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Introduction to controllability

{
y ′(t) = f (y(t), h(t)),
y(0) = y0.

y(t) ∈ Y : the state, h(t) ∈ H : the control .

Controllability
T > 0, y0, yf ∈ Y.

Does there exists h : [0,T ]→ H such that
{

y ′ = f (y , h),
y(0) = y0,

=⇒ y(T ) = yf ?

small-time controllability : T << 1,
large-time controllability : T >> 1,
global controllability : ∀y0 ∈ Y,
local controllability : ∀y0 closed to yf ,
null-controllability : yf = 0.
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Heat equation

T > 0, Ω ⊂ RN , ω ⊂ Ω. ∂ty −∆y = h1ω in (0,T )× Ω,
y = 0 on (0,T )× ∂Ω,
y(0, ·) = y0 in Ω.

(Heat)

In (Heat), y(t, ·) : Ω→ R is the state and h(t, ·) : ω → R is the control.

Modelling :
Ω is a room,
y(t, x): temperature at time t ∈ (0,T ), at point x ∈ Ω,
h(t, x): action of a heater/cooler localized in ω.

Goal: Drive the temperature y to a prescribed target in time T , by using the
heater/cooler h, localized in ω.
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Small-time null-controllability

 ∂ty −∆y = h1ω in (0,T )× Ω,
y = 0 on (0,T )× ∂Ω,
y(0, ·) = y0 in Ω.

(Heat)

Theorem (Lebeau, Robbiano - Fursikov, Imanuvilov (1995-1996))

(Heat) is small-time (globally) null-controllable, i.e.

∀T > 0, ∀y0 ∈ L2(Ω), ∃h ∈ L2(0,T ; L2(ω)) such that y(T , ·) = 0.

heat equation ⇒ regularizing effects ⇒ exact controllability cannot hold.
heat equation ⇒ infinite speed of propagation ⇒ small-time controllability.

Fattorini, Russell (1971): 1D.
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Hilbert Uniqueness Method

 ∂ty −∆y = h1ω in (0,T )× Ω,
y = 0 on (0,T )× ∂Ω,
y(0, ·) = y0 in Ω.

 −∂tϕ−∆ϕ = 0 in (0,T )× Ω,
ϕ = 0 on (0,T )× ∂Ω,
ϕ(T , ·) = ϕT in Ω.

Proposition (H.U.M.)

The heat equation is null-controllable in time T > 0 iff there exists CT > 0

‖ϕ(0, ·)‖2
L2(Ω) ≤ CT

(∫ T

0

∫
ω

ϕ2dxdt
)
, ∀ϕT ∈ L2(Ω). (Observability)

Moreover, if such a CT > 0 exists, then ∀y0 ∈ L2(Ω), there exists h ∈ L2(qT )

‖h‖L2(qT ) ≤ CT ‖y0‖L2(Ω) , (Cost)

such that the solution y of (Heat) satisfies y(T , ·) = 0.
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Carleman estimate
Let ω0 ⊂⊂ ω a nonempty open set.
∃η0 ∈ C2(Ω) such that η0 > 0 in Ω, η0 = 0 on ∂Ω, and |∇η0| > 0 in Ω \ ω0.

ξ(t, x) := eλη0(x)t−1(T − t)−1.

Theorem (Fursikov, Imanuvilov (1995-1996))

There exist λ1 = λ1(Ω, ω) ≥ 1, s1 = C(Ω, ω)(T + T 2), C1 = C1(Ω, ω) such that
for every λ ≥ λ1, s ≥ s1,

λ4
∫

QT

e−2sξ(sξ)3|ϕ|2dtdx

≤ C1

(∫
QT

e−2sξ|∂tϕ+ ∆ϕ|2dtdx + λ4
∫

(0,T )×ω
e−2sξ(sξ)3|ϕ|2dtdx

)
,

where ϕ ∈ C2(QT ) with ϕ = 0 on ΣT .

The parameters λ and s play an important role:
crucial in the proof of the Carleman estimate,
useful when considering more general parabolic equations.
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Proof of the observability estimate
Carleman estimate applied to −∂tϕ−∆ϕ = 0:∫

QT

t−3(T − t)−3e−2sξ|ϕ|2dxdt ≤ C1

∫
(0,T )×ω

t−3(T − t)−3e−2sξ|ϕ|2dxdt. (1)

We have

t−3(T − t)−3e−2sξ ≥ CT−6e−C(Ω,ω)(1+ 1
T ) in (T/4, 3T/4)× Ω, (2)

t−3(T − t)−3e−2sξ ≤ C(Ω, ω)T−6 in (0,T )× ω. (3)

By (1), (2) and (3), we get∫
(T/4,3T/4)×Ω

|ϕ|2dxdt ≤ eC(Ω,ω)(1+ 1
T )
∫

(0,T )×ω
|ϕ|2dxdt. (4)

Dissipativity in time of the L2-norm:

‖ϕ(0, .)‖L2(Ω) ≤
2
T

∫ 3T/4

T/4
‖ϕ(t, .)‖L2(Ω) dt. (5)

By (4) and (5), we get

‖ϕ(0, .)‖L2(Ω) ≤ eC(Ω,ω)(1+ 1
T ) ‖ϕ‖L2((0,T )×ω) . (Observability)
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Parabolic equations
Let a ∈ L∞(QT ) and consider ∂ty −∆y + a(t, x)y = h1ω in QT ,

y = 0 on ΣT ,
y(0, ·) = y0 in Ω.

