

Summary of Step 5

For $\varphi=h$, far from the disks, we obtain for $s \geq C \varepsilon^{-1} \log \left(\varepsilon^{-1}\right)$,

$$
s^{3} \int_{\Omega} e^{2 s \xi}|\varphi|^{2} \leq C s^{3} \int_{\omega} e^{2 s \xi}|h|^{2}
$$

How can we finish the proof?

- $\varepsilon \leq c\|V\|_{\infty}^{-1 / 2} \log ^{-1 / 2}\left(\|V\|_{\infty}\right) \Rightarrow s \geq\|V\|_{\infty}^{1 / 2} \log ^{3 / 2}\left(\|V\|_{\infty}\right)$.
- $|\varphi|_{L^{2}(\Omega)} \leq \exp \left(C\|V\|_{\infty}^{1 / 2} \log ^{3 / 2}\left(\|V\|_{\infty}\right)\right)\left(|f|_{L^{2}(\Omega)}+|h|_{L^{2}(\omega)}\right)$.
- Mean-value: $\mid h\left(L\left(x_{\max }\right) \mid \leq \exp \left(C\|V\|_{\infty}^{1 / 2} \log ^{3 / 2}\left(\|V\|_{\infty}\right)\right)\left(|f|_{L^{2}(\Omega)}+|h|_{L^{2}(\omega)}\right)\right.$.
- Coming back: $\left|u\left(x_{\max }\right)\right| \leq \exp \left(C\|V\|_{\infty}^{1 / 2} \log ^{3 / 2}\left(\|V\|_{\infty}\right)\right)\left(|f|_{L^{2}(\Omega)}+|u|_{L^{\infty}(\omega)}\right)$.

Rmk: To obtain $\exp \left(C\|V\|_{\infty}^{1 / 2} \log ^{1 / 2}\left(\|V\|_{\infty}\right)\right)$, we have to use the antisymmetric term in the Carleman estimate.

Conclusion

In brief, recall the story

- Null-controllability of $\partial_{t} y-\Delta y+a(t, x) y=h 1_{\omega} \operatorname{Cost}=\exp \left(C\left(\|a\|_{\infty}^{2 / 3}\right)\right)$.
- Observability of $-\partial_{t} \varphi-\Delta \varphi+a \varphi=0,|\varphi(0)|_{L^{2}} \leq \exp \left(C\left(\|a\|_{\infty}^{2 / 3}\right)\right)|\varphi|_{L^{2}\left(q_{T}\right)}$.
- Global null-controllability of $\partial_{t} y-\Delta y+|y| \log ^{p}(1+|y|)=h 1_{\omega}, p<3 / 2$.
- Blow-up of $\partial_{t} y-\Delta y+|y| \log ^{p}(1+|y|)=h 1_{\omega}, p>2$.
- Optimality of $\|a\|_{\infty}^{2 / 3}$ by Meshkov's counterexample for $a \in L^{\infty}\left(Q_{T} ; \mathbb{C}\right)$.
- Landis conjecture: $-\Delta u+V(x) u=0,|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right) \Rightarrow u \equiv 0$.
- False in 2-d for $V \in L^{\infty}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$ by Meshkov's counterexample.
- True in 2-d for $V \in L^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ by Logunov and al.

What's new? In 2-d,

- $\|u\|_{H^{2}(\Omega)} \leq \exp \left(C\left(\|V\|_{\infty}^{1 / 2} \log ^{1 / 2}\left(\|V\|_{\infty}\right)\right)\right)\left(\|-\Delta u+V u\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\omega)}\right)$,
- Existence of a pair (y, h) s.t. $-\Delta y+|y| \log ^{p}(1+|y|)=F+h 1_{\omega}, p<2$,
- No existence of a pair $-\Delta y+|y| \log ^{p}(1+|y|)=F+h 1_{\omega}, p>2$.

Perspectives: Ω connected, optimality of $\|V\|_{\infty}^{1 / 2} \log ^{1 / 2}\left(\|V\|_{\infty}\right)$, parabolic equations with spatial potential in 2-d, multi-d case...