(Parabolic)

Theorem (Fernandez-Cara, Zuazua (2000))

(Parabolic) is small-time globally null-controllable, i.e.

∀T > 0, ∀y0 ∈ L2(Ω), ∃h ∈ L2(0,T ; L2(ω)) such that y(T , ·) = 0.

Moreover, h ∈ L2(0,T ; L2(ω)) can be chosen such that

‖h‖L2(qT ) ≤ CT ‖y0‖L2(Ω) , (Cost)

with
CT = exp

(
C(Ω, ω)

(
1 + 1

T + ‖a‖2/3
∞ + T ‖a‖∞

))
.
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Observability estimate for the parabolic equation
{ −∂tϕ−∆ϕ+ a(t, x)ϕ = 0 in QT ,

ϕ = 0 on ΣT ,
ϕ(T , ·) = ϕT in Ω.

(Adjoint)

Carleman estimate applied to −∂tϕ−∆ϕ+ aϕ = 0:

λ4
∫

QT

e−2sξ(sξ)3|ϕ|2dtdx ≤ C
(∫

QT

e−2sξ|aϕ|2dtdx + λ4
∫

(0,T )×ω
e−2sξ(sξ)3|ϕ|2dtdx

)
.

Take λ = λ1 and s ≥ C(Ω, ω)T 2 ‖a‖2/3
∞ , we get

λ4
∫

QT

e−2sξ(sξ)3|ϕ|2dtdx ≤ Cλ4
∫

(0,T )×ω
e−2sξ(sξ)3|ϕ|2dtdx .

⇒
∫

(T/4,3T/4)×Ω
|ϕ|2dxdt ≤ eC(Ω,ω)

(
1+ 1

T +‖a‖2/3
∞

) ∫
(0,T )×ω

|ϕ|2dxdt.

Dissipativity in time of the L2-norm:

‖ϕ(0, .)‖L2(Ω) ≤ exp
(
CT
(
‖a‖∞

)) 2
T

∫ 3T/4

T/4
‖ϕ(t, .)‖L2(Ω) dt.

⇒ ‖ϕ(0, .)‖L2(Ω) ≤ eC(Ω,ω)
(

1+ 1
T +‖a‖2/3

∞ +T‖a‖∞

)
‖ϕ‖L2((0,T )×ω) . (Observability)
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Semilinear parabolic equations

Take f ∈ C1(R;R) such that f (0) = 0 and consider ∂ty −∆y + f (y) = h1ω in QT ,
y = 0 on ΣT ,
y(0, .) = y0 in Ω.

(HeatSL)

f (0) = 0 ⇒ 0 is a stationary state.
In particular if y(T , ·) = 0, then by setting h ≡ 0 for t ≥ T then y ≡ 0 for t ≥ T .

Goal/Question: Null-controllability of the semilinear equation (HeatSL)?
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Small-time local null-controllability

 ∂ty −∆y + f (y) = h1ω in QT ,
y = 0 on ΣT ,
y(0, .) = y0 in Ω.

(HeatSL)

Theorem
(HeatSL) is small-time locally null-controllable, i.e.

∀T > 0, ∃δT > 0 ∀ ‖y0‖L∞ ≤ δT , ∃h ∈ L∞(0,T ; L∞(ω)) such that y(T , ·) = 0.

Linear test:  ∂ty −∆y + f ′(0)y = h1ω in (0,T )× Ω,
y = 0 on (0,T )× ∂Ω,
y(0, ·) = y0 in Ω,

globally null-controllable, then (HeatSL) is locally null-controllable.
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What about global null-controllability?

 ∂ty −∆y + f (y) = h1ω in QT ,
y = 0 on ΣT ,
y(0, .) = y0 in Ω.

(HeatSL)

We will also assume that f satisfies the restrictive growth condition (α > 0)

f (s)
|s| logα(1 + |s|) → 0 as |s| → +∞.

Under this assumption, blow-up may occur if h = 0 in (HeatSL).
Take for example f (s) = −|s| logp(1 + |s|) with p > 1 (Osgood’s condition).

Goal/Question: Global null-controllability of (HeatSL)?
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Fernandez-Cara, Zuazua’s results

 ∂ty −∆y + f (y) = h1ω in QT ,
y = 0 on ΣT ,
y(0, ·) = y0 in Ω.

(HeatSL)

Theorem (Fernandez-Cara, Zuazua (2000))

• (Positive result) Assume that f (s) = o+∞(|s| log3/2(1 + |s|)), then (HeatSL) is
small-time globally null-controllable, i.e.

∀T > 0, ∀y0 ∈ L∞(Ω), ∃h ∈ L∞(0,T ; L∞(ω)) such that y(T , ·) = 0.

• (Negative result) Set f (s) := |s| logp(1 + |s|) with p > 2 and assume that
Ω \ ω 6= ∅, then one cannot prevent blow-up in (HeatSL), i.e.

∀T > 0, ∃y0 ∈ L∞(Ω), ∀h ∈ L∞(0,T ; L∞(ω)), y blows-up in time T ∗ < T.
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Proof of the positive result
Linearization: g(s) := f (s)/s, take z ∈ L∞(QT ) and consider{

∂ty −∆y + g(z)y = h1ω in QT ,
y = 0 on ΣT ,
y(0, ·) = y0 in Ω.

(Parabolic)

Null-controllability with cost estimate: ∀τ > 0, ∃ ‖h‖L∞(qτ ) ≤ Cτ ‖y0‖L∞(Ω) with
Cτ := exp

(
C
(
1 + 1

τ
+ ‖g(z)‖2/3

∞ + τ ‖g(z)‖∞
))

such that y(τ, ·) = 0.

Act in very small-time: τ := min
(

T , ‖g(z)‖−1/3
L∞(QT )

)
⇒ Cτ := exp

(
C
(
‖g(z)‖2/3

∞

))
.

Fixed-point argument:

Φ : z ∈ L∞(QT ) 7→ {y ∈ L∞(QT ) ; ∃ ‖h‖L∞(qτ)
≤ Cτ ‖y0‖L∞(Ω) , y(τ, ·) = 0}.

If we prove that ∃y ∈ Φ(y) then ∂ty −∆y + f (y) = h1ω and y(T , ·) = 0.
Invariant ball: Using g(s) = o+∞(log3/2(|s|)), we get

∀z ∈ BR , ∀y ∈ Φ(z), ‖y‖L∞(QT ) ≤ exp
(
‖g(z)‖2/3

L∞(QT )

)
‖y0‖L∞(Ω)

= o+∞(exp(log(R))) ‖y0‖L∞(Ω) ≤ R.

Rmk: Constructive proof in Ervedoza, Lemoine, Münch (2021).
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Proof of the negative result
Localized eigenfunction method: Take ρ ∈ C∞c (Ω \ ω) such that

∫
Ω ρ(x)dx = 1 and

multiply ∂ty −∆y + f (y) = h1ω by ρ and integrate in Ω,

d
dt

(∫
Ω

y(t, x)ρ(x)dx
)

=
∫

Ω
∆yρ−

∫
Ω

f (y)ρ.

Setting u(t) = −
∫

Ω y(t, x)ρ(x)dx , and integrating by parts

du
dt = −

∫
Ω

y∆ρ+
∫

Ω
f (|y |)ρ.

By Young’s inequality, we have∣∣∣∣∫
Ω

y∆ρdx
∣∣∣∣ ≤ ∫

Ω
|y |
∣∣∣∣∆ρρ

∣∣∣∣ ρdx ≤ 1
2

∫
Ω

f (|y |)ρdx + 1
2

∫
Ω

f ∗
(
2∆ρ
ρ

)
ρdx

So,
du
dt ≥ −

C
2 + 1

2

∫
Ω

f (|y |)ρdx , C :=
∫

Ω
f ∗
(
2|∆ρ|
ρ

)
ρdx < +∞ (p > 2).

Therefore, Jensen’s inequality and parity of f lead to

du
dt ≥ −

C
2 + f (u)

2 ⇒ Blow-up.
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Open questions

 ∂ty −∆y + f (y) = h1ω in QT ,
y = 0 on ΣT ,
y(0, ·) = y0 in Ω.

(HeatSL)

Open questions: What happen for f (s) ≈|s|→+∞ |s| logp(1+ |s|), p ∈ [3/2, 2]?
1. Can one prevent the blow-up from happening?
2. (HeatSL) is large-time globally null-controllable?
3. (HeatSL) is small-time globally null-controllable?

Le Balc’h (2020): 2. is true for f semi-dissipative.

Can we improve the cost of null-controllability of ∂ty −∆y + a(t, x)y = h1ω:

‖h‖L2(qT ) ≤ exp
(
C(Ω, ω)

(
1 + 1

T + ‖a‖2/3
∞ + T ‖a‖∞

))
‖y0‖L2(Ω)? (Cost)
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Optimal observability inequality for parabolic equations

Let a ∈ L∞((0,T )× Ω),

 −∂tϕ−∆ϕ+ a(t, x)ϕ = 0 in QT ,
ϕ = 0 on ΣT ,
ϕ(T , ·) = ϕT in Ω.

Fernández-Cara, Zuazua (2000) proved:

‖ϕ(0, ·)‖2
L2(Ω) ≤ C

(∫ T
0
∫
ω
ϕ2dxdt

)
∀ϕT ∈ L2(Ω),

where C = C(Ω, ω,T , a) = exp
(
C(Ω, ω)

(
1 + 1

T + T ‖a‖L∞ + ‖a‖2/3
L∞

))
.

Theorem (Duyckaerts, Zhang, Zuazua (2008))
Optimality of ‖a‖2/3

∞ for ϕT ∈ L2(Ω;C), a ∈ L∞(QT ;C).

Le Balc’h (2020): ‖a‖1/2
∞ for ϕT ∈ L2(Ω;R), a ∈ L∞(QT ;R+).
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Proof of the optimality by Meshkov’s function
Meshkov’s result: There exist V ∈ L∞(C;C) and u 6= 0 such that

−∆u + V (x)u = 0 and u(x) ≤ exp(−|x |4/3).

Scaling argument: We set uR(x) = u(Rx) and aR(x) = R2V (Rx), we have

−∆uR + aR(x)u = 0 and uR(x) ≤ exp(−R4/3|x |4/3).

Test the observability inequality with ϕR = uR : Assume that d(0, ω) > 0 then

‖ϕR(0, ·)‖2
L2(Ω) ∼ ‖uR‖2

L2(R2) ∼
1
R2 ,

‖ϕR‖L2((0,T )×ω) ≤ exp(−R4/3),

‖aR‖L∞(QT ) ∼ R2.

So for T ≤ ‖aR‖−1/3
L∞(QT ), we get for c > 0 sufficiently small

lim
R→+∞

 ‖ϕR(0, ·)‖L2(Ω)

exp
(
c ‖aR‖2/3

L∞(Ω)

) ∫ T
0
∫
ω
|ϕR(t, x)|2dtdx

 = +∞.
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The Landis conjecture on exponential decay

Conjecture (Landis, 1960’s)

V ∈ L∞(RN),
{
−∆u + V (x)u = 0 in RN ,
|u(x)| ≤ exp(−|x |1+ε), ε > 0, =⇒ u ≡ 0.

Example: u(x) = exp(−|x |) in {|x | > 1}, smoothly extended to RN .

Proof in 1D (M. Pierre): −u′′ + V (x)u = 0 in R, |u(x)| ≤ exp(−|x |1+ε).
By integrating, we easily get |u′(x)| ≤ C exp(−|x |1+ε).
Duality argument: Let φ s.t. −φ′′ + Vφ = sign(u), φ(0) = φ′(0) = 0.
Gronwall’s argument: |φ(x)|+ |φ′(x)| ≤ C exp(C |x |).∫ R
−R |u| =

∫ R
−R u · sign(u) =

∫ R
−R u(−φ′′ + Vφ) = [−φ′u + φu]R

−R ≤ eRe−R1+ε
→ 0.

Meshkov’s counterexample (1991): ∃V ∈ L∞(R2;C) and u ∈ L∞(R2;C) 6= 0 such
that −∆u + V (x)u = 0 in R2 and |u(x)| ≤ exp(−|x |4/3).

Optimality (Meshkov):
−∆u + V (x)u = 0 in RN and |u(x)| ≤ exp(−|x |4/3+ε), ε > 0 ⇒ u ≡ 0.

Kévin Le Balc’h Observability inequalities for elliptic equations in 2-d October 4th 2021 24 / 47



Landis conjecture for real-valued potentials
Open questions (Kenig, Bourgain, 2005):

Is the (qualitative) Landis conjecture true for real-valued potentials?

V ∈ L∞(RN ;R),
{
−∆u + V (x)u = 0 in RN ,
|u(x)| ≤ exp(−|x |1+ε), ε > 0, =⇒ u ≡ 0.

Quantitative Landis conjecture: for |V | ≤ 1 real-valued and |u| ≤ 1 such
that −∆u + Vu = 0, |u(0)| = 1, do we have: ∀R >> 1, ∀|x0| = R,

sup
|x−x0|<1

|u(x)| ≥ exp(−R logα(R))?

Logunov, Malinnikova, Nadirashvili, Nazarov (2020) in the plane R2.

Kévin Le Balc’h Observability inequalities for elliptic equations in 2-d October 4th 2021 25 / 47



Conclusion of the first part

In brief, recall the story

Null-controllability of ∂ty −∆y + a(t, x)y = h1ω Cost = exp
(
C
(
‖a‖2/3
∞

))
.

Observability of −∂tϕ−∆ϕ+ aϕ = 0, |ϕ(0)|L2 ≤ exp
(
C
(
‖a‖2/3
∞

))
|ϕ|L2(qT ).

Global null-controllability of ∂ty −∆y + |y | logp(1 + |y |) = h1ω, p < 3/2.
Blow-up of ∂ty −∆y + |y | logp(1 + |y |) = h1ω, p > 2.
Optimality of ‖a‖2/3

∞ by Meshkov’s counterexample for a ∈ L∞(QT ;C).
Landis conjecture: −∆u + V (x)u = 0, |u(x)| ≤ exp(−|x |1+ε) ⇒ u ≡ 0.
False in 2-d for V ∈ L∞(R2;C) by Meshkov’s counterexample.
True in 2-d for V ∈ L∞(R2;R) by Logunov and al.

Goal: improve observability estimates for elliptic equations in 2-d and obtain new
elliptic control results.
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Optimal observability inequality in 2-d

Theorem (Ervedoza, Le Balc’h (2021))

Let Ω ⊂ R2 and ω ⊂ Ω.
For every real-valued potential V ∈ L∞(Ω;R) and function u ∈ H2(Ω) ∩H1

0 (Ω),

‖u‖H2(Ω) ≤ C
(
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
, (Observability)

where C > 0 is given by C = exp
(
C(Ω, ω)

(
1 + ‖V ‖1/2

∞ log1/2 (‖V ‖∞)
))

.

V has to be real-valued (Meshkov’s counterexample).
V ∈ L∞(Ω;R) ⇒ one can assume that u is real-valued.
Today, Ω has to be smooth and simply connected.
(Observability) proved by Logunov and al for Ω a 2-d manifold without
boundary and −∆u + Vu = 0.
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Applications to control theory
Take f ∈ C1(R;R) such that f (0) = 0 and consider the elliptic control problem{

−∆y + f (y) = F + h1ω in Ω,
y = 0 on ∂Ω, (LaplaceNL)

where F ∈ L∞(Ω).
Goal: Find a pair (y , h) ∈ [H1

0 (Ω) ∩ L∞(Ω)]× L∞(ω) satisfying (LaplaceNL).

Theorem (Ervedoza, Le Balc’h (2021))

• (Positive result) Assume that f (s) = o+∞(|s| logp(1 + |s|)), p < 2, then

∀F ∈ L∞(Ω), ∃(y , h) ∈ [H1
0 (Ω) ∩ L∞(Ω)]× L∞(ω) satisfying (LaplaceNL).

• (Negative result) Take f (s) = |s| logp(1 + |s|), p > 2. Then,

∃F ∈ L∞(Ω), ∀h ∈ L∞(ω), (LaplaceNL) has no solution y ∈ H1
0 (Ω) ∩ L∞(Ω).

Negative result is based on the localized eigenfunction method (OK in N-d).
Positive result is true in 1-d, with p = 2.
Positive result is true in N-d, with p = 3/2.
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Strategy of the proof of the main result
Theorem (Ervedoza, Le Balc’h (2021))

Let Ω ⊂ R2 and ω ⊂ Ω.
For every real-valued potential V ∈ L∞(Ω;R) and function u ∈ H2(Ω) ∩H1

0 (Ω),

‖u‖H2(Ω) ≤ CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
, (Observability)

where CV > 0 is given by CV = exp
(
C(Ω, ω)

(
1 + ‖V ‖1/2

∞ log1/2 (‖V ‖∞)
))

.

The proof is divided into five main steps:
1. Reduction to concentric balls.
2. Reduction to a weak observability inequality for smooth functions.
3. Construction of a multiplier in a perforated domain.
4. A quasiconformal change of variable to transform the divergence equation.
5. Carleman estimate conjugated with Harnack inequalities.

3, 4, 5 are crucially inspired by Logunov and al (2020).
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Reduction to concentric balls (Step 1)
Up to a translation: 0 ∈ ω.
Smooth Riemann mapping theorem: ∃ϕ : Ω→ B(0, 1), one-to-one, ϕ(0) = 0,

ϕ ∈ O(Ω), ϕ ∈ C∞(Ω), 0 < c ≤ |ϕ′| ≤ C in Ω.

Open mapping theorem: ϕ maps ω to a neighborhood of 0.
Cauchy-Riemann’s equation: Set û := u ◦ ϕ−1, we have

∆û(x) = |∇<(ϕ−1)|2∆u(ϕ−1(x)) ∀x ∈ B(0, 1).

So setting V̂ = |∇<(ϕ−1)|2V , we obtain

−∆û + V̂ û = |∇<(ϕ−1)|2(−∆u(ϕ−1) + Vu(ϕ−1)) ∈ L2(B(0, 1)).

WLOG, ω = B(0, r) ⊂ Ω = B(0,R), 0 < r < R.
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A weak inequality for smooth functions (Step 2)
For every V ∈ L∞(Ω;R) and u ∈ H2(Ω) ∩ H1

0 (Ω),

LHS = ‖u‖H2(Ω) ≤ CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
= RHS. (Observability)

Sobolev embeddings and local elliptic regularity: Take ω0 ⊂⊂ ω, we have

‖u‖L∞(ω0) ≤ C ‖u‖H2(ω0) ≤ C
(
‖−∆u‖L2(ω) + ‖u‖L2(ω)

)
≤ RHS.

Global elliptic regularity:

LHS ≤ C ‖∆u‖L2(Ω) ≤ CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖L∞(Ω)

)
.

Density argument: The set

U = {u ∈ C∞(Ω;R) ; 0 is a regular value of u and u is a non-zero constant on ∂Ω}

is dense in H2(Ω) ∩ H1
0 (Ω) for the H2(Ω)-topology (Sard’s lemma).

WLOG, one has to prove that for every V ∈ L∞(Ω;R) and u ∈ U ,

‖u‖L∞(Ω) ≤ CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖L∞(ω)

)
.
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Decomposition of the nodal set (Step 3)

We introduce the nodal set of u ∈ U :

Z := {x ∈ Ω ; u(x) = 0}.

Recall that 0 is a regular value of u and u 6= 0 on ∂Ω, so

Z = ∪i∈ICi , Ci are disjoint smooth Jordan curves that do not intersect ∂Ω.

Take ε > 0, a small parameter that will be fixed later.

∀x0 ∈ Ci , ∀r ∈ (0, ε], ∂B(x0, r) ∩ Ci 6= ∅. (P-ε)

We then decompose

Z = Z 1
ε ∪ Z 2

ε , ∀Ci ⊂ Z 1
ε , Ci satisfies (P-ε), ∀Ci ⊂ Z 2

ε , Ci does not satisfy (P-ε).
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Picture of the nodal set (Step 3)

∀x0 ∈ Ci , ∀r ∈ (0, ε], ∂B(x0, r) ∩ Ci 6= ∅. (P-ε)

Z = Z 1
ε ∪ Z 2

ε , ∀Ci ⊂ Z 1
ε , Ci satisfies (P-ε), ∀Ci ⊂ Z 2

ε , Ci does not satisfy (P-ε).
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Pointwise estimates (Step 3)

∀x0 ∈ Ci , ∀r ∈ (0, ε], ∂B(x0, r) ∩ Ci 6= ∅. (P-ε)

Z = Z 1
ε ∪ Z 2

ε , ∀Ci ⊂ Z 1
ε , Ci satisfies (P-ε), ∀Ci ⊂ Z 2

ε , Ci does not satisfy (P-ε).

−∆u + Vu = f ∈ L2(Ω).

Proposition

There exist C > 0 and c > 0 such that for every ε2 ‖V ‖L∞(Ω) ≤ c,

• ∀C ⊂ Z 2
ε , ‖u‖H1

0 (OC) + ‖u‖L∞(OC) ≤ C‖f ‖L2(OC),

• ∀O ⊂ Ω \Z 1
ε ,
(
∀x ∈ O, u(x) ≥ −C ‖f ‖L2(Ω)

)
or
(
∀x ∈ O, u(x) ≤ C ‖f ‖L2(Ω)

)
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Construction of the perforated domain (Step 3)

Lemma
There exists C0 ≥ 214 s.t. for every ε > 0, there exist finitely many closed disks of
radius ε, whose union is denoted by Fε satisfying the following properties:

these disks are C0ε-separated from each other, from Z 1
ε , from ∂Ω, from xmax

and from 0,
the set Z 1

ε ∪ Fε ∪ ∂Ω is a C0ε-net in Ω,

the Poincaré constant CP(Ωε) ≤ Cε with Ωε = Ω \ (Z 1
ε ∪ Fε).
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A positive multiplier in the perforated domain (Step 3)
Recall that CP(Ωε) ≤ Cε.

Lemma
There exist C > 0 and c > 0 such that for every ε > 0, with ε2 ‖V ‖L∞(Ω) ≤ c,

there exists ϕ ∈ H1(Ωε) such that
−∆ϕ+ Vϕ = 0 in Ωε,
ϕ̃ := ϕ− 1 ∈ H1

0 (Ωε) and ‖ϕ̃‖∞ ≤ Cε2 ‖V ‖L∞(Ω) .
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Summary of Step 3

The main steps are the following
Decomposition of the nodal set: Z := {x ∈ Ω ; u(x) = 0} = Z ε1 ∪ Z ε2 ,
Punctual estimate: ∀O ⊂ Ω \ Z 1

ε ,(
∀x ∈ O, u(x) ≥ −C ‖f ‖L2(Ω)

)
or
(
∀x ∈ O, u(x) ≤ C ‖f ‖L2(Ω)

)
Perforation of the domain: Ωε = Ω \ (Z 1

ε ∪ Fε) ⇒ CP(Ωε) ≤ Cε,
First choice of ε: ε2 ‖V ‖L∞(Ω) ≤ c,
Construction of the multiplier:
−∆ϕ+ Vϕ = 0 in Ωε ϕ̃ := ϕ− 1 ∈ H1

0 (Ωε) and ‖ϕ̃‖∞ ≤ Cε2 ‖V ‖L∞(Ω) .
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Reduction to a homogeneous divergence equation (Step 4)

Recall that −∆u + Vu = f in Ω and −∆ϕ+ Vϕ = 0 in Ωε = Ω \ (Z 1
ε ∪ Fε).

The function v = u/ϕ satisfies - ∇ · (ϕ2∇v) = f ϕ in Ω′ε = Ω \ Fε.

Lax-Milgram: ∃!ψ ∈ H1
0 (Ω′ε), −∇ · (ϕ2∇ψ) = f ϕ in Ω′ε, ‖ψ‖L∞(Ω′

ε) ≤ C ‖f ‖L2(Ω).

Lemma
The function v̂ = v − ψ satisfies ∇ · (ϕ2∇v̂) = 0 in Ω′ε.
There exists C > 0 such that for every disk D ⊂ Fε,(

∀x ∈ Ω′ε, d(x ,D) ≤ C0ε, v̂(x) ≥ −C ‖f ‖L2(Ω)

)
or (

∀x ∈ Ω′ε, d(x ,D) ≤ C0ε, v̂(x) ≤ C ‖f ‖L2(Ω)

)
.
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Quasiconformal change of variable (Step 4)

Recall that ∇ · (ϕ2∇v̂) = 0 in Ω′ε.

Lemma
There exists a K-quasiconformal mapping L : Ω→ Ω, L(0) = 0, with K s.t.

1 ≤ K ≤ 1 + Cε2 ‖V ‖L∞(Ω) ,

such that h := v̂ ◦ L−1 satisfies ∆h = 0 in L(Ω′ε).

Poincaré’s lemma for divergence free vector: ∃ṽ s.t. ϕ2v̂x = ṽy and ϕ2v̂y = −ṽx .

Beltrami’s equation: w := v̂ + i ṽ satisfies ∂w
∂z̄ = µ ∂w

∂z with µ = 1−ϕ2

1+ϕ2
v̂x +i v̂y
v̂x−i v̂y

.

Estimate on ϕ: |µ| ≤ 1−ϕ2

1+ϕ2 ≤ Cε2 ‖V ‖L∞(Ω) .

Beltrami: ∃ψ K -quasiconformal, ψ(0) = 0, ∂ψ
∂z̄ = µ ∂ψ

∂z in C, 1 ≤ K ≤ 1 + Cε2 ‖V ‖∞.
Stoilow factorization theorem: ∃W hol. s.t. w = W ◦ψ so v̂ ◦ψ−1 = <(W ) is harmonic.
Riemann mapping theorem: ψ(Ω) is simply connected so ∃α : ψ(Ω)→ Ω and α(0) = 0.
Set L := α ◦ ψ, K -quasiconformal, L(0) = 0 maps Ω to Ω and h = v̂ ◦ L−1 is harmonic.
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Image of the perforated domain by L (Step 4)
Recall that L : Ω→ Ω, L(0) = 0, K -quasiconformal, 1 ≤ K ≤ 1 + Cε2 ‖V ‖L∞ .

Lemma
There exist a positive constant c > 0 such that for every ε > 0 satisfying

ε ≤ c ‖V ‖−1/2
L∞(Ω) log−1/2

(
‖V ‖L∞(Ω)

)
,

L(ω) contains B(0, r/32),
∀D ⊂ Fε, L(D) ⊂ D′, a disk of size ε′ = 32ε,
these disks are C0ε/32-separated from each other, from L(Z 1

ε ), from ∂Ω
(= L(∂Ω)), from L(xmax) and from 0.

The main ingredient is Mori’s theorem: 1
16
∣∣ z1−z2

R
∣∣K ≤ |L(z1)−L(z2)|

R ≤ 16
∣∣ z1−z2

R
∣∣1/K

.
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Summary of Step 4
By the change of variable L, the equation ∇ · (ϕ2∇v̂) = 0 in Ω′ε becomes

∆h = 0 in L(Ω′ε).

Moreover, we have for ε ≤ c ‖V ‖−1/2
L∞(Ω) log−1/2

(
‖V ‖L∞(Ω)

)
,

L(ω) ∼ B(0, r/32),
L(Ωε) ∼ Ω \ ∪i∈ID(x ′i , ε′),
D(x ′i , ε′) are 16ε′-separated from each other, from L(Z 1

ε ), from ∂Ω, from
L(xmax) and from 0,
h is constant on ∂Ω,
punctual estimate of h near the disks D′ = D(x ′i , ε′),(

∀x ∈ Ω′ε, d(x ,D′) ≤ 16ε, h(x) ≥ −C ‖f ‖L2(Ω)

)
or (

∀x ∈ Ω′ε, d(x ,D) ≤ 16ε, h(x) ≤ C ‖f ‖L2(Ω)

)
.
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A Carleman estimate (Step 5)

Set η(x) =
√
R2 + 1−

√
|x |2 + 1 and for λ ≥ 1, ξ(x) = eλη(x).

Theorem
There exist λ1 ≥ 1, s1 > 0, C1 > 0 such that for every λ ≥ λ1, s ≥ s1,

λ4
∫

Ω
e2sξ(sξ)3|ϕ|2dx ≤ C1

(∫
Ω
e2sξ|∆ϕ|2dx + λ4

∫
ω

e2sξ(sξ)3|ϕ|2dx
)
,

where ϕ ∈ H2(B(0,R)), constant on ∂B(0,R).
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Carleman estimate in the perforated domain (Step 5)
Cut-off near the disks: χ ≡ 0 on B(0, 3) χ ≡ 1 on R2 \ B(0, 4), and set

ϕ(x) =

{
h(x)

∏
i∈I χ

(
x−x′

i
ε′

)
for x ∈ L(Ω′ε),

0 for x ∈ Ω \ L(Ω′ε).
Carleman estimate: s3 ∫

Ω e2sξ|ϕ|2dx ≤ C
(∫

Ω e2sξ|∆ϕ|2dx + s3 ∫
ω

e2sξ|ϕ|2dx
)
.

∆h = 0:
∫

Ω e2sξ|∆ϕ|2 ≤ C
∑∫

B(x′
i ,4ε

′)\B(x′
i ,3ε

′)

(
1
|ε′|4 |h|

2 + 1
|ε′|2 |∇h|2

)
e2sξ

Harnack’s inequality:
∫

B(x′
i ,4ε

′)\B(x′
i ,3ε

′))
1
|ε′|2 |∇h|2e2sϕ ≤ C

∫
B(x′

i ,4ε
′)\B(x′

i ,3ε
′))

1
|ε′|4 |h|

2e2sξ.

s3∑∫
B(x′

i ,8ε
′)\B(x′

i ,4ε
′) |h|

2e2sξ ≤ C
(∑∫

B(x′
i ,4ε

′)\B(x′
i ,3ε

′)
1
|ε′|4 |h|

2e2sξ + s3 ∫
ω

e2sξ|h|2dx
)
.

Weight property:
∫

B(x′
i ,4ε

′)\B(x′
i ,3ε

′) e2sξ ≤ e−2sε′ ∫
B(x′

i ,8ε
′)\B(x′

i ,4ε
′) e2sξ.

Harnack’s inequality:
∫

B(x′
i ,4ε

′)\B(x′
i ,3ε

′)
1
|ε′|4 |h|

2e2sξ ≤ e−2sε′ ∫
B(x′

i ,8ε
′)\B(x′

i ,4ε
′) |h|

2e2sξ.

For sε′4e2sε′
≥ C , i.e. s ≥ Cε−1 log(ε−1) we obtain s3 ∫

Ω e2sξ|ϕ|2 ≤ Cs3 ∫
ω

e2sξ|h|2 .
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Summary of Step 5

For ϕ = h, far from the disks, we obtain for s ≥ Cε−1 log(ε−1),

s3 ∫
Ω e2sξ|ϕ|2 ≤ Cs3 ∫

ω
e2sξ|h|2.

How can we finish the proof?

ε ≤ c ‖V ‖−1/2
∞ log−1/2 (‖V ‖∞) ⇒ s ≥ ‖V ‖1/2

∞ log3/2 (‖V ‖∞).

|ϕ|L2(Ω) ≤ exp(C‖V ‖1/2
∞ log3/2 (‖V ‖∞))(|f |L2(Ω) + |h|L2(ω)).

Mean-value: |h(L(xmax )| ≤ exp(C‖V ‖1/2
∞ log3/2 (‖V ‖∞))(|f |L2(Ω) + |h|L2(ω)).

Coming back: |u(xmax )| ≤ exp(C‖V ‖1/2
∞ log3/2 (‖V ‖∞))(|f |L2(Ω) + |u|L∞(ω)).

Rmk: To obtain exp(C‖V ‖1/2
∞ log1/2 (‖V ‖∞)), we have to use the antisymmetric

term in the Carleman estimate.
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Conclusion
In brief, recall the story

Null-controllability of ∂ty −∆y + a(t, x)y = h1ω Cost = exp
(
C
(
‖a‖2/3
∞

))
.

Observability of −∂tϕ−∆ϕ+ aϕ = 0, |ϕ(0)|L2 ≤ exp
(
C
(
‖a‖2/3
∞

))
|ϕ|L2(qT ).

Global null-controllability of ∂ty −∆y + |y | logp(1 + |y |) = h1ω, p < 3/2.
Blow-up of ∂ty −∆y + |y | logp(1 + |y |) = h1ω, p > 2.

Optimality of ‖a‖2/3
∞ by Meshkov’s counterexample for a ∈ L∞(QT ;C).

Landis conjecture: −∆u + V (x)u = 0, |u(x)| ≤ exp(−|x |1+ε) ⇒ u ≡ 0.
False in 2-d for V ∈ L∞(R2;C) by Meshkov’s counterexample.
True in 2-d for V ∈ L∞(R2;R) by Logunov and al.

What’s new? In 2-d,

‖u‖H2(Ω) ≤ exp
(
C
(
‖V ‖1/2

∞ log1/2 (‖V ‖∞))) (‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
,

Existence of a pair (y , h) s.t. −∆y + |y | logp(1 + |y |) = F + h1ω, p < 2,
No existence of a pair −∆y + |y | logp(1 + |y |) = F + h1ω, p > 2.

Perspectives: Ω connected, optimality of ‖V ‖1/2
∞ log1/2 (‖V ‖∞), parabolic equations

with spatial potential in 2-d, multi-d case...
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